Compact, high power SRF Accelerators for Industrial Applications

Jayakar Charles Tobin Thangaraj
Illinois Accelerator Research Center (IARC), Fermilab
June 8, 2018

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics
Superconducting Radio Frequency (SRF)

~ All new high beam power accelerators for discovery science employ SRF

- Why?
 - Because ~all RF power \(\rightarrow\) beam power vs heating RF resonators
 - SRF \(\rightarrow\) Higher gradient, more energy per unit length

- But current SRF “science” accelerators are large and complex
Current vs New Accelerator Technology

• Bulk materials processing applications require multi-Mev energy for penetration and 100’s of kW (or even MW) of beam power
• > few MeV accelerators are typically copper and RF driven
 – Inherent losses limit efficiency (heat vs beam power) = ops cost
 – Heat removal limits duty factor, gradient and average power \(\Rightarrow\) physically large “fixed” installations = CAPEX

New Technology: Superconducting Radio Frequency (SRF)

• High wall plug power efficiency (e.g. ~ 75%)
 – Large fraction of the input power goes into beam
 – High power & efficiency enables new $ 1 Billion class SRF-based science machines \(\Rightarrow\) driving large R&D efforts at labs

• Currently SRF-based science accelerators are huge with complex cryogenic refrigerators, cryomodules, etc. But this is changing!
• Recent SRF breakthroughs now enable a new class of compact, SRF-based industrial accelerators (lower CAPEX and OPS cost)
Recent SRF Technology Breakthroughs:

- **Higher temperature superconductors**: Nb$_3$Sn coated cavities dramatically lower cryogenic losses and allow higher operating temperatures (e.g. 4 K vs 1.8 K)

- **Commercial Cryocoolers**: new devices with higher capacity at 4 K enables turn-key cryogenic systems

- **Conduction Cooling**: possible with low cavity losses→ dramatically simplifies cryostats (no Liquid Helium!)

- **New RF Power technology**: injection locked magnetrons allow phase/amplitude control at high efficiency and much lower cost per watt

- **Integrated electron guns**: reduce accelerator complexity

- **Enable compact industrial SRF accelerators at low cost**
Can now contemplate a **simple** SRF accelerator*

- 650 MHz elliptical cavity (well understood, industrial vendors)
- Commercial 4K cryo-coolers (2.5 W available now, 3-5 W soon)
- Modular design scales to MW class industrial applications
- Compact ➔ lower shielding cost, lower CAPEX
- Accelerator system <3000 lbs enables **mobile** applications

* FNAL patents pending
Vision: Build a high power SRF industrial accelerator*

We will combine state-of-the-art technological advances to create a simple, compact, high power, superconducting RF based industrial accelerator.

• Efficient
 – > 75%, mains to e-beam
• Turn key operation
• High reliability
• ~10 MeV electron beam
• > 250 kW
• ~ 0.7m Ø x 1.5 m long
Future Accelerator Applications

Energy and Environment

- Treat Municipal Waste & Sludge
 - Eliminate pathogens in sludge
 - Destroy organics, pharmaceuticals in waste water
- In-situ environmental remediation
 - Contaminated soils
 - Spoils from dredging, etc
- Upgrade of heavy oil, flare gas

Industrial and Security

- Catalyze Chemical reactions to save time and energy
- In-situ cross-link of materials
 - Improve pavement lifetime
 - Instant cure coatings
- Medical sterilization without Co60
- Improved non-invasive inspection of cargo containers

These new applications need cost effective, energy efficient, high average power electron beams.

New technology can enable new applications (including mobile apps)
In-situ Environmental Remediation

• Since e-beams can disinfect or destroy organic compounds
• One can envision mobile SRF based accelerators for environmental remediation & decontamination.

• Examples
 – Clean soil contaminated by chemical spills
 – Remove hydrocarbons from soil
 – Destroy biohazards or toxins
 – Remove PCB’s from dredge spoil
 – Provide an alternative to incineration

• Requires robust, reliable, compact, mobile accelerators that can be “brought to the problem”
In-Situ Cross-Link of Materials

Electron accelerators are widely used to cross link materials

• High power mobile accelerators enable entirely new construction techniques that can alter materials properties after placement
 – e.g. Improve the strength, toughness, and/or temperature range

• One applications: Improved Pavement
 – US Army Corps of Engineers partnership (FY17 ERDC funding)

• Collaborating to create a tough, strong binder with improved temperature performance vs bitumen to extend pavement lifetime

• U.S. spends > $ 50 B/yr to grind off and replace asphalt!
Nb3Sn vs Nb

Comparison to niobium

Conventional niobium cavity at 4.2 K

Nb3Sn cavity at 4.2 K

$20 \times$ more efficient than Nb at 4.2 K!

Data taken at 4.2 K
1.3 GHz ILC single-cells
Higher temperature SRF cavities

Nb$_3$Sn Coated SRF Cavities

- 1.3 GHz, 14 MV/m, $Q=2\times10^{10}$ @ 4K
- At 650 MHz, we predict < 2.5 W @ 4K
- Sam Posen
 - $2.5M$ DOE Early Career Award
- First article @ FNAL within factor of 3 of Cornell performance
Progress of Nb$_3$Sn Films

Substantial progress in performance over last year

650 MHz 1-cell: First 650 MHz coating

Machining completed on multicell sample cavity

Cavity is welded, going to baseline test soon
Beam Physics: Simulated Integrated Electron Gun

Reduces size and complexity

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron energy</td>
<td>9 MeV±5%</td>
</tr>
<tr>
<td>Current modulation range</td>
<td>0.1 µA - 1 mA</td>
</tr>
<tr>
<td>Beam loss at 4K</td>
<td><0.5 W</td>
</tr>
<tr>
<td>Cathode backward bombardment</td>
<td><1 W</td>
</tr>
<tr>
<td>Cathode blackbody radiation</td>
<td>< 200 mW</td>
</tr>
</tbody>
</table>
Simulations of the Cavity

- (Top) Bunch acceleration along the cavity (RMS energy).
- (Bottom Left) Transverse (x-x’) phase-space distribution.
- (Bottom Right) Transverse beam charge density distribution.

Particle losses in simulations < 10^-5. (This is important for the heat budget)
• Beamdynamics simulation was performed using TRACEWIN.
• 1M macro particles corresponds to 100mA beam current was tracked through the beamline.
• Initial distribution was generated using Twiss parameters and beam emittance obtained from RF gun simulation.
Beamdynamics Simulation from external injection (2)

- Output beam distribution at the end of the beamline
Conduction Cooling R&D

Cold head(s) of the cryocooler(s) connected to cavities by high purity aluminum

Estimated heat budget for entire accelerator = 4 – 6 W @ 4K

Remove heat by conduction only!

US patent applications

#15/280,107

#14/689,695
Conduction Cooling R&D

- Testing with commercial cryocooler
 - Goal = eliminate liquid cryogens
 - Materials and technology
 Development in progress

- Funded by $ 1.4 M LDRD Project
Challenges

• Magnetic shield
 - SRF cavities are very sensitive to trapped magnetic fields
 - need < few mG to keep RF heat dissipation under cryocooler budget
 - penetrations and access ports are to be carefully designed

• Interfaces with e-gun, power coupler, beam outlet port

Magnetic shield with penetrations

Vacuum vessel
Thermal shield
Cavity

Shut-off valve at beam outlet
Low loss RF power couplers
FNAL and Euclid TechLabs

- Patent application # 15/278,299
- DOE OHEP grant to fund fabrication of two 1.3 GHz prototypes
- Testing this year
- Eliminates copper plating
Reduce cost

Injection locked magnetron (PCT/US2014/058750)

- Reduce cost/watt by factor of 5 over IOT and solid state
- Efficiency > 80%
- Excellent phase and amplitude control

Conceptual scheme of a single 2-cascade magnetron transmitter allowing dynamic phase and power control
Radiation Shielding: Development of a computer model

- A 3-D computer model was developed to address absorbed dose rate in the water and evaluation of back scattered particles energy distribution at 4K and 70 K in the cryostat.

- A realistic Model was prepared by accounting EM fields in SRF cavities, 3-D geometry of elements, materials and their thickness.

Extractor: 50 um Ti single foil design with window 80mm x 1250mm (current density = 0.1mA/cm²)
The Compact SRF Accelerator (for scale)
The Compact SRF Accelerator

- Low Heat-loss RF Coupler
- Cryo-cooler Cold Head
- Integrated Electron Gun
- Nb$_3$Sn Coated Cavities
- No LHe
Solicitation for advancing industrial accelerators

- Dept. of Energy provided funding to develop novel accelerator designs to address need for industrial application in the energy and environment sectors

<table>
<thead>
<tr>
<th>Example Applications</th>
<th>Type 1 Demo/Small Scale</th>
<th>Type 2 Medium Scale Low Energy</th>
<th>Type 3 Medium Scale High Energy</th>
<th>Type 4 Large Scale High Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>R&D, Sterilization, industrial effluent streams</td>
<td>0.5-1.5 MeV</td>
<td>1-2 MeV</td>
<td>10 MeV</td>
<td>10 MeV</td>
</tr>
<tr>
<td>Flue Gas, Waste water</td>
<td>>0.5 MW</td>
<td>>1 MW</td>
<td>>1 MW</td>
<td>>10 MW</td>
</tr>
<tr>
<td>Wastewater, sludge, medical waste</td>
<td>>50%</td>
<td>>50%</td>
<td>>50%</td>
<td>>75%</td>
</tr>
<tr>
<td>Sludge, Medical waste, Env. remediation</td>
<td><$10/W</td>
<td><$10/W</td>
<td><$10/W</td>
<td><$5/W</td>
</tr>
<tr>
<td>Target Operating Cost†</td>
<td><1.0MS/yr</td>
<td><1.5MS/yr</td>
<td><1.5MS/yr</td>
<td><12MS/yr</td>
</tr>
</tbody>
</table>

This two-day workshop will include expert speakers on the current state of wastewater treatment, a summary of the science of using e-beam technology for treatment of waste, the current state of e-beam accelerator technology, a tour of Fermilab National Accelerator Lab, panel discussions with water treatment experts, breakout discussions and a summary close-out session.

Title:
Workshop on Application of Electron Beam (EB) Technology on Wastewater and Biosolids Treatment

Purpose:
- Promote use of e-beam technology for wastewater and biosolids treatment
- Inform water treatment professionals about e-beam technology and opportunities
- Provide feedback to NSF to open future funding opportunities

Format:
This two-day workshop will include expert speakers on the current state of wastewater treatment, a summary of the science of using e-beam technology for treatment of waste, the current state of e-beam accelerator technology, a tour of Fermilab National Accelerator Lab, panel discussions with water treatment experts, breakout discussions and a summary close-out session.

Post conference a report will be issued with findings and recommendations.

Where:
Illinois Accelerator Research Center, Fermi National Accelerator Lab
1 MeV, 1 MW SRF accelerator

G. Ciovati, R. Rimmer, F. Hannon, J. Guo, F. Marhauser, V. Vylet
J. Rathke, T. Schultheiss

J. Anderson, B. Coriton, L. Holland, M. LeSher

10 MeV, 1 MW SRF accelerator

250 kW unit

T. Kroc, C. Cooper, J. Thangaraj, R. Dhuley, M. Geelhoed

Philippe Piot
Sandra Biedron
A. Kanareykin

Facilities Layout

1 MeV, 1 MW EB facility

10 MeV, 1 MW EB facility

250 kW unit

Output beam

~14 ft

~30 ft

~20 ft

~7 ft

× 4 (+1 spare)

Legend:

- horizontal raster magnet
- Vertical bend magnet

Jefferson Lab

Jayakar Thangaraj | Compact SRF accelerator applications: USPAS Lecture
Application: Waste Water/Sludge Treatment

- Electron beams create highly reactive species
- Demonstrated effective for:
 - Disinfection of municipal bio-solids
 - Destruction of organics, pharmaceuticals
- Yet, despite demonstrations ~no market penetration
- Why? Municipalities are conservative; don't finance R&D
 - High power, cost effective, industrial accelerators have not been available to deploy* e.g. *http://science.energy.gov/~/media/hep/pdf/accelerator-rd-stewardship/Energy_Environment_Report_Final.pdf
 - Compact SRF accelerators can change this situation
- IARC is partnered with the Chicago Metropolitan Water Reclamation District (MWRD)
 - Operate largest treatment plant in the world
 - Identified multiple areas to evaluate EB
 - Bio-solids, cell lysis, destroy pharmaceuticals

Accelerator above is 3 stories tall!
Application: Co 60 Replacement

• Electron beams can be used directly or to create x-rays to accomplish many tasks currently accomplished with Co60 radioisotopes
 – National security concerns with radioisotopes in large panoramic irradiators since they could potentially be used by terrorists to create dirty bombs
 – Pressure from congress on NNSA to find alternatives
 – FNAL recently completed a study for NNSA on impediments to change.
 • One impediment is the need for high power, reliable, cost effective electron accelerators
 • Need materials data on effects of gamma, electrons, x-ray to enable recertification of legacy products

• New Possibilities:
 – Cheap, compact, simple, industrial electron accelerators can enable “in line” sterilization at the point of manufacture
In-situ Environmental Remediation

- Since e-beams can disinfect or destroy organic compounds
- One can envision mobile SRF based accelerators for environmental remediation & decontamination.

Examples
- Clean soil contaminated by chemical spills
- Remove hydrocarbons from soil
- Destroy biohazards or toxins
- Remove PCB’s from dredge spoil
- Provide an alternative to incineration

- Requires robust, reliable, compact, mobile accelerators that can be “brought to the problem”
In-Situ Cross-Link of Materials

Electron accelerators are widely used to cross link materials

- High power mobile accelerators enable entirely new construction techniques that can alter materials properties after placement
 - e.g. Improve the strength, toughness, and/or temperature range
- One applications: Improved Pavement
 - US Army Corps of Engineers partnership (FY17 ERDC funding)

- Collaborating to create a tough, strong binder with improved temperature performance vs bitumen to extend pavement lifetime
- U.S. spends > $ 50 B/yr to grind off and replace asphalt!
Conclusions

• Exploiting recent lab breakthroughs one can create high average power, CW, SRF-based electron linacs that are simple and cost effective for industrial applications

• The Illinois Accelerator Research Center at Fermilab is partnered with U.S. government agencies to create the first article of an entirely new class of industrial SRF-based electron accelerators that use no liquid cryogens

• Mobile, high energy, high power electron accelerators can enable a variety of entirely new industrial applications

• Several applications may have enormous market potential