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Abstract 
This paper describes an analytical method to calculate the emittance growth rates due to intra-beam 

scattering in a circular accelerator with arbitrary x-y coupling. The underlying theory is based on the 

Landau collision integral and the extended Mais-Ripken parametrization of a coupled betatron motion. 

The presented results are based on calculations of average emittance growth rates for an initially 

Gaussian distribution. They are applicable to both bunched and continuous beams.  

1. Introduction
Intra-beam scattering (IBS) of charged particles in a beam results in the exchange of energy 

between various degrees of freedom, resulting in the increase of the average energy of particles in the 

beam frame and, generally, of the total beam emittance in the 6D phase space. The total Coulomb cross 

section of a two-particle scattering process in a vacuum diverges. However, in a plasma (or in a beam) 

it has a finite value due to field screening by other particles [1] or finite beam dimensions. Usually, two 

scattering regimes are considered: (1) single scattering, when a rare single collision produces a large 

change of particle momentum (the Touschek effect), and (2) multiple scattering, when multiple small 

angle frequent collisions cause diffusion. The former is usually responsible for the creation of 

distribution tails and the beam loss in electron machines, while the latter for changes in the distribution 

core.   

IBS in accelerators is already a rather well-understood subject.  The first decisive published work 

appears to be that of Piwinski [2], followed by Bjorken and Mtingwa [3].  These two earlier 

publications were both carried out from the first principles of two-body Coulomb collisions and largely 

ignored prior works on multiple scattering in a plasma [4, 5]. Ref. [6] utilized an approach based on the 

Landau kinetic equation [4], and gave the results, identical to [3]. In the present paper, following the 
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same approach, we develop the IBS theory, which may be used in the case of arbitrary x-y coupling 

and is applicable to all circular accelerators. If required, the proposed method may be easily extended 

to a more general case of 3D coupling. Such an extension makes the formulas more complicated and is 

not presently needed for any existing storage rings because of their small synchrotron frequency 

values. Therefore, we limit our consideration to x-y coupling only. Like Ref. [6], the theoretical results 

include closed-form IBS rate expressions for beams with an arbitrary coupled betatron motion in the 

presence of both the vertical and horizontal dispersions. The results are presented in a matrix form and 

use symmetric elliptic integrals [7].  In this paper we are using a right-handed coordinate system and 

assume non-relativistic particle motion in the beam frame (BF). We also assume that the velocity 

spread in the BF is sufficiently large so that a usage of the plasma perturbation theory would be 

justified (see below). IBS growth rates with 3D coupling have been previously considered in Ref. [8], 

where the authors assume the knowledge of the so-called local momentum matrix, but do not give 

explicit expressions of how to obtain such a matrix.  In this paper, we use the extended Mais-Ripken 

parametrization and derive the local momentum distribution explicitly, using the coupled-optics Twiss 

parameters.  

In the first part of this paper, we show how to derive growth rates for a single-component 

nonrelativistic plasma using the Landau collision integral.  The novel result in this section is that we 

separate the diffusion and the friction terms and show them explicitly. In the second part of this paper, 

we apply the Landau collision integral approach to a relativistic particle beam in a laboratory frame 

and calculate the emittance growth rates.   

2. Multiple Intrabeam Scattering in a single component plasma  

An evolution of the particle velocity ( v ) distribution function, ( )f f v , due to multiple 

intrabeam scattering (IBS) in a uniform-density single component non-relativistic plasma, is described 

by the Landau collision integral [4], 
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where n is the plasma density, e and m are the particle charge and mass, Lc is the Coulomb logarithm, 

( )f f  v , and ij is the Kronecker delta. The indices i, j = 1, 2, 3 denote x, y, z axes, and the repeated 

indices are implicitly summed over. For clarity, we will re-write it in the following form: 



3 

 

 2v v
iji

i j

DFf ff
t m m

   
= − +     

 , (2) 

where the friction force and the diffusion are: 
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To obtain the second equality in the friction force of Eq. (3) we used integration by parts and 

accounted for  

 
2

3 32
v

ij i j i

i

u u u u
u u

 −
=    

 . (4)  

To proceed further, we first consider how the average and rms velocities of a single particle are 

changing in time. To achieve this objective, we fix the diffusion and the friction force and set the initial 

distribution to a delta-function: ( )0v vf = − . Then for the average particle velocity we obtain: 
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where we used Eq. (2), then performed integration by parts with v / vi j ijd d = . Similar for the rms 

velocity change we obtain: 
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where we took advantage of Dij being a symmetric tensor. As one can see from Eq. (5), the dependence 

of diffusion on the velocity results in an addition to the cooling force so that the effective cooling force 
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in a single component plasma is: 
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Note that the second term is formally present in the cooling force of electron cooling [9], but its value 

is suppressed by the ratio of proton to electron masses and therefore is generally ignored.  

Now, we derive the contribution of the “actual diffusion” described by Eq. (6) to the particle 

diffusion for the case of Gaussian distribution with three different temperatures: 
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Here vx, vy, and vz, are the rms velocities for the corresponding degrees of freedom and we choose 

the coordinate frame along the main axes of the velocity ellipsoid. Such a choice of the coordinate 

frame diagonalizes the diffusion tensor, consequently, we need to compute the diagonal terms only.  

Considering that for the diffusion contribution v v 0i j =  we obtain that ( )2v /i
D

d dt =  

( )2v /i
D

d dt . Then, using Eq. (6) we obtain the time derivative of the rms velocity change in a 

plasma due to diffusion, averaged over all particles. For the x-coordinate we have: 
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Transition to the new variables = −u v v  and = +w v v yields: 
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For further integration we use the following identity: 
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This integral can be expressed through the Carlson symmetric elliptical integral [7]:  
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Performing the transformations, one obtains for the diffusion contribution: 
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The evaluation of time derivatives for the rms velocities, which accounts for both the diffusion and the 

friction terms, was carried out in Ref. [7]. The result is: 

 ( )
( )

( )

( )

2 v v v3/2v 4
2

v v v v2 2 2 2
2 v v v

v
v v v

, ,
2

, ,

, ,

x y z
x

c
y y z x

x y z
z

z x y

e nLd
dt m

  


   
  

   

    
   =    + +     

 

  (16) 

where  

 ( ) ( )( ( ) ( ))2 2 2 2 2 2 2 2 2 2 2 2
D D D

2, , R , , R , , 2 R , ,
3

rx y z y z x y z x y z x y z x


 = + −  .  (17) 

To obtain the contribution of the friction force we subtract Eq. (14) from Eq. (16). It yields: 
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Finally, we write Eqs. (14) and (16) in a vector form:  
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Here ( )2 2 2
v diag , ,vx vy vz  =Σ  is a diagonal 3x3 matrix, 2 2

0 /r e mc=  is the particle classical radius, 

and c is the speed of light. For further consideration we need an explicit expression for the Coulomb 

logarithm: max minln( / )cL  = , where 
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Note that the considered inhere theory is applicable only if Lc >> 1. This condition is not satisfied for 

deeply cooled beams, where potential (correlational) energy of particle interactions becomes close or 

larger than the average kinetic energy of particles. 

An algorithm for fast numerical evaluations of DR ( , , )u v w is discussed in Ref. [7].  The functions 

( ) ( ) ( ), , , , , ,D Fx y z x y z x y z =  − , ( ), ,F x y z   and ( ), ,D x y z  are chosen such that they depend 

on the ratios of their variables but not on the value of 2 2 2r x y z= + + .  The functions are symmetric 

with respect to the variables y and z, and the function ( ), ,x y z  is normalized such that ( )0,1,1 1 = . 

Conservation of energy yields: ( , , ) ( , , ) ( , , ) 0x y z y z x z x y + + = , (1,0,1) (1,1,0) 1/ 2 = = − , and 

that (1,1,1) 0 =  as expected in a thermal equilibrium.   
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3. Landau Collision Integral in the Laboratory Frame 
Consider a coasting beam of particles in the laboratory frame of reference with an average energy 

E and an average momentum p, circulating in a storage ring with a circumference C. Let us introduce 

( ) /pc E =  and  , the usual Lorentz factors.  We will proceed as follows: (1) we will introduce the 

lab frame distribution function and the corresponding mode emittances, then (2) we will re-write the 

Landau Collision integral in the lab frame, finally applying it to the emittance growth rates.   

In our calculations we will be using the extended Mais-Ripken parameterization of the Twiss 

parameters [10], which parametrizes the eigen-vectors  ( 1,  2)i i =v  of an x-y coupled motion through 

the Twiss parameters as following:  
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where , , , ix iy ix iy     (i = 1,2) are the generalized Twiss functions. Three other real-valued functions, 

u and 1, 2  , can be expressed in terms of the Twiss functions. To remind, for the uncoupled motion, 

one would set  
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The eigen-vectors are normalized by the condition of symplectic orthogonality [10]: 
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where the symbol + denotes a transposed and a complex conjugated vector ( *T
k k
+ =v v ), , 1,2k m = , and 

the unit 4x4 symplectic matrix is:  
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We will also use a symplectic 4x4 matrix, built from the eigen vectors:  

  1 1 2 2Re , Im ,Re , Im= − −V v v v v  . (27) 

The symplecticity condition determines that: 

 T T=  =V UV U VUV U  . (28) 

An equation, expressing the distribution function of the beam in the lab frame in the 4D transverse 

phase space, was derived in Ref. [10]: ( ) ( )
12
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account for the contributions of the relative momentum deviation, /s p p   , which yields: 
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where , , ,
T

x yx y  =  x is the vector of particle coordinates in the 4D phase space, 1 and 2 are 

the mode emittances [10] defined below, p is the rms momentum spread, and 

, , ,
T

x x y yD D D D  =  D is the vector of dispersions and their derivatives. The matrix Ξ  can be 

expressed through the matrix V and a diagonal matrix, built from the mode emittances [10], 

( )1 1 2 2diag 1/ ,1/ ,1/ ,1/    =Ξ , such that:  

 T T=Ξ UVΞ V U  . (30) 

A direct representation of the matrix Ξ  through emittances and generalized Twiss parameters can be 

found in the appendix of Ref [10]. The choice of the vector x above implies zero longitudinal magnetic 

field, which is common in most accelerator optics codes, presenting the Twiss parameters after an exit 

from a solenoid. If the longitudinal magnetic field is present, the vector x has to be constructed from 

the canonical momenta and, consequently, it has the following form: 

, / 2, , / 2
T

x yx Ry y Rx  = − + x , 

where /sR eB pc= , Bs is the longitudinal magnetic field, and p is the particle momentum. However, 

the beam transverse sizes and local velocity spreads do not change with the transition from a non-zero 

to a zero longitudinal magnetic field and vice versa. Therefore, in further calculations we imply zero 

longitudinal magnetic field, which does not affect the generality of the obtained results.  

To account for the longitudinal momentum spread in further derivations we introduce 
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1, ,T
tot

p

     
  

        
  =       = + =
  

               

Ξ D ΞD ΞD  , (31) 

where the upper left 4 x 4 corner is given by the matrix Ξ , Eq. (30), and the distribution function is 

( )0 exp / 2T
totf  −z Ξ z  with , , , ,

T

x y sx y   =  z . Particle velocities in the BF can be 

expressed through their angles in the lab frame: || ||v , vc c   ⊥ ⊥= = . To account for this, we 

introduce the following vectors ˆ         /
T

x y sx y    =  x ,  
Tx y=X  and ˆ /

T

x y s    =  θ . 

The latter one allows one to write particle velocities as ˆc θ . Consequently, we rewrite matrix totΞ as 

Ξ̂ : 

 

11 12 13 14 15

12 22 23 24 25

13 23 33 34 35

14 24 34 44 45
2

15 25 35 45 55

ˆ









    

     
 
    

 
 =     
 
     

      

Ξ . (32) 

Then, the distribution function in the lab frame can be finally rewritten in the following form 

 
2

1 2

1 ˆˆ ˆexp
24 2

T

p

f 

   

 
= − 

 
x Ξx  . (33) 

Consequently, the distribution is normalized as 2 3 ˆ 1f d Xd  = . Notice that this is a coasting-beam 

distribution function. The transition to the bunched beam is straightforward and will be considered 

later.  

We consider now how to calculate the rms beam emittances 1 2,    , and the momentum spread p  

for an arbitrary beam distribution.  Let the vector of particle positions be expressed through single 

particle actions, 1 2,  J J  and phases, 1 2,    : 

 ( )1 2
1 1 2 2

1 2 2
2

i i
sJ e J e CC  = + + +x v v D  . (34) 

Note that for the uncoupled motion, Eqs. (24) would yield the well-known expressions: 
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( )

2 cos ,

2 sin cos ,

x x x x s

x
x x x x x s

x

x J D

J D

  

    


= +

= − + +
  (35) 

representing the uncoupled analog of Eq. (34) and similarly for y  and y .   

To find single-particle transverse actions, 1 2,  J J , we use the conditions of symplectic 

orthogonality, Eq. (25), 

 
( )1 2

1 1

1 1 1 1 2 1 2 1 1

1 1 1 1

1 2 2 ( )
2

1 2 ( 2 ) 2
2

i i
s

i i
s s

J e J e CC

J e i i J e

 

 



 

+ + + + +

+ +

= + + +

= − + = − +

v Ux v Uv v Uv v U v UD

v UD v UD
 . (36) 

Regrouping, we obtain ( ) 1
1 12 i

s i J e+ − = −v U x D . Then, multiplying by a complex conjugate we 

obtain the first single particle action: 

 ( ) ( )1 1 1
1
2 s sJ  + + + += − −x D U v v U x D  . (37) 

Considering that 1 1
+ +U v v U  is a Hermitian matrix and ( )s−x D  is a real vector, we introduce the 

symmetric matrices,  

 ( ) ( )1 1 1 2 2 2Re , Re+ + + += =V U v v U V U v v U  . (38) 

Particle actions can then be written as 

 
( ) ( )

( ) ( )

1 1

2 2

1 ,
2
1 .
2

T T
s s

T T
s s

J

J

 

 

= − −

= − −

x D V x D

x D V x D
 (39) 

Finally, we can write the rms eigen emittances as: 

 

( ) ( )

( ) ( )

2 3 2 3
1 1 1

2 3 2 3
2 2 2

2 2 2 2 3

1ˆ ˆ ˆ ˆ ,
2
1ˆ ˆ ˆ ˆ ,
2

ˆ ˆ ,

T T
s s

T T
s s

p s

J f d Xd f d Xd

J f d Xd f d Xd

f d Xd

      

      

   

= = − −

= = − −

=

 

 



x D V x D

x D V x D   (40) 

where   ˆ ˆ,
TT

x y sx y    = =
 

X θ , and ˆ /s s  = . Note that Eqs. (40) are valid for an arbitrary 

distribution function f. For a Gaussian distribution function (33), Eq. (40) gives three identity 

equations: 1 1 = , 2 2 = , and p p = .  
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One can notice that the particle actions (39) can be expressed as quadratic forms, 

 ( ) ( ) ( )ˆ ˆ ˆ ; , 1,2,3; , , 1,2q q q
q ij i j i iJ a b X c X X i j q       = + + = = . (41) 

Similarly, the distribution function, Eq. (33), is:  

 ( )2
1 2

1 ˆ ˆ ˆexp
24 2 ij i j i i

p

f A B X C X X    


  

   

 
= − + + 

 
 , (42) 

where a, b, c, A, B, and C are matrices to be defined later. 

We will now rewrite the Landau collision integral, presented in the rest frame as Eq. (1), in the lab 

frame.  Recalling that the rest-frame particle velocities are ˆ
r c =v θ , where θ̂  is the lab frame angle 

of each particle, and transforming Eq. (1) to the lab frame, we now have 

 ( )
22

2 30
3 5 3

2 ˆ ˆ ˆ, ,ˆ ˆ ˆ
ij i jc

i j j

u u ur cLf N f ff f d X d
t C u


 

    

  −   
    = − − − = − 

     
 X X u θ θ  (43)  

where we assumed a coasting beam of N particles with a uniform longitudinal density, circulating in a 

ring, and 2 3 ˆX 1f d d  = . Similar to Eq. (1) ˆ( , )f f X θ  and ˆ( , )f f   X θ . 

4. Emittance growth rates 
We can now calculate the emittance growth rates using Eqs. (40): 

 

2 3

2
2 2 2 3

ˆ

ˆ ˆ

q
q

s

p
s

s

d fJ d Xd
dt t

d f d Xd
dt t





  


=




=







 , (44) 

where /f t   can be evaluated using the Landau collision integral (43), and (...) /
s

ds C   denotes 

averaging over the ring circumference. After some lengthy derivations, similar to Eqs. (9) - (20), we 

obtain 

 
2 2

( ) 30
3/2 3 4 3

1 2

31exp
8 4

q q T il i l
c il

p s

d Nr c u u uL a d u
dt C u
 

     

 − 
= −   

  
 u Au  , (45) 

 
2 2 2 2

2 30 3
3/2 3 4 3

1 2

31exp
8 4

p T
c

p s

d Nr c u uL d u
dt C u



     

 − 
= −   

  
 u Au  , (46) 

where ˆ ˆ= −u θ θ , ˆ ˆ T

x y s   =
 

θ , and (q) = 1, 2.  One can notice that only the matrices a(q) and A 

need to be determined. Using Eqs. (32) and (42) we can write 
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22 24 25

24 44 35
2

25 35 55





  

   
 

=   
 
    

A  . (47) 

Similarly, Eqs. (39) and (41) lead to  

 

( ) ( ) ( )( ) ( ) ( ) 2 ( )

( ) ( ) ( ) ( ) ( )
11 12 13 14 15
( ) ( ) ( ) ( ) ( )

12 22 23 24 25
( ) ( ) ( ) ( ) ( )

13 23 33 34 35

1 1 2
2 2

ˆ
1
2 ˆ

ˆ

T T q T q T q T q
q s s s s

T
q q q q q

q q q q q
x

q q q q q

y

s

J

x V V V V V
V V V V V

y V V V V V
V

   



 







= − − = + +

 
 
 
 =
 
 
 
  

x D V x D x V x x V D D V D

( )
15
( )

( )25
( )

35( ) ( ) ( ) ( ) ( )
14 24 34 44 45 ( )

45( ) ( ) ( ) ( ) 2 ( )
15 25 35 45

ˆ

,
ˆ

ˆ

q

x q
q

q
q q q q q

y q
q q q q T q

s

x
V
Vy
V

V V V V
V

V V V V



 

     

  
    
    
     =
    
    

     
    

V D

D V D

 , (48) 

which results in 

 

( ) ( ) ( )
22 24 25

( ) ( ) ( ) ( )
24 44 45

( ) ( ) 2 ( )
25 45

1 , ( ) 1, 2
2

q q q

q q q q

q q T q

V V V
V V V q
V V





  

 
 

= = 
 
 

a
D V D

 . (49) 

Notice that matrices ( )qa  have the dimensions of length.  We can now introduce the 3x3 matrix T, 

which performs a rotation in the velocity space and diagonalizes the matrix A so that, 

 
2 2 2

1 2 3 1 2 3diag( , , ) diag(1/ ,1/ ,1/ ) ,
,

T
ij jk kl

T
ik jk ij

T A T A A A
T T

  



 =  

= =

T AT A
T T I

. (50) 

Using this diagonalized matrix A we obtain: 

 

2 2
( ) 30

3/2 3 4 3
1 2

2 ( )
( ) 30

3/2 3 4 3
1 2

31exp
8 4

1exp 3
8 4

q q T il in lm n m
c il

p s

q
T T qii n m

c nm
p s

d r cN u T T u uL a d u
dt C u

r cN a u uL d u
C u u

 

     

     

 − 
= −   

  

  
  = − −    

  





u A u

u A u T a T

 . (51) 

Considering that only terms with even powers contribute to the integral we obtain 
12 233 3

( ) ( ) 30 4
3/2 3 4 3

1 11 2

e 3
8

T
q q T q i

c ii ii
i ip s

d Nr c ud uL a d u
dt C u u


     

−

= =

 
 = −  

 
  

u A u
T a T  . (52) 

Using the techniques similar to Eqs. (11) and (12) we finally obtain 

 ( ) ( )( )(

( ) ( )( ) ( ) ( )( ))

2
2 2 2 2 ( ) ( )0 1 2 3

1 D 2 3 13 4 11
1 2

2 2 2 2 ( ) ( ) 2 2 2 2 ( ) ( )
2 D 3 1 2 3 D 1 2 322 33

R , , Sp 3
3

R , , Sp 3 R , , Sp 3

q q T q
c

p

q T q q T q

s

d Nr c L
dt C
   

   
     

       

 = −  

   + − + −   

a T a T

a T a T a T a T

 , (53) 
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where the function Sp(a) denotes the matrix trace. The momentum spread growth rate is 

 
( )( ( ))

( ) ( )( ))

2 2
2 2 2 2 2 2 2 20 1 2 3

1 D 2 3 1 2 D 3 1 23 2
1 2

22 2 2 2
3 D 1 2 3 33

R , , R , ,
3

R , , 1 3 .

p
c

p

s

d Nr c L
dt C

T

   
       

     

   

= +

+ −

 . (54) 

  The Eqs. (53) and (54) are the main result of this paper.  In typical rings, the synchrotron tune is 

much smaller than 1. This results in good decoupling between transverse and longitudinal motions and 

allows one to use Eqs. (53) and (54) for IBS calculations in a bunched beam. That requires two 

substitutions. The first replacement is:  

 2 ,sC →    (55) 

where s is the rms bunch length. This substitution is applicable only to the denominators of Eqs. (53) 

and (54). The second substitution (3 6→ ) needs to be done in the denominator of Eq. (54). It takes 

into account that the momentum spread in a bunched beam grows at half the rate due to the 

redistribution of energy between potential and kinetic energies of the synchrotron motion, which 

implies linear focusing in the longitudinal plane.   

Finally, the Coulomb logarithm, Lc, is calculated similarly to the plasma case, Eq. (22), with the 

following correction, affecting the value of maximum impact parameter 

 

2
min 0 v

v
max min 2

0

/ Sp( )

Sp( )min , ,
4s

r c

nr c



  


=

 
=   

 

Σ

Σ  , (56) 

where ( )
2 1

v c −=Σ A , and A  is given by Eq. (47), and min  is the smaller of the two transverse rms 

beam sizes at a given location in a ring so that ( )( )22 2
min 11 33 11 33 134 / 2 =  + −  − +   with 

1
tot

−=Σ Ξ . 

5. IBS in Special Cases  
To test the above result, we produce calculations for the uncoupled case in the smooth lattice 

approximation ( ,x y const = ) in the absence of dispersion. Then, the distribution function is 

 
22 2 22 2

21 3
22

ˆˆ ˆ1exp
24 2

yx

x x x y y y px y p

x yf
    

         

  
 = − + + + + 

  
  

.  (57) 

This yields for the matrix A, already diagonalized, thus diag(1,1,1)=T : 
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2 2

/ 0 0
0 / 0
0 0 /

x x

y y

p

 

 

 

 
 

=  
 
 

A  . (58) 

The beam emittances are 

 
2 2

2 2 2 2 2
1 2 3

1 1ˆ ˆ ˆ, ,
2 2x x y y p

x y

x x
        

 

  
= + = + =    

   

 . (59) 

Consequently, the matrix a is 

 ( ) ( ) ( )

2

0 0 0 0 0 0 0 0
1 10 0 0 , 0 0 , 0 0 0
2 2

0 0 0 0 0 0 0 0

x
x y s

y







     
     

= = =
     
          

a a a  . (60) 

We can now use Eq. (53) to obtain the emittance (for example the horizontal one) growth rate.  We 

first recall that  

 1 2 3, ,y px

x y

 
  

  
= = =  . (61) 

For the horizontal emittance we have: ( )( )Sp / 2x
x=a . Then, we have 

 

( )

( ) ( )

( ) ( )

2( )
2 2 2 20 1 2 3

1 D 2 3 13 4
1 2

2 2 2 2 2 2 2 2
2 D 3 1 2 3 D 1 2 3

2
2 2 2 2 2 2 2 2 20 1 2 3

2 D 3 1 2 3 D 1 2 3 1 D3 4
1 2

R , , 3
2 23

R , , 3 0 R , , 3 0
2 2

R , , R , , 2 R
23

x
c x x

p

x x

c x

p

NL r cd
dt C

NL r c
C

    
   

     

 
       

   
        

     

  
= −  

 

   
+ −  + −     

   

= + − ( )( )2 2 2
2 3 1, ,  

  (62) 

Recalling Eq. (17) we obtain 

 

( )

( )

2( )
0 1 2 3

1 2 33 4 2 2 2
1 2 1 2 3

2
1 2 30 1 2 3

3 4 2 2 2
1 2 1 2 3

3 , ,
23 2

, ,
2 2

x
c x

p

c x

p

NL r cd
dt C

NL r
C

    
  

        

      

       

= 
+ +


=

+ +

 , (63) 

 which coincides with the result previously obtained in Refs. [6, 7].  The results for other degrees of 

freedom are similarly identical to the previously obtained for uncoupled optics. 

Conclusions 
In conclusion, we would like to point out the applicability conditions of the considered IBS model. 
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First, similar to the uncoupled case, the considered model implies that the distribution function stays 

Gaussian in the process of its evolution. In practical terms this approximation is quite good. However, 

if the rms velocities of different modes (mode emittances) are significantly different, the non-Gaussian 

tails will appear. For the case when the mode temperatures are different by many orders of magnitude 

these tails are produced by single Coulomb scattering events (the so-called Touschek effect) and their 

effect can be accounted for independently from the scattering in the core. Otherwise, an integro-

differential equation is required to describe the combined process [11]. Second, the presented IBS 

model is applicable in the logarithmic approximation only, i.e. the Coulomb logarithm (introduced in 

Eq. (20)) must be much larger than 1, and the beam is assumed to be non-relativistic in the beam 

frame.    
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