Stable Tetraquarks

Chris Quigg

Moriond QCD · La Thuile · 20 March 2018

Estia Eichten & CQ, PRL 119, 202002 (2017) / arXiv:1707.09575

Heavy-quark symmetry implies stable heavy tetraquark mesons $Q_iQ_jar{q}_kar{q}_l$

In the limit of very heavy quarks Q, novel narrow doubly heavy tetraquark states (DHTQ) must exist.

HQS relates DHTQ mass to masses of a doubly heavy baryon, heavy-light baryon, and heavy-light meson.

The lightest double-beauty states composed of $bb\bar{u}\bar{d}$, $bb\bar{u}\bar{s}$, and $bb\bar{d}\bar{s}$ will likely be stable against strong decays.

Heavier $bb\bar{q}_k\bar{q}_l$ states, $cc\bar{q}_k\bar{q}_l$ states, and mixed $bc\bar{q}_k\bar{q}_l$ states, will likely dissociate into pairs of heavy-light mesons. Some might be seen as "double-flavor" resonances near threshold.

Observing a weakly decaying double-beauty state would establish the existence of tetraquarks and illuminate the role of heavy color- $\bar{3}$ diquarks as hadron constituents.

When tetraquarks resemble the helium atom . . .

Factorized system: separate dynamics for compact "nucleus," light quarks

(Attractive, repulsive) one-gluon exchange for (QQ) in color- $(\bar{\bf 3}, {\bf 6})$ $\bar{\bf 3}$ half strength of $Q\bar Q$ attraction in color- ${\bf 1}$ also for string tension [Nakamura & Saito]

In heavy limit, idealize a stationary, structureless (color) charge

Chris Quigg (Fermilab) Stable Tetraquarks Moriond QCD \cdot 20.3.2018 2 / 17

Stability in the heavy-quark limit

1) Dissociation into two heavy-light mesons is kinematically forbidden.

$$\mathcal{Q} \equiv m(Q_iQ_jar{q}_kar{q}_l) - [m(Q_iar{q}_k) + m(Q_jar{q}_l)] = \ \underline{\Delta(q_k,q_l)} - \frac{1}{2}(\frac{2}{3}lpha_{
m s})^2[1 + O(v^2)]\overline{M} + O(1/\overline{M}) \; ,$$
light d.o.f.

$$\overline{M}\equiv (1/m_{Q_i}+1/m_{Q_j})^{-1}$$
: reduced mass of Q_i and Q_j $\Delta(q_k,q_l)\stackrel{\overline{M} o\infty}{\longrightarrow}$ independent of heavy-quark masses

For large enough \overline{M} , QQ Coulomb binding dominates, $\boxed{\mathcal{Q} < 0}$

Chris Quigg (Fermilab) Stable Tetraquarks Moriond QCD · 20.3.2018

3 / 17

Stability in the heavy-quark limit

2) Decay to doubly heavy baryon and light antibaryon?

$$\left(Q_iQ_jar{q}_kar{q}_l\right)
ightarrow \left(Q_iQ_jq_m\right) + \left(ar{q}_kar{q}_lar{q}_m\right)$$

For very heavy quarks, negligible contributions from Q motion and spin interactions, so (spin configurations matter)

$$m(Q_iQ_j\bar{q}_k\bar{q}_l)-m(Q_iQ_jq_m)=m(Q_xq_kq_l)-m(Q_x\bar{q}_m)$$

RHS has generic form $\Delta_0 + \Delta_1/M_{Q_X}$

4 / 17

With $m(\Lambda_c) - m(D) = 416.87$ MeV and $m(\Lambda_b) - m(B) = 340.26$ MeV, we estimate $\Delta_0 \approx 330$ MeV (asymptotic mass difference).

$$\mathsf{AII} < m(\bar{p}) = 938 \; \mathsf{MeV}$$

No open strong decay channels in the heavy-quark limit!

As $\overline{M} \to \infty$, stable $Q_i Q_j \bar{q}_k \bar{q}_l$ mesons must exist

Implications for the real world?

Does a tiny quasistatic diquark core make sense in our world?

At large $Q_i - Q_i$ separations, $\bar{q}_k \bar{q}_l$ cloud screens $Q_i Q_i$ interaction

→ rearrangement into heavy–light mesons

In a half-strength Cornell potential, rms core radii are small on tetraquark scale: $\langle r^2 \rangle^{1/2} = 0.28 \text{ fm}(cc); 0.24 \text{ fm}(bc); 0.19 \text{ fm}(bb)$. (lattice, too)

... core-plus-light (anti)quarks idealization should be reliable.

Mass estimates (beyond the heavy-quark limit . . .)

Use heavy-quark-symmetry relations,

(hyperfine + light d.o.f.)

$$\begin{split} m(\{Q_{i}Q_{j}\}\{\bar{q}_{k}\bar{q}_{l}\}) - m(\{Q_{i}Q_{j}\}q_{y}) &= m(Q_{x}\{q_{k}q_{l}\}) - m(Q_{x}\bar{q}_{y}) \\ m(\{Q_{i}Q_{j}\}[\bar{q}_{k}\bar{q}_{l}]) - m(\{Q_{i}Q_{j}\}q_{y}) &= m(Q_{x}[q_{k}q_{l}]) - m(Q_{x}\bar{q}_{y}) \\ m([Q_{i}Q_{j}]\{\bar{q}_{k}\bar{q}_{l}\}) - m([Q_{i}Q_{j}]q_{y}) &= m(Q_{x}\{q_{k}q_{l}\}) - m(Q_{x}\bar{q}_{y}) \\ m([Q_{i}Q_{j}][\bar{q}_{k}\bar{q}_{l}]) - m([Q_{i}Q_{j}]q_{y}) &= m(Q_{x}[q_{k}q_{l}]) - m(Q_{x}\bar{q}_{y}) \\ &+ \text{finite-mass corrections, } \delta m = \mathcal{S} \frac{\vec{S} \cdot \vec{j}_{\ell}}{2\mathcal{M}} + \frac{\mathcal{K}}{2\mathcal{M}} \end{split}$$

Chris Quigg (Fermilab) Stable Tetraquarks Moriond QCD · 20.3.2018

to estimate $Q_i Q_i \bar{q}_k \bar{q}_l$ masses

Kinetic-energy shift differs in $Q\bar{q}$ mesons and Qqq baryons . . .

Consider $\delta \mathcal{K} \equiv \mathcal{K}_{(ud)} - \mathcal{K}_d$:

$$\begin{split} [\mathit{m}((\mathit{cud})_{\bar{3}}) - \mathit{m}(\mathit{c}\bar{\mathit{d}})] - [\mathit{m}((\mathit{bud})_{\bar{3}}) - \mathit{m}(\mathit{b}\bar{\mathit{d}})] \\ &= \delta \mathcal{K} \left(\frac{1}{2m_c} - \frac{1}{2m_b} \right) = 5.11 \; \mathsf{MeV} \end{split}$$

 $\sim \delta \mathcal{K} = 0.0235 \text{ GeV}^2$

8 / 17

$$m(\{cc\}(\bar{u}\bar{d})) - m(\{cc\}d)$$
: $\frac{\delta \mathcal{K}}{4m_c} = 2.80 \text{ MeV}$
 $m((bc)(\bar{u}\bar{d})) - m(\{bc\}d)$: $\frac{\delta \mathcal{K}}{2(m_c + m_b)} = 1.87 \text{ MeV}$
 $m(\{bb\}(\bar{u}\bar{d})) - m(\{bb\}d)$: $\frac{\delta \mathcal{K}}{4m_b} = 1.24 \text{ MeV}$

Small! (only slightly larger than isospin-breaking effects we neglect)

Estimating ground-state tetraquark masses

RHS of

$$m(Q_iQ_j\bar{q}_k\bar{q}_l)-m(Q_iQ_jq_m)=m(Q_xq_kq_l)-m(Q_x\bar{q}_m)$$

is determined from data

9 / 17

One doubly heavy baryon observed, Ξ_{cc} ; others from model calculations* LHCb: $M(\Xi_{cc}^{++}) = 3621.40 \pm 0.78$ MeV

*We adopt Karliner & Rosner, PRD 90, 094007 (2014)

Strong decays $(Q_iQ_j\bar{q}_k\bar{q}_l) \not\to (Q_iQ_jq_m) + (\bar{q}_k\bar{q}_l\bar{q}_m) \ \forall$ ground states Must consider decays to pairs of heavy–light mesons case-by-case

Chris Quigg (Fermilab) Stable Tetraquarks Moriond QCD · 20.3.2018

Expectations for ground-state tetraquark masses, in MeV

State	J^P	$m(Q_iQ_jar{q}_kar{q}_I)$	Decay Channel	$\mathcal Q$ [MeV]
$\{cc\}[\bar{u}\bar{d}]$	1+	3978	D ⁺ D ^{*0} 3876	102
$\{cc\}[\bar{q}_k\bar{s}]$	1^+	4156	$D^+D_s^{*-}$ 3977	179
$\{cc\}\{ar{q}_kar{q}_l\}$	$0^+, 1^+, 2^+$	4146, 4167, 4210	D^+D^0 , D^+D^{*0} 3734, 3876	412, 292, 476
$[bc][\bar{u}\bar{d}]$	0^+	7229	B^-D^+/B^0D^0 7146	83
$[bc][\bar{q}_k\bar{s}]$	0^+	7406	$B_{s}D$ 7236	170
$[bc]\{ar{q}_kar{q}_l\}$	1^+	7439	B*D/BD* 7190/7290	249
$\{bc\}[\bar{u}\bar{d}]$	1^+	7272	B*D/BD* 7190/7290	82
$\{bc\}[ar{q}_kar{s}]$	1^+	7445	<i>DB</i> _s * 7282	163
$\{bc\}\{ar{q}_kar{q}_l\}$	$0^+, 1^+, 2^+$	7461, 7472, 7493	<i>BD/B*D</i> 7146/7190	317, 282, 349
$\{bb\}[ar uar d]$	1+	10482	$B^-ar{B}^{*0}$ 10603	-121
$\{bb\}[ar{q}_kar{s}]$	1+	10643	$ar{B}ar{B}_{s}^{*}/ar{B}_{s}ar{B}^{*}$ 10695/10691	-48
$\{bb\}\{ar{q}_kar{q}_l\}$	$0^+, 1^+, 2^+$	10674, 10681, 10695	B^-B^0, B^-B^{*0} 10559, 10603	115, 78, 136

Cf. M. Karliner & J. L. Rosner model, Phys. Rev. Lett. **119**, 202001 (2017) [arXiv:1707.07666]. Estimate deeper binding, so additional *bc* and *cc* candidates.

Lattice studies also suggest stable double-beauty tetraquarks.

Real-world candidates for stable tetraquarks

$$J^P=1^+$$
 $\{bb\}[ar{u}ar{d}]$ meson, bound by 121 MeV

(77 MeV below $B^-\bar{B}^0\gamma$)

$$J^P=1^+\ \{bb\}[\bar{u}\bar{s}]$$
 and $\{bb\}[\bar{d}\bar{s}]$ mesons, bound by 48 MeV (3 MeV below $BB_s\gamma$)

$$\mathcal{T}^{\{bb\}}_{[\bar{u}\bar{s}]}(10643)^- \to \Xi^0_{bc}\overline{\Sigma}^- \qquad \mathcal{T}^{\{bb\}}_{[\bar{d}\bar{s}]}(10643)^0 \to \Xi^0_{bc}(\bar{\Lambda}, \overline{\Sigma}^0)$$

SELEX $M(\Xi_{cc}^+)=3519~{\rm MeV} \leadsto m(\{cc\}[\bar{u}\bar{d}])=3876~{\rm MeV}$, at threshold for dissociation into a heavy-light pseudoscalar and heavy-light vector. Signatures for weak decay would include $D^+K^-\ell^+\nu$ and $\Xi_c^+\bar{n}$. $(D^0D^+\gamma$ at 3734 MeV)

Unstable doubly heavy tetraquarks

Resonances in "wrong-sign" (double flavor) combinations DD, DB, BB?

$$\mathcal{T}^{\{cc\}++}_{[\bar{d}\bar{s}]} o D^+ D^+_s$$
: prima facie evidence for a non- $q\bar{q}$ level

(New kind of resonance: no attractive force at the meson-meson level.)

Production of stable tetraquarks?

Undoubtedly rare! We offer no calculation, but note

- Large yield of B_c in LHCb: 8995 ± 103 $B_c \rightarrow J/\psi \mu \nu_{\mu} X$ candidates in 2 fb⁻¹ pp collisions at 8 TeV
- CMS observation of double- Υ production in 8-TeV pp collisions: $\sigma(pp \to \Upsilon\Upsilon + \text{ anything}) = 68 \pm 15 \text{ pb}$

Ultimate search instrument? Future e^+e^- Tera-Z factory Branching fractions $Z \to b\bar{b} = 15.12 \pm 0.05\%, b\bar{b}b\bar{b} = (3.6 \pm 1.3) \times 10^{-4}$ \sim many events containing multiple heavy quarks

Homework for experiment

Look for double-flavor resonances near threshold.

Discover and determine masses of doubly-heavy baryons.

needed to implement HQS calculation of tetraquark masses
intrinsic interest in these states: comparison with heavy—light mesons,
possible core excitations

Resolve Ξ_{cc} uncertainty (SELEX/LHCb)

Find stable tetraquarks through weak decays. Lifetime: $\sim 1/3$ ps ??

Homework for theory

Develop expectations for production.

Refine lifetime estimates for stable states.

Understand how color configurations evolve with QQ masses.

Investigate stability of other body plans in the heavy-quark limit.

Other $Q_i Q_j \bar{q}_k \bar{q}_l$ configurations

All quarks heavy, one-gluon exchange prevails: No stable $QQ\bar{Q}\bar{Q}$ (equal-mass) tetraquarks in very-heavy-quark limit. Support for binding of $bb\bar{q}\bar{q}$. Study N_c dependence.

A. Czarnecki, B. Leng, M. B. Voloshin, "Stability of tetrons," arXiv:1708.04594.

Lattice–NRQCD study of $bb\bar{b}$: No tetraquark with mass below $\eta_b\eta_b$, $\eta_b\Upsilon$, $\Upsilon\Upsilon$ thresholds in $J^{PC}=0^{++},1^{+-},2^{++}$ channels.

C. Hughes, E. Eichten, C. T. H. Davies, "The Search for Beauty-fully Bound Tetraquarks Using Lattice Non-Relativistic QCD," arXiv:1710.03236.

Chris Quigg (Fermilab) Stable Tetraquarks Moriond QCD \cdot 20.3.2018 16 / 17

Heavy-quark symmetry implies stable heavy tetraquark mesons $Q_iQ_jar{q}_kar{q}_l$

In the limit of very heavy quarks Q, novel narrow doubly heavy tetraquark states must exist.

Mass estimates lead us to expect that the $J^P = 1^+ \{bb\}[\bar{u}\bar{d}], \{bb\}[\bar{u}\bar{s}], \text{ and } \{bb\}[\bar{d}\bar{s}] \text{ states should be exceedingly narrow, decaying only through the charged-current weak interaction}$

Observation would herald a new form of stable matter, in which the doubly heavy color- $\bar{\mathbf{3}}$ Q_iQ_j diquark is a basic building block.

Unstable $Q_iQ_j\bar{q}_k\bar{q}_l$ tetraquarks with small Q-values may be observable as resonant pairs of heavy-light mesons