

Why we need precision in Neutrino Physics

Stephen Parke Fermilab

10.5281/zenodo.1173797

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics

Stephen Parke, Fermilab

NBI, colloquium

NOBEL 2015

V

"for the discovery of neutrino oscillations, which shows that neutrinos have mass"

Takaaki Kajita SuperKamiokaNDE

"for the discovery of neutrino flavor transformations, which shows that neutrinos have mass"

39.3 m

~ vacuum oscillations

Stephen Parke, Fermilab

Wolfenstein Matter effects dominant flavor transformations

See Smirnov arXiv:1609.02386

19+ years ago

FRIDAY, JUNE 5, 1998

Mass Found in Elusive Particle; Universe May Never Be the Same

Discovery on Neutrino Rattles Basic Theory About All Matter

"All the News

By MALCOLM W. BROWNE

> TAKAYAMA, Japan, June 5 - In what colleagues hailed as a historic landmark, 120 physicists from 23 research institutions in Japan and the United States announced today that they had found the existence of mass in a notoriously elusive subatomic particle called the neutrino.

The neutrino, a particle that carries no electric charge, is so light that it was assumed for many years to have no mass at all. After today's announcement, cosmologists will have to confront the possibility that much of the mass of the universe is in the form of neutrinos. The discovery will also compel scientists to revise a highly successful theory of the composition of matter known as the Standard Model.

Word of the discovery had drawn some 300 physicists here to discuss neutrino research. Among other things, they said, the finding of neutrino mass might affect theories about the formation and evolution of galaxies and the ultimate fate of the universe. If neutrinos have sufficient mass, their presence throughout the universe would increase the overall mass of the universe, possibly slowing its present expansion.

Others said the newly detected but as yet unmeasured mass of the neutrino must be too small to cause cosmological effects. But whatever the case, there was general agreement here that the discovery will have far-reaching consequences for the investigation of the nature of matter.

Speaking for the collaboration of scientists who discovered the existence of neutrino mass using a huge underground detector called Super-Kamiokande, Dr. Takaaki Kajita of the Institute for Cosmic Ray Research of Tokyo University said that all explanations for the data collect-

Detecting Neutrinos Neutrinos pass through the Earth's surface to a tank filled with 12.5 million gallons of ultra-pure water **(2)** ... and collide with other, CF particles producing a coneshaped flash of light. LIGHT The light is recorded by 11,200 20-

And Detecting Their Mass

By analyzing the cones of light, physicists determine that some neutrinos have changed form on their journey. If they can change form, they must have mass.

Source: University of Hawai

LIGHT AMPLIFIER

The New York Times

ed by the detector except the existence of neutrino mass had been essentially ruled out.

Dr. Yoji Totsuka, leader of the coalition and director of the Kamioka Neutrino Observatory where the underground detector is situated, 30 miles north of here in the Japan Alps, acknowledged that his group's announcement was "very strong," but said, "We have investigated all

Continued on Page A14

Beacom and SP: hep-ph/0106128

Stephen Parke, Fermilab

컆 Neutrinos are Everywhere ! from Big Bang 300 nus / cm^3 2 or more v/c << l Sun ugust, 2008 SuperNovae Sun October 30, 2008 > 10^58 ~ 10^38 nu/sec Unidentified LSI +61 303 \bigcirc Daya Bay Vela 3 x 10^21 nu/sec NGC 1275 Unidentified Neutrinos are Forever !!! (except for the highest energy neutrino's) therefore in the Universe:

Stephen Parke, Fermilab

Key Neutrino Questions:

- •Nature of Neutrino Mass:
 - · 2 comp & L violation (Majorana)
 - \cdot or 4 comp & L conserved (Dirac)
- •Neutrino Standard Model:
 - · Perform stringent tests 3 nu paradigm: check unitarity, ...
 - $\cdot \, \text{Determine}$ size and sign of CPV
 - · Determine atmospheric mass ordering
 - · Does u_{μ} or u_{τ} dominate u_3 ($\theta_{23} > < \pi/4$)
- · Beyond 3 nus:
 - · Steriles, Non-Standard Interactions, Lorentz violation, nuBSM,

Stephen Parke, Fermilab

#

9

Neutrino Mass Eigenstates or Propagation States:

Stephen Parke, Fermilab

NBI, colloquium

Interactions:

Stephen Parke, Fermilab

NBI, colloquium

2/5/2018 # ||

Rates: $|U_{\mu 1}|^2 \& |V_{td}|^2$

Stephen Parke, Fermilab

* massive_levers, massive levers.nb/ ν_2 Mass Ordering:

 $U_{\mu 1}$ V^+ \int \int ν_1 ν_1

 $0.08 < |U_{\mu 1}|^2 < 0.24$ variation in δ only !

factor of 3 diff.

$$egin{array}{rcl} |U_{\mu3}|^2 &=& 0.4-0.6 \ |U_{\mu2}|^2 &=& 0.26-0.41 \ |U_{\mu1}|^2 &=& 0.08-0.24 \end{array}$$

 $|V_{ij}|^2$ essentially independent of δ_q ! W^+ except d $V_{td} \approx A\lambda^3 (1 - 0.37 e^{i\delta q})$ $|V_{td}|^2 pprox 10^{-4}$ $|V_{tb}|^2~pprox~1$ $|V_{ts}|^2~\sim~\lambda^4pprox 2 imes 10^{-3}$ $|V_{td}|^2~\sim~\lambda^6pprox 8 imes 10^{-5}$

#

 $\delta \& heta_{23}$ uncertainty

no θ_{23} uncertainty

To discover neutrino BSM, one needs precision predictions for nuSM

Stephen Parke, Fermilab

Determine flavor fractions of neutrino mass states

Precision Predictions for flavor ratios at ICECUBE.

Neutrinos as a portal to new Physics

Stephen Parke

Lepton-Photon 2017, Guangzhou

8/10/2017 # 22

춖

Stephen Parke, Fermilab

MINOS+, NOvA, T2K, atmospheric neutrinos (SK and ICECUBE)

• ν_e Disappearance

Daya Bay, RENO, many ${\sim}10{\rm m}$ Reactor experiments & source experiments.

• $\nu_{\mu} \rightarrow \nu_{e}$ Appearance

Fermilab SBN Program, T2K and NOvA: DUNE & HyperK

NSI

P.Coloma arXiv:1511.06357

Stress Test Neutrino paradigm search for new physics

Stephen Parke, Fermilab

NBI, colloquium

Stephen Parke, Fermilab

NBI, colloquium

Stephen Parke, Fermilab

NBI, colloquium

Predictions of flavor symmetry forms

Stephen Parke, Fermilab

Stephen Parke, Fermilab

Towards a better understanding of Osc. Prob.

Globes, while a very useful tool, is not enough !

Stephen Parke, Fermilab

Daya Bay

Double Chooz

RENO

D

[, colloquium

Amplitude Modulation & Phase Advancement (NO) / Retardation (IO)

Stephen Parke, Fermilab

from Daya Bay: arXiv:1505.03456

from RENO arXiv:1511.05849

0.6

-Rate+Spectrum

Rate+Spectrum

99.7% C.L.

95.5% C.L.

68.3% C.L.

Rate-only

0.15

- - Rate-only

•

+

0.8

Stephen Parke, Fermilab

NBI, colloquium

 $\frac{1}{4}$ $\Delta \chi^2$

2

Daya Bay

6

Stephen Parke, Fermilab

What is DUNE/LBNF?

Ł F

DUNE/LBNF will consist of

•

٠

٠

- An intense (1-2 MW) neutrino beam from Fermilab
- A massive (70 kton) deep underground LAr Detector South Dakota
- A large Near Detector at Fermilab
- A large International Collaboration (~1000 scientist)

DUNE Far Detector site

- Sanford Underground Research Facility (SURF), South Dakota
- Four caverns on 4850ft level (~1.5km underground)

Fiducial = $4 \times 10 \text{ kt}$

Ar from $\sim 10~{ m km}^3$ of air

= 300m \times Area of Fermilab site (30 km²)

Proto-DUNE 2/2/2018

Stephen Parke, Fermilab

NBI, colloquium

Neutrino Oscillation Amplitudes

$$P(
u_{lpha}
ightarrow
u_{eta}) = \left|\mathcal{A}_{lphaeta}
ight|^2$$

Two Flavors:

$${\cal A}_{lpha lpha} = 1 + (2i) \, s_{ heta}^2 \, e^{+i\Delta} \, \sin \Delta$$

and ${\cal A}_{lpha eta} = (2i) \, s_{ heta} c_{ heta} \, e^{-i\Delta} \, \sin \Delta$

 $\Delta \equiv \Delta m^2 L/4E$

Neutrino Oscillation Amplitudes in vacuum: "the billion \$ process" $P(\nu_{\mu} \rightarrow \nu_{e}) = |\mathcal{A}_{\mu e}|^{2}$ $\mathcal{A}_{\mu e} = (2i) \left[(s_{23}s_{13}c_{13}) \left[c_{12}^2 e^{-i\Delta_{32}} \sin \Delta_{31} + s_{12}^2 e^{-i\Delta_{31}} \sin \Delta_{32} \right]$ $+ (c_{23}c_{13}s_{12}c_{12}) e^{i\delta} \sin \Delta_{21}]$ maintain the symmetry: $m_1^2 \leftrightarrow m_2^2$ with $heta_{12} o heta_{12} \pm \pi/2$ Denton, Minakata, SP arXiv:1604.08167 $\Delta P_{CP} = 8 \left(s_{23} s_{13} c_{13} \right) \left(c_{23} c_{13} s_{12} c_{12} \right) \sin \delta \sin \Delta_{21} \sin \Delta_{31} \sin \Delta_{32}$ $\Delta_{32} \approx \Delta_{31}$

 $\mathcal{A}_{\mu e} ~~pprox~~(2i) ~[~(s_{23}s_{13}c_{13})~\sin\Delta_{31} + ~(c_{23}c_{13}s_{12}c_{12})~e^{i(\delta + \Delta_{31})}~\sin\Delta_{21}~]$

Stephen Parke, Fer<u>mil</u>ab

NBI, colloquium

Matter Effects:

Stephen Parke, Fermilab

NBI, colloquium

Neutrino Evolution in Matter:

$$i \frac{d}{dx} \nu = H \nu$$
 with $\nu = \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix}$

$$(2E) H = U_{PMNS} \begin{bmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{21}^2 & 0 \\ 0 & 0 & \Delta m_{31}^2 \end{bmatrix} U_{PMNS}^{\dagger} + \begin{bmatrix} a & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

 $a = 2\sqrt{2}G_F N_e E$

uniform matter

춖

• Solve Cubic Characteristic Eqn.

$$\lambda^{3} - \left(a + \Delta m_{21}^{2} + \Delta m_{31}^{2}\right)\lambda^{2} + \left[\Delta m_{21}^{2} \Delta m_{31}^{2} + a\left\{\left(c_{12}^{2} + s_{12}^{2}s_{13}^{2}\right)\Delta m_{21}^{2} + c_{13}^{2}\Delta m_{31}^{2}\right\}\right]\lambda - c_{12}^{2}c_{13}^{2}a\Delta m_{21}^{2}\Delta m_{31}^{2} = 0$$

IF

- *a* = 0
- or $\Delta m^2_{21} = 0$
- or $\sin \theta_{12} = 0$
- or $\sin \theta_{13} = 0$

THEN characteristic Eqn FACTORIZES !

DOES NOT TRIVIALLY SIMPLIFY !

Stephen Parke, Fermilab

2 flavor mixing in matter $ax^2 + bx + c = 0$ simple, intuitive, useful

3 flavor mixing in matter $ax^3 + bx^2 + cx + d = 0$ complicated, counter intuitive, ...

Stephen Parke, Fermilab 1/31/2018

arXiv:1604.08167v1 [hep-ph] 27 Apr 2016

Compact Perturbative Expressions For Neutrino Oscillations in Matter

Peter B. Denton^{*a,b*} Hisakazu Minakata^{*c,d*} Stephen J. Parke^{*a*}

Addendum to "Compact Perturbative Expressions for Neutrino Oscillations in Matter" 1801.06514

Peter B. Denton,^{*a*} Hisakazu Minakata,^{*b*} Stephen J. Parke^{*c*}

doi: 10.5281/zenodo.1163591

Stephen Parke, Fermilab

CERN NuPlatform

Neutrino Evolution in Matter:

$$i\frac{d}{dx}\nu = H\nu \quad \text{with} \quad \nu = \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix}$$
$$(2E) H = U_{PMNS} \begin{bmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{21}^2 & 0 \\ 0 & 0 & \Delta m_{31}^2 \end{bmatrix} U_{PMNS}^{\dagger} + \begin{bmatrix} a & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
$$a = 2\sqrt{2}G_F N_e E$$

 $U_{PMNS} \equiv U_{23}(\theta_{23},0) \ U_{13}(\theta_{13},-\delta) \ U_{12}(\theta_{12},0) :=: U_{23}(\theta_{23},\delta) \ U_{13}(\theta_{13},0) \ U_{12}(\theta_{12},0)$

:=: means equal after multiplying by a diagonal phase matrix on the left and/or right hand side.

$$i\frac{d}{dx} \nu' = U_{23}^{\dagger}(\theta_{23}, \delta) H U_{23}(\theta_{23}, \delta) \nu' \qquad \text{with } \nu' = U_{23}^{\dagger}(\theta_{23}, \delta) \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix}$$

Neutrino Evolution in Matter (conti): $U_{23}^{\dagger}(\theta_{23}, \delta) H U_{23}(\theta_{23}, \delta) =$

$$\frac{1}{2E} \begin{pmatrix} a + s_{13}^2 \Delta m_{31}^2 + s_{12}^2 c_{13}^2 \Delta m_{21}^2 & c_{13} s_{12} c_{12} \Delta m_{21}^2 & s_{13} c_{13} \Delta m_{31}^2 - s_{12}^2 s_{13} c_{13} \Delta m_{21}^2 \\ c_{13} s_{12} c_{12} \Delta m_{21}^2 & c_{12}^2 \Delta m_{21}^2 & -s_{13} s_{12} c_{12} \Delta m_{21}^2 \\ s_{13} c_{13} \Delta m_{31}^2 - s_{12}^2 s_{13} c_{13} \Delta m_{21}^2 & -s_{13} s_{12} c_{12} \Delta m_{21}^2 & c_{13}^2 \Delta m_{31}^2 + s_{12}^2 s_{13}^2 \Delta m_{21}^2 \end{pmatrix}$$

Expansions in
$$\begin{cases} s_{13} & \sim 0.15 \\ (\Delta m_{21}^2 / \Delta m_{31}^2) & \sim 0.03 \\ (a / \Delta m_{31}^2) & \sim (E_{\nu} / 10 GeV) \end{cases}$$

Key observations:

- Don't use Δm^2_{31}
- Use $\Delta m^2_{ee} = \Delta m^2_{31} s^2_{12} \Delta m^2_{21}$
- Subtract $s_{12}^2 \Delta m_{21}^2$ from all diagonal elements

Simple but major improvements in accuracy !

Stephen Parke, Fermilab

Neutrino Evolution in Matter (conti):

$U_{23}^{\dagger}(\theta_{23},\delta) H U_{23}(\theta_{23},\delta) = H_D + H_{OD}$

D=diagonal OD= off-diagonal

Stephen Parke, Fermilab

Stephen Parke, Fermilab

Stephen Parke, Fermilab

matter

$$\begin{array}{rcccc} \Delta m_{jk}^2 & \rightarrow & \Delta \widetilde{m^2}_{jk} \\ \theta_{13} & \rightarrow & \widetilde{\theta}_{13} \\ \theta_{12} & \rightarrow & \widetilde{\theta}_{12} \\ \theta_{23} & \rightarrow & \theta_{23} \\ \delta & \rightarrow & \delta \end{array}$$

$$P_{\nu_{\alpha} \to \nu_{\beta}}^{vac}(\Delta m_{31}^{2}, \Delta m_{21}^{2}, \theta_{13}, \theta_{12}, \theta_{23}, \delta)$$

$$\Rightarrow P_{\nu_{\alpha} \to \nu_{\beta}}^{mat}(\Delta \widetilde{m^{2}}_{31}, \Delta \widetilde{m^{2}}_{21}, \widetilde{\theta}_{13}, \widetilde{\theta}_{12}, \theta_{23}, \delta)$$

Intuitive and Analytically simple !

Stephen Parke, Fermilab

ж Т

$U_{23}^{\dagger}(\theta_{23},\delta) H U_{23}(\theta_{23},\delta) = H_D + H_{OD}$

What about H_{OD} ?

Vanishes in Vacuum

$$4 \times 10^{-4}$$
 for $E = 2 \text{ GeV}$ and $\rho = 3 \text{ g.cm}^{-3}$

Perturbation Theory !!!

Stephen Parke, Fermilab

Stephen Parke, Fermilab

#orrelations between

Normal Ordering — Inverted Ordering

 $u_{\mu}
ightarrow
u_{e} \quad ar{
u}_{\mu}
ightarrow ar{
u}_{e}$

Stephen Parke, Fermilab

T2K & NOvA

Number of Events proportional to Oscillation Probability

Stephen Parke, Fermilab

Summary:

- from Nu1998 to now, tremendous exp. progress on Neutrino SM: more at Nu2018
- LSND Sterile Nu's neither confirmed or ruled out at acceptable CL: – ultra short baseline reactor exp.
- Great Theoretical progress on understand many aspects of Quantum Neutrino Physics: – Oscillations, Decoherence, Osc. Probabilities in Matter, Leptogenesis,
- Still searching for convincing model of Neutrino masses and mixings: with testable and confirmed predictions !

extras

Stephen Parke, Fermilab

NBI, colloquium

Approximately same uncertainty on δ until systematic uncertainities dominate at 1st OM !

ESSnuSB, T2HKK

Stephen Parke, Fermilab