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ABSTRACT
We describe catalog-level simulations of Type Ia supernova (SN Ia) light curves in
the Dark Energy Survey Supernova Program (DES-SN), and in low-redshift samples
from the Center for Astrophysics (CfA) and the Carnegie Supernova Project (CSP).
These simulations are used to model biases from selection effects and light curve
analysis, and to determine bias corrections for SN Ia distance moduli that are used
to measure cosmological parameters. To generate realistic light curves, the simulation
uses a detailed SN Ia model, incorporates information from observations (PSF, sky
noise, zero point), and uses summary information (e.g., detection efficiency vs. signal to
noise ratio) based on 10,000 fake SN light curves whose fluxes were overlaid on images
and processed with our analysis pipelines. The quality of the simulation is illustrated by
predicting distributions observed in the data. Averaging within redshift bins, we find
distance modulus biases up to 0.05 mag over the redshift ranges of the low-z and DES-
SN samples. For individual events, particularly those with extreme red or blue color,
distance biases can reach 0.4 mag. Therefore, accurately determining bias corrections
is critical for precision measurements of cosmological parameters. Files used to make
these corrections are available at https://des.ncsa.illinois.edu/releases/sn.
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1 INTRODUCTION

Since the discovery of cosmic acceleration (Riess et al. 1998;
Perlmutter et al. 1999) using a few dozen Type Ia supernovae
(SNe Ia), surveys have been collecting larger SN Ia samples
and improving the measurement precision of the dark en-
ergy equation of state parameter (w). This improvement is
in large part due to the use of rolling surveys to discover
and measure large numbers of SN Ia light curves in multiple
passbands with the same instrument. The most recent Pan-
theon sample (Scolnic et al. 2018b) includes more than 1,000
spectroscopically confirmed SNe Ia from low and high red-
shift surveys. Compared to the 20th century sample used to
discover cosmic acceleration, the Pantheon sample has more
than a 20-fold increase in statistics and much higher quality
light curves.

In addition to improving statistics and light curve qual-
ity, reducing systematic uncertainties is equally important.
While most of the attention is on calibration, which is the
largest source of systematic uncertainty, significant effort
over more than a decade has gone into making robust simu-
lations that are used to correct for the redshift-dependent
distance-modulus bias (µ-bias) arising from selection ef-
fects. Selection effects include several sources of experimen-
tal inefficiencies: instrumental magnitude limits resulting
in Malmquist bias, detection requirements from an image-
subtraction pipeline used to discover transients, target selec-
tion for spectroscopic follow-up, and cosmology-analysis re-
quirements. These selection effects introduce average µ-bias
variations reaching ∼ 0.05 mag at the high-redshift range of
a survey. (e.g., see Fig. 5 in Betoule et al. (2014) and Fig. 6
in Scolnic et al. (2018b)), and the µ-bias averaged in specific
color ranges can be an order of magnitude larger.

In addition to sample selection, the µ-bias depends on
the parent populations of the SN Ia stretch and color, and
also on intrinsic brightness variations, hereafter called ‘in-
trinsic scatter,’ in both the absolute magnitude and in the
colors. For precision measurements of cosmological param-
eters, simulations are essential to determine µ-bias correc-
tions, and these simulations require accurate models of SN
light curves and sample selection.

The main focus of this paper is to describe our simula-
tions of spectroscopically confirmed SNe Ia from three sea-
sons of the Dark Energy Survey Supernova Program (DES-
SN), and the associated low-z sample. The combination of
these two samples, called DES-SN3YR, is used to measure
cosmological parameters presented in DES Collaboration
et al. (2019). All simulations were performed with the pub-
lic “SuperNova ANAlysis” (SNANA) software package (Kessler
et al. 2009a).1 In addition to SNe Ia, a variety of source mod-
els can be supplied to the SNANA simulation, including core
collapse (CC) SNe, kilonovae (KN), or any rest-frame model
described by a time-dependent sequence of spectral energy
distributions.

The SNANA simulations are performed at the “catalog
level,” which means that rather than simulating SN light
curves on images, light curve fluxes and uncertainties are
computed from image properties. The simulation inputs in-
clude a rest-frame source model, volumetric rate versus red-
shift, cosmological parameters (e.g., ΩM, w), telescope trans-

1 https://snana.uchicago.edu

mission in each passband, calibration reference, observing
and image properties from a survey, and random numbers
to generate Poisson fluctuations. The simulated light curves
are treated like calibrated light curves from a survey, and
are thus analyzed with the same software as for the data.

The SNANA simulation is ideally suited for rolling
searches in which the same instrument is used for both dis-
covery and for measuring light curves. Surveys with rolling
searches include the Supernova Legacy Survey (SNLS; Astier
et al. 2006), the Sloan Digital Sky Survey-II (SDSS-II; Frie-
man et al. 2008; Sako et al. 2018), the Panoramic Survey
Telescope and Rapid Response System (PS1; Kaiser et al.
2002), and DES. The low-z sample, however, is based on
follow-up observations from independent search programs
(Hicken et al. 2009, 2012; Contreras et al. 2010; Folatelli
et al. 2010, CFA, CSP), and the observing properties of the
search are not available to perform a proper simulation. The
low-z simulation, therefore, requires additional assumptions
and approximations.

Simulated corrections first appeared in the SNLS
cosmology analysis (Astier et al. 2006). Kessler et al.
(2009b) analyzed several samples (low-z, SDSS-II, SNLS,
ESSENCE), which led to a more general SNANA framework to
simulate µ-bias corrections for arbitrary surveys. The heart
of this framework is a set of two libraries. First, an observa-
tion library where each observation date includes a charac-
terization of the point spread function (PSF), sky and read-
out noise, template noise, zero point, and gain. Second, a
host-galaxy library includes magnitudes and surface profiles,
and is used to compute Poisson noise and to model the local
surface brightness. For a specified light curve model, these
libraries are used to convert top-of-the-atmosphere model
magnitudes into observed fluxes and uncertainties.

After a survey has completed, assembling the libraries is
a relatively straightforward exercise, and SNANA simulations
have been used in numerous cosmology analyses (Kessler
et al. 2009b; Conley et al. 2011; Betoule et al. 2014; Rest
et al. 2014; Scolnic et al. 2014b, 2018b). Before a survey has
started, predicting the libraries is one of the critical tasks for
making reliable forecasts. Such pre-survey forecasts with the
SNANA simulation have been made for LSST2 (LSST Science
Collaboration et al. 2009; Kessler et al. 2010b), DES-SN
(Bernstein et al. 2012), and WFIRST3 (Hounsell et al. 2018).

While our main focus is to describe the DES-SN3YR
simulation of SNe Ia, and how a large (∼106 events) simu-
lated bias-correction sample is used to model biases in the
measured distance modulus, it is worth noting other appli-
cations from the flexibility in SNANA. First, these simulations
are used to generate 100 data-sized DES-SN3YR validation
samples that are processed with the same bias corrections
and cosmology analysis used on the data. This validation
test is used to accurately check for w-biases at the ∼ 0.01
level, and to compare the spread in w values with the fitted
uncertainty (Brout et al. 2019b). The validation and bias-
correction samples are generated with the same code and
options, but are used for different tasks. Other applications
include CC simulations for a classification challenge (Kessler

2 Large Synoptic Survey Telescope: https://www.lsst.org
3 Wide Field Infrared Space Telescope:
https://wfirst.gsfc.nasa.gov
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et al. 2010a), CC simulations for a PS1 cosmology analysis
using photometrically identified SNe Ia (Jones et al. 2017,
2018), simulating the KN search efficiency (Soares-Santos
et al. 2016; Doctor et al. 2017), and making KN discovery
predictions for 11 past, current, and future surveys (Scolnic
et al. 2018a).

In this work we describe the simulation from a sci-
entific perspective without instructions on implementation.
For implementation, we refer to the manual available from
the SNANA homepage, and recommend contacting commu-
nity members familiar with the software. This simulation
is possible because of extensive publicly available resources.
When using this simulation in a publication, we recommend
the added effort of referencing the relevant underlying con-
tributions, such as the source of models or data samples used
to make templates.

The organization of this paper is as follows. The DES-
SN3YR sample is described in §2. An overview of the sim-
ulation method is in §3, and fake SN light curves overlaid
on images is described in §4. Modeling is described in §5
for SNe Ia light curve magnitudes, §6 for fluxes and uncer-
tainties, and §7 for the trigger. The quality of the simula-
tion is illustrated with data/simulation comparisons in §8,
and redshift-dependent µ-biases are described in §9. We con-
clude in §10, and present additional simulation features in
the Appendix.

2 DATA SAMPLES

Here we describe the data samples that are simulated for the
cosmology analysis in DES Collaboration et al. (2019) and
Brout et al. (2019b). After selection, this sample includes
207 spectroscopically confirmed SNe Ia from the first three
seasons (2013 August through 2016 February) of DES-SN
(Diehl et al. 2016), and 122 low-z (z < 0.1) SNe Ia from
CFA3 (Hicken et al. 2009), CFA4 (Hicken et al. 2012), and
CSP (Contreras et al. 2010; Folatelli et al. 2010). This com-
bined sample of 329 SNe Ia is called “DES-SN3YR.”

The DES-SN sample was acquired in rolling search
mode using the 570 Megapixel Dark Energy Camera (DE-
Cam; Flaugher et al. (2015)) mounted on the 4-m Blanco
telescope at the Cerro Tololo Inter-American Observatory
(CTIO). Ten 2.7 deg2 fields were observed in g, r, i, z broad-
band filters, with a cadence of roughly 1 week in each band.
Defining single-visit depth as the magnitude where the de-
tection efficiency is 50%, eight of these fields have an aver-
age single-visit depth of ∼ 23.5 mag (hereafter called ‘shal-
low’ fields), and the remaining two fields have a depth of
∼ 24.5 mag (hereafter called ‘deep’ fields).

SNe Ia are detected by a difference-imaging pipeline
(DiffImg) described in Kessler et al. (2015), and the spectro-
scopic selection is described in D’Andrea et al. (2018). The
instrumental photometric precision from DiffImg is limited
at the 2% level, and therefore a separate and more accu-
rate “Scene Model Photometry (SMP)” pipeline (Brout et al.
2019a) is used to measure the light curve fluxes and un-
certainties for the cosmology analysis. For each event, SMP
simultaneously fits a 30 × 30 pixel-grid flux model to each
observation, where the model includes a time-independent
galaxy flux and a time-dependent source flux, each convolved
with the PSF.

In addition to SN Ia light curves, the DES-SN data
include other ‘meta-data’ for monitoring, calibration (e.g.,
telescope transmissions) and analysis. An important meta-
data product for simulations is from the fluxes of ∼10, 000
‘fake’ SN light curves overlaid on the images during the sur-
vey (§4), and processed in real time along with the data to
find SN candidates with DiffImg.

The low-z sample includes redshifts, light-curve fluxes,
flux uncertainties, and filter transmission functions. The
photometry, however, is not from a rolling search but is from
follow-up programs that target SNe Ia discovered from other
search programs such as LOSS (Ganeshalingam et al. 2013).
Since the observation information from the search programs
is not available, the resulting observation library is an ap-
proximation based on several assumptions (§6.1.1).

3 OVERVIEW OF BIAS CORRECTIONS &
SIMULATION

The primary goal of our simulation is to provide inputs to
the ‘BEAMS with Bias Correction’ (BBC) method (Kessler
& Scolnic 2017), which is the stage in our cosmology analysis
that produces a bias-corrected SN Ia Hubble diagram (§3.8.1
of Brout et al. 2019b). A large simulated bias-correction
sample is fit with the SALT-II light curve model, in the
same way as for the data, to produce three parameters for
each event: amplitude (x0), stretch (x1), and color (c). A
statistical comparison of the fitted and true parameters is
used to determine a bias correction for each parameter on
a 5-dimensional (5D) grid of {z, x1, c, α, β}, where z is the
redshift, x1 and c are SALT-II-fitted parameters, and α and
β are SALT-II standardization parameters (§5.3). BBC uses
the 5D grid to bias-correct each set of SALT-II parameters
from the data, and these corrected parameters are used to
determine a bias-corrected distance modulus.

A schematic illustration of the SNANA simulation is
shown in Fig. 1. The left column illustrates the generation
of the source spectral energy distribution (SED), and as-
trophysical effects. These effects include host galaxy extinc-
tion, redshifting, cosmological dimming, lensing magnifica-
tion, peculiar velocity, and Milky Way extinction. The out-
put of this column is a true magnitude at the top of the
atmosphere.

The middle column of Fig. 1 illustrates the instrumental
simulation, where the true magnitude is converted into an
observed number of CCD counts, hereafter denoted ‘flux,’
and the uncertainty on the flux. The observation information
(PSF, sky noise, zero point) and host galaxy profile are used
to compute the Poisson noise.

The right column in Fig. 1 illustrates the simulation
of the trigger that selects events for analysis. Epochs that
result in a detection, which is roughly a 5σ excess on the
subtracted image (§7.1), are processed with additional logic
to identify and store ‘candidates’ for analysis. The candi-
date logic specifies how many detections, from which band(s)
the detection must occur, and the minimum time separation
between detections. Finally, the trigger includes a selection
function for the subset of candidates that were spectroscop-
ically confirmed.

The noise and trigger models in Fig. 1 each have inputs

MNRAS 000, 1–18 (2015)
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based on analyzing artificial light curves overlaid on CCD
images. These fakes are described next in §4

4 FAKE SN IA LIGHT CURVES OVERLAID
ON IMAGES

Ideally, simulated bias corrections would be based on SN Ia
light curve fluxes overlaid onto CCD images and processed
with exactly the same software as the data. The CPU
resources for so many image-based simulations, however,
would be enormous. Kessler et al. (2015) estimates that
SNANA simulations are ×105 faster than image-based sim-
ulations, while still producing realistic light curve fluxes
and uncertainties. Although we do not perform image-based
simulations for bias corrections, we use image simulations
to inform the SNANA simulation. Specifically, 10,000 fake
SN light curves were overlaid on DES-SN images and pro-
cessed through the same pipelines as the data, including
difference-imaging (DiffImg; Kessler et al. 2015) and pho-
tometry (Brout et al. 2019a) pipelines. For DiffImg, these
fakes are used to measure the detection efficiency versus
signal-to-noise ratio (SNR), which is needed for the trig-
ger model in Fig. 1. For the photometry pipeline, fakes are
used to measure the rms scatter between measured and true
fluxes, and the rms is used to determine scale factors for the
SN flux uncertainties (noise model in Fig. 1).

Prior to the start of DES operations, the fake light
curve fluxes were computed from the SNANA simulation us-
ing the population of stretch and color (§5.1) from Kessler
et al. (2013), and intrinsic scatter (§5.2) was ignored to
simplify the analyses with fakes. The redshift distribution
(0.1 < z < 1.4) is described by a polynomial function of
redshift, and was tuned to acquire good statistics over the
full redshift range and thus span the full range of SN mag-
nitudes. Each fake location is selected on top of a random
galaxy as described in §6.2. The SN model flux is distributed
among pixels using the position-dependent PSF, and the
flux in each pixel includes Poisson fluctuations from the sky
background and the source.

The galaxy occupation fraction was limited to ∼ 1%
in each 0.05-wide redshift bin because the DES-SN search
pipeline processed only one set of images, which included
fakes, and a fake event overlaid on a galaxy prevents a real
transient detection on that galaxy in the same season, but
allows real events in future seasons where the fake is not
overlaid. Once a real transient event is associated with a
galaxy, fakes will not be overlaid on that galaxy. Since the
SMP pipeline performs a global fit to all images, accurate
astrometry is needed to overlay the fake light curve flux
at the same sky location for each exposure. As described
in Brout et al. (2019a), our astrometric precision results in
∼0.001 mag uncertainties for real sources, and thus the as-
trometric precision is adequate for the fakes.

Since the goal with fakes is to characterize single-epoch
features of the CPU intensive image-processing pipelines,
and to input these features into the much faster SNANA sim-
ulation, the choice of SN light curve model does not matter
as long as the fake model magnitudes span the same range
as the data. The resulting SNANA simulation can be used to
simulate arbitrary light curve models and redshift depen-
dence. For example, to evaluate systematic uncertainties in

this analysis, we simulate SNe Ia with different models of in-
trinsic scatter and with different populations of stretch and
color.

While this seemingly large sample of SN fakes is used
to characterize image-processing features, these fakes can-
not be used to compute µ-bias corrections for two reasons.
First, the light curve model used to generate fakes is delib-
erately different from reality for practical reasons explained
above. Second, 10,000 fakes is more than an order of mag-
nitude smaller than what is needed for the bias-correction
sample used in the BBC method (Kessler & Scolnic 2017).
In addition, even if an accurate SN Ia model were used to
generate fakes, the resulting efficiency and bias corrections
would be valid only for that particular SN Ia model, and not
applicable to other SN Ia models, nor to transient models
such as CC SNe or KNe.

5 SOURCE MODEL

Here we describe the simulation components under “Source
Model” in Fig. 1. This includes the generation of the SN Ia
SED as a function of time, how the SEDs are altered as the
light travels from the source to Earth, and how each SED is
transformed into a model magnitude above the atmosphere.

5.1 SN Ia Light Curve Model

To simulate SNe Ia, we use the SALT-II SED model de-
scribed in Guy et al. (2010), and the trained model from
the Joint Lightcurve Analysis (Betoule et al. 2014). The un-
derlying model is a rest-frame SED with wavelengths span-
ning 2000 Å to 9200 Å, and rest-frame epochs spanning
−20 < Trest < +50 days with respect to the epoch of peak
brightness. For each event there are four SN-dependent pa-
rameters generated by the simulation:

(i) time of peak brightness, t0, randomly selected between
2 months before the survey begins and one month after the
survey ends.

(ii) SALT-II color parameter, c.
(iii) SALT-II stretch parameter, x1.
(iv) CMB frame redshift, zcmb,true, selected from the rate

model in §5.7 .

The rest-frame SED depends on the color and stretch pa-
rameters. For each epoch, the SED undergoes cosmological
dimming (§5.4), is redshifted (§5.5) to the observer frame,
and finally multiplied by the filter transmission function
to produce generated fluxes and magnitudes. Wavelength-
dependent Milky Way extinction (§5.6) is included in the
flux-integrals, and thus the generated magnitudes are top-
of-the-atmosphere. For epochs past 50 days, magnitudes are
linearly extrapolated as a function of Trest. For light curve
fitting we use epochs satisfying −15 < Trest < 45 days, but
we simulate epochs outside this Trest range to account for
uncertainty in the fitted t0, which increases the true Trest

range.
The SALT-II amplitude parameter, x0, is computed us-

ing the estimator in Tripp (1998),

log10(x0) = −0.4(µmodel + µlens − αx1 + βc−M) , (1)

where µmodel is the distance modulus (§5.4) which depends

MNRAS 000, 1–18 (2015)
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Figure 1. Flow chart of SNANA simulation.

on cosmology parameters, µlens is due to lensing magnifica-
tion (§5.4), α and β are SALT-II standardization parame-
ters (§5.3), andM = −19.365 is a reference magnitude. It is
well known that M is degenerate with the Hubble constant
(H0), and that their values have no impact in the SN Ia
analysis of cosmological parameters. However, the quality
of the simulation depends on predicting accurate observer-
frame magnitudes, and therefore M + 5 log10(H0) must be
well determined. The SALT-II SED is redshifted using the
heliocentric redshift (zhel,true), which is transformed from
zcmb,true using the sky coordinates from the observation li-
brary. zhel,true also includes a random host-galaxy peculiar
velocity described in §5.5.

5.2 Intrinsic Scatter

Before redshifting the SALT-II SED, intrinsic scatter is ap-
plied as spectral variations to the SED. To evaluate system-
atic uncertainties in the bias corrections, two different mod-
els are used that approximately span the range of possibili-
ties in current data samples. First is the ‘G10’ model (Guy
et al. 2010) from the SALT-II training process. Roughly
75% of the scatter is coherent among all wavelengths and
epochs, while the remaining 25% of the scatter results from
color variations that are not correlated with luminosity. The
second model, ‘C11,’ is based on broadband (UBV RI) co-
variances found in Chotard et al. (2011). Only 25% of the
scatter is coherent, while the remaining scatter results from
color variations. Details of these models are given in Kessler

et al. (2013), and both models result in 0.13 mag intrinsic
scatter on the Hubble diagram.4

5.3 Global SALT-II Model Parameters

While the SALT-II SED and color law model parameters
from the training process are fixed for each SN, there are a
few parameters that are determined outside the training pro-
cess. To simulate validation data samples, the standardiza-
tion parameters are: α = 0.15, βG10 = 3.1, and βC11 = 3.8,
where G10 and C11 refer to the intrinsic scatter model
(§5.2). The standardization parameters for the µ-bias simu-
lations are defined on a 2× 2 grid to enable BBC interpola-
tion of the µ-bias as a function of α and β; this is described
in §9.

For the population of stretch (x1) and color (c), we use
the asymmetric Gaussian parametrization from Scolnic &
Kessler (2016, hereafter SK16). For DES-SN stretch & color,
we use the high-z G10 and C11 rows from Table 1 of SK16.
For the low-z sample we use the color population parameters
from the low-z row of Table 1 of SK16. The stretch popula-
tion is double-peaked, and we use the parametrization from
Appendix C of Scolnic et al. (2018b). While we account for
the color and stretch population differences between low-
z and DES-SN, the redshift dependence of the population

4 This 0.13 mag scatter is larger than typical fitted σint values
of 0.1 mag because of SALT-II model uncertainties; see § 7.1 of

Kessler & Scolnic (2017) for explanation.

MNRAS 000, 1–18 (2015)
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has not been quantified and therefore is not included in our
simulations.

5.4 Luminosity Distance and Lensing
Magnification

The luminosity distance (DL) for a flat universe is computed
as

DL = (1 + zhel,true)
c

H0

∫ zcmb,true

0

dz/E(z) (2)

E(z) =
[
ΩΛ(1 + z)3(1+w) + ΩM(1 + z)3

]1/2
,

where ΩM is today’s matter density, ΩΛ is today’s dark en-
ergy density, and w is the dark energy equation of state
parameter. Note that both the CMB and heliocentric red-
shifts are used to compute DL, but the 1 + zhel,true pre-
factor is an approximation: the exact pre-factor is 1 + zobs,
where zobs is the measured redshift (Davis et al. 2011). How-
ever, we do not simulate Earth’s motion around our Sun,
nor the local SN motion within its host galaxy, and there-
fore zobs = zhel,true. The error on DL from ignoring local
motions is less than 10−3. To compute E(z) in our simu-
lations we set H0 = 70 km/s,5 ΩΛ = 0.7, ΩM = 0.3 and
w = −1. The distance modulus (µmodel in Eq. 1) is defined
as µmodel = 5 log10(DL/10 pc).

Weak lensing effects are described by the µlens term in
Eq. 1, and modeled as follows:

• 0.4 < z < 1.4 : A convergence (κ) distribution is de-
termined from a 900 deg2 patch of the MICECAT N -body
simulation (Crocce et al. 2015).6 Galaxies are from a halo
occupation distribution and a sub-halo abundance matching
technique (Carretero et al. 2015). The lensing distribution is
determined from µlens = 5 log10(1 − κ) (shear contribution
is negligible and ignored).
• z < 0.4 : Using the MICECAT approach above to deter-

mine µlens at z = 0.4 (µlens,0.4), the lensing at lower redshifts
is computed as

µlens,z = µlens,0.4 × z/0.4 . (3)

As a crosscheck, this z-scale approximation works well
within the MICECAT redshift range: e.g., µlens,0.4 '
µlens,0.6 × (0.4/0.6).

The root mean square (rms) scatter in the model µlens dis-
tribution is approximately 0.05× z. For systematic studies,
the simulation includes an option to scale the width of the
distribution to increase or decrease the scatter.

To properly select from the asymmetric µlens distribu-
tion, instead of a Gaussian approximation, the lensing mag-
nification probability is defined as a 2-dimensional function
of redshift and µlens. For each simulated redshift, a ran-
dom µlens is selected from the µlens probability distribution.
While our lensing model accounts for large scale structure on
average, it does not account for correlations between events
with small angular separations.

5 This H0 value was used in the SN Ia model training, which de-
termines the absolute brightnessM, and therefore the simulated
H0 should not be updated with more recent measurements.
6 https://cosmohub.pic.es

5.5 Peculiar Velocity and Observed Redshift

The generated CMB-frame redshift, zcmb,true, is transformed
to the heliocentric frame, zhel,true, using the sky coordinates
from the observation library. The redshift observed in the
heliocentric frame is

zhel,obs = (1 + zhel,true)(1 + vpec/c− vpec,cor/c)− 1(4)

+δznoise

= (1 + zhel,true)(1− vpec,err/c)− 1 (5)

+δznoise ,

where vpec is a peculiar velocity randomly chosen from a
Gaussian profile with σvpec = 300 km/sec, and δznoise is a
measurement error. For DES-SN and low-z, δznoise is drawn
from a Gaussian with σz = 10−4.

While the peculiar velocity model is the same for low-
z and DES-SN, corrections are modeled only for the low-z
sample. The simulated low-z correction simply reduces the
vpec scatter without applying real corrections. Following the
Pantheon analysis (Scolnic et al. 2018b), vpec,cor = vpec +
vpec,err where vpec,err is a randomly selected error from a
Gaussian profile with a 250 km/sec sigma. Finally, zhel,obs

is transformed back to the CMB frame redshift, zcmb,obs.
Peculiar velocity corrections for DES-SN can be computed
in principle, but such corrections on a high-redshift sample
are negligible and were thus ignored.

5.6 Galactic Extinction

For each simulated event the Galactic extinction parameter,
E(B − V ), is computed from the maps in Schlegel et al.
(1998). Following a stellar analysis from SDSS (Schlafly &
Finkbeiner 2011), we scale the E(B − V ) values by 0.86.
We assume the reddening law derived in Fitzpatrick (1999),
and with AV defined as the extinction at 5500 Å, RV ≡
AV /E(B − V ) = 3.1.

5.7 Volumetric Rate Model

The redshift distribution of SNe Ia is generated from a co-
moving volumetric rate, R(z), measured by SNLS (Perrett
et al. 2012):

R(z) = 1.75× 10−5(1 + z)2.11 yr−1Mpc−3 , (6)

and is valid up to redshift z < 1.

6 MODELING FLUX AND NOISE

Here we describe the simulation components under ‘Noise
Model’ in Fig. 1. There are two steps needed to simulate flux
and noise. First, an observation library is needed to char-
acterize observing conditions (§6.1). Next, each true model
magnitude is converted into a measured flux (CCD counts)
and uncertainty (§6.3).

6.1 Observation Library

An observation library is a collection of sky locations, each
specified by right ascension (RA) and declination (Dec),
along with a list of observations for each location. For a
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small survey area, a single sky location may be adequate,
particularly for making forecasts. For a proper simulation,
however, many sky locations should be used with either ran-
dom sampling or a grid. For DES-SN we use ∼ 104 random
sky locations covering 27 deg2, which averages over density
fluctuations to achieve a representative sample for a homo-
geneous universe. For simulations with more than 104 gen-
erated events, the library sky locations and observations are
re-used with SNe that have a different set of randomly cho-
sen properties. Since ∼ 1% of the DES-SN events occur in
the overlap between two adjacent fields, and thus have dou-
ble the number of observations, the simulation includes a
mechanism to handle overlapping fields.

The exposure information for each sky location is de-
fined as follows:

• MJD is the modified Julian date.
• FILTER is the filter passband.
• GAIN is the number of photoelectrons per ADU7.
• SKYSIG is the sky noise, including read noise.
• σPSF =

√
NEA /4π is an effective Gaussian σ for the PSF,

and NEA is the noise-equivalent area defined as

NEA =

[
2π

∫
[PSF(r)]2rdr

]−1

. (7)

For a PSF-fitted flux, the fitted flux variance is the sky noise
per pixel multiplied by NEA.
• ZPTADU is the zero point (ADU), and includes telescope

and atmospheric transmission.

Many of the DES-SN visits include multiple exposures:
two z-band exposures in each of the 8 shallow fields,8 and the
2 deep fields include 3, 3, 5, 11 exposures for g, r, i, z-bands,
respectively. During the survey, DiffImg performs the search
on co-added exposures. In the analysis, SMP determines the
flux for each individual exposure, and the fluxes are co-added
at the catalog level. The co-adding for both DiffImg and
SMP are treated the same in the simulation by co-adding the
observation library information as follows:

MJD =
[∑

MJDi

]
/Nexpose

SKYSIG =

√∑
SKYSIG2

i

σPSF =
[∑

σPSFi

]
/Nexpose

ZPTADU = 2.5× log10

[∑
10(0.4·ZPTADUi)

]
, (8)

where Nexpose is the number of exposures and each sum in-
cludes i = 1, Nexpose. ZPTADU is an approximation assuming
the same GAIN for each exposure; the DES GAIN variations
are a few percent.

The randomly selected time of peak brightness (t0,
§5.1), along with the light-curve time window, determine
the MJD-overlap in the observation sequence.

7 ADU: Analog to Digital Unit.
8 shallow g, r, i include one exposure per visit.

6.1.1 Observation Library for Low-z Sample

The low-z sample does not include the observation proper-
ties (PSF, sky noise, zero point) from their image-processing
pipelines. Therefore we construct an approximate library
from the low-z light curves, using their sky locations, ob-
servation dates, and SNR. There is not enough light curve
information to uniquely determine the observation proper-
ties, and therefore we use three assumptions: (1) fix each
GAIN to unity, (2) fix each PSF to 1′′ (FWHM), and (3) use
a previously determined set of broadband sky magnitudes,
and interpolate the sky magnitude to the central wavelength
of each simulated filter. For ground-based surveys we use the
average sky mags in ugrizY passbands from a simulation of
LSST (Delgado et al. 2014). The ZPTADU parameter is ad-
justed numerically so that the calculated SNR matches the
observed SNR.

Another subtlety is that the low-z sample was collected
over decades, and thus for a randomly selected explosion
time there is little chance that the simulated light curve
would overlap the observation dates. To generate low-z light
curves more efficiently, the measured time of peak brightness
(t0) for each light curve is used for the corresponding sky lo-
cation, thus ensuring a light curve will be generated. Other
SN properties (redshift, color, stretch, intrinsic scatter) are
randomly selected in the same way as for the DES-SN sim-
ulation.

6.2 Host Galaxy Model

Host galaxies are used for two purposes in the SNANA simula-
tions of DES-SN. First, fakes are generated to be overlaid on
top of galaxies in real CCD images. Second, to simulate bias
corrections and validation samples in the analysis, the local
surface brightness from the host is used to add Poisson noise
and anomalous scatter (Fig. 2) in the light curve fluxes. We
do not simulate low-z host galaxies because the cadence li-
brary is constructed from observed SNR that should already
include Poisson noise from the host. While anomalous scat-
ter in the low-z sample may be present, the local surface
brightness information is not available to study this effect.9

For DES-SN the SNANA simulation uses a host galaxy
library (HOSTLIB), where each galaxy is described by (1) he-
liocentric redshift, zHOST,hel, (2) coordinates of the galaxy
center, (3) observer-frame magnitudes in the survey band-
passes, and (4) Sérsic profile with index n = 0.5 (Gaussian),
and half-light radii along the major and semi-major axes.
The HOSTLIB can be created from data or from an astro-
physical simulation. Our DES-SN simulation uses a galaxy
catalog derived from the DES science verification (SV) data,
as described in Gupta et al. (2016). Eventually this galaxy
catalog will be updated using a much deeper co-add from
the full DES data set.

There are two caveats about this HOSTLIB. First,
zHOST,hel are photometric redshifts (photo-z). Extreme
photo-z outliers are rejected by requiring the absolute r and i
band magnitudes (Mr,i) to satisfy −23 < Mr,i < −16, where
Mr,i = mr,i − µphot, mr,i are the observed magnitues, and

9 It would be a valuable community contribution to use public

survey data (e.g., PS1, SDSS, DES) and determine the local sur-
face brightness for each low-z event.
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µphot is the distance modulus computed from the photo-z.
The second caveat is that the measured half-light radii were
scaled by a factor of 0.8 to obtain better data-simulation
agreement in the surface brightness distribution (§8).

To generate fakes to overlay on images, each SN was
associated with a random HOSTLIB event satisfying

|zSN,hel − zHOST,hel| < 0.01 + 0.05zSN , (9)

where zSN,hel and zHOST,hel are the heliocentric redshifts for
the SN and host galaxy, respectively. The SN redshift is
updated to zHOST,hel, the CMB-frame redshift (zcmb,true) is
computed from zHOST,hel, and the resulting zcmb,true is used
to update the distance modulus and light curve magnitudes.
To avoid multiple fakes around a single galaxy, each HOSTLIB

event can be used only once. The SN coordinates are chosen
near the host, weighted by the Sérsic profile.

To simulate samples for the analysis, the redshift match-
ing between the SN and the host is the same as for fakes
(Eq. 9). However, the generated SN redshift (from rate
model) and its coordinates (from cadence library) are pre-
served. A random location near the host is selected from
the Sérsic profile, and is used to determine the local surface
brightness and to add Poisson noise to the light curves. The
Poisson noise variance is computed by integrating the host-
galaxy flux over the noise equivalent area (Eq. 7). In this
implementation of the DES-SN simulation, the host-galaxy
spatial distribution is homogeneous on all scales. Large-scale
structure can be incorporated as explained in the Appendix.

6.3 Converting True Magnitudes into Measured
Fluxes & Uncertainties

Here we describe how a true source magnitude at the top of
the atmosphere, mtrue, is used to determine the instrumental
flux and its uncertainty. The flux unit for this discussion is
photoelectrons, but the simulation uses the GAIN to properly
digitize the signals in ADU.

The true flux is given by

Ftrue = 100.4(mtrue−ZPTpe) , (10)

where ZPTpe = ZPTADU+ 2.5 log10(GAIN) is the zero point in
units of photoelectrons.

The true Poisson noise for the measured flux is given
by

σ2
Ftrue = [Ftrue + (NEA · b) + σ2

host]Ŝ
2
sim , (11)

where

• Ftrue is the true flux;
• NEA is the noise equivalent area (Eq. 7);
• b is the background per unit area (includes sky and

CCD read noise);
• σhost is Poisson noise from the underlying host galaxy

(§6.2);
• Ŝsim is an empirically determined scale (§6.4) that in-

creases both the flux scatter and measured uncertainty.

NEA, b, and σPSF are obtained from the observation library
(§6.1). Ŝsim is determined from analyzing the fakes (§6.4),
and characterizes subtle scene model photometry (SMP) be-
havior that cannot be computed from first principles, mainly
the anomalous flux scatter from bright galaxies. Because of

the large number of reference images used in SMP, we do not
include an explicit template noise term.

For PSF-fitted fluxes, the noise estimate in Eq. 11 is
an approximation that is more accurate for sky-dominated
noise, or as Ftrue/(NEA · b) becomes smaller. In principle
Eq. 11 is also accurate for bright events with high SNR,
but brighter SNe are associated with brighter galaxies that
introduce anomalous flux scatter. In §6.4 below, we use fakes
to show how the simulated flux uncertainties are corrected
for anomalous scatter so that the uncertainties are accurate
over the full range of SNR.

The true uncertainty (σFtrue) is used to select a ran-
dom fluctuation on the true flux (Ftrue), resulting in the
observed flux, F . The measured uncertainty for data is not
the true uncertainty, but rather an approximation based on
the observed flux. In the simulation, the measured uncer-
tainty, σF , is computed from the observed flux by substitut-
ing Ftrue → F in Eq. 11:

σF =
√
σ2

Ftrue + (F − Ftrue) (F > 0) , (12)

σF =
√
σ2

Ftrue − Ftrue (F < 0) . (13)

In the case where F < 0 due to a sky noise fluctuation,
the measured uncertainty is not reduced (relative to F = 0)
because σF is dominated by sky noise which is determined
from a CCD region well away from the SN.

6.4 Determining The Flux-Uncertainty Scale
(Ŝsim)

An accurate description of the uncertainty is important in
order to model selection cuts on quantities related to SNR
and chi-squared from light curve fitting. With Ŝsim = 1, the
calculated flux uncertainty, σFtrue in Eq. 11, is an approx-
imation for PSF-fitting, and it does not account for all of
the details in the SMP pipeline. We correct the simulated un-
certainty to match the observed flux scatter in the fakes,
which we interpret to be the true scatter in the data. The
uncertainty correction, Ŝsim, is defined as

Ŝsim( ~O) =
rms[(Ftrue − FSMP)/σ

′
F ]fake

rms[(Ftrue − Fsim)/σ′F ]sim
, (14)

where Ftrue is the true flux, FSMP is the fake flux determined
by SMP, and Fsim = Ftrue + N (0, σF ) is the simulated flux
with Ŝsim = 1.

The σ′F term in both denominators is a common refer-
ence so that the ∆F/σ′F ratios in Eq. 14 are ∼unity, which
significantly improves the sensitivity in measuring the Ŝsim

map. σ′F is the naively expected uncertainty computed from
Eq. 11 with Ŝsim = 1, Ftrue → F , and σhost computed us-
ing the approximation of a constant local surface brightness
magnitude over the entire noise-equivalent area. This σhost

approximation can be used with photometry that does not
include a detailed model of the host galaxy profile, and sim-
ulation tests have shown that this approximation does not
degrade the determination of Ŝsim( ~O).

The numerator includes information from the fakes and
SMP pipeline. The argument ~O indicates an arbitrary depen-
dence on observed image properties. For the DES-SN3YR
analysis we use a 1-dimensional map with ~O = {mSB},
where mSB is the local surface brightness magnitude. Before
determining Ŝsim, it is important that the simulated distri-
butions in redshift, color, and stretch (§5.1) are tuned to
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Figure 2. Simulated uncertainty scale, Ŝsim, as a function of

local surface brightness mag (SB mag). Each panel indicates the
set of fields and passband. Left panels are for the deep SN fields

(depth per visit ∼ 24.5); right panels are for shallow SN fields

(depth per visit ∼ 23.5).

match the distributions for the fakes. After this tuning, Ŝsim

versus mSB is shown in Fig. 2. For mSB values outside the
defined range of the map, Ŝsim is computed from the closest
mSB value in the map. This mSB-dependence has been seen
previously in the difference-imaging pipeline (Kessler et al.
2015; Doctor et al. 2017), and it persists in the SMP pho-
tometry. After applying the corrections in Fig. 2, the flux
uncertainties for the fakes and simulations agree to within
5% over the entire mSB range.

The impact of the uncertainty corrections is shown in
Fig. 3, which compares the maximum SNR distribution in
each band for fakes and the simulation. Compared to simu-
lations with no correction, simulations with corrections show
much better agreement with the fakes.

While Eq. 14 describes the simulated correction, there
is an analogous correction for the data uncertainty produced
by SMP: σSMP → σSMP × ŜSMP, where

ŜSMP( ~O) =
rms[(Ftrue − FSMP)/σ

′
F ]fake

〈σSMP/σ′F 〉fake

. (15)

The observed scatter in the fakes is a common reference for
both the data and simulations, and therefore the numer-
ator (Eq. 15) is the same as for the simulated correction
(Eq. 14). The denominator, 〈σSMP/σ′F 〉fake, specifies an aver-

age within each ~O bin. This ŜSMP correction is applied to the
data uncertainties, including fakes, while Ŝsim is applied to
the simulated noise and uncertainty. More details of ŜSMP are
given in Brout et al. (2019a).

7 TRIGGER MODEL

Here we describe the simulation components under ‘Trig-
ger Model’ in Fig. 1. Ideally, every DECam pixel would be
continuously monitored for transient activity. However, stor-
ing light curves near every pixel is impractical with today’s
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the Ŝsim scale from Fig. 2.

computing, and therefore a ‘trigger’ is used to select candi-
dates for analysis. Here we describe the trigger simulation
for the DES-SN and low-z samples. For a general survey,
the simulation of the trigger consists of three stages: 1) de-
tecting PSF-shaped objects above threshold, 2) matching
multiple objects, from different bands and nights, to form
candidates, and 3) selection for spectroscopic classification.
All three stages are modeled for DES-SN. For low-z, how-
ever, we do not have information to simulate the first two
trigger stages and therefore all three trigger stages are em-
pirically combined in the third stage.

The total efficiency (ETOT) can be described by

ETOT = E ~SNR × Espec , (16)

where E ~SNR includes the first two trigger stages and de-

pends on the SNR for each epoch ( ~SNR), and Espec de-
scribes the spectroscopic selection in the third stage. We
do not explicitly define E ~SNR, but instead model the effi-
ciency vs. SNR for each epoch. Espec, however, is explicitly
described by a smooth function of magnitude at peak bright-
ness. Another subtlety here is that E ~SNR is valid for arbi-
trary transient source models, while Espec is valid only for
SNe Ia and only if the first two trigger stages are satisfied.

7.1 DES-SN Trigger

For the first trigger stage, fakes are used to characterize the
detection efficiency versus SNR in each filter, as shown in
Fig. 8 of Kessler et al. (2015). The efficiency reaches 50%
around SNR∼ 5. Since these efficiency curves are intended
for simulations, we do not use the measured SNR, but in-
stead the fake SNR is calculated from the true flux (Eq. 10)
and noise (Eq. 11) with Ŝsim = 1. These efficiency curves
are therefore determined as a function of a calculated SNR
quantity that is calculated in exactly the same way in the
simulation.

In the second trigger stage, a candidate requires two
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detections on separate nights within 30 days. Thus a single-
night detection in all four bands (g, r, i, z) will not trigger a
candidate. However, a single-band detection on two separate
nights will trigger a candidate.

The third trigger stage, spectroscopic selection effi-
ciency (Espec), is the most subtle. While the selection al-
gorithm was designed to exclude human decisions as much
as possible (D’Andrea et al. 2018), we are not able to simu-
late the selection algorithm because we have eight frequently
used telescopes, inefficiencies due to weather and schedul-
ing, spectral classification uncertainty, and a small amount
of human decision making.

Ideally we would compute Espec as a ratio of spectro-
scopically confirmed events (numerator) to photometrically
identified events (denominator). A data-derived Espec anal-
ysis is under development and described in D’Andrea et al.
(2018), but here we use simulations to predict the denomi-
nator. A caveat is that a simulation used to determine Espec

needs the population parameters for stretch and color (§5.3),
which is determined from simulations that already include
Espec. Rather than performing an iterative procedure with
DES-SN data, we use the population parameters from exter-
nal data sets as described in SK16, who show that varying
the external Espec functions has a negligible effect on the
population parameters.

Without a well-defined algorithm to compute Espec, we
use an empirical model where Espec depends on the i-band
magnitude at the epoch of peak brightness, ipeak. The basic
idea is to compare the ipeak distribution between data and
a simulated sample passing the first two trigger stages (i.e.,
with Espec = 1). We define Espec(ipeak) to be a smooth curve
fit to the data/sim ratio as a function of ipeak (solid curve in
Fig. 4), where ipeak is computed from the best-fit SALT-II
model. The data/sim ratio is fit to a sigmoid function,

Espec(ipeak) = s0[1 + e(s1ipeak−s2)]−1 , (17)

where s0, s1, s2 are floated parameters determined with em-

cee (Foreman-Mackey et al. 2013) and the data uncertainties
are modeled using a Poisson distribution. For the cosmology
analysis, Espec can be arbitrarily scaled (bounded between 0
and 1) without affecting the µ-bias determination, and thus
to generate events most efficiently we have scaled Espec to
have a maximum efficiency of 1.

There is a subtle caveat in the DiffImg trigger mod-
eling related to bright galaxies. As illustrated in Figure 7
of Doctor et al. (2017), image-subtraction artifacts result in
an anomalous decrease in detection efficiency as the local
surface brightness increases. Here the term ‘anomalous’ in-
dicates an efficiency loss that is much greater than expected
from the increased Poisson noise from the host galaxy. While
Fig. 2 shows how the SNANA simulation models anomalous
scatter, the simulation does not model the anomalous de-
tection inefficiency. Studies with fakes have shown that this
bright-galaxy anomaly does not reduce the trigger efficiency
for nearby SNe Ia on bright galaxies. The reason is that there
are a few dozen opportunities to acquire detections, and it
is very unlikely to fail the 2-detection trigger requirement.

7.2 Low-z Trigger

As explained in Betoule et al. (2014) and Scolnic et al.
(2014b), there is evidence that the low-z search is magni-
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tude limited because of the decreasing number of events with
redshift, and because higher redshift events are bluer. On
the other hand, many low-z searches target a specific list of
galaxies, suggesting a volume-limited sample. We therefore
simulate both assumptions for evaluating systematic uncer-
tainties.

For the magnitude-limited assumption, we incorporate
all trigger stages into a single Espec function of B-band mag-
nitude at the time of peak brightness (Bpeak). Following the
recipe for the DES-SN simulation, we simulate a low-z sam-
ple with E ~SNR = 1 and define Espec to be the data/sim
ratio vs. Bpeak (Fig. 5). The fitted Bpeak function is a one-
sided Gaussian as described in Appendix C of Scolnic et al.
(2018b). Describing Espec as a function of V or R band also
works well, so the choice of B band is arbitrary.

For the volume-limited assumption, which is used as
a systematic uncertainty in Brout et al. (2019b), we set
ETOT = 1 and interpret the redshift evolution of stretch
and color to be astrophysical effects instead of artifacts from
Malmquist bias. To match the low-z data, the low-z simula-
tion is tuned using redshift-dependent stretch and color pop-
ulations: x1 → x1 +25z and c→ c−1z. There is no physical
motivation for this redshift dependence, and therefore this
is a conservative assumption for the systematic uncertainty.
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8 COMPARING DATA & SIMULATIONS

Here we qualitatively validate the simulations by comparing
simulated distributions with data. While we do not quantify
the data-simulation agreement here (e.g., via χ2), such quan-
titative comparisons are used to assess systematic uncertain-
ties in Brout et al. (2019b). To limit statistical uncertainties
in these comparisons, very large simulations are generated
and the distributions are scaled to match the statistics of the
data. Recall that the tuned distributions are Espec(ipeak) and
the populations for stretch and color; all other inputs to the
simulation are from measurements.

We apply light-curve fitting and selection requirements
(cuts) that depend on SALT-II fitted parameters, SNR, and
light curve sampling (§3.5 of Brout et al. 2019b). After ap-
plying these cuts, data/simulation comparisons for DES-SN
are shown in Fig. 6. The ipeak distribution for data and
simulation are guaranteed to match because of the method
for determining Espec in §7.1. The redshift agreement is not
enforced, but is still excellent. The next two distributions,
E(B−V ) and maximum gap between observations, are also
in excellent agreement, and this agreement validates the
choice of random sky locations in the cadence library. The
double peak structure of E(B − V ) is from the large sky
separations between groups of fields.

The middle column of Fig. 6 compares the maximum
SNR in each band, and these are the most difficult distri-
butions to predict with the simulation. The comparisons
look good, except for a slight excess in the simulation for
SNR > 100. The right column of Fig. 6 compares the local
surface brightness mag in each band. There is good agree-
ment in all bands for SB < 24, For fainter hosts beyond the
detection limit the agreement is much poorer, and is likely
due to Malmquist bias for the limited co-add depth used in
this analysis. Note that the poor agreement for faint hosts re-
sults in relatively small Ŝsim errors because Ŝsim → 1 (Eq. 11
and Fig. 2) as the underlying host becomes more faint, and
therefore the range of possible Ŝsim corrections is smaller.

Figure 7 shows data/simulation comparisons for the
low-z sample. The Bpeak distributions are forced to match
because of the method for determining Espec. The compar-
isons for redshift, E(B − V ) and minimum Trest show ex-
cellent agreement. The comparisons for maximum gap be-
tween observations (rest-frame) and maximum B-band SNR
indicate a slight discrepancy. The SNR agreement is poorer
compared to DES-SN because we do not have the obser-
vation information for the low-z sample, and thus rely on
approximations (§6.1.1) to compute the noise in Eq. 11.

We have implemented SALT-II light curve fits on
the simulations, and Fig. 7 of Brout et al. (2019b) shows
data/simulation comparisons for the SALT-II parameters
(mB , x1, c) and their uncertainties. The excellent agree-
ment in these distributions adds confidence in our µ-bias
predictions.

9 DISTANCE MODULUS BIAS VS. REDSHIFT

In one of our DES-SN3YR cosmology analyses (Brout et al.
2019b), we use the BBC method (Kessler & Scolnic 2017) in
which µ-bias is characterized as a 5-dimensional function of
{z, x1, c, α, β}. The first three parameters are observed, and

{α, β} are determined from the BBC fit. Here we illustrate
µ-bias as a function of redshift for a variety of sub-samples,
and also compare µ-bias for the two intrinsic scatter models
(G10,C11) from §5.2. It is important to note that µ-bias is
not a correction for the SN magnitude, but is a correction for
fitted light curve parameters (describing the stretch, color
and brightness) along with a correction for the impact of
intrinsic scatter in which brighter events are preferentially
selected in a magnitude-limited survey.

The true distance modulus is defined as µtrue, and the
measured distance modulus (µ) is determined in the analysis
from Tripp (1998),

µ = −2.5 log(x0) + αx1 − βc+M , (18)

where {x0, x1, c} are fitted SALT-II light-curve parameters,
α and β are the standardization parameters, and M is an
offset so that µ = µtrue when the true values of {x0, x1, c}true

are used in Eq. 18. The distance modulus bias is defined as µ-
bias≡ µ−µtrue. The BBC method applies a µ-bias correction
for each event, and determines the following parameters in
a fit to the entire sample: α, β,M, and a weighted-average
bias-corrected distance modulus in discrete redshift bins.

We implement the BBC procedure on a simulated DES-
SN3YR data sample with 3×104 events after applying the
cuts from §8. The µ-bias thus has contributions from the
DiffImg trigger, spectroscopic selection, and analysis cuts.
We use a large ‘bias-correction’ sample with 1.3×106 events
after the same cuts. Samples are generated with both the
G10 and C11 intrinsic scatter model, and the bias-correction
sample with the correct intrinsic scatter model is used on the
data; the effect of using the incorrect model is discussed in
Brout et al. (2019b).

To account for a µ-bias dependence on α and β, we
generate the bias-correction sample on a 2 × 2 grid of α ×
β and use this grid for interpolation within the BBC fit.
The grid values are α = {0.10, 0.24}, βG10 = {2.7, 3.5}, and
βC11 = {3.3, 4.3}.

The BBC-fitted values of α and β are un-biased within
their 5% statistical uncertainties, and fitting with optional
z-dependent slope parameters, dα/dz and dβ/dz are both
consistent with zero. M does not contribute to µ-bias and
therefore the µ-bias is caused by the fitted light curve param-
eters {x0, x1, c}. The µ-bias versus redshift from the BBC fit
is shown in Figs. 8-9 for the low-z and DES-SN samples, re-
spectively. The filled circles correspond to the G10 intrinsic
scatter model, and open circles correspond to C11.

The average µ-bias (left panels) is zero at the lower end
of the redshift range. At higher redshifts, µ-bias depends on
the intrinsic scatter model, reaching ∼ 0.05 mag at the high-
redshift range. The middle and right panels of Figs. 8-9 show
that µ-bias is much larger within restricted color ranges,
reaching up to 0.4 mag for the reddest (c > 0.06) events. All
panels show a µ-bias difference between the G10 and C11
models, and this difference is largely due to the different
parent color populations (Scolnic et al. 2014a): the C11 color
population has a sharp cut-off on the blue side, while the G10
population has a tail extending bluer than in the C11 model.
These µ-bias differences, along with differences in fitted α
and β, are incorporated into the systematic uncertainty in
Brout et al. (2019b).

The large µ-bias for red events at higher redshift is be-
cause most of these events are intrinsically blue, which are
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the low-z sample, using the G10 intrinsic scatter model and
magnitude-limited selection model.

bright enough to be detected, but have poorly measured
colors. Intrinsically red events are fainter and thus tend to
be excluded at higher redshifts. To illustrate the size of the
color uncertainties for the DES-SN sample, we computed
the rms on measured color minus true color, rms(∆c), and
the rms of the true color population, rms(ctrue). The ratio is
rms(∆c)/rms(ctrue) ∼ 0.5. Therefore the typical difference
between measured and true color is 50% of the size of the
intrinsic color distribution. For redshifts z > 0.5 this ratio
increases to 0.7. A similar exercise with the stretch param-
eter results in similar ratios.
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As described in §5.3, a new feature in the BBC method
is to account for the µ-bias dependence on {α, β}. This de-
pendence is shown in Fig. 10 for DES-SN. Comparing sim-
ulations for α = 0.10 and α = 0.24 (nominal α ' 0.15), the
µ-bias difference reaches 0.03 mag at high redshift, and is
similar for the two intrinsic scatter models (G10 and C11).
The right panel in Fig. 10 shows the µ-bias difference with
β values differing by ∼ 1; the maximum µ-bias difference is
0.01 mag, and is similar for both intrinsic scatter models.

We end this section by illustrating the contributions to
µ-bias for red events (c > 0.06) in the right panel of Fig. 9,
where µ-bias reaches ∼ 0.4 mag at the highest redshifts.
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While high-redshift bias is often associated with Malmquist
bias, we show that µ-bias is primarily associated with intrin-
sic scatter and light-curve fitting. We begin with an ideal
DES-SN simulation that has no intrinsic scatter, and per-
form light-curve fits in which only the amplitude x0 is floated
while stretch and color (x1, c) are assumed to be perfectly
known. Defining m0 = −2.5 log(x0), µ-bias and m0-bias are
the same. The resulting µ-bias is shown by the dashed curve
in Fig. 11a; this bias is only ∼ 0.01 mag, a very small frac-
tion of the µ-bias in Fig. 9. While there may be selection
bias in the 2 detections contributing to the trigger (§7), the
remaining few dozen epochs are not biased, and thus the
majority of observations used to measure x0 are un-biased.

The solid curve in Fig. 11a shows µ-bias with the G10
intrinsic scatter model, and still fitting only for x0. In this
case, µ-bias increases considerably to about 0.1 mag at the
highest redshift, and is a result of the strong brightness cor-
relations among epochs and passbands. While the true in-
trinsic scatter variations average to zero, magnitude-limited
observations preferentially select positive brightness fluctu-
ations, which lead to non-zero µ-bias.

Figure 11b shows the same simulations, but with light
curve fits that float all three parameters (x0, x1, c). Com-
pared with Fig. 11a, the µ-bias is much larger, mainly be-
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cause of the bias in fitted color. Although this µ-bias test is
shown only for the the red events in Fig. 9, similar trends
exist in all color ranges.

The statistical uncertainties on these µ-bias correc-
tions are negligible. Systematic uncertainties in Brout et al.
(2019b) are thus determined from changing input assump-
tions such as the color and stretch populations, model of
intrinsic scatter, and the value of the flux-uncertainty scale,
Ŝsim.

10 CONCLUSION

The SNANA simulation program has been under active de-
velopment for a decade, and has been used in several
cosmology analyses to accurately simulate SN Ia light
curves and determine bias corrections for the distance mod-
uli. This work focuses on simulated bias corrections for
the DES-SN3YR sample, which combines spectroscopi-
cally confirmed SNe Ia from DES-SN and low-redshift sam-
ples. Files used to make these corrections are available at
https://des.ncsa.illinois.edu/releases/sn.

The DES-SN simulation includes three categories of de-
tailed modeling: (1) source model including the rest-frame
SN Ia SED, cosmological dimming, weak lensing, peculiar
velocity, and Galactic extinction, (2) noise model account-
ing for observation properties (PSF, sky noise, zero point),
host galaxy, and information derived from 10,000 fake SN
light curves overlaid on images and run through our image-
processing pipelines, (3) trigger model of single-visit detec-
tions, candidate logic, and spectroscopic selection efficiency.
The low-z sample, however, does not include observation
properties, and thus approximations are used to simulate
this sample. The quality of the simulation is illustrated by
predicting observed distributions (Figs. 6-7), and bias cor-
rections on the distance moduli are shown in Figs. 8-9.

The reliability of the bias corrections is only as good as
the underlying assumptions in the simulation. To properly
propagate bias correction uncertainties into systematic un-
certainties on cosmological parameters, Brout et al. (2019a)
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evaluate uncertainties for each of the 3 modeling categories
above (source, noise, trigger). In addition to explicit assump-
tions such as those associated with the SALT-II model, one
should always be aware of the implicit assumptions such as
simulating SN properties (e.g., α, β) that are independent
of redshift and host galaxy properties.

The simulations presented here are used to correct
SN Ia distance biases in the DES-SN3YR sample (Brout
et al. 2019b), and these bias-corrected distances are used to
measure cosmological parameters (DES Collaboration et al.
2019). These simulations also serve as a starting point for
the analysis of the full DES 5-year photometrically classified
sample, which will be significantly larger than the DES-
SN3YR sample.
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APPENDIX A: ADDITIONAL SIMULATION
FEATURES FOR FUTURE ANALYSIS

The focus of this work has been on simulating bias correc-
tions and validation samples for the DES-SN3YR SN Ia
cosmology analysis. Here we describe additional features of
the SNANA simulation that have been developed for future
work, but are beyond the current scope of the DES-SN3YR
analysis. This future work includes extending the cosmology
analysis to photometrically identified SNe Ia, more detailed
systematics studies, determining the efficiency for Bayesian
cosmology fitting methods (e.g., Rubin et al. 2015), deter-
mining the efficiency for SN rate studies, and optimizing
future surveys. We end with a summary of missing features
that would be useful to add for future analysis work.
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A1 SED Time Series

The SALT-II light curve model, which is designed for SN Ia
cosmology analyses, is a rather complex semi-analytical
model. Most transient models, however, are much simpler. In
addition to specialized SN Ia models,10 the SNANA simulation
works with arbitrary collections of SED time series. Each
event can be generated from a random SED time series, or
computed from parametric interpolation. For example, sup-
pose a set of Np parameters, ~P = {p1, p2, ...pNp}, describes
each SED time series. Each parameter (pi) can be drawn
from a Gaussian distribution (or asymmetric Gaussian) and
a full covariance matrix to induce correlations. The SEDs on
the parameter grid are interpolated to the generated ~P .

Examples include CC simulations to model contamina-
tion in photometrically identified SN Ia samples (Kessler
et al. 2010a; Rodney et al. 2012; Kessler & Scolnic 2017;
Jones et al. 2017), and simulating Kilonovae (Barnes &
Kasen 2013) to model the search efficiency (Soares-Santos
et al. 2016; Doctor et al. 2017), and to predict discovery
rates (Scolnic et al. 2018a).

An SED time series can also be useful for modeling
SNe Ia. Examples include systematic studies on training the
SALT-II model with simulated spectra (Hsiao et al. 2007;
Mosher et al. 2014), and simulating spectra from SN Ia ex-
plosion models (Diemer et al. 2013; Kessler et al. 2013).

A2 Light Curve Library for Galactic Transients

Galactic transients can potentially contribute contamina-
tion in a photometrically identified SN Ia sample. To model
galactic transients, the simulation reads a pre-computed
‘light curve library’ of transient magnitudes versus time. The
light curves can be recurring or non-recurring. For recurring
and long-lived non-recurring transients, the library specifies
source magnitudes at epochs to use as templates for image-
subtraction, and the simulation accounts for source signal in
the templates. The subtracted fluxes can therefore be pos-
itive or negative. To detect negative fluxes with SNR < 0,
there is an option to define the detection efficiency as a func-
tion of |SNR|. Each library light curve is overlaid on the
survey time window, and overlapping observations in the
cadence library are converted into a measured flux and un-
certainty. Readers are cautioned that this model is relatively
new, and has not yet been used in a publication.

A3 Characterization of Detection Efficiency

For the DES-SN3YR analysis, the DES detection efficiency
was adequately characterized as a function of SNR. In the
next cosmology analysis with a much larger photometric
sample, we may need a more accurate description. In partic-
ular, we may need to characterize the efficiency of a machine
learning (ML) requirement in DiffImg that was used to re-
ject image-subtraction artifacts (Goldstein et al. 2015). The
SNANA data file structure includes a ‘PHOTPROB’ entry for each
epoch, which is intended to store information such as an ML
score. The simulation can generate ML scores (between 0

10 SN Ia models in SNANA include SALT-II (Guy et al. 2010),

MLCS2k2 (Jha et al. 2007), and SNOOPY (Burns et al. 2011).

and 1) based on an input probability map that depends on
SNR and/or mSB. The input ML map should be generated
from fakes processed through the same pipeline as the data.
Since ML scores describe imaging data near the source, these
scores are likely to be correlated among different epochs. A
reduced correlation (0 to 1) can be provided to introduce
ML correlations.

While we have been characterizing anomalous effects as
a function of mSB, we have begun exploring the dependence
on m−mSB, where m is the source magnitude. This source-
to-galaxy flux ratio can be used to describe the detection
efficiency or the ML map.

A4 Characterization of Flux-Uncertainty Scale

In §6.4 the flux-uncertainty scale, Ŝsim, was defined as a
function of 1 parameter: mSB. In future work we plan to
investigate if Ŝsim depends on other parameters. The addi-
tional Ŝsim-dependent parameters in the simulation are: (1)
SNR, (2) PSF, (3) MJD, (4) sky noise, (5) zero points, (6)
galaxy magnitude, and (7) SN-host separation. Additional
parameters, such as the source-to-galaxy flux ratio, can be
added with minor code modifications.

A5 Rate Models

The following rate models can be used in the SNANA simula-
tion:

• R(z) = α(1+z)β with user-specified α, β. Multiple R(z)
functions can be defined, each in a different redshift range.
• R(z) = A·

∫ z
∞ dz

′SFR(z′)+B ·SFR(z) where SFR is the
star formation rate, A is the amplitude of the delayed com-
ponent, and B is the amplitude of the prompt component
(Scannapieco & Bildsten 2005; Mannucci et al. 2006).
• CC R(z) measured with HST (Strolger et al. 2015).
• Star formation R(z) from Madau & Dickinson (2014),

where user defines R(0).

A6 Redshift Dependent Input Parameters

Since redshift evolution is a concern in cosmology analy-
ses, any simulation-input parameter can be given a redshift
dependence: P → P + p1z+ p2z

2 + p3z
3, where P is a user-

specified simulation parameter and p1,2,3 are user-defined
parameters. If a 3rd-order polynomial is not adequate, the
simulation can read an explicit P (z) map in arbitrary red-
shift bins.

A7 Population Parametrization

The SALT-II color and stretch populations are described by
two asymmetric Gaussian profiles. The probability for color
is defined as

P (c) ∝ exp[−(c− c̄)2/2σ2
+] (c ≥ c̄) (A1)

P (c) ∝ exp[−(c− c̄)2/2σ2
−] (c < c̄) (A2)

and similarly for P (x1). A second asymmetric Gaussian can
be added, as described in Appendix C of Scolnic et al.
(2018b) for the low-z stretch distribution.
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A8 Inhomogeneous Distributions

The DES-SN3YR simulations assume an isotropic and ho-
mogeneous universe on all distance scales because of the
random selection of sky coordinates in the observation li-
brary (§6.1) and the random generation of redshifts. Large
scale structure can be incorporated, but requires an external
simulation to generate 3-dimensional (RA,DEC,z) galaxy lo-
cations. For each such galaxy, the RA, DEC and redshift are
used to create an entry in the observation library.

Another application is to simulate transients corre-
sponding to a posterior from a gravitational wave (GW)
event found by the Large Interferometer Gravity Wave Ob-
servatory (Singer et al. 2016b,a, LIGO). Drawing random
events from the posterior described by RA, DEC and dis-
tance, each event corresponds to an entry in the observation
library.

A9 Host Galaxy Library Features

A host-galaxy library (HOSTLIB) was defined in §6.2 to model
additional Poisson noise and the local surface brightness.
Additional HOSTLIB features include:

• mis-matched host redshift model for photometrically
identified sample (Jones et al. 2017),
• a weight map to assign SN magnitude offsets based on

host-galaxy mass, or other properties such as specific star
formation rate,
• photometric galaxy redshift (ZPHOT) and Gaussian un-

certainty (ZPHOTERR), which must be computed externally
from broadband filters,
• brightness distribution described with arbitrary sum of

Sérsic profiles, each with its own index,
• correlation of host and SN properties by including

SALT-II color and stretch for each HOSTLIB event.

A10 Generating Spectra

Ideally the modeling of spectroscopic selection would include
an analysis of simulated spectra, but instead we empirically
model this efficiency as a function of peak magnitude. To
begin the effort on modeling spectroscopic selection, the
SNANA simulation was enhanced to generate spectra for the
WFIRST simulation study in Hounsell et al. (2018). Spectra
are characterized by their SNR versus wavelength. They can
be generated at specific dates in the observation library, or
a random date can be selected in time windows with respect
to peak brightness. This time-window can be specified in ei-
ther the rest-frame or observer-frame, although the former
is more difficult to carry out in practice. Spectral slices can
also be integrated and stored as broadband fluxes.

Finally, a high-SNR (low-z) spectrum can be simulated
at arbitrary redshift to examine the expected SNR degrada-
tion versus distance.

A11 Missing Features

We finish this section with a few features that are not in-
cluded in the simulation, but might be useful in future anal-
yses:

• peculiar velocity covariances (currently all vpec are un-
correlated),
• galactic E(B − V ) covariance (currently all extinctions

are uncorrelated),
• spectral PCA coefficients in the HOSTLIB to model host

contamination in spectra,
• probability distribution for host-galaxy photometric

redshifts (instead of Gaussian-error approximation),
• anomalous detection inefficiency from bright galaxies,
• weak lensing magnification model (§5.4) accounting for

correlations between events with small angular separations.
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de Janeiro, RJ - 20921-400, Brazil
47 Department of Physics, IIT Hyderabad, Kandi, Telan-
gana 502285, India
48 Department of Astronomy/Steward Observatory, 933
North Cherry Avenue, Tucson, AZ 85721-0065, USA
49 Jet Propulsion Laboratory, California Institute of Tech-
nology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA
50 Instituto de Fisica Teorica UAM/CSIC, Universidad
Autonoma de Madrid, 28049 Madrid, Spain

51 Department of Astronomy, University of Michigan, Ann
Arbor, MI 48109, USA
52 Department of Physics, University of Michigan, Ann
Arbor, MI 48109, USA
53 Department of Physics, ETH Zurich, Wolfgang-Pauli-
Strasse 16, CH-8093 Zurich, Switzerland
54 Center for Cosmology and Astro-Particle Physics, The
Ohio State University, Columbus, OH 43210, USA
55 Department of Physics, The Ohio State University,
Columbus, OH 43210, USA
56 Harvard-Smithsonian Center for Astrophysics, Cam-
bridge, MA 02138, USA
57 Australian Astronomical Optics, Macquarie University,
North Ryde, NSW 2113, Australia
58 Departamento de F́ısica Matemática, Instituto de F́ısica,
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P., 2015, MNRAS, 447, 646

Chotard N., Gangler E., Aldering G., et al., 2011, A&A, 529, L4

Conley A., Guy J., Sullivan et al., 2011, ApJS, 192, 1

Contreras C., Hamuy M., Phillips M. M., et al., 2010, AJ, 139,

519

Crocce M., Castander F. J., Gaztañaga E., Fosalba P., Carretero
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