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During the shutdown of the CERN Large Hadron Collider in 2013-2014, an additional pixel
layer was installed between the existing Pixel detector of the ATLAS experiment and a new,
smaller radius beam pipe. The motivation for this new pixel layer, the Insertable B-Layer
(IBL), was to maintain or improve the robustness and performance of the ATLAS tracking
system, given the higher instantaneous and integrated luminosities realised following the
shutdown. Because of the extreme radiation and collision rate environment, several new
radiation-tolerant sensor and electronic technologies were utilised for this layer. This paper
reports on the IBL construction and integration prior to its operation in the ATLAS detector.
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1 Introduction

The ATLAS [1] general purpose detector is used for the study of proton-proton (pp) and heavy-ion
collisions at the CERN Large Hadron Collider (LHC) [2]. It successfully collected data at pp collision
energies of 7 and 8 TeV in the period of 2010-2012, known as Run 1. Following an LHC shutdown
in 2013-2014 (LS1), it has collected data since 2015 at a pp collision energy of 13 TeV (the so-called
Run 2).

The ATLAS inner tracking detector (ID) [1, 3] provides charged particle tracking with high efficiency in
the pseudorapidity1 range of j� j < 2:5. With increasing radial distance from the interaction region, it
consists of silicon pixel andmicro-strip detectors, followed by a transition radiation tracker (TRT) detector,
all surrounded by a superconducting solenoid providing a 2 T magnetic field.

The original ATLAS pixel detector [4, 5], referred to in this paper as the Pixel detector, was the innermost
part of the ID during Run 1. It consists of three barrel layers (named the B-Layer, Layer 1 and Layer 2
with increasing radius) and three disks on each side of the interaction region, to guarantee at least three
space points over the full tracking j� j range. It was designed to operate for the Phase-I period of the LHC,
that is with a peak luminosity of 1 � 1034 cm−2s−1 and an integrated luminosity of approximately 340 fb−1

corresponding to a TID of up to 50MRad2 and a fluence of up to 1 � 1015 neq /cm2 NIEL. However,
for luminosities exceeding 2 � 1034 cm−2s−1, which are now expected during the Phase-I operation, the
read-out efficiency of the Pixel layers will deteriorate.

This paper describes the construction and surface integration of an additional pixel layer, the Insertable
B-Layer (IBL) [6], installed during the LS1 shutdown between the B-Layer and a new smaller radius beam
pipe. The main motivations of the IBL were to maintain the full ID tracking performance and robustness
during Phase-I operation, despite read-out bandwidth limitations of the Pixel layers (in particular the B-
Layer) at the expected Phase-I peak luminosity, and accumulated radiation damage to the silicon sensors
and front-end electronics. The IBL is designed to operate until the end of Phase-I, when a full tracker
upgrade is planned [7] for high luminosity LHC (HL-LHC) operation from approximately 2025.

The IBL is a small detector that was constructed on a short timescale using the results from sensor,
electronic and mechanical R&D programs, to operate over an extended period in a hostile environment.
The emphasis was to construct the detector on time, while identifying and understanding the various
production and quality assurance (QA) issues with the R&D groups and industrial partners. Some choices
during the IBL construction were consequently influenced by the schedule. The procurement, QA and
assembly of the different IBL components into loaded staves were undertaken at the participating institutes.
The staves were then transported to CERN, where the final IBL integration and testing was made before
installation in the ATLAS experiment.

The motivations and performance of the IBL are briefly described in Section 2 together with a brief
introduction to the detector layout and the electronic system design. Section 3 describes the production

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector
and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points
upward. Cylindrical coordinates ¹r; �º are used in the transverse plane, � being the azimuthal angle around the z-axis. The
pseudorapidity is defined in terms of the polar angle � as � = � ln tan¹�•2º. An ATLAS convention refers to the (-z) side of
the detector as the C-side, and the (+z) side of the detector as the A-side.

2 The Total Ionising Dose (TID) in silicon is a measure of the radiation dose for the front-end electronics. For silicon sensors,
a more relevant measure of the radiation dose is the non-ionising energy loss (NIEL), normally expressed as the equivalent
damage of a fluence of 1 MeV neutrons (neq /cm2).

7



and QA of the individual pixel module components (the sensors, front-end electronics, and module
hybrids). This is followed by a discussion of the module assembly and tests to ensure the required
electrical and mechanical quality of the modules. The technical specification and fabrication of local
support staves and their associated electrical services are discussed in Section 4. In Section 5 the loading
of accepted pixel modules on the staves is described, together with a discussion of themodule and stave QA
at successive steps in the loading process. Section 6 briefly describes the off-detector services, including
the detector control, interlock and power supply systems, and the data acquisition. The integration of the
staves and their services around the beam pipe is presented in Section 7. Finally, Section 8 lists the most
critical aspects of the IBL project, together with a short summary of the IBL status following its successful
installation in ATLAS.

2 Detector overview and physics motivations

2.1 Layout overview

The IBL is a new layer of pixel sensors designed to fit between the B-Layer of the existing Pixel detector and
a new beam pipe of reduced inner radius of 23.5mm. It consists of 14 carbon composite staves, providing
full azimuthal (�) hermeticity for high transverse momentum (pT > 1 GeV) particles and longitudinal
coverage up to j� j of 3. Each stave supports 20 pixel sensor modules together with their electrical services
and a cooling pipe. Each module is constructed from a pixel sensor (Section 3.1) with each pixel of
nominal size 250� 50 µm2 electrically bonded (Section 3.3.1) to a channel of a read-out chip (the FE-I4B
chip described below and in Section 3.2). The IBL volume contains the staves and the services in the
space between an inner support tube (IST) fixed on the Pixel structure and an inner positioning tube (IPT)
with an inner radius of 29 mm. A key feature is that independent radial volumes are installed, allowing
for the removal of the beam pipe with respect to the IBL package, or the IBL and beam pipe with respect
to the Pixel package.

The ATLAS ID, including the IBL detector and its envelope, is shown in Figure 1. The 3-dimensional
structure of the IBL detector with its services is shown in Figure 2.

The main IBL layout parameters are summarised in Table 1 and a comparison between the technical
characteristics of the IBL and the Pixel detector is shown in Table 2. With a mean sensor radius of
33.5mm (compared with 50.5mm for the Pixel B-Layer), the IBL sensors and front-end electronics must
cope with a much higher hit rate and radiation doses of 5 � 1015 neq /cm2 NIEL and 250MRad TID during
Phase-I operation. To address these requirements, a new front-end read-out chip, the FE-I4B [8], was
developed in 130 nm CMOS technology satisfying the ATLAS requirements of radiation tolerance and
read-out efficiency at high luminosity. In addition, the FE-I4B chip has a substantially larger active area
compared to the FE-I3 front-end chip [4] of the Pixel detector, and a cell size reduced to 250 � 50 µm2

from 400�50 µm2, the shorter side being in the transverse plane. The smaller layer radius and the reduced
pixel cell length are crucial parameters in defining the performance improvement of the ID, in particular
the track-extrapolation resolution.

The IBL stave configuration is shown in Figure 3. Twomodule types [9] are installed on each stave. A total
of 12 double-chip planar n-in-n sensors similar to those equipping the Pixel detector, each bump-bonded
to two FE-I4B read-out chips, populate the central stave region. Four single-chip 3D sensors, adopted for
the first time in a collider tracking detector and each bump-bonded to one FE-I4B chip, populate each end
of the stave. The staves are mounted with the sensors facing the beam pipe and are inclined in azimuth by

8



Figure 1: The layout of the ATLAS inner tracking detector, including the additional IBL detector layer. The inner
positioning tube (IPT) supports the IBL staves and separates them from the beam pipe.

Item Value
Number of staves 14
Number of physical modules per stave 20 (12 planar, 8 3D)
Number of FEs per stave 32
Coverage in �, no vertex spread j� j < 3:0
Coverage in �, 2� (122mm) vertex spread j� j < 2:58
Active jz j stave length (mm) 330.15
Stave tilt in � (degree) 14
Overlap in � (degree) 1.82
Center of the sensor radius (mm) 33.5

Table 1: Main layout parameters for the IBL detector.

14° to achieve an overlap of the active area. This tilt also compensates for the Lorentz angle of drifting
charges in the case of planar sensors, and the effect of partial column inefficiency for normal incidence
tracks in the case of 3D sensors. Owing to space constraints, the sensors are not shingled along the stave
(in z). To minimise the dead region, modules are glued on the stave with a physical gap of 200 µm.
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Figure 2: Longitudinal view of the IBL detector and its services. The insert shows an enlarged 3-dimensional view
of the detector with its modules arranged cylindrically around the beam pipe.
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Figure 3: IBL detector layout: (a) Longitudinal layout of planar and 3D modules on a stave. (b) An r � � section
showing the beam pipe, the inner positioning tube (IPT), the staves of the IBL detector and the inner support tube
(IST), as viewed from the C-side. (c) An expanded r � � view of the corner of a 3D module fixed to the stave.
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Technical characteristic Pixel IBL
Active surface (m2) 1.73 0.15
Number of channels (x 106) 80.36 12.04
Pixel size (µm2) 50�400 50�250
Pixel array (columns � rows) 160�18 336�80
Front-end chip size (mm2) 7.6�10.8 20.2�19.0
Active surface fraction (%) 74 89
Analog current (µA/pixel) 26 10
Digital current (µA/pixel) 17 10
Analog voltage (V) 1.6 1.4
Digital voltage (V) 2.0 1.2
Data out transmission (MBit/s) 40-160 160
Sensor type planar planar / 3D
Sensor thickness (µm) 250 200 / 230
Layer thickness (%X0) 2.8 1.88
Cooling fluid C3 F8 CO2

Table 2: Comparison of the main characteristics of the Pixel and IBL detectors.

Minimising the material budget is very important for the optimisation of the tracking and vertex perform-
ance. The IBL radiation length, averaged over azimuth and taking into account the stave tilt and the overlap
between staves, is estimated to be 1.88%X0 for tracks produced perpendicular to the beam axis at z = 0.
This is �30% less than that of the Pixel B-Layer3. The reduced thickness was achieved by using more
advanced technologies as discussed in the following sections. These include: a new low-mass module
design; local support structures (staves) made of low density, thermally conductive carbon foam; the use
of CO2 evaporative cooling, which is more efficient in terms of mass flow and pipe size; and electrical
power services using aluminium conductors. Table 3 reports the main contributions to the IBL material
budget. Figure 4 shows the material traversed by a straight track originating in z = 0 as a function of �,
smeared over the azimuthal angle.

Item Value (%X0)
Beam pipe 0.32
IPT 0.12
Module 0.76
Stave 0.60
Services 0.19
IST 0.21
IBL total 1.88

Table 3: IBL material budget as a fraction of X0, averaged over the azimuthal angle � for straight tracks produced
perpendicular to the beam axis at z = 0, as implemented in the ATLAS geometry model. The beam pipe material
is excluded from the IBL total.

3 The as-built IBL radiation length was evaluated using the ATLAS geometry model, as discussed in the IBL TDR [6]. The
difference with respect to the value reported in the IBL TDR is mainly due to an initial underestimation of the module material
and the addition of the IPT. A recent description of the ATLAS ID material and its comparison with Run 2 collision data is
now available [10].
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Figure 4: Material budget of the IBL detector as a fraction of X0, as implemented in the ATLAS geometry model
using straight tracks originating from the nominal beam line at z = 0. Different components are shown: beam pipe,
detector (IBL staves, modules, inner positioning tube (IPT)), services (cooling and cables) and structures (stave
rings, end-blocks, sealing ring area, inner support tube (IST)). (a) Dependence on �, averaged over �. (b) A zoomed
view of the central |�| region where precise tracking (|�| < 2.5) is performed.

2.2 System overview

The IBL electronic system includes the FE-I4B read-out chip, the off-detector read-out boards (the read-
out driver (ROD) [11] and the back-of-crate board (BOC) [12, 13]), the detector control system (DCS)
[14], the electronics and sensor power supplies, and all of their associated electrical and optical services.
The data acquisition (DAQ) [15] controls the transfer of data to and from the off-detector read-out boards,
while the DCS controls the electrical and environmental monitoring of the detector as well as the power
distribution to the pixel sensors and FE-I4B chips.

The electrical service design was driven by physical space constraints, especially in the inner region where
all services and connectors must fit into the narrow IBL envelope over a length of approximately 3m, and
by the conflicting requirements of material budget, radiation hardness and electrical performance. Optical
transmission is excluded in the IBL envelope because of the high radiation level. Figure 5 shows a block
diagram of electrical services for one half-stave (the services are symmetrical, at each end of a stave).
Each module of a given half-stave is connected electrically by a stave flex to an end-of-stave (EoS) card.
The stave flex transfers the data from the half-stave, as well as control signals from the DAQ and DCS,
and the power distribution. In the EoS region the detector services are connected via intermediate flexes
to a cable board. The cable board connects the flexes to �3m-long extensions (Type 1 cables) that reach
the ID end-plate where the first Patch Panel (PP1) is located to allow for electrical and optical connections
to the external services after installation in ATLAS. A second break of the electrical services occurs at
another Patch Panel (PP2) on the detector periphery that is accessible during a short shut-down.

Details of the FE-I4B chip and the module flex hybrid that connect a module to the stave flex are described
in Section 3, while those of the stave flexes are described in Section 4. The off-detector electronics and
power-supplies, as well as the electrical and optical services, are described in Section 6.
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Figure 5: Block diagram of on-detector and off-detector electrical services for one half-stave of the IBL detector.
The on-detector front-end read-out and services are described in Sections 3 and 4. The off-detector services (Type 1
cables) reaching the PP1 patch panel and opto-box are described in Section 6.

2.3 Tracking and flavour tagging performance

The ATLAS ID provides charged particle tracking with high efficiency in the j� j < 2:5 range over the
full azimuthal range. The pixel layers are crucial for the reconstruction of charged particles trajectories,
for their extrapolation to the production point and for the reconstruction of multiple collision and decay
vertices which occur in each bunch crossing. The pixels are therefore of crucial importance to the flavour
tagging performance. Any inefficiency of the innermost B-Layer would result in a degradation of that
performance.

A first assessment of the expected improvements in tracking and vertex reconstruction performance was
performed for the IBL Technical Design Report (TDR) [6]. Since then, the ATLAS simulation, digitisation
and cluster reconstruction algorithms have been refined and improved.

The IBL improves the track extrapolation resolution with respect to the Pixel detector of Run 1 by
providing an additional high-precision hit closer to the interaction point. This is particularly important for
low pT particles, where it mitigates the effect of multiple scattering in the detector material on the track
extrapolation, thus improving the impact parameter resolution in both the transverse (d0) and longitudinal
(z0) projections. The smaller pixel pitch of the IBL in the longitudinal direction contributes to improving
the resolution in z0 across the full pT spectrum.

The track reconstruction performance has been evaluated using Monte Carlo simulations of tt̄ events,
comparing the Run 1 detector geometry to a geometry including the IBL, while keeping all other conditions
unchanged. An improvement in the z0 resolution of approximately 2 (1.5) for tracks with pT of 1 (100)
GeV is observed following the addition of the IBL. In the transverse direction, the addition of the IBL
improves the d0 resolution by a factor of approximately 2 for tracks with pT of 1 GeV, with the resolutions
for the two geometries converging beyond 10 GeV. These results are confirmed by comparing the track
impact parameter resolution measured in Run 1 (2012) data with that in Run 2 (2015) data [16].

In addition to the charged particle track reconstruction, these improvements enhance the primary vertex
reconstruction and resolution, the secondary vertex finding, and the flavour tagging performance, hence
considerably extending the physics reach of ATLAS analyses.
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T h e I B L als o h el ps t o m ai nt ai n t h e p erf or m a n c e a n d r o b ust n ess of t h e I D tr a c k r e c o nstr u cti o n w h e n t h e
B- L a y er r e a d- o ut e ffi ci e n c y d et eri or at es at hi g h p e a k l u mi n osit y, or aft er a l ar g e i nt e gr at e d l u mi n osit y
(r a di ati o n d a m a g e t o t h e s e ns ors a n d fr o nt- e n d el e ctr o ni cs as w ell as p ossi bl e irr e p ar a bl e f ail ur es of its
c hi ps a n d m o d ul es).

T h e fl a v o ur t a g gi n g p erf or m a n c e e x p e ct e d wit h t h e a d diti o n of t h e I B L is e v al u at e d usi n g a m or e r e alisti c
si m ul ati o n of t h e A T L A S I D b as e d o n t h e fi n al I B L g e o m etr y, a n u p d at e d di gitis ati o n m o d el a n d i m pr o v e d
r e c o nstr u cti o n al g orit h ms wit h r es p e ct t o t h e I B L T D R. T h e l att er i n cl u d e a r e fi n e d n e ur al n et w or k
cl ust eri n g al g orit h m [ 1 7 ], a n e w tr a c ki n g c o n fi g ur ati o n, w hi c h i m pr o v es t h e tr e at m e nt of s h ar e d cl ust ers
i n t h e c or e of a d e ns e j et e n vir o n m e nt [1 8 ] a n d n e w fl a v o ur t a g gi n g al g orit h ms. T h es e r es ults s u p ers e d e
t h os e pr es e nt e d i n t h e I B L T D R. R es ults ar e b as e d o n f ull y si m ul at e d tt̄ pr o d u cti o n e v e nts at a c ollisi o n
e n er g y of 1 3 Te V. T h e a v er a g e l e v el of pil e- u p is a p pr o xi m at el y 2 0, r e fl e cti n g t h e R u n 1 l u mi n osit y pr o fil e.
J ets us e d f or fl a v o ur t a g gi n g ar e r e c o nstr u ct e d usi n g t h e a nti- k t al g orit h m [ 1 9 ] wit h r a di us R = 0 .4 .
A T L A S c o m bi n es t h e dis cri mi n ati n g v ari a bl es o bt ai n e d fr o m i m p a ct p ar a m et er, i n cl usi v e s e c o n d ar y
v ert e x a n d m ulti- v ert e x r e c o nstr u cti o n al g orit h ms. A d et ail e d d es cri pti o n of t h es e al g orit h ms c a n b e
f o u n d i n r ef er e n c e [2 0 ].
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Fi g ur e 6: C o m p aris o n of ( a) li g ht-j et a n d ( b) c -j et r ej e cti o n as a f u n cti o n of b -j et t a g gi n g e ffi ci e n c y f or t h e R u n 1
( wit h o ut I B L) a n d R u n 2 ( wit h I B L) d et e ct or l a y o uts u n d er t h e s a m e c o n diti o ns, o bt ai n e d wit h t h e M V 2 c 2 0 al g orit h m.
T h e r ej e cti o n is d e fi n e d as t h e r e ci pr o c al of t h e t a g gi n g e ffi ci e n c y. R es ults ar e d eri v e d fr o m j ets pr o d u c e d i n tt̄
e v e nts, wit h j ets p assi n g t h e p T > 2 0 G e V a n d |η | < 2 .5 s el e cti o n.

T h e c o m bi n ati o n of t h e i n p ut v ari a bl es o bt ai n e d fr o m t h es e al g orit h ms is o bt ai n e d usi n g a b o ost e d
d e cisi o n tr e e ( M V 2 c 2 0) [ 2 1 ]) t h at r et ur ns a c o nti n u u m v ari a bl e p e a k e d ar o u n d 1 f or j ets li k el y t o c o nt ai n a
b - fl a v o ur e d h a dr o n a n d ar o u n d − 1 f or t h os e li k el y t o ori gi n at e fr o m li g ht- fl a v o ur e d q u ar ks. T his M V 2 c 2 0
is a n e v ol uti o n of t h e n e ur al n et w or k al g orit h m us e d d uri n g R u n 1 [2 0 ]. I n or d er t o p erf or m a n us ef ul
c o m p aris o n, t h e M V 2 c 2 0 al g orit h m h as b e e n s e p ar at el y r e-tr ai n e d f or t h e tt̄ s a m pl e g e n er at e d usi n g t h e
A T L A S R u n 1 g e o m etr y, wit h o ut t h e I B L, a n d t h e A T L A S R u n 2 g e o m etr y, w hi c h i n cl u d es t h e I B L.

Fi g ur e 6 s h o ws t h e li g ht-j et a n d c -j et r ej e cti o n as a f u n cti o n of t h e b -j et p urit y o bt ai n e d wit h t h e t w o
c o n fi g ur ati o ns. T h e a d diti o n of t h e I B L i m pr o v es t h e li g ht-j et ( c -j et) r ej e cti o n b y a f a ct or u p t o 4 ( 1. 8) f or
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b-jet tagging efficiencies up to 85%. Physics analyseswill most often profit from the improved performance
by re-tuning their b-tagging requirements in such a way to keep a similar background rejection with an
increased signal efficiency. The improvement in performance at constant rejection is summarised in
Table 4 for different working points.

light-jet rejection b-jet efficiency b-jet efficiency
without IBL (%) with IBL (%)

1000 57 65
100 71 79
10 84 90
c-jet rejection b-jet efficiency b-jet efficiency

without IBL (%) with IBL (%)
20 56 62
10 63 68
5 72 76

Table 4: Comparison of the b-jet tagging efficiency for fixed light- or c-jet rejection for the Run 1 (without IBL)
and Run 2 (with IBL) detector layouts under the same conditions. Results are obtained for jets in simulated tt̄ events
satisfying pT > 20 GeV and j� j < 2:5.

The b-tagging performance as a function of jet pT is shown in Figure 7. The largest improvements are
seen at low values of the jet pT where the proximity of the IBL to the interaction region significantly
reduces the impact of multiple scattering in the track reconstruction. The improvement in light-jet (c-jet)
rejection ranges reaches a factor 4 (1.6) for jet pT . 100 GeV while at higher pT the tracking performance
gain is limited by shared clusters from collimated tracks produced in the core of high pT jets.

3 Modules

The basic building block of the IBL detector is the module. For each beam crossing an FE-I4B read-out
chip records, digitises and locally stores the data from a silicon sensor that is connected to it. Two
sensor technologies are used: planar and 3D. A planar silicon wafer contains four sensor tiles, each
of nominal dimension 41 340 µm � 18 600 µm (41 315 µm � 18 585 µm in the production process after
dicing). A 3D silicon wafer contains eight sensor tiles, each of dimension 20 400 µm � 18 700 µm. There
are consequently two module types, planar and 3D:

- A planar module consists of a planar sensor tile connected to two FE-I4B chips. Each chip
consists 26880 pixel cells having analog and digital circuitry arranged in a matrix of 80 columns of
250 µm pitch and 336 rows of 50 µm pitch. Each FE-I4B cell is bonded using Sn/Ag bumps to a
corresponding cell of the planar tile;

- A 3D module consists of a 3D sensor tile connected to a single FE-I4B chip with each cell of the
FE-I4B chip bonded to a corresponding cell of the 3D tile;

- A double-sided, flexible printed circuit (the module flex hybrid) connects the module to external
electrical services.
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Fi g ur e 7: C o m p aris o n of ( a) li g ht-j et a n d ( b) c -j et r ej e cti o n as a f u n cti o n of j et tr a ns v ers e m o m e nt u m, w hil e k e e pi n g
t h e b -t a g gi n g e ffi ci e n c y fi x e d at 7 0 % i n e a c h p T bi n f or t h e R u n 1 ( wit h o ut I B L) a n d R u n 2 ( wit h I B L) d et e ct or
l a y o uts u n d er t h e s a m e c o n diti o ns, o bt ai n e d wit h t h e M V 2 c 2 0 al g orit h m. T h e r ej e cti o n is d e fi n e d as t h e r e ci pr o c al
of t h e t a g gi n g e ffi ci e n c y. R es ults ar e d eri v e d usi n g j ets pr o d u c e d i n tt̄ e v e nts a n d p assi n g t h e p T > 2 0 G e V a n d
|η | < 2 .5 s el e cti o n.

T h e s e ns or d esi g n, pr o d u cti o n a n d yi el d is dis c uss e d i n S e cti o n 3. 1 . T his is f oll o w e d b y a dis c ussi o n of
t h e F E-I 4 B pr o d u cti o n a n d yi el d i n S e cti o n 3. 2 . T h e m o d ul e h y bri dis ati o n, t h at is t h e b u m p- b o n di n g of
t h e F E-I 4 B c hi p(s) a n d a w af er t o pr o d u c e a b ar e m o d ul e, is m a d e i n d ustri all y. A m o d ul e fl e x h y bri d
is t h e n att a c h e d at m o d ul e pr o d u cti o n sit es t o t h e b ar e m o d ul e, pri or t o d et ail e d p erf or m a n c e st u di es
of t h e fi n al ( dr ess e d) m o d ul e. T h e m o d ul e h y bri dis ati o n, t h e m o d ul e fl e x h y bri d c o n n e cti vit y a n d t h e
fi n al p erf or m a n c e ar e d es cri b e d i n S e cti o ns 3. 3 a n d 3. 4 . Fi n all y, t h e o v er all m o d ul e pr o d u cti o n yi el d is
s u m m aris e d i n S e cti o n 3. 5 .

3. 1 S e ns o rs

T w o s e ns or t e c h n ol o gi es ar e us e d f or I B L m o d ul es. T h e pl a n ar s e ns or is a d e v el o p m e nt of t h e Pi x el d et e ct or
s e ns or d esi g n, wit h s e v er al i m pr o v e m e nts. M ost n ot a bl y, si n c e t h e li mit e d I B L cl e ar a n c e pr e cl u d es s e ns or
s hi n gli n g al o n g t h e st a v es ( as i n t h e Pi x el d et e ct or), t h e i n a cti v e s e ns or e d g es ar e s u bst a nti all y r e d u c e d
t o mi ni mis e e ffi ci e n c y l oss es. T h e 3 D s e ns or d esi g n [2 2 ] is a n e w t e c h n ol o g y d e v el o p e d f or i n cr e as e d
r a di ati o n h ar d n ess, a n d r eli es o n c ol u m n ar el e ctr o d es p e n etr ati n g t h e s u bstr at e, r e d u ci n g t h e drift p at h
wit h r es p e ct t o t h e pl a n ar a p pr o a c h w hil e k e e pi n g a si mil ar t hi c k n ess a n d t h us si g n al si z e. As dis c uss e d
i n d et ail i n r ef er e n c e [9 ], b ot h s e ns or t y p es s h o w s atisf a ct or y t est- b e a m p erf or m a n c e i n t er ms of n ois e, hit
e ffi ci e n c y a n d hit u nif or mit y f or a fl u e n c e of u p t o 5 × 1 0 1 5 n e q / c m2 . A n e ff e cti v e i n a cti v e e d g e wi dt h of
2 1 5 µ m ( 1 7 5 µ m) w as m e as ur e d f or pl a n ar ( 3 D) s e ns ors.

T h e pl a n ar n + -i n- n s e ns ors h a v e pr o v e n t h eir e x c ell e nt p erf or m a n c e d uri n g t h e R u n 1 o p er ati o n of t h e Pi x el
d et e ct or a n d ar e a w ell- d e v el o p e d t e c h n ol o g y. N e v ert h el ess, t h e 3 D s e ns ors h a v e a p ot e nti all y i m p ort a nt
a d v a nt a g e i n t er ms of p o w er c o ns u m pti o n aft er hi g h r a di ati o n b e c a us e of t h eir l o w er o p er ati n g v olt a g e.
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Double-chip planar sensor modules cover the central region of the detector, 75% of the active area, while
the high � regions are populated by single-chip 3D sensor modules. This mitigates the reduced efficiency
measured for normal incidence in the region of the 3D sensor electrodes.

3.1.1 Planar design

The design of the planar IBL sensor is an evolution of the Pixel detector sensor [4] with n+-in-n pixels.
The n-side segmentation matches in size the FE-I4B read-out electronics connected via bump-bonds; a
guard-ring structure is placed on the p-side. The planar IBL double-chip sensors are produced at CiS4,
using n-type wafers of 100mm diameter and 200 µm thickness, with resistivity in the range 2−5 kW cm
and a <111> crystal orientation. Each wafer contains four sensor tiles of mean dimension 41 315 µm �
18 585 µm after dicing. Details of the sensor design can be found in reference [23]. Key features include
slim edges achieved by stretching the edge pixel size opposite to the guard-rings to 500 µm, possible in
n+-in-n sensors because of the double-sided process; this option was implemented after extensive studies
of the sensor efficiency in the peripheral area [24]. The number of guard-rings was optimised based on
a complementary study, which evaluated the breakdown behaviour after partial guard-ring removal [25].
Compared to the Pixel detector sensor, the number of guard-rings has been reduced from 16 to 13 and the
cutting edge has been moved closer to them, as indicated in Figure 8 where the overall reduction of the
inactive edge (from 1100 to 200 µm) is shown.

(a)

(b)

Figure 8: Comparison of the edge designs of (a) the ATLAS Pixel detector sensor and (b) the planar IBL pixel sensor.
The inactive edge has been reduced from 1100 to 200 µm. Blue shades represent the n-implantation on the front-side
of the sensor. Purple shades represent the blue n-implantation on the front-side of the sensor superimposed with red
shading for the p-implantation on the back-side. The HV backplane area is metalised and is indicated by a dashed
red line and arrow.

The nominal pixel size is 250 µm by 50 µm pitch, matched to that of the FE-I4B chip. The two central
columns of these double-chip sensors are extended to 450 µm rather than 250 µm to cover the gap between
the two adjacent FE-I4B chips.

4 CiS Forschungsinstitut fÜur Mikrosensorik und Photovoltaik GmbH, Erfurt (Germany).
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3.1.2 3D design

In 3D pixel sensors, the columnar electrodes penetrate the substrate instead of being implanted on the
wafer surface. The depletion electric field is therefore parallel to the wafer surface. The position and
doping of the �10 µm wide columns define the pixel configuration; the distance between electrodes can
be typically fives times smaller than the �230 µm sensor thickness, thereby dramatically reducing the
charge-collection distance and depletion voltage. Although the fabrication process of 3D sensors is more
complex, significant advantages can potentially be realised by independently controlling the drift distance
and the sensor thickness. Because of the low depletion voltage, the power dissipation per unit leakage
current is reduced. The cooling requirements are therefore less demanding. The signal size is determined
by the sensor thickness, independently of the small drift distance. Furthermore, the drift perpendicular
to the track direction results in fast signals, which are robust against charge trapping caused by heavy
radiation damage [22].

The IBL 3D sensors were fabricated at FBK5 and CNM6 with a double-sided technology [26, 27]. Starting
from p-type Float Zone wafers of 100mm diameter and 230 µm thickness, with high-resistivity (10 to
30 kW cm) crystalline silicon and <100> orientation, columnar electrodes of 12 µmdiameter were obtained
by Deep Reactive Ion Etching (DRIE) and dopant diffusion from both wafer sides, without the presence
of supporting wafers. By doing so, the substrate bias can be applied from the back side (p+), as in planar
devices. Figure 9 shows details of the 3D column layout.

(a) (b)

Figure 9: Design of the columns of (a) FBK and (b) CNM 3D sensors. This sketch is for illustration only and is not
to scale.

Each pixel contains two read-out (n+) columns (two-electrode configuration), with an inter-electrode
spacing between n+ and p+ columns of �67 µm. In order to maintain a reasonable yield, each wafer
contains eight sensor tiles of dimension 20.4mm � 18.7mm, rather than the four larger sensor tiles of the
planar design. A 200 µm wide region separates the active pixel area from the physical edge of the tile.

The main differences between FBK and CNM 3D sensors are the following:

5 Fondazione Bruno Kessler, Povo di Trento (Italy).
6 Centro Nacional de Microelectronica, Barcelona (Spain).
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- FBK sensors have pass-through columnar electrodes [28]; in CNM sensors, on the other hand,
electrode etching is stopped �20 µm before reaching the opposite side [29];

- in FBK sensors, the surface isolation between n+ electrodes is obtained by a p-spray layer on both
wafer sides, whereas in CNM sensors, p-stops are used on the front side (n+) only;

- the edge isolation in FBK sensors is based on multiple rows of ohmic columns stopping the lateral
spread of the depletion region [30], whereas in CNM sensors a 3D guard-ring, surrounded by a
double row of ohmic columns, is used to sink the edge leakage current.

Table 5 summarises the main parameters of the IBL sensors.

Parameter Planar 3D FBK 3D CNM
Tile dimension [µm2] 41315 � 18585 20450 � 18745 20450 � 18745
Sensor thickness [µm] 200 230 230
Sensor resistivity [kW cm] 2−5 10−30 10−30
Pixel size (normal) [µm2] 250 � 50 250 � 50 250 � 50
Pixel size (tile edge) [µm2] 500 � 50 250 � 50 250 � 50
Pixel size (tile middle) [µm2] 450 � 50 - -
Edge isolation Guard-rings Fences 3D guard-ring, fences
Pixel isolation p-spray p-spray p-stop on n-side
Nominal operating bias voltage [V] −80 / −1000 −20 / −160 −20 / −160
(non-irradiated / 5 � 1015 neq /cm2)
Maximum operational power [mWcm−2] 90 15 15
(−15 �C and 5 � 1015 neq /cm2)

Table 5: Summary of the main design specifications for the planar and 3D sensors of the IBL detector.

3.1.3 Sensor production and quality assessment

The electrical quality of the sensors was evaluated from the measurement of the current-voltage (I-
V) dependence, as this is sensitive to bulk and surface defects. Tiles satisfying the selection criteria
described below were chosen for hybridisation (connection between the sensor and the FE-I4B read-out
electronics).

The planar design includes a grid structure that allows biasing of the entire sensor by means of a punch-
through technique [31]. This bias grid was used to evaluate the quality of the tiles before the sensors were
connected to the read-out electronics with the bump-bonding process. After bump-bonding the pixels
were biased through the FE-I4B chip while the bias grid, connected to ground via a special bump in the
periphery of the pixelated region, was not in operation.

The leakage current of the planar tile, evaluated at an operating voltage (Vop) 30V below the deple-
tion voltage (Vdp), was required to be I(Vop) < 1 µA, and the slope of the I-V curve was limited to
I(Vdp � 30 V)/I(Vdp) < 1.6. Wafers with two or more planar tiles that satisfied this requirement were
sent for under-bump metallisation (UBM) and dicing at IZM7. The yield of the planar production (the
percentage of planar tiles satisfying the above criteria) before under-bump metallisation and dicing was
90.6%.
7 Fraunhofer IZM, Gustav-Meyer-Allee 25, 13355 Berlin, Germany.
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Due to the difficulty of implementing a bias grid structure compatible with the 3D design, alternative
evaluation methods were developed for 3D sensors:

- FBK sensors include a metal grid connecting all pixels in each column to a pad located in the
periphery of the active region. By measuring the I-V curves of the 80 columns with a specially
designed probe card, the quality of each sensor on the wafer can be evaluated. The metal layer
was removed by chemical etching after the I-V measurement and the wafers with three or more
selected tiles were sent to IZM for UBM and dicing. The sensors that passed the selection criteria
were bump-bonded to read-out chips. The sensors were required to have a breakdown voltage
Vbd < −25V, Vdp > −15V and I(Vop) < 2 µA where Vop = Vdp � 10 V. The slope of the I-V curve
was also constrained to satisfy I(Vop)/I(Vdp + 5 V) < 2. The sensor yield of the FBK production on
the selected wafers was 57%.

- The CNM sensor selection criteria were initially based on the leakage current measured through the
3D guard ring structure surrounding the pixelated area. While the p-side of the wafer was biased,
the 3D guard ring was connected to ground via a dedicated pad, and the I-V curve was measured
for each sensor before the wafer dicing. After hybridization, the 3D guard ring was connected
to ground through two special bumps of the FE-I4B chip. The CNM sensors were required to
satisfy Vbd < −25V, Vdp > −15V and IGR(Vop) < 200 nA with Vop = Vdp � 10 V. IGR is the
leakage current measured on the 3D guard ring. The slope of the I-V curve was required to satisfy
I(Vop)/I(Vdp + 5 V) < 2. Wafers with at least three sensors passing the selection criteria were sent
to IZM for UBM and dicing. Initial studies indicated a good correlation between Vbd measured
through the 3D guard ring structure and that after detector assembly [9]. However, during module
assembly, the correlation proved to be poor, with several CNM 3Dmodules showing a lowVbd. This
was because of defects located in the central volume of the sensor that do not affect the region probed
by the 3D guard ring.Once this lack of correlation was established, all CNM sensors that were not
assembled were re-tested on a probe station. The n-side of the sensor was placed in contact with a
grounded chuck via the under-bump metallisation (Section 3.3.1), while the p-side was connected
to the bias potential. Those sensors satisfying Vbd < −25V were selected for hybridisation. The
sensor yield of the CNM production on the selected wafers, as measured with the 3D guard ring
method, was 72%. However, after re-testing, the final CNM production yield was similar to that
for FBK wafers.

The typical sensor I-V behaviour of prototype sensors was previously detailed before and after radiation [9,
23]. Typical I-V curves for each sensor type are shown after module assembly in Section 3.4.1.

3.2 On-detector electronics

3.2.1 The FE-I4 front-end chip

The FE-I4B front-end chip was developed for the IBL read-out. A first version, the FE-I4A [8, 32], was
fabricated in 2010 and used to develop and validate the IBL module design [9]. The FE-I4A was not
intended for the final detector and the pixel matrix was non-uniform to allow performance comparisons
between various analog circuit design choices. The FE-I4B chip was first fabricated in 2011 [33, 34] and
tailored to fully meet the IBL requirements. In addition to selecting the analog design and making the
pixel matrix uniform, specific powering choices were made and data acquisition features added.
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The FE-I4A and FE-I4B both contain read-out circuitry for 26 880 hybrid pixels arranged in 80 columns
of 250 µm pitch by 336 rows of 50 µm pitch. Each FE-I4 pixel contains a free running clock-based
amplification stage with adjustable shaping, followed by a discriminator with an independently adjustable
threshold. The chip keeps track of the time stamp for each discriminator as well as the 4-bit Time over
Threshold (ToT)8. Information from all firing discriminators is kept in the chip for a latency interval
programmable up to 255 LHC clock cycles of 25 ns, and is retrieved if a trigger is supplied within this
latency. The IBL data output is a serial Low Voltage Differential Signal (LVDS), 8b/10b encoded at a
rate of 160MBit/s. The chip has many configurable settings that are stored in triple-redundant registers
providing the required radiation hardness to single event upsets (SEU) [35].

Because of space andmaterial limitations, the IBL FE-I4B chips are powered from a single DC supply over
long cables providing a resistive load. The single voltage feeds two Shunt-LDO9 voltage regulators [36,
37] drawing a minimum standing current of 270mA even when the chip is neither clocked nor configured.
This limits the amplitude of voltage transients resulting from current changes on the resistive supply lines,
particularly important since the difference between the nominal and maximum input voltage ratings is
small. The regulators and attendant voltage references have an input voltage limit of 2.5V, compared with
nominal operation at 1.8V. Once the chips are configured and clocked, and their internal current draw
exceeds 270mA, the regulator shunt elements shut off and draw no additional current. The chip operates
internally with two voltage rails generated by the regulators, nominally 1.4V for the analog circuitry and
1.2V for the digital circuitry. Both voltages are adjustable with a hard-wired maximum around 1.5V
(which varies slightly from chip to chip). The voltage references use a combination of a programmable
current reference (feeding a poly-silicon resistor) and a fixed voltage reference. This combination was
chosen to allow reliable start-up at low temperature (as low as −40 �C), as well as excellent stability
(< ±2%) up to high radiation dose (250MRad).

Several features important for IBL operation were introduced in the FE-I4B design following experience
with prototype FE-I4A modules. Some details of the analog bias distribution and charge injection
were changed to correct for degradations observed in the FE-I4A after the expected IBL lifetime dose,
particularly at low temperatures. A programmable event-size limit was introduced to avoid data acquisition
time-outs from occasional pathologically large events. Bunch crossing and trigger counters were increased
to respectively 13 and 12 bits, to avoid ambiguities in tracking the state of each chip. Improved diagnostics
were implemented to count and report any skipped triggers (the chip will skip any triggers received when
the 16-bit trigger buffer is full).

3.2.2 FE-I4B production and quality assessment

For the IBL production, 3060 FE-I4B chips on fifty-one 200mm diameter wafers were tested. The data
acquisition and handling were performed with a custom read-out system [4, 38]. A custom PCB was
used to interface the read-out system hardware with a probe card, establishing electrical contact with 108
FE-I4B pads. All 60 chips of a wafer were probed with an average measurement time of 2.5 days. The
goal was to identify FE-I4B chips that were suitable for the IBL and to measure their calibration constants.
For chip calibrations it was necessary to make contact with dedicated FE-I4B pads not wire-bonded on
the IBL read-out circuit. The chip calibrations were therefore only possible at wafer level. Two calibration
constants of the internal charge injection circuit are shown in Figure 10. The circuit distributes a voltage

8 The Time over Threshold is defined as the time the amplifier output signal stays above threshold, measured in units of the
LHC clock (25 ns). This quantity is related to the collected charge.

9 A shunt combined with a Low-Drop-Out regulator.
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step to injection capacitors present in each pixel and is needed to tune the FE-I4B chips during IBL
operation. On average for the accepted chips, the injected charge changes with the value (VDAC) of the
injection circuit digital-to-analog converter (DAC) setting approximately as

�Q
VDAC

= 6:05 fF � 1:45
mV

VDAC
= 55

e
VDAC

to provide a transfer function between the value of the DAC setting and the signal.

(a) (b)

Figure 10: Calibration constants of the internal charge injection circuit for accepted FE-I4B chips. The circuit
distributes a voltage step to injection capacitors on board each pixel. The superimposed curves are Gaussian fits.
(a) The slope of the transfer function between the signal voltage and the value VDAC of the DAC setting. (b) The
measured injection capacitance.

More than 50 tests were used to evaluate the chip response to charge injection, the functionality of
digital hit processing, the chip configurability, and the power consumption. Approximately 18000 values
were recorded per wafer. A custom made software designed for wafer and module tests of the IBL
production was used to automatically determine the chip status. The selection criteria were defined after
the distributions of the first ten wafers were studied. A detailed description of the tests and selection
criteria is available elsewhere [39].

Test results of 2814 fully probed chips are listed in Figure 11. In addition, 246 chips (8% of all chips) were
not fully probed because of an anomalous high current at start-up (dead-shorts). Additional IDDQ10, Scan
chain and Shmoo plot11 tests were made by an external company for the first �20wafers, but the failure
rate was low (less than 0.5%). In total, 1821 chips (59.5%) were qualified for IBL module assembly.

Since the powering scheme was not finalised at the time of wafer testing, the on-chip power regulators of
the FE-I4B chips were only tested after the module assembly (Section 3.4).

10 Measurement of the supply current (Idd) in the quiescent state.
11 A plot showing the range of conditions (voltages, temperatures and inputs) in which the chip operates.
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Figure 11: Failure modes leading to a rejection of FE-I4B chips before module assembly for 2814 fully probed
chips. The bin Pixel matrix failures groups chips where the number of bad pixels were too high (>0.2% failing
pixels or >20 pixels per column). The bin Injection circuit failures groups failures (e.g. low maximum voltage, a
non-configurable injection delay) that prevent using the charge injection for calibration during IBL operation. The
bins High analog/digital current combine current measurements in different chip states (un-configured, configured,
high digital activity). The remaining bins list the rate for chips failing the global register tests, the reference current
generation tests and the Scan chain tests, respectively. All failure modes that are not explicitly mentioned contribute
only 0.2% and are included in the bin Else The failures are non-exclusive and are evaluated as a percentage of the
probed chips.

3.3 Module assembly

3.3.1 Hybridisation of the FE-I4B chip and the sensor

The connection between sensor and electronics was achieved using fine-pitch bump-bonding and flip-chip
technology. This was already usedwith a 50 µmpitch for the construction of the Pixel detectormodules [4].
The IBL modules use a similar electroplated (SnAg) bumping process provided by IZM. The bumping
process is divided into three steps: under-bump metallisation (UBM) on the sensor and FE-I4B wafers;
solder bump deposition on the FE-I4B wafers; and a flip-chip of the diced FE-I4B chips and sensors. The
UBM is necessary due to the non-solderable aluminium pads on the sensors and FE-I4B chips; the UBM
metal stack consists of electro-deposited Cu on top of a sputtered Ti/W adhesion layer. Solder bumps
are then deposited on the FE-I4B wafers using electroplating only. The flip-chip operation follows the
dicing of the sensor wafers. The FE-I4B chip is placed on the sensor substrate with high accuracy and the
assembly is soldered to form the electrical and mechanical interconnection in a reflow soldering process.
The sensor bonded to the FE-I4B chip(s) is commonly referred to as a bare module.
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The procedure was modified with respect to that used for Pixel modules to suit the dimensions of the IBL
module components. The FE-I4B chip covers an area of 20.27 � 19.20mm2 and was thinned to 150 µm
before bump-bonding. Unconstrained, the thinned FE-I4B would undergo a distortion exceeding 40 µm
during the high temperature reflow soldering phase, which would result in unconnected bumps especially
in the outer areas of the assemblies. To avoid this, a temporary 500 µm-thick sapphire glass handle wafer
was bonded to the FE-I4B chip before UBM. A polyimide bonding technique allowed a laser-induced
debonding of the glass carrier at room temperature after dicing and flip-chipping. This debonding process
used an UV excimer laser with a wavelength of 248 nm traversing the glass carrier to the bonding interface.
The glass carrier was optimised to ensure that the laser light was fully absorbed in the polyimide bonding
layer, thus releasing the FE-I4B chips.

Only 2mm of the chip length is dedicated to End-of-Column (EoC) logic outside the active pixel matrix.
The size is determined by the need to wire bond the I/O and power pads to the read-out chip with the
bump bonded sensor in place. The chip-level logic and global configuration occupy less than 20% of the
periphery. Once bonded, most of the EoC part extends beyond the sensor area so that the wire bonding
pads at the output of the EoC logic are still accessible to connect the read-out chip via aluminium-wire
wedge bonding.

3.3.2 Module flex hybrid

The module flex hybrid is a double-sided, flexible printed circuit board which routes the signal and power
lines between the stave flex hybrid and the FE-I4B chips, holds the required passive components, and
routes the bias voltage to the sensor via Cu traces. Figure 12 shows a photograph of the module flex
hybrids for single-chip and double-chip modules. The envelope of the module flex hybrid is defined by
the sensor dimensions and it is slightly narrower than the sensor width.

Themodule flex hybrids are glued to the back side of the sensor and connected to the longitudinal stave flex,
which is located at the back side of the stave, via thin transversal wings, one per read-out chip (Section 4.2).
The 130 µm-thick flex stack consists of two 18 µm-thick copper layers embedded in dielectric polyimide
sheets, glued with acrylic adhesive. Passive components are soldered on the module flex hybrid for the
FE-I4B chip decoupling, power supply and HV filtering, and for terminations of the signal traces. The
module temperature monitoring and interlock is made via a Negative Temperature Coefficient thermistor
(NTC) mounted on the module flex hybrid. All passive components are soldered on the top layer of the
module flex hybrid. Special emphasis is given to HV routing and filtering since the flex hybrid must be
functional up to 1000V. To avoid HV discharges, wider spacing between the HV traces and the data and
LV traces is introduced. The HV capacitor is encapsulated with a polyurethane resin and 27 µm thick
Kapton®12 cover layers are used on the top and bottom of the flex hybrid.

All signal and power traces of the module flex hybrid are routed to a connector on a frame outside
the module area that is used during the module production QA. A temporary wire bond connection is
necessary to connect all signal and power lines from the flex to the connector on the frame. Prior to the
loading of the module to a stave the connector area is cut away. The cutting line is approximately 1.5mm
from the sensor.

12 Kapton® is a Dupont Corp. trademark for polyimide films, see http://www.dupont.com.
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(a) (b)

Figure 12: Photographs of (a) a double-chip and (b) a single-chip module flex hybrid. The frame and flex extensions
allow testing of the module before stave loading. The hybrid cutting line (see text) is visible as a white trace slightly
outside the module envelope.

The module flex hybrids were produced by Phoenix S.r.l.13 and the surface mount component loading
and encapsulation was made by Mipot S.p.A.14. Basic QA operations such as testing of line integrity for
open and shorted connections were made by the vendors and were followed by more detailed tests at the
two module assembly sites. These procedures included HV standoff tests at 1.5 kV, visual inspection and
dedicated cleaning to allow for high-quality wire bonding.

3.3.3 Final module assembly

The final (dressed) module assembly was made at two module production sites in the period 2012 to 2014,
following four assembly steps described below.

A detailed visual inspection of the module flex hybrid was initially made, together with electrical tests
of the line and pad integrity, and the hybrid components. To ensure a good wire bonding performance,
the flex hybrid was then cleaned in an ultrasonic bath, rinsed with distilled water, and dried. The visual
inspection was then repeated.

A visual inspection of the bare module was made to identify scratches or other damage. For planar
double-chip modules a re-measurement of the I-V was made to check the sensor quality. Thirteen planar
modules (3.2%) and eight 3D modules (2.9%) were rejected.

The key assembly step is the alignment and attachment of the bare module and the module flex hybrid. The
module flex is glued on the sensor back-side. For this reason, it is necessary to visually access the sensor
13 Phoenix S.r.l., Via Burolo 22, 10015 Ivrea (Torino), Italy.
14 Mipot S.p.A., Via Corona 5, 34071 Cormons (Udine), Italy.
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alignment marks, and to be able to wire-bond to both the FE-I4 chip and the flex wings. An alignment
precision of order 100 µm is required. The alignment and gluing procedure differed slightly between
the production sites, and the detailed jig designs were developed autonomously. Separate alignment
jigs were developed for the planar double-chip and 3D single-chip modules. Several jig sets were made
to ensure production capacity, but the module assembly rate was in fact determined by the component
supply. Both the module flex and the bare module were initially aligned on separate jigs using alignment
marks, and fixed in place via vacuum. The module flex was then removed with a special jig, maintaining
the alignment position but allowing access for the deposition of glue. The jig was designed to protect
the hybrid components. Glue patterns were then deposited on the flex hybrid: a double tape strip (PPI
RD-577F15 or ARclad16) was placed underneath the FE-I4B wire bond pads, and epoxy glue patterns
(UHU EF 30017 or Araldite 201118) were placed under the remainder of the module flex hybrid, especially
under the wire bond bridge area and the HV connection pads. The jigs were then aligned and brought into
contact. Pressure was applied on the assembly, and in particular around the critical wire bond regions,
during curing.

The final step was the wire bonding of the FE-I4B chip and sensor to the module flex hybrid and of the
wire bond bridge to the test connector (Section 3.3.2), using 25 µm-thick aluminium wire (at least three
wire bonds were applied to the low- and high-voltage pads for redundancy and safety). Wire bond pull
tests were consistently recorded to ensure the bond integrity.

At each stage of the assembly, details of the module components, as well as metrology and bonding
information, were recorded. No site dependence of the module quality was identified.

Fully dressed planar (double-chip) and 3D (single-chip) modules are shown in Figure 13. Table 6
summarizes the material budget (units of radiation length for normal incidence) of the IBL modules; the
contributions of the different components are averaged over the active module area.

A total of 688 fully dressed modules (410 planar, 162 3D CNM and 116 3D FBK) were delivered for
module testing, tuning and characterisation.

X/X0(%)
Total FE-I4B + bumps 0.21
FE-I4B chip 0.20
Bump-bonds .0.01
Planar (3D) sensor 0.24 (0.27)
Total module flex hybrid 0.13
Cu traces 0.076
Polyimide/epoxy 0.028
SMD components 0.025
Total planar (3D) module 0.58 (0.61)

Table 6: Material budget of the IBL module components in units of radiation length (X/X0) for normal incidence.
The contributions of the different components are averaged over the active module area. Sub-components are shown
in a separate column.

15 PPI RD-577F®, PPI Adhesive Products GmbH, see www.ppi-germany.de.
16 ARclad®, Adhesives Research Corp., see www.adhesivesresearch.com.
17 UHU EF 300®, UHU GmbH, see www.uhu.com.
18 Araldite® is a trademark of Huntsman Advanced Materials, see http://wwwhuntsman com/advanced materials/a/Home
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(a) (b)

Figure 13: Photographs of (a) an IBL planar module and (b) an IBL 3D module after the removal of the module
handling frames. The HV encapsulation step is not yet made on the planar module.

3.4 Module performance and quality assurance

Prior to the loading of modules onto a stave, each module was tested to ensure its mechanical and electrical
functionality, its tolerance to environmental stress, and its electrical performance. The performance
validation identified both module-level failures and pixel-level failures. Modules were selected for stave
loading on the basis of this validation and only modules passing all tests were selected. At the pixel level,
any pixel that failed at least one electrical test was recorded and modules with a bad pixel count of more
than 1% were rejected. The bad pixel category also included bad pixels resulting from nonconformities
such as re-work, sensor scratches or the chipping of electronic components.

An initial electrical verification, including the sequential room-temperature tests labelled Q in Table 7,
was performed after the module assembly. Modules accepted by this initial test were then subjected to an
environmental stress test of 10 thermal cycles between −40 �C and 40 �C. The modules were not powered
during the thermal cycles. Seventy-three modules (10.6% of those delivered) were rejected at this stage
because of major mechanical or electrical failure, a large fraction being due to a defective on-chip power
regulator on the FE-I4B chips. As noted in Section 3.2.2, the power regulators were not tested at the wafer
level.

An extensive validation stage was then made for each module at both the module and individual pixel
level. This included the sequential tests labelled F in Table 7. The different measurements are described
in Sections 3.4.1 through 3.4.5.

A measurement of the sensor I-V was initially made at room temperature with a requirement on the break-
down voltage (Vbd) depending on the module type. Modules failing the Vbd requirement were rejected.
A detailed electrical calibration and characterisation was then made at the foreseen detector operation
temperature of −15 �C. This included the module timing and threshold calibration and validations of the
operational range (for example the low threshold operability). Finally, pixel-level failures, for example
threshold tuning failures, bump-bond failures and noisy pixels, were identified and recorded. Forty-one
modules (6% of the delivered modules) were rejected following this detailed electronic validation. Ac-
cepted modules were ranked according to their quality, and as discussed in Section 5.3, an additional
penalty was applied to a module in case of mechanical rework or any other problems in the production
and testing procedure.
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Test Name Test Purpose Test stage
Sensor current vs. applied bias voltage Sensor operability and Q, F

reference characteristics measurement
Power-up test Chip supply voltage and current test Q, F
Shunt-LDO I/V scan Shunt-LDO warm/cold calibration Q, F

and functionality test
Generic ADC test Generic ADC warm/cold calibration and Q, F

Shunt-LDO calibration verification
Sensor bias ON Ramp-up of sensor depletion bias Q, F
Digital test (high threshold) Pixel read-out chain functionality Q, F
Module tuning Multi-step threshold and feedback Q, F

current adjustment (global and pixel level)
Digital test (operation threshold) Pixel digital read-out chain functionality Q, F
Analog test (operation threshold) Pixel analog read-out chain functionality Q, F
Threshold and noise measurement Threshold and noise (ENC) measurement Q, F
ToT verification at the charge Charge measurement verification Q, F
of 16 000 e− (MIP)
Crosstalk test High analog charge injection Q, F

for inter-pixel crosstalk test
t0-tuning Injection timing fine adjustment F
In-time threshold measurement Threshold for hit detection within F

single bunch crossing measurement
ToT calibration Full range ToT to charge calibration F
Noise occupancy measurement Noise hit probability at operation threshold F

and noisy pixel masking
Source scan 241Am high statistics source scan F

for bump connectivity test
Low threshold operability test Noise occupancy as function F

of threshold measurement
Sensor bias OFF Ramp-down of sensor depletion bias Q, F
Threshold and noise measurement Threshold and noise (ENC) measurement Q, F

with undepleted sensor to detect defective bumps

Table 7: Test flow of the initial electrical test after module assembly (Q) and the intense module functionality and
performance validation test (F). The tests labelled Q are made at room temperature.

3.4.1 Module I-V characteristics

The leakage current was measured as a function of the sensor bias voltage (I-V characteristic) during
both the initial room-temperature electrical test and the full performance test. The breakdown voltage
(Vbd) was used as an acceptance criterion for the modules. Example I-V curves for ten randomly chosen
modules of each module type are shown in Figure 14(a). From these curves, Vbd can be determined. The
I-V behaviour was measured with the FE-I4B chip unpowered and at approximately 20 �C. A current limit
of −10 µA was used to protect the modules.

As shown in Figure 14(b), Vbd depends on the module type. The Vbd of planar modules was required to
be less than −150V, 70V below the nominal bias voltage, Vop = −80V. Only four of the dressed planar
modules failed the sensor breakdown voltage criterion. The Vop of the FBK and CNM modules is −20V,
and for this reason all 3D modules having a Vbd above −30V at the final performance test were rejected.
As already noted (Section 3.1.3), the sensor test procedure at wafer level was significantly different for
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r e gi o n ar o u n d t h e n- c ol u m ns. Aft er r a di ati o n, t h e l e a k a g e c urr e nt d u e t o r a di ati o n d a m a g e i n t h e sili c o n
b ul k d o mi n at es.

3. 4. 2 M o d ul e ti m e- w al k a n d t h r es h ol d t u ni n g

D uri n g d et e ct or o p er ati o n, t h e I B L m o d ul es di gitis e t h e m e as ur e d hits wit h r es p e ct t o t h e m ast er cl o c k,
w hi c h is s y n c hr o nis e d t o t h e L H C cl o c k. O nl y hits t h at ar e r e c or d e d wit hi n o n e cl o c k c y cl e, i. e. wit hi n a
s e nsiti v e ti m e of 2 5 ns, c a n b e assi g n e d t o t h e c orr e ct b u n c h cr ossi n g of t h e L H C. T h e i n-ti m e hit d et e cti o n
pr o b a bilit y is si g ni fi c a ntl y i n fl u e n c e d b y t h e ti m e- w al k e ff e ct of t h e c h ar g e s e nsiti v e a m pli fi er. S m all
si g n al c h ar g es at t h e i n p ut of t h e a m pli fi er cr oss t h e dis cri mi n at or t hr es h ol d wit h s o m e ti m e d el a y wit h
r es p e ct t o a l ar g e r ef er e n c e c h ar g e a n d t h er ef or e t h e k n o wl e d g e of t his ti m e- w al k is i m p ort a nt f or t h e I B L
o p er ati o n.

T o m e as ur e t h e ti m e- w al k, t h e ti m e di ff er e n c e b et w e e n t h e arri v al ti m e of t h e si g n al c h ar g e at t h e i n p ut
of t h e a m pli fi er a n d t h e ti m e at w hi c h t h e a m pli fi er o ut p ut v olt a g e cr oss es t h e dis cri mi n at or t hr es h ol d
n e e ds t o b e d et er mi n e d. D uri n g t his m e as ur e m e nt, t h e c h ar g e is g e n er at e d b y t h e o n- c hi p c h ar g e i nj e cti o n
cir c uitr y a n d t h us t h e si g n al c h ar g e arri v al ti m e is d et er mi n e d b y t h e c h ar g e i nj e cti o n ti m e, w hi c h n e e ds
t o b e pr e cis el y m e as ur e d a n d a dj ust e d. T h e F E-I 4 B c hi p h as a dj ust a bl e o n- c hi p c hi p-l e v el i nj e cti o n d el a y
cir c uitr y t h at is us e d t o t u n e t h e c h ar g e i nj e cti o n ti mi n g. T h e cir c uitr y d el a ys t h e i nj e cti o n ti mi n g gl o b all y
wit h r es p e ct t o t h e c hi p m ast er cl o c k, t h us d e cr e asi n g t h e ti m e di ff er e n c e b et w e e n t h e c h ar g e i nj e cti o n a n d
t h e di gitis ati o n ti m e wi n d o w. T h e i nj e cti o n d el a y is s c a n n e d a n d t h e hit d et e cti o n pr o b a bilit y is m e as ur e d
as a f u n cti o n of t h e d el a y s etti n g f or a l ar g e i nj e ct e d c h ar g e, usi n g a si n gl e cl o c k c y cl e di gitis ati o n wi n d o w.
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This results in a box-shaped function as shown in Figure 15(a) for a single pixel, in this case for an injected
charge of approximately 10 ke−. The time difference between the master clock and the charge injection
(i.e. injection delay) for a 50% hit detection probability is defined to be the hit detection time. The
difference between the hit detection time for two consecutive digitisation windows is known to be 25 ns
(one bunch crossing) and this is used to calibrate the step-width of the delay circuitry. The step-width of
this particular FE-I4B chip is 0.58 ns. The mean hit detection time of the full pixel array is measured and
the time t0 is defined to be the mean hit detection time of the chip plus a safety margin of 5 ns to ensure
that early pixel timings are not excluded.

0 5 10 15 20 25 30 35
Injection delay [ns]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

H
it 

de
te

ct
io

n 
pr

ob
ab

ilit
y

Box-like function fit
Data
Turn-on time
t0 time

ATLAS IBL

(a)

0 10000 20000 30000 40000 50000
Injected charge [e]

0

5

10

15

20

25

30

35

40[n
s]

0t

distribution mean0t
distribution RMS0t
as set0t
- 20 ns0t

discriminator threshold
in-time threshold

ATLAS IBL

(b)

Figure 15: (a) The single pixel hit detection probability of one pixel of a typical chip during a t0 scan with a high
injected charge (approximately 10 ke−), and (b) the measured mean t0 as a function of the charge of the entire chip.
Analog injections with high charge are performed as a function of the on-chip injection delay. Hits are digitised
during a single cycle of the master clock of the chips. The hit detection time is determined using a box fit convoluted
with a Gaussian shape (box-like). The t0 is set to the hit detection time plus a safety margin of 5 ns. For the full pixel
matrix the measured mean t0 is shown as a function of the injected charge. The effect of the time-walk is visible for
small charges.

The calibration of the internal injection timing was verified with reasonable agreement using charge
pulses induced in a planar sensor using a picosecond 671 nm laser. The scanning procedure measuring
t0 is similar to that based on internal injection but with the injection time being controlled outside the
FE-I4B chip, thus providing an important cross check.

As shown in Figure 15(b) the value of t0 measured as a function of the injected charge reveals the effect
of time-walk. For high charges the mean t0 saturates at a fixed delay. For small charges, closer to the
discriminator threshold, t0 is smaller, i.e. the time between charge injection and the digitisation time
window is larger. Given the 5 ns safety margin added for early signals, the time-walk must not exceed
20 ns for an injected charge to be detected in the correct digitisation window, i.e. the correct bunch
crossing. The time-walk can be related to the input charge in electrons using Figure 15. The charge
corresponding to 20 ns time-walk is called the overdrive, and the in-time threshold is the sum of threshold
plus overdrive. Injected charges greater than the in-time threshold will be detected in the correct bunch
crossing. Smaller hits will be ’out-of-time’. Out-of-time hits can be recovered with on-chip processing.
In the FE-I3 chips of the Pixel detector, there is a function to duplicate all hits below a programmable ToT
value to the prior bunch crossing, at the cost of a significantly increased data volume. The FE-I4B chip
contains a more sophisticated recovery method that limits the impact on the data volume. Hits with a ToT
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value of 1 or 2 (optional and programmable) can be replicated in the previous bunch crossing assignment,
if they are adjacent to a larger hit. This exploits the fact that low-charge hits are mostly due to charge
sharing, since charged particles are unlikely to produce very low-charge single-pixel clusters.
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Figure 16: The distribution for individual pixels of (a) the in-time threshold and (b) the charge overdrive above the
discriminator threshold needed for the hit to be detected within one bunch crossing. All modules matching IBL
quality criteria are shown. The overdrive is measured after tuning the modules to 3000 e− threshold and 10 ToT
counts for a charge injection of 16 ke− at approximately −15 �C. The mean in-time threshold varies between 3354 e−

for the normal planar pixel and 3820 e− for the 3D FBK pixel. Pixels failing the measurement are not included in
the distributions, and pixel overflows are not shown.

The tuning algorithm used to generate the initial module configurations included a global threshold
adjustment, a module feedback current and threshold tuning, and a final iterative pixel-level feedback
current and threshold tuning. The threshold was measured using a known injected charge and measuring
the 50% hit efficiency, initially at the global level and then at the pixel level. The mean value for each
FE-I4B chip was tuned to be 3000 e− at a nominal temperature of 22 �C.

The in-time threshold can also be measured using a threshold scan algorithm with a single bunch crossing
read-out, following a t0 adjustment. Therefore, the time-walk could be measured during the IBL module
production using the so-called overdrive measurement (calculated for each pixel as the difference of in-
time threshold and the discriminator threshold). Both the in-time threshold and the overdrive distributions
are shown in Figure 16. The in-time threshold distributions show the expected dependence on the sensor
type; the detector capacitance influences the rise-time of the amplifier and thus the mean time-walk.
Similar to the noise distributions for the three module types, the overdrive distribution for planar modules
(mean 355 e−, RMS 250 e−) has a lower mean than for CNM modules (mean 530 e−, RMS 351 e−) and
FBK modules (mean 828 e−, RMS 478 e−). A small number of pixel channels in the tails of the in-time
threshold distribution result from poorly determined threshold fits. These mean time-walk values are well
within the out-of-time hit recovery capability of approximately 1500 e− for the FE-I4B chip [34].

3.4.3 Module ToT-to-charge calibration

The ToT is calibrated after the discriminator threshold calibration, as that affects the ToT along with the
feedback amplifier current, and vice versa. The limited available charge information due to only four ToT
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bits complicates the ToT-to-charge calibration. A calibration method was implemented to measure the
injected charge histograms for a specific value of the ToT. For each pixel the injected charge value is stored
for the pixel that responds with the chosen ToT. This results in charge histograms as shown in Figure 17(a).
The mean values and the widths of the distributions of injected charge are used as a look-up table for
the charge-to-ToT calibration function (Figure 17(b)). The measurement was made on each IBL module,
initially for a given chip and then at the pixel level, and the result was stored for each pixel. Because of the
maximum injected charge, the ToT � 14 distributions were biased, and excluded from the calibration.
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Figure 17: Calibration function of the Time-over-Threshold (ToT) to charge: (a) for a given ToT value, the mean
injected charge of each pixel, and (b) the charge-to-ToT calibration function. Measurements of the charge distributions
for ToT � 14 were biased by the maximum injected charge and were excluded from the calibration.

3.4.4 Module electronic noise

The average noise of a single pixel is measured in units of Equivalent Noise Charge (ENC)19. The pixel
noise is an important figure of merit for the pixel module performance. It is mainly determined by the
capacitance at the input node of the preamplifier and by the leakage current. Both depend on the sensor
type. In addition, the noise (ENC) can be affected by external parameters such as the module flex hybrid
circuit quality and the power supply stability. No influence of the IBL powering mode using the on-chip
regulators is expected [37]. The noise (ENC) is evaluated from measurements of the pixel occupancy as a
function of injected charge in the vicinity of the threshold value (the so-called S-curve method), using the
same injected charge circuitry as that used for the pixel ToT calibration and threshold tuning. Figure 18(a)
shows the mean noise (ENC) measured for each module during the full electrical test. The minimum and
maximum selection limits for the mean module noise are shown by vertical lines. Figure 18(b) shows the
noise (ENC) measured for individual pixels. The minimum and maximum selection limits for the noise of
individual pixels are shown by vertical lines. Only 0.6% of the pixels fail this selection and are flagged.
The 3D modules have a higher noise (respectively 140 e− and 131 e− for FBK and CNM modules) in
the same tuning condition as the planar modules (114 e−). This is expected because of the higher pixel
capacitance of 3D sensors. The RMS width of all three distributions is comparable and ranges from 30 e−

to 70 e−.

19 Noise is usually measured in charge units and is defined as the charge necessary at the input of an amplifier to generate the
same output signal as the observed noise. This quantity is called Equivalent Noise Charge (ENC).

32



80 100 120 140 160 180 200 220
Module Mean Noise [e]

0

10

20

30

40

50

M
od

ul
es

 p
er

 2
e

Planar Normal
Planar Long
3D CNM
3D FBK
Selection limits

ATLAS IBL

(a)

0 100 200 300 400 500
Noise [e]

1

10

210

310

410

510

610

Pi
xe

ls
 p

er
 2

e

Planar Normal
Planar Long
3D CNM
3D FBK
Selection limits

ATLAS IBL

(b)

Figure 18: For all modules matching the IBL quality criteria, (a) the module mean noise (ENC) distribution, and (b)
the individual pixel noise (ENC) distribution. The modules are tuned to a 3000 e− threshold, and 10 ToT counts for
a charge injection of 16 ke−, at a nominal operating temperature of −15 �C. The minimum and maximum selection
limits for the mean module noise (a module selection criterion), and for the noise of individual pixels (a bad pixel
criterion), are shown as vertical lines in each figure. Plot overflows are not shown.

3.4.5 Module bump-bond connectivity and individual pixel failures

Scans to reveal possible bump failures were made at the level of individual pixels. These scans included
threshold and noise measurements without the sensor bias applied, crosstalk measurements and 241Am
source measurements.

As noted in Section 3.5, the initial production batches suffered from a very high bump-bonding failure
rate, as determined during threshold and noise measurements at the initial test phase. Production was
halted until the problem was solved.

An 241Am source scan was made on each IBL module in the final test sequence and proved to be the
most reliable test for open bump-bond detection. Based on the individual pixel hit rate with respect to the
average hit rate per pixel for each module type, noisy pixels could be identified. Remaining bump-bonding
failures could also be identified as resulting from shorts (or high electronic coupling) or open bumps.
Figure 19 shows the fraction of failed pixels for each module in the final source test. Pixels with less than
5% or more than 450% of the mean pixel occupancy were considered as failing. A total of 19 modules
had more than 1% of bad pixels and were rejected.

After each test of an individual failure mode, failing pixels were counted (with no double counting for
multiple failures). The fraction of pixels that failed in any test is shown in Figure 20 for all modules. This
fraction was required to be less than 1% during the module production QA and was used as a basis for
the final module selection. The mean fraction of failing pixels for accepted planar modules was 0.56%.
The mean fraction of failing pixels for CNM (0.44%) and FBK (0.68%) modules is comparable to the
planar module distribution.

Occupancy distributions, measured using a 90Sr source after the loading of modules onto staves, are shown
for each sensor type in Section 5.2.5.
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Figure 19: The distribution of the fraction of pixels failing the occupancy criteria in a 241Am source scan. Only
modules otherwise accepted for stave loading are included. The modules are tuned to a 3000 e− threshold, and 10
ToT counts for a charge injection of 16 ke−, at a nominal operating temperature of −15 �C. A pixel is counted as
failing if it has less than 5% or more than 450% of the module’s mean pixel occupancy. The selection limit is
shown as a vertical line. Overflow entries are not shown.
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Figure 20: The distribution of the fraction of pixels failing in any test. Only modules otherwise accepted for stave
loading are included. The modules are tuned to a 3000 e− threshold, and 10 ToT counts for a charge injection of
16 ke−, at a nominal operating temperature of −15 �C. A pixel is counted if it fails any one of the tests as described
in the text. The selection limit is shown as a vertical line. Overflow entries are not shown.
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3.5 Module production and yield

The IBL module production was started in July 2012 and completed in April 2014. Bare modules were
delivered in batches of about twenty modules for each module type. Fully dressed modules were then
assembled, tested in detail and selected according to the quality criteria described in Section 3.4. Accepted
modules were then sent to be loaded on staves as described in Section 5.

After the production of the first module batches, a high bump-bonding failure rate was observed and
the module production was halted for approximately four months until the problem was understood and
improved procedures were implemented. Two types of bump defects were identified: large areas of
disconnected bumps and a small number of isolated bumps electrically shorted to a neighbour. During
the production stop, both bump-bonding defects were investigated in detail in close collaboration with
the bonding vendor. Both problems were traced to the usage of a flux during the soldering process: the
disassembled sensors and FE-I4B chips of defective modules showed polymerised flux residuals that acted
as a spacer during the reflow, preventing a proper bump connection between the sensor and the FE-I4B
pixel. For shorted pixels the results were less conclusive but flux residuals in areas with larger number
of shorts were also found. The solder flux applied to the FE-I4B chip prior to the flip-chip and reflow
was replaced by glycerin as the new tacking media. With this new flip-chip method neither problem
recurred.

Figure 21 summarises the IBLmodule production yield including the first batcheswhere the bump-bonding
problems were identified. In the figure the yield is expressed in terms of rejected modules, separately for
planar, CNM and FBK modules. The yield is divided into different production batches (L1 to L5) with
similar laser de-bonding and flip-chip methods applied. All modules assembled with the initial flip-chip
method using solder flux are grouped in L1.

Another change during themodule assembly concerned the laser de-bonding of the glass carrier. The initial
vendor was replaced by a second vendor, which was qualified during the production; the first modules
from this vendor are in batch L3 for the planar modules, and L4 for the FBK and CNM modules.

The production yield of the first batch L1 was poor for all module types because of the bump-bonding
problems. Respectively 40%, 20% and 35% passed the acceptance criteria for planar, CNM and FBK
modules. For batches L2-L5, the yield improved to an average of 75%, 63% and 62%, respectively. The
initial modules coming from the second laser de-bonding vendor showed a higher rate of bump-bonding
defects, mainly due to problems with the handling of the thin modules during and after the glass carrier
removal. The bump-bonding failures result mainly from mis-handling during the laser de-bonding, and
not on the sensor type. The mean failure rate was less than 10% for planar and CNM modules, and 25%
for FBK modules. A summary of the failure rates, separately for the batches L1 and L2− L5 , is reported
in Table 8.

Other defects observed during the module production were mainly of mechanical or electrical nature.
During the production a constant electrical failure rate of approximately 15% was observed, mainly from
the on-chip regulators, which were not tested during wafer probing of the FE-I4B wafers. Other electrical
problems included failing double columns of the FE-I4B chip, and communications issues, but the rates
were low. Several CNM modules in L2 and L3 showed problems with a low sensor breakdown voltage,
due to insufficient testing procedures during the sensor wafer QA (Section 3.1.3). CNM sensors used for
the batches L4 and L5 were re-tested after UBM deposition and dicing and the yield improved slightly.
However, this re-testing introduced new defects on the sensors’ pixel side, increasing the bump-bonding
failure rate.
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Figure 21: Fraction of rejected planar and 3D (CNM, FBK) IBL modules for the five production batches L1 - L5.
Within a given batch, a similar configuration of the laser vendor and the bump-bonding was applied. In the upper
panel, B.B. Fail. denotes bump-bonding failures, Bare Fail. denotes modules that were not assembled due to
(mainly) mechanical damage, and Other Fails. includes both electrical and sensor failures identified after assembly.
In the lower panel, batch L1 was excluded from the mean rejected module fraction because of bump-bonding
problems that were corrected in batches L2 - L5. Including L1, the mean rejected module fraction for respectively
planar, CNM and FBK modules was 0.36, 0.50 and 0.44.

The quality of each accepted module was characterised on the basis of:

- The number of bad channels, based on source scan results, digital tests and other analog measure-
ments at the operating temperature;

- Electrical measurements such as the mean noise, threshold, noise dispersion, and the regulator
voltages;

- Mechanical anomalies or damage including non-conformal glue distribution, invisible alignment
marks and reworked wire bonds.

The highest quality modules were placed closest to the interaction region.

4 Stave components

The IBL modules are supported and cooled by 14 staves, cylindrically arranged around the beam pipe
axis, as described in Section 2.1. Two symmetric multi-layer flexible circuits, the stave flexes, are glued
on the back of the mechanical stave structure and route electrical services between individual modules
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Planar 3D CNM 3D FBK
Batch L1
Delivered bare modules 131 45 45
Bare module failures 6 3 1
Delivered dressed modules 125 42 44
Accepted modules 52 7 21
Bare module failures [%] 5 7 2
Bump-bonding (B.B.) failures [%] 31 36 40
Other failures [%] 24 42 11
Total failure rate [%] 60 84 53
Batches L2− L5
Delivered bare modules 292 123 73
Bare module failures 7 3 1
Delivered dressed modules 285 120 72
Accepted modules 219 77 45
Bare module failures [%] 2 2 1
Bump-bonding (B.B.) failures [%] 6 9 25
Other failures [%] 16 26 12
Total failure rate [%] 25 37 38

Table 8: IBL module failures and the failure rate as a percentage of the bare modules delivered to the assembly sites.
Failure modes are the same as Figure 21. The failure rate is significantly larger for the first batch, as explained in
the text.

and the EoS region. The design, production and QA of the bare staves and stave flex components, and
their assembly until the loading of modules on the stave, are described.

4.1 The bare stave

The bare stave should satisfy several important design criteria: a low material budget to improve physics
performance; an excellent module thermal performance to optimise the pixel signal-to-noise and to prevent
thermal runaway; good mechanical stability for efficient tracking performance; and a low Coefficient of
Thermal Expansion (CTE) of component materials to reduce the mechanical stress.

4.1.1 Bare stave material

The constraints of low material budget and high structural reliability for the bare stave has resulted in
specific design and material choices. The stave is assembled from four main components (Figures 22 and
23), together with thermally conducting epoxy20: a 1.7mm external diameter titanium T40 cooling tube;
a carbon foam section21 to drain the heat flux; carbon fibre laminates22 to reinforce the stave stiffness; and

20 Stycast 2850FT thermally conducting epoxy encapsulant, see http://www.henkel-adhesives.com/electronics.htm
21 K9 Carbon Foam, Allcomp Inc., see http://www.allcomp.net
22 RS-3/K13C2U uni-directional prepress, Tencate Advanced Composites, see https://www.tencate.com

37



PEEK23 elements to fix the stave on the IBL support.

Each of the stave components requires special manufacturing and precise machining techniques. For
example, the carbon laminates require fabrication in an autoclave to obtain the required transverse thermal
conductivity (�). Because of the high critical pressure (73.8 bar at 31 �C) of the bi-phase CO2 cooling
system, the titanium cooling pipes must fulfill stringent pressure requirements, with a minimal 0.11mm
wall thickness. The total material budget of the bare stave is 0.62%X0. The contribution of each
component is detailed in Table 9 and the main properties of the materials used are summarised in
Table 10. Each stave has a length of 724mm, measured between the end block fixation points, and a width
of 18.8mm.

Central fixation pin

Cooling pipe Face plate

Carbon foam

End block

Back stiffener

End block

Figure 22: Exploded view of the bare stave with its main components: the cooling pipe, the carbon foam, the two
carbon laminates (the face plate where modules are loaded and the back stiffener on the opposite side) and the PEEK
elements (the central fixation pin and the end blocks).
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Figure 23: The transverse section of a bare stave.

4.1.2 Bare stave quality control and production

The bare stave production is a 13-step process that requires careful QA to ensure a uniform quality.
The QA included a visual inspection to check for cracks or mechanical non-conformities, a weight and
23 Polyether-ether-ketone, VIRTEX® PEEK 450CA40, Victrex plc., see https://www.victrex.com/en/
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Component Material Volume/stave Equiv. Thickness X0 X/X0
(cm3) (mm) (cm) (%)

Back stiffener RS-3/K13C2U prepreg 2.020 0.144 21.1 0.068
Epoxy layers Stycast 2850FT 3.290 0.234 8.97 0.261
Carbon foam K9 21.600 1.536 213 0.072
Cooling pipe Titanium T40 0.411 0.029 3.56 0.082
Face plate RS-3/K13C2U prepreg 1.903 0.135 21.1 0.064
End-of-Stave fixation PEEK 450CA40 2.510 0.178 25 0.071
Central fixation PEEK 450CA40 0.075 0.005 25 0.002
Total: 0.621

Table 9: Properties and radiation length (X/X0) of the bare stave components.

Component Density Thermal CTE@20 �C Young’s Tensile Compressive
(g/cm3) Conductivity (�) (ppm/�C) modulus Strength Strength

(W/mK) (GPa) (MPa) (MPa)
Titanium T40 4.51 16.4 8.6 102 430 340
K9 carbon foam 0.20 28.3 < 1 0.293 3.6 1.8
RS-3/K13C2U prepreg 1.73 (x) 96 (x) -0.7 (x) 410

(y/z) 0.5 (y/z) 15 (y/z) 5.6

Table 10: The mechanical and thermal properties of the materials as used in finite-element modelling of the bare
stave. The x-coordinate for the uni-directional RS-3/K13C2U fibre is along the fibre. The properties of the
0 o/90 o/0 o fibre layup (not shown) are calculated from the input of uni-directional fibres, for a given fibre fill factor.

metrology control, and a 150 bar pressure test and helium leak test for the cooling tubes. A total of 33 bare
staves were produced, and a similar number of prototypes were built to verify the design performance and
to tune the production process. Table 11 summarises the yield of the bare stave production.

Bare stave characterisation Quantity
Bare staves produced 33
Staves used as prototypes 2
Staves rejected after visual inspection 7
Staves rejected after metrology 0
Staves rejected after high pressure and He leak test 0
Staves accepted for stave flex assembly 24
Bare stave failure rate during QA 27%

Table 11: The number of bare staves produced, and bare stave failures during QA.

The stave weight was systematically checked to control the manufacturing uniformity. The average stave
weight of the 33 produced staves is (26 � 1) g.

Given the very tight envelope requirements of the IBL, the bare stave planarity, �R, is an important factor
that was controlled during the metrological survey. Deviations from planarity impact the module loading
activity and the minimum gap between two adjacent staves around the beam pipe. The design specification
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required �R to be less than 0.25mm along the stave length. Figure 24 shows the mean planarity on all
produced staves, measured at 34 points along the stave profile and in three azimuthal positions as indicated
in the stave profile shown in the figure (�� and �+ at the stave edges, and �0 at the centre of the stave).
The staves have a slight undulated profile.

Figure 24: Summary of the planarity, �R, for the 33 production bare staves in three azimuthal positions as defined
in the text: (a) ��; (b) �0; and (c) �+.

4.2 Stave flex

The on-stave electrical service lines (the stave flex) connect each module of a stave to the Type 1
internal services at the EoS. The stave flex design presented unique mechanical and electrical challenges
including:

- Space limitations force the services to be tightly integrated with the stave itself, with a 0.2%X0
design specification for the maximum amount of material averaged over the stave width;

- High-quality transmission of 160MBit/s data is required along the stave to the EoS, and subsequently
6m from the EoS to the optical module (opto-board) at PP1;

- The operability of the FE-I4B over the full range of drawn currents requires that the round-trip
low-voltage drop is less than 400mV;

- Via interconnections are required between the Al and Cu layers.

4.2.1 Stave flex layout

A single stave is served by two stave flexes, one from each side (A and C, see Figure 3) and symmetric about
the stave centre. The stave flexes run along the back-side of the stave, facing away from the interaction
point. Each stave flex serves 16 FE-I4B chips and includes:
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- 4 low-voltage (LV) supply lines, each serving 4 FE-I4B chips in parallel;

- 4 high-voltage (HV) supply lines, each serving either 2 double-chip planar or 4 single-chip 3D
modules;

- 16 pairs of LVDS output lines;

- 8 pairs of LVDS data input and clock lines, each connected to 2 FE-I4B chips in parallel;

- 8 lines reading out 4 equidistant NTC (Negative Temperature Coefficient) sensors located on the
module flexes24.

The stave flex, shown in Figure 25, consists of a longitudinal section, a dog-leg part and a connector region,
with a total length of 528.4mm. The longitudinal section, approximately 350mm long and 11.5mmwide,
is equipped with 16 identical wings that provide electrical and mechanical connections to the FE-I4B
chips. The wing pitch of 20.75mm corresponds to the inter-distance between FE-I4B chips in the planar
modules, but is approximately 100 µm too short for 3D modules; this mis-alignment is corrected using
angled wire-bonding between the wing flex and the module flex (Section 3.3.2). Each wing is 17.5mm
long and 12mm wide. Two ears at the edge of the wing ease the gluiing of the wing flex to the module
during the integration phase. As the wing needs to be bent by 180° to be glued on the module, a row of
small holes are drilled between the metallic lines to make the polyimide (Kapton®) more flexible. The
dog-leg region creates a shift in both the radial and azimuthal directions, allowing services to be positioned
in the correct location between cooling pipes in the EoS region. The connector region at the end of the
stave is equipped with eight Panasonic AXT54012425 SMD sockets.

The stave flex has six metal layers of which two are 50 µm thick Al traces used for the power and ground,
and four have Cu traces; the stack-up is shown in Figures 26 and 27. The total thickness is approximately
500 µm. Routing between layers is achieved using vias, which are described in Section 4.2.2. Thin
stiffeners are glued on the bottom under the connectors to ensure good connector insertion and removal
reliability. The top metal layer is only used to route the HV signals, in order to maintain sufficient distance
between the HV traces to guarantee 1.5 kV isolation. The signal and NTC lines are distributed on the
LVDS1 and LVDS2 layers, but the layout differs for the A- and C-sides to ensure the same layout for
the signal connectors at the EoS. The routing of LVDS traces has been optimized to avoid cross-talk
and to have a controlled differential impedance of 80W. To better control the impedance of the signal
traces on the LVDS2 layer, a Cu ground shield is added below it. This 5 µm thick ground shield has
a meshed structure optimised to maintain good electrical performance while minimising the additional
material budget. The stave flex thickness averaged over its length and width is approximately 0.26%X0
with contributions from Al, Cu, polyimide and epoxy glue. The Cu contribution increases along the stave
towards the EoS while the Al is almost constant along the stave length. The quoted material does not
include the average �0.034%X0 wing contribution. The contribution of the stave flex and the wings to
the IBL material budget is approximately 0.21%X0, once smeared over the azimuthal angle. Details of
the material contribution of the stave flex and wings are reported in Table 12.

The CTE of the stave flex is approximately 27 ppm/�C, which is significantly different from the almost
zero value of the carbon stave structure. To ensure the mechanical integrity of assembled and loaded
staves during thermal cycling, the stave flex is glued to the carbon structure (Section 4.3.1).

24 All 3D (planar) modules carry one (two) NTC sensors mounted on the module flex hybrid. However, only four of the 16 NTC
sensors are read out, to reduce the number of lines on the stave flex.

25 Narrow 0.4mm pitch 40-pin connectors AXT540124 (socket) / AXT640124 (header) from Panasonic Electrical Works,
https://www.panasonic-electric-works.com
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Figure 25: The layout of the stave flex: a zoom of the connector region (detail A) and part of the longitudinal section
(detail B). The dog-leg section can be seen in between the regions A and B. All units are in mm.
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Figure 26: An expanded view of the overlapping layers in the stave flex.

4.2.2 The process flow

The stave flexes were produced at the CERN PCB workshop. The Cu and Al stacks (Figure 26) were
processed separately. The material used for the four Cu layers were two double-sided Cu-clad laminates
on polyimide substrates, one used for the TOP/LVDS2 and the other for the GND/LVDS1 routing layers.
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Component Material Thickness Equiv. Thickness Average X/X0 Central X/X0 Smeared X/X0
(µm) (µm) (%) (%) (%)

Stave Flex

Cu 61 7 0.041 0.011 0.029
Al 100 92 0.104 0.101 0.072
Polyimide 163 163 0.057 0.057 0.040
Glue 173 173 0.060 0.060 0.042

Total Stave Flex 497 0.262 0.230 0.182

Wings
Cu 19 3.8 0.024 0.026
Polyimide 38 21.4 0.007 0.008
Glue 10 5.6 0.002 0.002

Total Wings 67 0.034 0.036

Table 12: Properties and radiation length (X/X0) of the stave flex components, separately for the longitudinal section
and the stave flex wings. Thickness is the effective thickness of the material layers for normal incidence; Equiv.
Thickness and Average X/X0 are respectively the thickness and X/X0 normalised to the stave flex length; Central
X/X0 is the value of the material budget close to the central region, averaged over the stave width but without
averaging along the stave length; Smeared X/X0 is the Average X/X0 smeared over a cylinder at the mean radius of
the stave flex.

The Cu and Al stacks are then laminated together.

A feature of the stave flex is the use of low-resistivity vias joining the GND/VCC Al layers to the TOP Cu
layer. Following successive etching and deposition steps to create the Al/Cu vias, there is a deposition of
0.2 µm of Cr and 2 µm of Cu in the location of the power vias. The stave flex process is completed by:

- pressing together the Cu and aluminum stacks and drilling the power vias;

- 25 µm Cu electroplating of the power vias to connect the TOP layer with GND/VCC, followed by
polyimide cover layers on the two stave flex sides;

- gold plating the bonding and soldering pads and cutting the stave flex to its final shape.

The power and signal vias are shown in the cross-sectional view of the stave flex in Figure 27. The final
power vias have a typical resistance of 3-4mW.
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Figure 27: Cross-section of the stave flex showing the signal and power vias.
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4.2.3 Quality control and production

The stave flex production was organised in batches of up to 4 sheets with three stave flexes each, all of the
same type, either for the A-side or the C-side. After being diced and mounted with connectors, the flexes
were cleaned and shipped to the qualification laboratory. The qualification consisted of:

- a visual inspection to identify mechanical damage and surface anomalies, and a first electrical test
to check resistance measurements, continuity or shorts;

- the bending of the 16 stave flex wings on themselves (to allow later connection to the module flexes),
with Araldite 2011 gluing on the back-side, followed by mechanical measurements and an electrical
continuity test for possible broken lines, at room temperature;

- ten thermal cycles between −40 �C and 40 �C;

- an extended (one day) HV test at 1500V with a current limit at 0.1 µA and a final electrical
verification of resistance, continuity and shorts;

- a final visual inspection and sign-off for delivery.

Table 13 reports the stave flex yield. Six stave flexes were rejected during production by the vendor
because of electrical or mechanical non-conformity, mainly at the beginning of the production. Two stave
flexes were rejected because of a high resistivity of the LV via connection to the stave flex wings. The
resistivity of the LV lines determines the round-trip voltage drop and a high inter-wing resistivity indicates
a possible weak via connection. The voltage drop was uniform and typically �320mV for I = 2 A in the
last batches, well within the 400mV specification. Two staves were rejected because of non-conformities
identified during the visual inspection, and one stave was rejected because of HV non-conformities.
Finally, electrical tests were repeated at CERN before and after gluing the stave flexes on the stave. A
small HV resistivity change was observed on one stave, but the stave flex was not rejected.

Stave flexes Number
Produced 72
Rejected during production 6
Rejected after visual inspection 2
Rejected after the electrical test 2
Rejected after the HV test 1
Rejected after the thermal cycles 0
Rejected due to mishandling 0
Accepted for loading 61
Total failure rate 15%

Table 13: Failure rate of stave flexes during QA.
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4.3 Bare stave and stave flex assembly

4.3.1 Stave flex gluing

A pair of stave flexes is directly glued on the stave back stiffener with a procedure that was developed
to meet stringent mechanical and thermo-mechanical constraints, for example the constraint of the stave
envelopewith an assembly accuracy of ±300 µm in the longitudinal direction and ±100 µm in the transverse
direction, the thermo-mechanical characteristics of the two different materials and the minimisation of the
material budget. Furthermore, the flexes must meet a radiation hardness requirement of 250Mrad.

Following validation of the glue deposition process, radiation hardness and mechanical stiffness, Araldite
2011 glue, together with a polyimide wet etching for the stave flex surface, were chosen. Based on these
tests, a Pyralux LF111 26 bond ply was added as a flex bottom layer in order to apply the glue to a 12.5 µm
acrylic layer after surface treatment, rather than to the polyimide directly.

The above choice was validated with an ageing test using a production IBL stave glued with production
stave flexes according to the final gluing procedure. Both thermal and radiation loads were applied to
the assembly during the test while using a 10 MeV electron source. After approximatively 380Mrad and
110 thermal cycles between 40 �C and −40 �C, no critical damage was observed on the stave-flex glue
joint [40].

4.3.2 Quality control of stave assembly components

During prototyping, one stave flex started to delaminate after several thermal cycles. A carbon clip was
added to the design in order to prevent this problem. Out of 22 production assemblies built for the IBL, only
one stave encountered a critical problem due to the glue mixture mistake, which led to a polymerisation
failure. The remaining assembled staves underwent a QA procedure to fully qualify the assembly before
module loading. A summary of the assembled staves and their usage is detailed in Table 14.

Staves Number
Staves accepted for stave flex assembly 24
Staves used for system test prototypes 2

Staves assembled with stave flex 22
Staves rejected after stave flex assembly 1
Staves qualified for module loading 21
Staves loaded with modules 20

Table 14: Accounting of the produced and qualified bare staves.

As a first qualification step, the staves were visually inspected and the stave flexes were electrically tested
to verify that the services were not damaged during the assembly process. The staves were then thermally
stressed: an initial phase at 35 �C for 1 h was followed by 10 cycles of 1 h from 40 �C to −40 �C and finally
a stabilisation phase of 3 h at 20 �C [41]. A metrology survey was made before and after thermal cycling

26 Pyralux® is a DuPont Corp. trademark of a polyimide (Kapton®) substrate with a laminated or cladded layer of metal/adhesive,
used for flexible PCBs, see http://www.dupont.com. In particular, Pyralux® LF111 coverlay is a polyimide film coated on one
side with a proprietary acrylic adhesive.
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t o m e as ur e d ef or m ati o ns of t h e m e c h a ni c al s u p p orts b y t h e fl e x gl ui n g a n d t o v erif y t h at t h e ass e m bl y still
r es p e ct e d t h e r e q uir e d e n v el o p e. T h e st a v e pl a n arit y m e as ur e m e nts, b ef or e a n d aft er t h er m al c y cli n g, ar e
s u m m aris e d i n Fi g ur e 2 8 [4 1 ]. T h e pl a n arit y of o n e t y pi c al st a v e b ef or e a n d aft er fl e x gl ui n g, a n d aft er
t h er m al c y cli n g, is s h o w n i n Fi g ur e 2 9 . As e x p e ct e d, d u e t o t h e di ff er e nt C T E of t h e m at eri als a n d t h e st a v e
fl e x es b ei n g gl u e d o n j ust o n e si d e of t h e b a c k of st a v e, t h e s h a p e of t h e m e c h a ni c al s u p p orts is a ff e ct e d b y
t h e ass e m bl y of t h e fl e x es a n d b y t h e t h er m al c y cli n g. B ef or e t h er m al c y cli n g, o nl y f o ur st a v es e x c e e d e d
t h e s p e ci fi e d b ar e st a v e e n v el o p e of 2 5 0 µ m. Aft er t h er m al c y cli n g, t h e pl a n arit y is sli g htl y d et eri or at e d,
b ut r e m ai ns l ess t h a n 3 4 0 µ m a n d wit hi n t h e cl e ar a n c e aft er i nt e gr ati o n i n t h e I S T of ∼ 2 m m.
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Fi g ur e 2 9: St a v e pl a n arit y, ∆ R, i n t hr e e a zi m ut h al p ositi o ns f or a si n gl e st a v e, s h o wi n g t h e pl a n arit y b ef or e st a v e
fl e x gl ui n g (r e d), aft er fl e x gl ui n g ( bl u e) a n d aft er t h er m al c y cli n g ( gr e e n): ( a) φ − ; ( b) φ 0 ; a n d ( c) φ + , as d e fi n e d i n
t h e t e xt.
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5 Stave loading and quality assurance

Twenty staves were loaded with qualified good modules. Details are provided in reference [41]. The QA
procedure [42] provided a detailed characterisation of the stave including calibration in cold conditions
and data taking with radioactive sources. Pixel defects were classified according to the type of failures
observed in the FE-I4B chip, in the sensor and in the bump bonding. Two staves were accidentally
damaged by an excess of humidity during the QA procedure (Section 5.4). Of the 18 remaining staves
that satisfied the QA procedure, the best 14 were selected for assembly in the IBL detector.

5.1 Stave loading and rework

Qualified modules were loaded on the staves following the procedure described below and sketched in
Figure 30. Each qualified stave was installed in a loading tool where a 70 µm thick thermal grease27 layer
was applied to half of its surface using a stainless steel template shim. After removing the template, the
positioning tools were installed, and two Araldite 2011 glue drops per FE-I4B chip were applied with a
needle on the thermal grease template openings to later fix the modules on their position. The modules
were then installed, one at a time, using spacers to achieve a precise 200 µm gap between neighbouring
modules. A load of �20 g per FE-I4B chip was placed on the modules during the glue-dot curing period.
After the removal of weights and positioning tools, an optical inspection was performed before repeating
the process on the other half of the stave.

After loading, the modules were connected to the stave flex following the procedure sketched in Figure 31.
First a layer of Araldite 2011was deposited on each of the stave flexwings using amask. A tool constrained
the wings to stay in their nominal position. A load of �16 g per FE-I4B chip was applied during the glue
curing period. A �100 µm-thick Kapton® insulator was then inserted between each powering sector.
Finally, wire-bonds were added to connect the modules to the wings of the service flex, enabling the
stave powering and data transmission. As a last step, the stave envelope was checked to ensure that the
mechanical constraints of the IBL were fulfilled.

A module re-work procedure, sketched in Figure 32, was established to replace modules if required as
a result of mechanical damage or functional issues. A �100 µm-thick Kapton® spacer and holders were
installed at each side of the module to be replaced, protecting the neighbouring modules. The module
was removed using a spatula and the stave face plate was cleaned from grease or glue. A new module was
then loaded following the procedure described above, using a set of dedicated tools. In total, twenty-two
modules were re-worked: fifteen modules were replaced due to module damage during the module loading
procedure that compromised the integrity of the sensor, the FE-I4B chip or the module flex; five modules
were replaced because of failures of the FE-I4B chip after loading; and twomodules were replaced because
they failed the QA tests made before final integration. In addition, due to the cleaning and re-bonding
intervention performed (Section 5.4), six modules were replaced on the twelve re-bonded staves.

27 HTCP, Electrolube, see https://www.electrolube.com/core/components/products/tds/044/HTCP.pdf.
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(a) Positioning of the Al mask. (b) Thermal grease application. (c) Grease pattern after mask re-
moval.

(d) Installation of the positioning
stopper.

(e) Positioning of the first module, its
spacer, and the second module.

(f) Installation of the last positioning
stopper.

(g) Installation of the module
weights.

(h) Tooling dismounting after glue
curing.

(i) Optical inspection.

Figure 30: Three dimensional renditions of the main stave module-loading steps.

5.2 Quality assurance of the stave assemblies

5.2.1 Stave cooling performance

An essential aspect of the stave design is the removal of heat from the IBL modules, under any foreseeable
environmental and running condition. The sensor temperatures must be controlled, as an increasing sensor
temperature will result in an increased sensor leakage current that may lead to thermal runaway [43],
damaging the module. To minimise the effects of reverse annealing and thermal runaway in the sensors,
the target temperature of IBL modules during operation is below −15 �C. Furthermore, the modules must
remain cool during beam-pipe bake-out procedures when the beam pipe at the IBL contact points reaches
110 �C.

The bi-phase CO2 cooling system (Section 7.5) was chosen to achieve the required low temperature
module operation while minimising the pipe diameter and the associated radiation length [44]. The
1.7mm external diameter titanium T40 cooling tubes have a 0.11mm wall thickness to meet the CO2
critical pressure (73.8 bar at 31 �C) requirements.

Several simulations were performed to estimate the stave thermal performance, quantified by the Thermal
Figure of Merit (TFoM), i.e. the thermal resistance between the cooling fluid and the sensor surface.
Considering the various heat sources and an active sensor area Asensor, the sensor temperature can be
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(a) Stamp mask positioning. (b) Glue is deposited on each wing
position by a stamp.

(c) Glue deposits (purple) at the stave
wing location.

(d)Wing positioning for each FE-I4B
chip.

(e)Wing positioning tool installation. (f) Final stave wing position fixed.

(g)Weight on stavewings during glue
curing.

(h) HV insulator placement and
bridge gluing.

(i) Stave envelope check.

Figure 31: Three dimensional renditions of the main stave-flex wing gluing steps.

expressed as:

Tsensor = Tcoolant +
TFoM
Asensor

� ¹Pchip + Pflex + Psensorº

where Pchip is the power dissipated in the chip; Pflex is the power dissipated in the module flex; and Psensor
is the power dissipated in the sensor. In worst-case conditions for Pchip, Pflex and Psensor, the thermal
runaway was estimated to occur for the TFoM > 30 �C cm2/W.

Figure 33(a) shows the measurement for a prototype stave during the final design qualification. The meas-
ured TFoM is 14 �C cm2/W for Tcoolant = �22 �C, conservatively a factor two below the TFoM value at
thermal runaway. To qualify the thermal performance of the stave during production, the temperature uni-
formity was measured for each stave after module loading. All of the installed staves show a temperature
dispersion within 0.5 �C, as shown in Figure 33(b), which is a good indication of the production uniformity.
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(a) Installation of spacer and neigh-
bouring module protection.

(b) Module ungluing and face-plate
cleaning.

(c) Thermal grease mask installation.

(d) Thermal grease pattern and glue
dots.

(e)Module placement using position-
ing tools.

(f) Weight positioning and glue cur-
ing.

Figure 32: Three dimensional renditions of the main re-work steps for replacement of modules.
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Figure 33: (a) Measured Thermal Figure of Merit (TFoM) for modules along a stave, with a 1.7mm outer diameter
titanium cooling tube. (b) The module temperature distribution on produced staves, with configured read-out
electronics and a cooling tube temperature of 19 �C. The histogram has 152 entries, a mean value of 20.9 �C and an
RMS of 0.5 �C.

5.2.2 Metrology survey

An optical survey of the stave assemblies was made using the four fiducial marks placed on each module.
The error distributions of the module loading position are shown in Figure 34 for the � and z axes28: an
RMS precision of 50 µm is measured for planar modules in both directions, and for 3D modules an RMS
precision of 56 µm in z and 33 µm in � is achieved.

28 For the definition of the � and z directions refer to Figure 24.
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(a) (b)

(c) (d)

Figure 34: Fiducial mark residuals in the directions z and � for (a,b) double-chip planar modules and (c,d) single-chip
3D modules.

5.2.3 Functional qualification

Following the metrology survey, the staves were transported to CERN where the final stave qualification
was carried out. Results from the electrical qualification [42] were an important input for the selection of
the 14 staves that were integrated in the final detector.

The electrical QA test stand could operate two staves simultaneously. The staves were installed in an
environmental box, which was flushed with dry air to maintain the humidity below 3%, corresponding to
a dew point of −53 �C for the minimum box temperature of −20 �C. The temperature on the staves was
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controlled by a TRACI29 CO2 cooling plant.

The Detector Control System (DCS) and the Data Acquisition (DAQ) for the test stand emulated the DCS
and DAQ of the installed IBL detector, described in Sections 6.2 and 6.3. They were connected to the
stave using custom EoS PCBs. The read-out system used the Reconfigurable Cluster Elements (RCE)
architecture based on ATCA technology [45]. As for the installed IBL detector, the DCS granularity
was a group of four read-out chips; it was not possible to record and control individual modules. The
nomenclature of the FE-I4B chips as used for the stave QA, and of the DCS read-out for a stave, are shown
in Figure 35.

Figure 35: Schematic for a full stave of the module and FE-I4B layout, as well as the DCS and powering modularity.
The FE-I4B chips are labelled for the stave and integration QA as A(C)X-Y where X runs from 1 to 8 towards the
PCB cards, and Y is 1 or 2. A(C)7 and A(C)8 are single-chip 3D modules. The DCS modularity is shown as
M1A(C) through M4A(C). The NTCs measure the temperature of each module group.

A detailed optical inspection of each stave was made before and after the QA procedure. Photographs of
each chip were taken with a high resolution camera to identify any major damage to the chip, as well as
debris that might have been left on the stave during assembly or wire bonding. A detailed microscope
inspection of the stave was then made.

The electrical functionality of each stave was next verified, before making calibration measurements. This
included power-up studies, the verification of set voltages and currents in un-configured and configured
FE-I4B chip states, and I-V characteristics of the sensors. The powering behaviour of the modules was
verified during ten LV power cycles. The time dependence of current and voltage from this test are shown
for stave ST12 in Figure 36(a). Most modules show a stable current consumption for every cycle; current
fluctuations can be explained by improperly reset chip registers. After a first successful power-up of the
stave, the temperature, the set voltage reading, and the currents before and after read-out configuration of
each DCS group, were recorded. The expected values during the stave QA are listed in Table 15. An I-V

Quantity Expected Value
Temperature 22 �C
Voltage 2.1V
Unconfigured current 1.1A
Configured current 1.5A
Leakage current Compatible with module QA

Table 15: Quantities recorded for each DCS group (four read-out chips) and their nominal expected values in the
QA qualification of loaded staves after their reception at CERN.

scan was performed to characterise the sensor quality. The sensor HV was ramped in 20 steps from 0 to
100V for 3D sensors and from 0 to 200V for planar sensors. The I-V characteristics of the DCS module

29 Transportable Refrigerator Apparatus for CO2 Investigation, https://ep-dep-dt.web.cern.ch/co2-coolingplants/traci-geneve.
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(a) (b)

Figure 36: (a) LV cycles and (b) sensor I-V characteristics for the 8 DCS groups of stave ST12. The DCS granularity
is a group of four read-out chips (two planar modules or four 3D modules).

group of four read-out chips was required to be compatible with the measurements performed on modules
before the stave loading. Results for stave ST12 are shown in Figure 36(b). For this particular stave, one
DCS group (M4C) indicated a 3D sensor I-V breakdown, above the operating voltage and still within the
QA specification.

A series of basic functionality tests, including the digital functionality, the t0 calibration and threshold, ToT
and crosstalk scans, were also made, using the module configurations recorded at previous module QA
testing sites (Section 3.4). This allowed a direct comparison of the stave functionality, and discrepancies
indicating possible damage induced during module loading or transportation to CERN.

A comparison of threshold scans with and without HV allows the identification of areas of disconnected
bumps, since a pixel that is no longer connected to the sensor is not affected by the higher noise presentwhen
the sensor is not fully depleted. Nevertheless, a source scan is needed to fully identify all disconnected
bumps as described in Section 5.2.5.

5.2.4 Stave calibration

Following a t0 calibration, the discriminator threshold and the ToT parameters of the FE-I4B chips must
be calibrated and tuned to distinguish charged particle signals from electronic noise, and to ensure that the
charge determination is uniform over all IBL pixels. The selected threshold should be as low as possible
to ensure maximal detector efficiency for charged particles (especially when the charge is shared between
pixels), and to ensure the best possible ToT tuning. It should also be sufficiently high to discriminate
against electronic noise.

During the module QA (Section 3.4), a mean module threshold of 3000 e−. To compare with those results,
the same calibration working point was retained. A more realistic operating condition is to use a lower
pixel threshold as noted above. A second calibration working point of 1500 e− at an operating temperature
of −12 �C was chosen [42]. The mean threshold can be tuned for each FE-I4B chip using charge injection
circuitry. As for the QA of individual modules, the pixel noise (ENC)30 is evaluated from a measure of the

30 ENC is defined in Section 3.4.4.

53



pixel occupancy as a function of injected charge, using the FE-I4B charge injection circuitry (the S-curve
method).

In each case the ToT was tuned to 10 units of 25 ns for a charge of 16 000 e−, corresponding to a minimum
ionising particle at normal incidence. Figure 37 shows the one-dimensional ToT distribution for all pixels
when tuned to 10 ToT, and the mean ToT as a function of chip number along the stave. The data are shown
for a mean module threshold of 1500 e− at −12 �C.

The threshold calibration results for the complete set of staves are summarised in Table 16. The pixel-
to-pixel RMS of the threshold distribution (threshold RMS), of approximately 40 e−, is compatible with
the accuracy of the injection circuit. Figure 38 shows the threshold and noise (ENC) distributions for
individual pixels, in the case of a 3000 e− threshold tuning at 22 �C. Figure 38(a) indicates that all of the
modules could be tuned to a mean threshold of 3000 e−, with only a few individual pixels that could not
be tuned to that value.

Figure 37: (a) One-dimensional Time-over-Threshold (ToT) distribution for all pixels when tuned to 10 ToT, using
an injected charge of 16 000 e−. The spikes result from injection failures where the selected ToT value is not 10.
Non-integer mean ToT values result when successive injections to evaluate the mean select differing ToT values.
(b) The average ToT distribution as a function of the chip number (position) on the stave. The data are from all 18
qualified staves using a mean module threshold of 1500 e− at −12 �C.

The threshold-over-noise distributions for 3000 e− and 1500 e− tunings are shown in Figure 39; this quantity
is the key parameter in determining the quality of the IBL modules with respect to their operability at
a given discriminator setting. The physics occupancy in the ATLAS Pixel B-Layer was approximately
5 � 10−4 hits per pixel per bunch crossing unit of 25 ns at the end of Run 1 and that for the IBL was
expected to be approximately 10−3 hits per pixel per bunch crossing unit at the beginning of its operation.
Pixels with a noise occupancy rate higher than 10−6 hits per pixel per bunch crossing unit were considered
to be noisy and were disabled from data taking. A threshold-over-noise value larger than 5 ensured a noise
contamination in IBL physics hits of less than 0.1%. For the 1500 e− reference tuning at −12 �C module
temperature, the observed fraction of noisy IBL pixels was less than 0.03%.

Figure 40 shows the threshold and noise distributions averaged over all 18 qualified staves as a function of
chip number for the 1500 e− reference tuning. Figure 40(a) shows that it was possible to tune all production
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Tuned Threshold Pixel Type Threshold RMS [e−] ENC [e−] Threshold-over-Noise

3000 e− at 22 �C

Planar Normal 37 123 � 10 25 � 2
Planar Long 58 146 � 15 21 � 2
3D FBK 39 171 � 25 18 � 2
3D CNM 40 149 � 15 20 � 2

1500 e− at −12 �C

Planar Normal 42 129 � 13 12 � 1
Planar Long 47 149 � 16 10 � 1
3D FBK 46 171 � 25 9 � 1
3D CNM 41 146 � 16 10 � 1

Table 16: Calibration summary for the 18 qualified staves. Long pixels of planar sensors are listed separately to
indicate a higher noise because of their larger pixel size.

(a) (b)

Figure 38: (a) Threshold and (b) noise (ENC) distributions of individual pixels for a 3000 e− threshold tuning at
22 �C. The threshold width is primarily determined by the injection circuit, and only a few individual pixels were
badly tuned.

staves to 1500 e− within 40 e−. The average noise was approximately 130 e− for planar sensors and less
than about 170 e− for 3D sensors. Slightly higher noise was observed on the A-side of the setup: this
was due to a combination of increased noise on the HV lines of the setup and the fact that FBK modules,
which are more sensitive to external noise, represented the majority of the 3D sensors on this side.

5.2.5 Source scans

Source scans were performed with a 3000 e− threshold configuration using a 90Sr source and an internal
self trigger mechanism. An example of a source scan hit map for a single 3D FBK module is shown in
Figure 41. Regions with a lower number of hits are clearly visible and match the passive components
mounted on the module flex. Each normal pixel collected approximately 150 � 200 hits. An increased
hit occupancy in the edge columns and the edge rows is due to an increased active area for FBK pixels
resulting from the fence structure at the edge. Figure 42(a) shows the hit occupancy for planar pixels,
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(a) (b)

Figure 39: Threshold-over-noise distribution of pixels for threshold tunings of (a) 3000 e− at 22 �C and (b) 1500 e−

at −12 �C.

(a) (b)

Figure 40: (a) Mean threshold and (b) mean noise (ENC) distributions for all 18 qualified staves as a function of the
chip number (position) on the stave, for a 1500 e− threshold tuning at −12 �C . The error bars represent the RMS
value accounting for the differences between staves whereas the solid colour describes the full range covered by
data.

separating the categories of normal pixels and long pixels. The mean hit occupancy is less than that for
3D modules because of the reduced sensor thickness (200 µm instead of 230 µm). Figure 42(b) shows the
occupancy for normal and edge pixels of CNM and FBK modules. Because of their guard-ring design
CNM sensors do not show an excess in the edge rows and columns. Although not shown, CNM sensors
also have a slightly lower occupancy than FBK sensors for normal pixels because of the smaller depth of
their columnar electrodes.

Source scans were mainly used to identify disconnected bumps, but it was also possible to check the
average charge using the 90Sr source. This used the ToT distribution of all clusters with more than one
hit31. Figure 43(a) shows the most probable value (MPV) of the Landau-Gauss fit of such distributions
as a function of FE-I4B position, averaged over all staves; the MPV distribution of each chip is shown
31 Clusters are formed by groups of hits collected by adjacent pixels.
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Figure 41: Typical source scan hit map of a 3D FBK module during the stave QA. Regions with a lower number
of hits match passive components mounted on the module flex. The module threshold is tuned to 3000 e− at an
operating temperature of 22 �C.

in Figure 43(b). The different behaviour between 3D and planar modules is due to their different sensor
thickness. The difference with respect to the calibrated mean of 10 ToT is small.

5.2.6 Pixel defects

Faulty pixels were classified on the basis of calibration and source scan results and assigned to a single
category listed in Table 17. This table indicates the failure type, the method used to identify the failure,
and the detailed selection criteria.

Most of the failures relied on the module showing an excess or deficit of the hit rate. The digital and analog
functionalities can be directly tested with respectively digital and analog scans. Dead digital and analog
pixels are common electronic failures. However, the digital and analog bad categories only appear in high
numbers for the case of a low ohmic connection between pixels or the identification of a merged bump
as occurred in early production batches (Section 3.4). The merged bump category exists when two solder
bumps connecting the sensor to the read-out chip are merged and manifests itself in an analog failing
pixel which still gives a response in a crosstalk scan. A pixel is classified as untunable if the threshold
or ToT cannot be tuned at all; nevertheless a high discrepancy from the tuning target is accepted as these
pixels can still be used for operation. The noise occupancy, which indicates how many hits per BC are
produced due to noise, is a very important diagnostic and operational quantity. The easiest way to identify
a disconnected bump is to analyse the response from a source scan. If a pixel shows zero or only very few
hits in the source scan data, the bump is assumed to be disconnected (Section 3.4). The high crosstalk
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(a) (b)

Figure 42: Occupancy distributions for (a) planar modules and (b) 3D CNM and FBK modules collected using a
90Sr source and an internal self trigger mechanism during IBL stave QA. The content of each category of source
measurement is normalised to unity in the figures. The module threshold is tuned to 3000 e− at an operating
temperature of 22 �C.

(a) (b)

Figure 43: Most probable value (MPV) of the Time-over-Threshold (ToT) distribution for all clusters with more than
one hit, fit with a Landau-Gauss function: (a) the mean MPV as a function of chip number (position) on the stave
and (b) the distribution of the mean MPV for all chips. In (a) the error bars represent the RMS value accounting
for the differences between staves whereas the solid colour describes the full range covered by data. The module
threshold is tuned to 3000 e− at an operating temperature of 22 �C.

pixel category is not directly related to the performance of the pixel but if a sensor pixel shows significant
charge sharing with a neighbour, this can influence the precision of the offline reconstruction.

The total fraction of bad pixels, averaged over all modules, is shown in Figure 44. No clear correlation
was found between the chip topology (other than edge regions) and the measured disconnected bumps.
There was a clear increase in the number of bad pixels towards the stave ends because of the choice to load
the best modules into the central region of a stave. The number for each bad pixel category is collected
for each stave in Table 18.

A production cut of 100 bad pixels per chip was initially applied after the module assembly. This cut
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Failure Name Scan type Criteria
Digital dead Digital scan Occupancy <1% of signal injections
Digital bad Digital scan Occupancy <98% or >102% of signal injections
Merged bump Analog scan Occupancy <98% or >102% of signal injections

Crosstalk scan Occupancy >80% of 25 ke− signal injections
Analog dead Analog scan Occupancy <1% of signal injections
Analog bad Analog scan Occupancy <98% or >102% of signal injections
Tuning failed Threshold scan s-curve fit Fit failure

ToT test ToT response 0 or 14 ToT units of 25 ns
Noisy pixel Noise scan Occupancy >10−6 hits per 25 ns bin
Disconnected bump Source scan (90Sr) Occupancy <1% of mean occupancy
High crosstalk Crosstalk scan Occupancy >0 with 25 ke− signal injection

Table 17: Classification of pixel failures.

(a) (b)

(c) (d)

Figure 44: Map of the fraction of disconnected pixels for (a) 3D modules and (b) planar modules . (c) Map of the
total fraction of bad but not dis-connected pixels (both module types). (d) The total number of bad pixels per stave
for all 18 qualified staves. The horizontal bars in (d) indicate the 0.1% and 0.2% bad pixel levels.
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Stave Digital Analog Disconnected Merged Untunable Noisy High Total
fault fault pixel bump pixel crosstalk

ST01 6 389 272 3 232 11 98 1011
ST02 10 255 54 3 117 15 125 579
ST03 6 375 473 0 182 21 178 1235
ST04 2 201 254 0 275 8 59 799
ST05 2 207 172 0 183 4 33 601
ST06 6 206 337 0 147 9 29 734
ST09 8 360 476 3 167 8 88 1110
ST10 16 179 304 0 141 3 3 646
ST11 10 196 159 0 155 8 37 565
ST12 15 172 169 0 166 7 13 542
ST13 9 127 205 0 336 6 35 718
ST14 4 161 1364 0 330 7 11 1877
ST15 5 222 350 0 259 20 8 864
ST16 1 237 414 1 187 15 24 879
ST17 2 214 598 0 229 5 4 1052
ST18 13 161 902 1 178 2 9 1266
ST19 10 163 543 0 228 11 16 971
ST20 14 224 1051 0 535 13 302 2139

Table 18: Overview of the number of different bad pixel categories for the 18 qualified staves. Digital and Analog
failure modes include both dead and bad categories as defined in Table 17.

was relaxed at the end of the production because of a shortage of 3D sensor assemblies; 73% of all chips
loaded onto staves had less then 0.1% bad pixels.

The total number of failing pixels per stave is shown in Figure 44(d). The dashed lines indicate the
0.1% and 0.2% marks; the specification required a stave to satisfy < 1%. All staves were well within
the specification; 80% of the staves had < 0.2% failing pixels and 50% of those staves had < 0.1%.
Approximately 50% of all failures were due to disconnected bumps, the other 50% were distributed
between a pixel with failing analog functionality, or a bad ToT tuning.

Correlations between the defects observed at this stage and in the module production were extensively
studied [42]. Although similar selections to classify a pixel were used in the two test stages, a more intense
test procedure was applied during module production and more bad pixels were detected per FE-I4B chip.
However, there was a good correlation between the number of bad pixels per FE-I4B chip in the two tests.
Moreover it was verified that there was no significant increase of bad pixels in specific geographical areas,
for example the chip edges, thus excluding damage resulting from the module transport, handling and
stave loading.

5.3 Stave ranking and layout assignment

Of the 18 qualified loaded staves, 14 staves were selected for integration as part of the IBL. The stave
quality was scored by a geometrical inefficiency based on a �-weighted bad pixel fraction, together with
an algorithm developed to minimise the clusterisation of bad pixels in � � �. In addition, two artificial
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constraints were applied: the first and the last integrating staves were required to have the best planarity in
order to simplify assembly; and staves that were re-worked as a result of corroded wire bonds (Section 5.4)
were loaded alternately.

Table 19 summarises the position of each stave in the IBL loading map, and other characteristics of
the staves considered in the selection. Figure 45(a) compares the average bad pixel fraction for the 14
installed staves with the four non-installed staves, as a function of �. The average bad pixel fraction for the
integrated IBL staves is 0.07% for j� j < 2:5 and 0.09% over the full � range. The corresponding fractions
for the four non-installed staves are respectively 0.16% and 0.18%. Figure 45(b) shows the distribution
of bad pixel fraction as a function of � and �. The stave overlap is taken into account in this figure.

Position Stave Number of bad pixels Planarity [µm] Reworked because of corrosion
01 ST17 1052 114 no
02 ST02 579 205 yes
03 ST19 971 266 no
04 ST09 1110 229 yes
05 ST18 1266 336 no
06 ST04 799 235 yes
07 ST13 718 224 no
08 ST10 646 243 yes
09 ST11 565 298 no
10 ST12 542 314 yes
11 ST16 879 329 no
12 ST06 734 290 yes
13 ST15 864 325 no
14 ST05 601 189 yes
n/a ST01 1011 224 yes
n/a ST03 1235 223 yes
n/a ST14 1877 218 no
n/a ST20 2139 237 no

Table 19: Loading order overview of the 14 IBL staves. The position is sequential around the beam pipe. The
cooling pipe of the stave in position 01 is at � = �6:1°, subsequent staves are displaced by 25.7° in �. The planarity
shows the difference between the minimum and maximum height of a stave. The last column indicates whether a
stave has been reworked at the CERN wire bonding laboratory because of the corrosion issue. For completeness,
the last four lines show the same parameters for those staves that were not selected for installation.

5.4 Wire bond corrosion

During the IBL production, two production staves were damaged during testing inside the QA environ-
mental box. While the staves were in operation and cooled at −20 �C, ice was identified around the coldest
part of the staves. The two staves were carefully inspected under a microscope and it was discovered that
most of the aluminium wire bonds were corroded (Figure 46), with a few broken. A white residue around
the bond foot could be easily identified with ring lighting. The other staves were re-inspected and, of the
12 staves already produced, 11 staves were identified to suffer from bond corrosion.

Production was halted until the problem was understood. A number of successive actions were taken:

61



(a) (b)

Figure 45: Average bad pixel fraction (a) as a function of � for installed and non-installed production staves, and (b)
in the � � � plane for the 14 selected staves. The stave overlap is taken into account and the fraction is computed as
the number of bad pixels divided by the total number of pixels in a given bin.

(a) (b)

Figure 46: (a) White residue of corrosion on staves as observed under a microscope. (b) A Scanning Electron
Microscopy (SEM) image of corroded wires and the corrosion residue at the foot of the bond.

- Identify the origin of the corrosion and identify corrective actions such as to improve the QA
procedure, before resuming the production;

- Investigate the evolution of the corrosion and identify possible preventive actions, for example
cleaning and coating;

- Organise a re-work centre to clean all the wires and to re-bond the 11 defective staves;

- Launch an additional module production with remaining components to ensure a sufficient number
of IBL staves for the integration.

The investigation initially considered the possibility of humidity in the QA environmental boxes, and it
was found that 2 setups were concerned. The first concerned the 1.6m3 climate chamber used to qualify
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loaded staves by temperature cycling in the range −40 �C to 40 �C. As shown in Figure 47, the dew
point was reached for a few minutes in the proximity of the stave modules during the fast temperature
ramp-up because of local restrictions to the dry air flow, even though the volume was flushed with dry air
and the chamber humidity control was activated [41]. The stave electrical and mechanical integrity was
not affected by the corrosion: this was confirmed by electrical characterisations and metrology surveys.
For the remainder of the production, the newly loaded staves were not thermally cycled. The second
problematic environmental box was that used for the stave electrical qualification at low temperature.
Upgrades to improve the stave dryness and the reliability of the environmental control were made by
adding dedicated interlock actions on the cooling and the power supply.

Figure 47: Temperature and dew point monitoring in the vicinity of stave modules during thermal cycling in the
1.6m3 climate chamber. When increasing the temperature the dew point (green curve) rises faster than the stave
temperature and surpasses it for a few minutes.

5.4.1 Investigations of the Al wire corrosion process

The interconnection of Al wires with the Ni/Au bonding pads remains an issue even at room temperature,
because of the galvanic coupling between Au and Al. During the ultrasonic wire bonding the Au layer
is locally removed and the final metal contact is between Al and Ni. In addition the Al wire is normally
protected by a thin oxidation layer that is formed in a few hours and that stabilises at a thickness of about
5 nm. This protective layer can be damaged in the presence of water or because of mechanical or chemical
attack. If this occurs, as during the stave cold test, a corrosion process will be initiated.

The corrosion residues and Al wires were analysed (Figure 48) with an Energy Dispersive X-Ray Spec-
troscopy (EDS) technique and the presence of C, O, Ca, Na, Cl, F at a level of up to a few percent was
detected. The presence of ionic compounds indicated that the cleaning of the module flex after SMD
assembly should be improved. The corrosion process was easily reproduced in the laboratory, even in
presence of de-ionised water on wire bonded samples. However, further investigations revealed that the
process was even observed on ultra-clean bare flex assemblies. Additional cleaning procedures such as
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(a) (b)

Figure 48: Images of (a) a corroded Al-wire and (b) residue taken from an affected stave. The images were taken
with an Energy Dispersive X-Ray Spectroscopy (EDS) analysis setup.

plasma cleaning proved ineffective in stopping the occurrence of corrosion, although its effect could be
mitigated.

A sample analysis was also performed with an X-ray Photoelectron Spectroscopy (XPS), alternating the
measurements with the sputtering of the Au layer with Ar ions. This probed the atomic spectrum at the
Au surface while removing subsequent layers until reaching the Ni interface. The procedure was applied
to several flex circuits delivered by two different producers 32. On one sample fluorine was detected at a
significant level (up to 14% at a depth of 7 nm). This presence could not be understood nor reproduced
in other flex circuits from the same producer.

Options considered to protect against corrosion included the potting of the bond foot and the use of spray
coating such as polyurethane, but neither were possible because of the tight production and integration
schedule. All wire bonds showing signs of corrosion were replaced. It was decided to leave the wire
bonds unprotected, but to ensure that a safe humidity level would always be maintained during production,
testing, integration and operation. Tests of the susceptibility of bond pads to corrosion are recommended
before and during the production process, for all future projects.

6 Off-detector electronics and services

Beyond the EoS cards located at the end of the detector, off-detector electrical and optical cabling connects
each half-stave to the off-detector electronics in the USA15 electronics cavern (see Figure 5). Similarly,
power to the module sensor and read-out electronics is routed via electrical cables from power supplies in
USA15. This section summarises the off-detector read-out, control and service components of the IBL.

32 Laboratory studies showed that the susceptibility of the flexes to corrosion was vendor dependent. In particular, the flexes
used for the Pixel detector were much less sensitive to corrosion.
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6.1 Off-detector electrical cabling

The IBL off-detector cabling consists of two parallel paths originating from the EoS region: one path is
dedicated to data with a signal bundle that includes the clock and commands; the other path concerns the
power distribution, including the LV, HV and DCS lines. Together, they define the Type 1 cables. The
data path terminates at an opto-box that contains the opto-boards [46] at the outer edge of the ID end-plate
region, while the power bundle is routed to the patch panel PP1 and then to a second patch panel PP2
located at the ATLAS periphery, as illustrated in Figure 5.

As also noted in Sections 2.2 and 7.3, the data and power lines are initially routed from the EoS to a cable
board by a set of six intermediate flexes (2 LV, 1 clock/commands , 1 data, 1 DCS, 1 HV) that are stacked
vertically. These flexes are pre-shaped into a corrugated form to partially compensate for the thermal
mismatch of the cables and the supporting carbon fibre structure, given temperature excursions of up to
80 �C, from cold operation and the beam-pipe bake-out. The intermediate flexes connect to the Type 1
cables at the cable board.

The signal transmission in the data bundle uses LVDS data transmission over twisted pair cables with
radiation hard polyimide insulation. The control lines, feeding the command signals and the 40MHz
clock, rely on a twisted pair of thin AWG36 copper wires each serving two FE-I4B chips. The 160MBit/s
read-out lines use one twisted pair of AWG28 copper wires per FE-I4B chip. Both the control and
read-out twisted pairs adopt double quad insulation to better match the stave flex impedance and a tight
twist of 4-5 twists/inch is used for better transmission quality. The data bundle runs for approximately
5m directly to the opto-box with no intermediate junction, again to avoid transmission degradation. Due
to this relatively long distance, an LVDS common-mode reference voltage control is necessary.

Each Type 1 power bundle is split into two parts: an inner cable running for approximately 3.5m to PP1
and a 9m length outer cable leading to PP2. Custom 67-pin AXON33 connectors of 21mm diameter are
used at PP1 to join the two sections.

The LV is delivered to the stave via a dedicated regulator located at PP2. These LV supply wires dominate
the service material, because of the low resistance required to avoid an excessive voltage drop. FE-I4B
Shunt-LDO regulators (Section 3.2.1) are used, with an input voltage range of 1.8V to 2.5V. The
resistance and voltage drops for a single LV channel serving four FE-I4B chips are shown in Table 20. A
minimum shunt current of 270mA per FE-I4B chip is set to prevent excessive transient over-voltage due
to a sudden current drop. The inner HV section shares a common ground return with the LV to reduce the
number of EoS connectors.

Each Type 1 power bundle includes fourteen or fifteen lines for seven DCS signals. For each group of
four FE-I4B chips one NTC is read out (that is 4x2 lines per half-stave). These signals are routed via the
intermediate flex to the cable board. Three more signals originate from the cable board region: one NTC
near the cable board itself; one NTC on the cooling pipe next to the cable board; and either a third NTC
or a humidity sensor. The humidity sensor is mounted on the cable board itself and requires three lines.
In the case of a third NTC, this is placed to measure the temperature of the cable bundle upstream of the
cable board.

33 Axon’ Cables, see http://www.axon-cable.com.
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Section Resistance (W) Voltage Drop (V)
Module 0.017 0.038
Stave flex 0.170 0.381
Intermediate flex 0.035 0.078
Cable board 0.033 0.074
Type 1 inner cable 0.139 0.311
Type 1 outer cable 0.091 0.204
LV regulator crate 0.046 0.103

Table 20: Room temperature resistance and voltage drop for a single LV channel serving four FE-I4B chips at the
maximum current of 0.56A per chip (2.24A per LV channel).
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Figure 49: Schematic of the DCS control and monitoring functions on the sensor (HV), front-end electronic (LV)
and opto-board (SC-OL) power supplies, as well as temperature and humidity monitoring. The schematic also
indicates an independent hardware interlock system used for detector and operational security.

6.2 The detector control, interlock and power supply systems

A schematic of the IBL Detector Control System (DCS) and interlock hardware and functionality [14] is
shown in Figure 49. The inputs to the DCS and interlock systems from the power supplies, the cooling
plant and the environmental monitoring are also shown.
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6.2.1 The DCS and interlock systems

The DCS has three main functions: to control the detector, the opto-board and the power supply operation;
to monitor all operational and environmental aspects of the detector system; and to provide inputs to the
power supply and interlock systems as needed for detector and operational security. Most parts of the
DCS are provided by dedicated PCs located in the counting room, about 100m from the ID. The regulator
station at the PP2 panel and selected monitoring units are installed inside the detector cavern.

The main component of the IBL DCS software is a Finite State Machine (FSM) that is fully integrated
into the DCS of the Pixel detector and ATLAS. The tree structure of the ATLAS FSM nodes reflects the
structure of the detector. Commands are sent from the top node to its children, then the status information
is sent back to the top node and informs the operator about the success of a command. As all modules of
a half-stave are read out through a single opto-board, the half-stave is the key element of the IBL FSM.
Because of the service modularity, four FE-I4B chips with their two (planar) or four (3D) sensors are the
smallest units that can be separately steered by the DCS.

The interlock system is an independent hardware implementation complementary to the DCS. The core
component of the interlock system is a flash FPGA with an internal Electrically Erasable Programmable
Read-OnlyMemory (EEPROM) . This avoids the need of a program loading at power-on. A negative logic
is implemented, which means that a missing cable or lost power causes an interlock automatically. Power
supply and environmental (temperature and humidity) data are fed to the DCS, and the temperature data
are independently fed to the interlock system. Additional information from the laser protection system, the
cooling system, the LHC or other external systems is included into the interlock matrix. As this system is
completely hardware based, maximum safety is provided.

6.2.2 The IBL power supplies

The detector modules and the opto-boards require dedicated powering, well adapted to the corresponding
electrical loads. Common to all components is the use of floating power supplies with variable output
voltages. The power supplies are controlled and monitored by the DCS, but essential security data such
as over-current or high-temperature alerts are also transferred to the interlock system.

To deplete the sensors an HV power supply is required. While the planar sensors will require up to 1000V
after irradiation, the 3D sensors can be operated with significantly lower voltages of a few hundred volts.

The FE-I4B chips are powered by the LV power supplies. Because of the large currents in the FE-I4B
chip, the voltage drops on the services are non-negligible. The FE-I4B chips themselves require a nominal
input voltage of 1.8V, however the LV supply is able to deliver up to 15V. Since the FE-I4B chips would
be destroyed by voltages of greater than 2.5V, a voltage regulator close to the detector is installed to
protect the chips against transients. The output voltage of each regulator can be remotely programmed
to deliver precise voltages to the FE-I4B chips, via a Controller Area Network (CAN) bus in 100 steps
between 1.2V to 2.2V. The maximum deliverable current per channel is approximately 3.4A and each
channel is protected against sense line interruption compatible with the maximum voltage drop allowed
in the system. The IBL regulator station is based on the design used in the other layers of the Pixel
detector [4].

The Supply and Control of the Opto Link (SC-OL) is used to power the opto-boards and requires three
different low voltages. For the main supply voltage, VVDC, the SC-OL provides a maximum voltage of
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10V at a maximum current of 800mA. As the chips on the opto-board must also be protected, VVDC is
routed through the regulator station in the same way as the LV. The second supply voltage, Vpin, biases
the receiver PiN diodes. The supply voltage of up to 20V provides a normal operation voltage of Vpin of
5-10 V. The third supply voltage, VIset, with a maximum of 5V, controls the current in the Vertical-Cavity
Surface Emitting Lasers (VCSEL). Additionally, a reset signal is provided, which can be sent to the
opto-board in case the decoder is stuck.

6.2.3 Temperature and humidity monitoring

The environmental monitoring is handled independently of the other monitoring tasks. Temperature
sensors (NTCs) are installed in many different locations to protect detector components that might be
damaged by overheating. Each Type 1 power bundle, serving a half-stave, includes fourteen or fifteen
lines sending seven DCS signals to both the DCS monitoring units and the interlock system. Since the
FE-I4B chips and silicon sensors can be permanently damaged by the overheating of detector modules,
each sensor is also equipped with an NTC. A comparator sets a logical signal in case of overheating. In
the same way, the opto-boards and the regulator station are equipped with NTCs. NTCs are also mounted
on the cooling pipe and near the cable board. Finally, either a humidity sensor mounted on the cable
board, or an NTC mounted on the cable bundle, is read out.

Several voltage and current diagnostic measurements as well as temperature sensors (diodes) are also built
into the FE-I4B chips. An on-chip 10Bit Analogue to Digital Converter (ADC) associated to an 8-to-1
analog Multiplexer (MUX) can be used to select and read out the temperature, power supply voltages,
voltage references, detector leakage current, and other DCS analog voltages. On demand in calibration
mode, this information can be sent to the DCS or through the standard data path. This monitoring strategy
is not fully implemented for the IBL but remains a promising approach for future DCS developments, to
reduce the material inside the detector volume.

6.3 Data Acquisition System (DAQ)

The IBL read-out system [15], shown in Figure 50, is based on the Pixel detector read-out [4]. Each IBL
half-stave is connected via the opto-board [46] and a fibre bundle to the off-detector electronics boards:
the Back-Of-Crate card (BOC) [12, 13] and the Read-Out-Driver (ROD) [11].

6.3.1 Optical link

The opto-board, shown in Figure 51, is connected to the counting room via approximately 80m of optical
fibre. On the BOC card clock and data signals are encoded into one Bi-Phase-Mark (BPM) signal, running
at 40MBit/s, which is sent to the opto-board via a single optical link serving as TTC link. At the same
time, the detector modules generate data streams at 160MBit/s using 8b/10b encoding. The data are then
sent by the opto-board via one optical link per FE-I4B chip to the BOC card.

The opto-board handles data in both directions and provides eight receiver and 16 transmitter channels.
Hence, each opto-board serves a half-stave (six planar modules and four 3D modules). Each opto-board
therefore contains one PiN diode array and two VCSEL arrays, with each array containing 12 channels but
only the inner 8 channels are used. The PiN diode array is paired to two 4-channel Digital Optical Receiver
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Figure 50: Schematic of the IBL read-out system.

Figure 51: Photograph of the IBL opto-board.

Integrated Circuits (DORIC). The PIN diode converts an optical signal into an electrical signal that the
DORIC decodes the into clock and data signals. Both signals are then transferred in LVDS format to
the module. Two 4-channel VCSEL Driver Chips (VDC), driving one VCSEL array with tunable current
levels, are used to route the signals via the VCSELs to the BOC card. While the DORIC is a self-adjusting
chip, the VDC requires an externally tunable voltage to steer the drive current and hence the optical output
power of the VCSEL. The IBL uses 28 opto-boards and two additional boards are used for a Diamond
Beam Monitor (DBM) [47].
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6.3.2 Off-detector read-out electronics (ROD/BOC)

A ROD/BOC card pair is shown in Figure 52. As shown in Figure 50, data communication between the
detector and the ROD/BOC cards is bi-directional: one control and two parallel data processing paths link
the ROD/BOC pair to an IBL half-stave.

Figure 52: The IBL read-out cards located at the off-detector side of the optical link. (a) The BOC card and (b) the
ROD card are paired in a VME crate via its back-plane.

The ROD controls the detector operation for both the calibration and data-taking modes. All of the
front-end commands, including the trigger and clock signals, are generated in the ROD using a Virtex-5
FPGA with an embedded PowerPC (PPC) processor. The trigger and clock signals are distributed to the
ROD by the Trigger Timing Control (TTC) link from the TTC Interface Module (TIM). The ROD control
signals are transmitted to the detector via the BOC. An FPGA running a MicroBlaze processor on each of
the ROD and BOC cards handles the Ethernet connection between them. The BOC card is interfaced to
the detector and to the ATLAS read-out system: the detector interface uses commercial SNAP12 optical
transmitters and receivers34; the read-out interface is via S-LINK connections35.

Each data processing path handles 16 FE-I4B chips and contains two FPGAs36: one on the BOC card,
responsible for synchronising, decoding and processing the signal coming from the FE-I4B, and one on
the ROD, which builds event fragments and packages them for transmission to the ATLAS read-out via
QSFP transceivers37 on the BOC card. The FPGA on the ROD card is also responsible for generating the
histograms used to calibrate the detector. These histograms are transmitted using the Ethernet protocol

34 The SNAP12 Multi-Source Agreement (May 2002) outlines specifications for the mechanical, electrical and optical interfaces
of 12-channel pluggable parallel optical transmitter and receiver modules.

35 S-LINK, for simple link interface, is a high-performance data acquisition standard developed at CERN.
36 Unless otherwise specified, all FPGAs are from the XiLinx Spartan-6 family.
37 The Quad Small Form-factor Pluggable (QSFP) is a hot-pluggable transceiver allowing data rates of 4x10 Gbit/s.
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to a fitting farm that uses commercial PC processors. The boot and reset of the ROD is controlled by the
Program Reset Manager (PRM) FPGA, directly mounted on the ROD.

A total of 15 ROD/BOC card pairs, 14 for the IBL staves and one for the DBM, are installed in a VME
crate together with the TIM module which distributes the LHC clock and the ATLAS trigger signals. The
loading of the ROD firmware and software as well as the transmission of control signals and data between
the ROD and BOC is performed via the VME back plane; contrary to the Pixel detector read-out, the
configuration of the cards and the transmission of calibration data are performed via Ethernet. As noted
above, the fitting of calibration histograms is performed using a farm of PCs instead of the on-RODDigital
Signal Processors (DSPs) used for the Pixel detector read-out. This solution provides the scalability that
is required to deal with the higher bandwidth of Run 2.

The IBL read-out hardware and system architecture is being implemented in stages to read the other Pixel
detector layers because of the higher allowed bandwidth. The readout of the Pixel B-Layer is equipped
with twice the number of optical links, and the upgrade of Pixel Layer 1 was made at the end of Run 1.

7 Interfaces and integration

The insertion of the IBL pixel layer was made possible by the reduction of the ATLAS beam-pipe
diameter [6]. The inner radius was reduced from 29mm to 23.5mm, allowing sufficient radial space
for the IBL and its mechanical support structure. The new beryllium beam pipe is described in Section
7.1, and the support structure is described in Section 7.2. Prior to insertion in the ATLAS experiment,
the full IBL as well as its services were assembled around the beam pipe on the surface (Section 7.3)
and electrically tested (Section 7.4) at room temperature. Once installed in the ATLAS cavern, electrical
and environmental connections were made. In particular, the 2-phase CO2 cooling system as well as its
connection to the IBL package and its subsequent performance is described in Sections 7.5 and 7.6.

7.1 The beryllium beam pipe

The new beam pipe was designed and fabricated with a length of 7300mm, including the flanges (which
were unchanged). The beryllium section is 7100mm long with a nominal wall thickness of 0.8mm.
It is installed symmetrically with respect to the interaction point. At each end of the beam pipe, split
aluminium flanges of 100mm are welded, compatible with an insertion inside the IBL Inner Positioning
Tube (IPT). The inner surface of the beam pipe is treated with a Non-Evaporable Getter (NEG) thin film
coating to optimise the vacuum quality. The NEG coating is activated by heaters that are wrapped along
the beam-pipe length for the bake-out. A bake-out is made each time the ultra-high vacuum is established.
The heater temperature is monitored and controlled by thermo-couples installed along the beam pipe. To
reduce possible damage to the IBL layer, the infra-red emissivity of the beam pipe is reduced by a surface
layer of aluminium.

The composition and radiation length of the new beam pipe were both carefully validated. The thickness of
the beryllium pipe was measured with a precision of ±2.5 µm for eight positions along each section of the
pipe, and the average thickness was measured to be (0.8683 � 0.0032)mm. The other components of the
beam pipe (Kapton®, heater metal, aerogel, aluminium foil) were individually measured by 109Cd (22 keV)
X-ray absorption and their nominal composition and thickness were confirmed to within a few percent
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Figure 53: The calculated radiation length X/X0 of the new beam pipe normalised by cosh�1¹�º as a function of �.
The lower plot shows its relative uncertainty. The Getter (NEG) contribution is small and is not visible.

precision. The total uncertainty of the radiation length considers not only the material composition, but
also fabrication details such as wrinkles of the Al foil.

As a result, the total thickness of the beam pipe was calculated to be 0.32%X0 at the centre of the beam
pipe and up to 0.72%X0 at 1.5m from the centre, as shown in Figure 53. The main reduction of material
thickness was the removal of the aerogel insulating layer over a length of 622mm at the centre of the beam
pipe.

As a cross-check, the fabricated beam pipe was scanned using X-rays at z positions of 2.2 cm, 25 cm, and
90 cm along the beam pipe. The scanning equipment, shown in Figure 54, wasmounted on amulti-purpose
container (MPC; see Section 7.3) supporting the beam pipe. The X-ray assembly included a fully-depleted
Si-PINX-ray counter (Amptek X-12338) and a vertically collimated 109Cd source. The source and detector
could slide together horizontally, maintaining a constant X-ray flux. The relative X-ray absorption at z
= 2.2 cm is shown in Figure 55 as a function of the horizontal position. An X-ray absorption model,
parameterising the absorption coefficient of the layers and the absolute X-ray flux, is in good agreement
with the data. Similar validation results were obtained for z = 25 cm and z = 90 cm.

7.2 The inner mechanical structure of IBL and its external envelope

As shown in Figures 2 and 3, the IBL volume for the stave and services is delimited by the Inner Support
Tube (IST), which is fixed on the Pixel structure, and by the IPT, which is a precision mechanical support
to hold the staves and the services. A schematic and photograph of the IPT are shown in Figure 56.

38 Amptek X-123 Si-Pin X-ray counter, see www.amptek.com
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Figure 54: Beam pipe X-ray scanning equipment.

Figure 55: Relative amount of X-ray absorption in the beam pipe as a function of the corrected transverse scan
position, at z = 2.2 cm.
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(a) (b)

Figure 56: (a) Sketch and (b) photograph of the Inner Positioning Tube (IPT) assembly before the integration of
staves and services.

The IST is a 6600mm long tube with an inner diameter of 85mm and 0.455mmwall thickness, containing
the full IBL package and the central portion of the beam pipe. It is secured to each end of the Pixel detector
frame in the PP0 area and to the pixel cruciforms in the PP1 region, located at respectively 728mm and
3241mm from the interaction point along the beam axis. Given the clearance of only �2mm with respect
to the Pixel B-Layer, the IST is designed to have a minimal deflection during its lifetime. It was therefore
manufactured using very high modulus carbon fibre (K13), coupled with cyanate ester resin (RS3). The
carbon-fibre material consists of seven 65 µm-thick plies oriented in different directions to minimise the
tube deflection. The thermo-mechanical behaviour of the complete package was precisely predicted by
finite element analyses and validated with experimental data.

The IPT is a precision assembly of carbon fibre tubes and rings (Figure 56(a)) that aligns the 14 staves
with high precision. The five carbon-fibre segments use the same carbon fibre material as the IST, but
the central segment uses five plies to minimise the material budget; the resulting thickness is 0.355mm.
In addition, to ensure electrical insulation with respect to the stave module HV, this central segment is
co-cured with a 25 µm-thick polyimide film. The service rings, each with 14 radial grooves for the stave
services, are precisely positioned every 50 cm along the IPT. A small extra length, estimated to be �3mm,
compensates for the service cable contraction and extension during temperature excursions.

A key feature of the IPT design is the ability to perform a fast insertion or extraction of the IBL and of
the beam pipe independently of the rest of the ATLAS ID. The IPT is locked in z with respect to the Pixel
structure at a distance of 3241mm from the interaction point on the C-side, and is positioned radially
within the limited clearance to the IST, which is fixed to the Pixel frame. The beam pipe is positioned in
z with respect to the LArg Cryostat at PP1, 3426mm from the interaction point. It is positioned radially
within the limited clearance to the IPT and the Liquid Argon cryostat at PP1.

Two titanium terminals are positioned at the IPT extremities. Their function is to provide shielding from
electromagnetic interference, strain relief for the cooling fittings, space for cable bundle integration and
mechanical stability during installation. The gluing of components on the IPT was performed using epoxy
glue (Hysol 939439) that can cure at room temperature and has a maximum service temperature of 177 �C.

39 Hysol® is a trademark of Henkel Corporation, see www.henkel.com.
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This guarantees the integrity of all the parts, even during the beam-pipe bake-out when the maximum
temperature is expected to reach 110 �C at the contact points with the beam-pipe rings.

Two units were manufactured for each of the IST and the IPT and were surveyed in a metrology laboratory
to check for geometrical defects and qualification. The best assemblies with respect to geometrical
specifications were used for the IBL integration.

7.3 Surface integration and installation

The elements to be integrated can be grouped in three independent sets: the IPT with the support rings,
the staves with their cooling pipes and the services.

The Multi-Purpose Container (MPC), the mechanical support for the IBL integration, was designed to
allow secure and precise stave integration, and to transfer the IBL package to the experimental cavern.
Initially, the beryllium part of the beam pipe was inserted inside the IPT. A precision tool was then used
to transfer the staves from their holding jigs to the IPT, preserving the tight clearances with respect to
the surrounding structures. After each stave was connected to the cooling extension (Section 7.6), it was
fixed to the integration tool of the MPC (Figure 57). Using adjustable screws on the stave integration arm,
and IPT rotations referenced with precision pins, each stave could be installed and transferred from the
handling frame to the support ring of the IPT with a precision of �50 µm over the �724mm length.

Once the 14 staves were loaded, a central ring consisting of seven parts was installed and clipped to the
central stave support feet, providing an additional stiffening. However, because of stringent construction
and thermal fixation constraints, it did not eliminate all possible detector degrees of freedom. It radially
stiffens the 14 staves at the centre, while leaving free movement in the azimuthal direction and along
the beam axis. Operationally, this resulted in an R-� distortion of the staves at the level of a few µm/�C
(Section 8.2).

Figure 57: Integration of a stave mounted on a handling frame and the integration arm which is mechanically aligned
to the Multi-Purpose Container (MPC).
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The services that connect the staves to each ID end, �3.5m from the interaction point, were installed
after the integration of each stave. The service installation consists of eight intermediate flex circuits
linking Type 1 cables to the stave flex in the PP0 region (Section 6.1). The Type 1 cables service the HV
and LV power, the read-out and the DCS signals and are laced in a single bundle that splits just before
exiting the IBL volume into separate data and power bundles. After the installation of each stave and their
services, electrical qualification tests were performed, before proceeding to the next row. All the staves
were successfully integrated without rework or re-installation.

The next operation consisted of inserting soft sealing rings at the two extremities �3m from the interaction
region to guarantee a proper environment for the IBL. The IBL is flushed with dry nitrogen gas at a flow
rate of up to 450 l h−1. This ensures a dew point below that of the minimal foreseen coolant temperature
of −40 �C, keeping the detector dry under all operating conditions. The sealing ring core is moulded as a
ring from polyurethane, with holes for electrical and cooling services. During cavern commissioning, the
full dry nitrogen circuit, including sealing rings, was leak checked. At the nominal running parameters
(80 l h−1 at 20mbar at maximal overpressure), the measured outlet flow was 75 l h−1, equivalent to a
nitrogen circuit tightness of better than 90%.

Once the integration was completed, the services (including an additional length of 1m for the power
bundle and 2.6m for the data bundle) were packed to ensure the IBL envelope for installation in the
ATLAS cavern. In particular, the Type 1 bundles from PP1 to PP2 were wrapped by a spiral wrapping
tool around the beam pipe (Figure 58) until the IBL package was inserted inside the IST.

(a) (b)

Figure 58: (a) Type 1 services integrated on the Inner Positioning Tube (IPT) and Z-stopper locked into the service
rings. (b) Spiral wrapped Type 1 cables that take up the excess length of the IBL envelope and limit the radial
envelope with respect the Inner Support Tube (IST) for the insertion.

7.4 Electrical tests after stave integration.

The purpose of the stave electrical test after integration of the staves onto the IPT, cabling of the Type 1
cables and insertion inside the IST, was to verify the electrical and functional integrity of the stave
components and to test the service chain. The stave test included threshold scans with and without
sensor bias, a validation of the time-over-threshold (ToT) setting, and an I-V scan. The tests were
directly compared to results obtained during the stave QA. A sample of these comparisons is shown in
Figures 59, 60 and 61. Noise and threshold values are larger than in the stave QA because the detector
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was not cooled during the stave loading. This is especially true for 3D modules, which are more sensitive
to temperature. With that caveat, no performance degradation was measured.

The tests also revealed several hardware problems (e.g. broken or shorted lines in the Type 1 cable or in
the intermediate flex) that were repaired. The tests were repeated after sealing the IBL volume with two
soft polyurethane disks, to check the correct functionality of all modules before wrapping the services and
lowering the detector in the cavern of the ATLAS experiment. No changes with respect to previous tests
were measured.

Figure 59: Average and RMS of the chip-to-chip FE-I4B threshold difference between the results of the connectivity
test after integration around the IPT (IBL positioning tube) and the individual QA values for the 14 staves. The
QA configuration setting targeted 3000 e− and 10 ToT at 16 ke−. Maximum and minimum FE-I4B threshold mean
values of the 14 staves are represented for each chip number (position on stave) by the filled area.

In parallel to the stave integration and test, a system test was prepared using two prototype IBL staves
and either production or pre-production detector services, the full power and DCS chain, but mono-phase
cooling. The measured noise, threshold and ToT performance were in excellent agreement with the QA.
Scans were made using 241Am and 90Sr sources, as well as cosmic rays, with satisfactory results. The
system test also confirmed the functionality of the interlock system. The system test setup continues to be
used as a test-bench for operational maintenance and upgrades.

7.5 CO2 cooling system

The cooling of the IBL detector is based on CO2, which is circulated in a closed system through the
detector with an overflow where part of the liquid is evaporated (approximately 30% at 1.5 kW) [44].
The two-phase liquid-vapour mixture is returned to the cooling plant, which is located in the USA15
service cavern and easily accessible. The cooling plant condenses the returning two-phase CO2 using a
commercial chiller. The liquid CO2 is pumped back to the manifold system near the IBL detector via a
concentric transfer line that bridges the distance between the cooling plant in USA15 and the manifold
in the UX15 service cavern. Figure 62 shows a simplified schematic of the IBL cooling system with the
main components of the cooling system highlighted.
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Figure 60: Average and RMS of the chip-to-chip FE-I4B noise difference between the results of the connectivity
test after integration around the IPT (IBL positioning tube) and the individual QA values for the 14 staves. The QA
configuration setting targeted 3000 e− and 10 ToT at 16 ke−. Maximum and minimum FE-I4B noise mean values of
the 14 staves are represented for each chip number (position on stave) by the filled area (the four outer chips on each
side, using 3D sensor technology, show an increased noise behaviour).

Figure 61: Average and RMS of the chip-to-chip FE-I4B ToT mean values between the results of the connectivity
test after integration around the IPT (IBL positioning tube) and the individual QA values for the 14 staves. The QA
configuration setting targeted 3000 e− and 10 ToT at 16 ke−. Maximum and minimum FE ToT mean values of the
14 staves are represented for each chip number (position on stave) by the filled area.
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Figure 62: Simplified scheme of the IBL cooling system. USA15 and UX15 refer to the service caverns where the
equipment is installed. The junction and manifold boxes are separated from the cooling plant by approximately
80m.

7.5.1 Cooling system operation

The CO2 arriving in the detector is a saturated liquid, which means that it evaporates directly when heat is
applied. The temperature of the arriving saturated liquid is a function of the pressure, which is controlled
by the cooling plant in USA-15. Changing the temperature of the two-phase mixture in the accumulator
will change the pressure in the system and allows operation with an evaporation temperature between
15 �C (used for commissioning) and −40 �C.

The pressure can also be increased to fully liquify the system. This is used at start-up to prevent thermal
shocks. The cool-down temperature ramp is controllable and can be set to 2 �C per minute, or to a lower
rate. The preferred inlet condition of the cooling is that the liquid is saturated in the IBL stave region,
so that heat needs to be applied to the cold liquid. This heat is taken out of the returning two-phase
mixture by a constant thermal contact of the liquid inlet and the two-phase return. The inlet and outlet
fluids circulate in concentric tubes (the inlet liquid in a 10mm inner diameter tube, and the outlet fluid
circulating in a 21mm outer diameter tube). The actual system allows having the same temperature at
the detector and at the two-phase temperature controlled by the accumulator. The higher pressure on the
inlet keeps the CO2 liquified at the inlet to the cooling tubes. It starts boiling in the cooling tubes of
the IBL staves once powered. This liquid temperature condition works over a large range of operational
temperatures and makes the control of the system, without active elements inside the ATLAS detector,
very reliable in a hard-to-access region. The first tests allowed the system to reach stable temperatures for
various heat loads and was tested up to a thermal load of 3 kW and down to −40 �C (Figure 63).

7.5.2 Redundant system

Once irradiated, the IBL must remain cold at all times to limit the radiation damage in the silicon sensors.
To guarantee a fail-safe solution for the CO2 cooling a redundant system has been developed. There are
two identical plants where one serves as a full back-up of the running plant. Each plant has its own control
and sensor system with a dedicated Programmable Logic Controller (PLC) and power source. The transfer
lines and the accumulator are shared with respect to the CO2 volume. A plant can be disconnected from
the main system for interventions. Both chillers are cooled by water provided from the central ATLAS
water system. An integrated air cooling condenser is present in each chiller unit to back-up the single
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Figure 63: Temperatures measured at start-up and cold operation of the CO2 cooling system with various thermal
loads applied at the junction box located several meters from the IBL.

source water cooling. During operation, one system can remain on standby for a fast switch-over in case
of a system failure. In addition, for greater safety, the two plants can operate in parallel increasing the
cooling capacity, but this operational mode is mainly foreseen for the beam-pipe bake-out.

7.5.3 Detector distribution

A homogeneous CO2 flow distribution to the 14 IBL staves is achieved by 11m long lines and 1mm
inner diameter capillaries (Figure 64). These capillaries are routed inside the return tubes of the IBL to
be shielded from ambient heating. The manifolds are located in the muon detector area. The total tube
length from manifold through the IBL and back to the return manifold is approximately 32m (2 � 11 m
concentric tubing, 2 � 4 m connection tube and 1m stave tube). The inlet tubes, the boiling channels
and outlet tubes have nominal inner diameters of 1.5mm, 1.5mm and 2mm respectively. The innovative
vacuum isolated flexible lines were used for the fluid transfer on long distances [44]. The concentric
return tubes in the flexible transfer line have a diameter of 3mm. The 11m concentric line is outside of
the ID volume and is insulated by multilayer insulation inside a 16mm diameter vacuum metallic tube.
This triple concentric assembly is flexible and is routed similarly to the electrical cabling, through the ID
end plate region towards the manifold. The flex lines inside the ATLAS ID end plate up to the splitter box
are shown on Figure 64(b).

7.5.4 Commissioning

The commissioning of the system started in January 2014 with local circulation of CO2 using the plant
internal dummy load. Near the manifold the so-called junction box is present (Figure 64) where the flow
can be by-passed through a 3 kW dummy load. The system commissioning was made using this dummy
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(a)

(b)

Figure 64: (a) CO2 distribution concept inside the ATLAS detector. (b) Flex cooling lines integrated inside the ID
flange and connected to one end of the IBL detector package via Splitter box.

load with a restriction valve having a similar flow resistance to that of the detector loops. One of the
main challenges for the IBL cooling was related to the colder temperatures compared to previous cooling
systems. The requirement of cooling to −40 �C brings the margin close to the CO2 freezing point (−56 �C)
and hence a very stable primary cooling was needed. In the early phase the system was tuned such that
under extreme conditions it remained within safe operational boundaries. The measured heat load was
approximately 2 kW at −40 �C and 3 kW at −35 �C. The IBL detector was also successfully tested during
the commissioning at various temperatures with the nominal power load expected during operation. The
boiling onset inside the IBL cooling loops sometimes had problems to be correctly initiated. In this case,
super-heated liquid, that is warmer than the boiling temperature and has a worse heat transfer than the
desired two-phase flow, could be present in the detector. As a result, the temperatures of the first modules
of a stave were sometimes a few degrees higher. To mitigate this problem, flow restrictions were applied
in the inlet manifold to reduce the flow and to keep the inlet pressure high [44].
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7.6 On-detector cooling branch and interfaces

The on-detector cooling branches consist of a 7m length straight section of titanium pipe with two brazed
junctions at each side of the stave and a dis-mountable fitting at each end (Figure 65). As for the rest
of the IBL services, the detector side of the fitting must respect the insertion envelope. The branch is
connected on each side to a short 90 �-bend section of Ti pipe, which is brazed to an electrical break and
to a stainless steel pipe at the other end. The stainless steel pipes are then routed on a path specific to each
stave to a splitter box where the transition is made to 16mm flexible vacuum transfer lines of 11m length
connected to a manifold box further out from the ID.

Figure 65: Not-to-scale schematic view of the IBL cooling distribution line inside the ID volume.

7.6.1 Fittings outside the IBL volume

Because of space constraints for the insertion of the IBL inside the IST, the electrical and cooling service
envelope is restricted to a maximum external radial space of 4mm. An industrial fitting of such a small
size compatible with the pressure, the radiation hardness, and the reliability requirements of the IBL does
not exist; therefore a custom fitting was developed.

The use of the CO2 evaporative system (Section 7.5) together with titanium as a selected material for both
the tube and the fitting required a special engineering and design development to maximise the reliability.
The extreme radiation environment excludes the use of organic joints, leading to a metal-to-metal contact
solution. The requirement led to the selection of a hard titanium alloy (TA6V, or grade 5) to guarantee
the sealing. The tightness is ensured by a cone-sphere junction, with strict requirements on the surface
quality.

Prototype fittings were assessed with several batches of �10 fittings machined in-house and tested to
qualify the final design. The final production batches were manufactured in industry and qualified in-
house on a large number of test samples. The fitting is connected to the thin titanium pipe (0.11mm wall
thickness) by electron beam welding at the front face (Figure 66). This welding requires high quality
vacuum and was performed in industry. The method imposes strict requirements on the reliability of the
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Figure 66: (a) Cross-section drawing of the PP1 fittings and tubes. (b) Cross-section photograph of the electron
beam welding of the titanium pipe with the fitting gland.

fitting which can not be repaired. A large-scale qualification and validation campaign was carried out,
with �100 fittings leak tested, some of them mated and de-mated tens of times. An industrial qualification
procedure was applied to fulfil the standard requirements with large statistics pressure cycling. A set of
ten fittings, electron-beam welded to short-pipe sections and connected in series, was tightened by the
collaboration and sent to a certified ISO qualification lab to perform the pressure cycling (one million
water cycles with 1 bar to 100 bar at �1Hz). The entire set successfully passed the leak tests. The minimal
torque required for reliable tightening was determined during the qualification campaign. A 2Nm torque
was sufficient to guarantee the success of tests like fast temperature cycling or thermal shocks using a CO2
blow-off system. A small subset of fittings was tested at higher torque up to 6Nmwithout visible damage.
The final torque used for installation in the cavern was 2.5Nm for which all the 28 IBL connections passed
the pressure tests at 100 bar.

The pre-series consisted of producing approximately 100 samples for qualification. The 28 fittings selected
for installation were visually inspected for scratches and dust, and individually leak-tested.

7.6.2 The cooling line electrical break

The grounding and shielding scheme of the IBL requires using electrical breaks on the cooling pipes at
the PP1 area (Figure 67) and in the ID end-flange region. Because of space constraints the closest possible
location was just after the 90 �-bend of the radial section of the pipe. The mechanical stress in this section
is significant; a relatively large diameter (8mm) ceramic electrical break was chosen for robustness. At
this location it is also necessary to make the transition from titanium pipes, which are difficult to bend, to
stainless steel pipes, which are easily routed. After testing several options for the titanium to stainless steel
transition the most reliable solution found was to braze in the same processing step a stainless steel sleeve
on the external side of the ceramic of the electrical break (the detector side of the ceramic being brazed
in a titanium sleeve). Due to the mismatch of the thermal expansion coefficient between the ceramic and
the stainless steel material the brazing is a delicate process. A full qualification in collaboration with
industry was performed to design and produce a reliable junction. The qualification process was the same
as for the fitting and a number of destructive tests were made to evaluate the mechanical robustness and
the capillary penetration of the brazing material. All the tests were passed successfully and the tensile
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tests at the electrical break junction revealed that the pipe was weaker and that the junction withstands at
least 640 bar internal pressure (limited by the test setup). In addition, a few electrical break samples were
irradiated to 250Mrad with a 10MeV electron beam, corresponding to the expected maximum end-of-life
IBL ionising dose, and found to be leak-tight.

Figure 67: The cooling line electrical break in the ID end flange service region.

7.6.3 The brazing junction of the stave inside the detector volume

At PP0, the cooling junction connects the staves to the cooling extension running from 705mm to 3366mm
(PP1 region) from the interaction point. This junction was designed such that the stave production could
be made with 1500mm long objects, easing the module loading task, the testing tool, the handling and
the shipment. Due to the limited space around the beam pipe in the PP0 region, and the high level of
reliability required inside the detector volume, the use of fittings was not possible.
One major impact of this design choice was to develop a thin wall (0.11mm) titanium pipe joining
technique between the extension and the stave pipe which could be easily connected after module loading
and before integration of the staves around the IPT. When such an operation is performed after the module
loading, the requirements are not only based on the quality of the welded junction but also the risk of
damage to electrical or mechanical components (that should be negligible). Therefore techniques that
require excessive heat spread, such as oven brazing, or high and fast current spikes such as orbital welding,
were prohibited. With such a thin wall thickness, titanium is not an easy material to weld or braze. Since
it is highly sensitive to oxygen, welding or brazing requires an inert environment, e.g. argon, or vacuum.
Induction welding was the only technique (Figure 68) found that uses local heating, does not involve
current spikes on mechanical structures, and has a reasonably sized tool that does not risk damage to the
front-end electronics.

The brazing compound or filler used was Palcusil-5 (Ag 68%, Cu 27%, Pb 5%). The brazing process
was performed at 820 �C to 825 �C in vacuum (<8.1 � 10−6 bar ) for several seconds, with a well defined
ramp-up (Figure 69). Prior to the chamber and the pipe vacuum pumping, argon is flushed to minimise
the presence of oxygen around the brazing point.

Qualification tests were performed to fine-tune the parameters and to check the quality and reliability
of the braze. All test samples underwent visual inspection, leak tests, thermal shocks, metallographic
inspection, tensile tests and thermal cycling. The 14 IBL staves were successfully brazed on both sides
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(a) (b)

Figure 68: (a) Brazing setup for the extension of the cooling pipe from 1.5m to 7m. (b) The inductor head located
in the vacuum chamber.

Figure 69: Brazing sequence: local heating of the titanium by an induction head located inside a vacuum chamber,
at a temperature of 825 �C for approximately 3minutes.

and no damage was detected on any of the modules loaded on staves. The most delicate part of the process
was to design and manufacture the feedthrough and sealing parts on the vacuum brazing chamber, given
such thin pipes and the high level of vacuum required to complete the junction.

8 Final remarks and conclusion

The construction of the IBL detector started in mid-2012 and the completed detector was installed in
May 2014. Because of the demanding detector constraints, and the hostile radiation and operational
environment, R&D programs relevant to the IBL started in 2008. IBL commissioning in the ATLAS
cavern started in June 2014 and the IBL was fully commissioned from November 2014.

8.1 The IBL challenges

Key challenges of the IBL project included:

- The R&D, industrialisation and integration of two sensor technologies (planar and 3D) on one
single-stave layout, capable of surviving integrated radiation doses of up to 5 � 1015 neq /cm2, and
with inactive edges of order 200 µm. The successful development of planar sensors with small
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inactive edges capable of reliable and efficient operation at full depletion after large radiation doses
was an essential requirement for IBL operation. The new 3D sensor technology is being used for
the first time in a tracking detector. The radiation tolerance of 3D sensors has been demonstrated,
and their reliable and efficient operation in the IBL is a major milestone because of their reduced
operating voltage (and power consumption) after high radiation doses;

- The bump-bonding of thinned FE-I4B chips to the planar and 3D sensors. This requirement was
met by gluing a sapphire glass substrate to the FE-I4B wafer for all the processing steps and later
detaching it using a laser de-bonding technique after the bump-bonding and before further module
assembly;

- The development of the FE-I4B front-end read-out chip, the largest front-end design in radiation
hard 130 nm CMOS technology for a tracker in particle physics. Its large area maximises the active
area and reduces the bump-bonding cost;

- The global IBL envelope of less than 10mm between the Pixel detector and the beam pipe was
a challenge for integration, installation and the beam-pipe bake-out. As a result, innovative and
custom-made mechanical supports, services and fittings were developed.

- The aggressive design minimisation of the stave material budget, and the space constraint above,
required that the service bus was tightly integrated with the stave (with implications for thermal
expansion mismatches that are noted below). An on-stave flex having two aluminium layers for
power and four copper layers for service lines was developed;

- The development of Type 1 electrical services for the power distribution, and long (�4m) data
transmission wires, because of the tight space requirements and the hostile radiation environment.
The high-density pin connectors were designed and fabricated specifically to match the limited
space for integration;

- The optimisation of the thermo-mechanical interface between the module and the local stave support
to guarantee the interface reliability and reproducibility, radiation hardness, and the replaceability
of a module without damaging neighbouring modules, the stave itself or the service flex integrity;

- The design, development and qualification of cooling pipe connections and electrical insulation for
proper grounding and shielding;

- The development of reliable CO2 cooling in the detector region while satisfying the space and
thermal insulation requirements. This required the R&D, design and fabrication of flexible vacuum
transfer lines; these could not be transferred to industry for logistic reasons and were produced
in-house;

- Extreme sealing and insulation capabilities, given the low dew-point temperature inside the detector
volume, with CO2 cooling close to the CO2 freezing point (−55 �C);

- Installation of the cooling plant and the long vacuum transfer line (�100m) to the junction box and
a dummy load installed close to the IBL and inside the Muon detector. Two cooling plants, each
with a 3 kWmaximum load, are installed and independently controlled such that they can run either
in complementary operational mode, one in standby while the other is operational, or in parallel
which was mainly used during the bake-out of the beam pipe.
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The successful development of both the planar sensor technology and the new 3D sensor technology,
capable of reliable and efficient operation in the IBL after high radiation doses, is a major milestone in
the demonstration of their suitability for tracking detectors at the HL-LHC. The lower operating voltage
of 3D sensors after high radiation doses is a significant potential advantage for HL-LHC operation.

During the IBL production and integration, two major issues affected the schedule. The first issue
concerned the bump-bonding yield for the initial production batches. An excess of merged and open
bumps (Section 3.5) was identified to result from the solder flux used for bump bonding. The problem
was resolved after a change of the tacking material and of the flip-chip machine. The second issue
concerned wire-bond corrosion [42], which was identified on most staves mid-way during the production
(Section 5.4). This resulted from a combination of extreme susceptibility to corrosion and accidental
exposure to humidity during the temperature cycling tests after stave loading, and all but two staves could
be fully repaired. Two options were considered to protect against potential future corrosion: the potting
of the bond foot or the use of spray coating such as polyurethane, but neither were possible because of the
schedule. It was decided to leave the IBL detector with unprotected wire bonds and to guarantee at all
stages of the integration, installation and operation phases a safe humidity level.

8.2 IBL in ATLAS

The commissioning of the IBL as part of the ATLAS experiment closely followed the on-surface QA
procedure. Initially, the integrity of the LV sense lines for each module group was ensured. The modules
were then powered with their nominal supply voltage. At each step, voltage and current readings were
compared to themeasurements on-surface QA. After verification of the expected DCSmeasurements, con-
figuration commands were sent to the FE-I4B chips to establish communication with the modules. These
powering and configuration tests were followed by digital, analog, threshold and ToT scans, and finally
re-tuning of the threshold and the ToT. The RCE read-out system was used for this initial commissioning
in the cavern, to ensure a consistent comparison with the on-surface QA. The results confirmed 100%
damage-free transportation and installation of the IBL before the sealing of the inner detector volume at
the end of July 2014.

The commissioning of the ROD/BOC read-out system started in August 2014. Nine of the 14 IBL
staves were integrated in the ATLAS experiment for the collection of cosmic ray data in October 2014.
Subsequently, the new beryllium beam pipe was heated to 230 �C to activate the NEG coating necessary to
achieve the high vacuum levels required for LHC operation. The CO2 cooling system ensured the safety
of the IBL during this bake-out. From November 2014, the IBL was fully integrated as part of the ATLAS
experiment.

Details of theATLAS commissioning, data taking and performance are beyond the scope of this paper [48].
However, four detector issues related to the design and construction of the IBL are briefly noted below.
None have affected the quality of data from the IBL, nor the physics performance.

- Since the wire bonds were not encapsulated, and the IBL operates in a 2 T magnetic field, current
changes during the read-out may risk damage from bond oscillations [49]. To avoid oscillation
frequencies a Fixed Frequency Trigger Veto was implemented at the DAQ level in the range 3 to 40
KHz;

- As noted in Sections 5.4 and 8.1, wire bond corrosion was identified on most staves during mid-
production, because of accidental exposure to humidity at low temperature during temperature
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cycling. Because of schedule considerations, it was decided to ensure that the staves remain at low
humidity. The performance of the staves has not deteriorated following this precaution;

- An increase in the current consumption of the FE-I4B chip at low total ionising dose was identified
to result fromN-MOS transistor leakage currents after the build-up of charge at the SiO2 interface in
the 130 nmCMOSprocess [50]. The evolution of this currentwas evaluated at different temperatures
and annealing procedures were introduced by operating the detector at temperatures around 10 �C;

- Distortions resulted from the R-� twisting of staves at the level of a few µm/�C, due to the mismatch
of the thermal expansion coefficient between the stave and the stave flex, and the asymmetric
attachment of the flex that was made necessary by mechanical constraints [51]. The impact of this is
minimised by ensuring a temperature stability of less than 0.2 �C and by the development of in-run
alignment correction procedures.

8.3 Conclusion

The fabrication and integration of the ATLAS IBL detector is described in this paper. A fully working
detector with only 0.09% of dead channels was successfully installed in ATLAS in May 2014 and fully
commissioned as part of the ATLAS detector in November 2014. The addition of this innermost pixel
layer, very close to the interaction point and with a smaller pixel size than other Pixel layers, provides
additional redundancy and significantly improves the ATLAS tracking and vertexing performance.
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