
Presentation layer of CMS Online Monitoring System

Jean-Marc André5, Ulf Behrens1, James Branson4, Philipp Brummer2,12, Sergio Cittolin4,
Diego Da Silva Gomes2, Georgiana-Lavinia Darlea6, Christian Deldicque2, Zeynep
Demiragli6, Marc Dobson2, Nicolas Doualot5, Samim Erhan3, Jonathan Richard Fulcher2,
Dominique Gigi2, Maciej Gładki2, Frank Glege2, Guillelmo Gomez-Ceballos6, Jeroen
Hegeman2, André Holzner4,Mindaugas Janulis9,11,Michael Lettrich2, AudriusMečionis5,10,
Frans Meijers2, Emilio Meschi2, Remigius K Mommsen5, Srecko Morovic5, Vivian
O’Dell5, Luciano Orsini2, Ioannis Papakrivopoulos7, Christoph Paus6, Petia Petrova2,
Andrea Petrucci8, Marco Pieri4, Dinyar Rabady2, Attila Rácz2, Valdas Rapševičius5,13,
Thomas Reis2, Hannes Sakulin2, Christoph Schwick2, Dainius Šimelevičius2,10, Mantas
Stankevičius5,10∗, Cristina Vazquez Velez2, Christian Wernet2, and Petr Zejdl5,11

1DESY, Hamburg, Germany
2CERN, Geneva, Switzerland
3University of California, Los Angeles, Los Angeles, California, USA
4University of California, San Diego, San Diego, California, USA
5FNAL, Batavia, Illinois, USA
6Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
7Technical University of Athens, Athens, Greece
8Rice University, Houston, Texas, USA
9Vilnius University, Vilnius, Lithuania
10Also at Vilnius University, Vilnius, Lithuania
11Also at CERN, Geneva, Switzerland
12Also at Karlsruhe Institute of Technology, Karlsruhe, Germany
13Also at Vilnius University, Institute of Computer Science, Vilnius, Lithuania

Abstract. The Compact Muon Solenoid (CMS) is one of the experiments at
the CERN Large Hadron Collider (LHC). The CMS Online Monitoring system
(OMS) is an upgrade and successor to the CMSWeb-Based Monitoring (WBM)
system, which is an essential tool for shift crew members, detector subsystem
experts, operations coordinators, and those performing physics analyses. The
CMS OMS is divided into aggregation and presentation layers. Communication
between layers uses RESTful JSON:API compliant requests. The aggregation
layer is responsible for collecting data from heterogeneous sources, storage of
transformed and pre-calculated (aggregated) values and exposure of data via the
RESTful API.
The presentation layer displays detector information via a modern, user-friendly
and customizable web interface. The CMS OMS user interface is composed of
a set of cutting-edge software frameworks and tools to display non-event data
to any authenticated CMS user worldwide. The web interface tree-like com-
ponent structure comprises (top-down): workspaces, folders, pages, controllers
and portlets. A clear hierarchy gives the required flexibility and control for con-
tent organization. Each bottom element instantiates a portlet and is a reusable
component that displays a single aspect of data, like a table, a plot, an article,

∗Corresponding author: Mantas.Stankevicius@cern.ch

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 214, 01044 (2019) https://doi.org/10.1051/epjconf/201921401044
CHEP 2018



etc. Pages consist of multiple different portlets and can be customized at run-
time by using a drag-and-drop technique. This is how a single page can easily
include information from multiple online sources. Different pages give access
to a summary of the current status of the experiment, as well as convenient
access to historical data.
This paper describes the CMS OMS architecture, core concepts and technolo-
gies of the presentation layer.

1 Introduction

Since the inception of CMS, the Web-Based Monitoring (WBM) activity was the one that
provided tools for run-time and retrospective monitoring of the detector. During the first
decade of data taking, the WBM has accumulated experience and tools that provided efficient
detector monitoring [1]. In order to ensure longterm support of the manpower and technical
resources for the monitoring tools required for CMS, in 2015 it was decided to re-designed
the core functionality of former WBM into the CMS Online Monitoring System (OMS) into
two layers: one for the aggregation layer and another for presentation. Framework and initial
content development took place throughout the year 2017 and the first production version was
announced in February 2018. It is planned that OMS will have a full functionality starting in
Run 3 (2021, fully replacing WBM) while active development must converge during 2019.

2 Architecture

Following best practices, CMS OMS is designed to have two separate layers: aggregation
layer and presentation layer. This architecture makes a clear separation of GUI and data in
the system and makes it possible to use/query data via other automated means, like CLI,
scripts, other GUI services. Not having this separation was considered a major draw-back in
the former WBM. Layers communicate via RESTful API.

The aggregation layer [2] features multiple specialized endpoints (microservices), each
implementing the specialized SQL query. On request, the appropriate application executes
associated optimized queries on a Oracle database, fetches data, serializes data along with
metadata into JSON format and returns to the client. The aggregation layer is implemented
as a standalone Java application running on the Katharsis framework [3]. The application
interface follows the specification of the JSON:API [4].

3 Presentation Layer

The presentation layer itself consists of two separate applications: metadata API and web
application.

3.1 Metadata API

The metadata API provides the back-end application service and access to persistent storage
for the portal configuration. The service provides a JSON:API [4] compliant interface to
access, store and update interface objects. It is a Python application running on Flask [5] with
database access via the SQLAlchemy framework [6]. Data is stored in a Oracle relational
database. The application code follows the PEP8 coding guidelines [7]. It is a stateless and
scalable application. Content synchronization and integrity is ensured at the database level.

2

EPJ Web of Conferences 214, 01044 (2019) https://doi.org/10.1051/epjconf/201921401044
CHEP 2018



etc. Pages consist of multiple different portlets and can be customized at run-
time by using a drag-and-drop technique. This is how a single page can easily
include information from multiple online sources. Different pages give access
to a summary of the current status of the experiment, as well as convenient
access to historical data.
This paper describes the CMS OMS architecture, core concepts and technolo-
gies of the presentation layer.

1 Introduction

Since the inception of CMS, the Web-Based Monitoring (WBM) activity was the one that
provided tools for run-time and retrospective monitoring of the detector. During the first
decade of data taking, the WBM has accumulated experience and tools that provided efficient
detector monitoring [1]. In order to ensure longterm support of the manpower and technical
resources for the monitoring tools required for CMS, in 2015 it was decided to re-designed
the core functionality of former WBM into the CMS Online Monitoring System (OMS) into
two layers: one for the aggregation layer and another for presentation. Framework and initial
content development took place throughout the year 2017 and the first production version was
announced in February 2018. It is planned that OMS will have a full functionality starting in
Run 3 (2021, fully replacing WBM) while active development must converge during 2019.

2 Architecture

Following best practices, CMS OMS is designed to have two separate layers: aggregation
layer and presentation layer. This architecture makes a clear separation of GUI and data in
the system and makes it possible to use/query data via other automated means, like CLI,
scripts, other GUI services. Not having this separation was considered a major draw-back in
the former WBM. Layers communicate via RESTful API.

The aggregation layer [2] features multiple specialized endpoints (microservices), each
implementing the specialized SQL query. On request, the appropriate application executes
associated optimized queries on a Oracle database, fetches data, serializes data along with
metadata into JSON format and returns to the client. The aggregation layer is implemented
as a standalone Java application running on the Katharsis framework [3]. The application
interface follows the specification of the JSON:API [4].

3 Presentation Layer

The presentation layer itself consists of two separate applications: metadata API and web
application.

3.1 Metadata API

The metadata API provides the back-end application service and access to persistent storage
for the portal configuration. The service provides a JSON:API [4] compliant interface to
access, store and update interface objects. It is a Python application running on Flask [5] with
database access via the SQLAlchemy framework [6]. Data is stored in a Oracle relational
database. The application code follows the PEP8 coding guidelines [7]. It is a stateless and
scalable application. Content synchronization and integrity is ensured at the database level.

Figure 1. Major persistent objects of presentation layer

3.2 Web Application

The Web Application uses state-of-the-art technologies like ReactJS [8], Redux [9], Materi-
alUI [10], Highcharts [11]. The application is lightweight, responsive, interactive and user
friendly.

4 Content organization

The website content is organized in a hierarchical manner by enclosing the structure into
sets of persistent objects (see Figure 1). Objects are divided into two groups: portal metadata
(dynamic) objects that can be managed by GUI administrators, and portal asset (static) objects
that are added to the portal with software updates, i.e. code base.

Workspace is a top-level container which contains folders and defines organizational unit,
like experiment project, sub-detector, etc. For example: CMS, DAQ, Pixel, CSC. Each
workspace can contain multiple folders which are the mid-level containers for grouping
pages. A page is the lowest level content container which provides the actual display of
content to the end-users. A page fills a browser window and is composed of a single optional
controller and one or more portlets. For example, Run Summary, Fill Report, RBX (Read-
Out Box) Plots, etc. All above objects, workspaces to pages, are the dynamic portal metadata
which are stored within the metadata API persistent storage and can be created, edited and/or
deleted via the portal management GUI section.

The controller is a filtering or selection widget which allows the user to apply selection
on the whole page, specifically on portlets within the page. It provides selected data object
(selection) to each page portlet and refreshes it. For example, Run selection, Run Range
selection, Fill number, etc. Portlet is a single content presentation object which presents
a single well-defined aspect of information, i.e. a single plot, a table, a set of links, etc.,
for example, Main Run information table, Fill Analysis plot, RBX (Read-Out Box) FNAL
(Fermi Laboratory) analysis IV (Current-Voltage) curve. Each portlet can act as a controller
too where it provides a selection to other portlets. In this way it is possible to establish the
master – detail relationship from one portlet to the other within a single page. The component
is the last object in the set which represents a reusable GUI element, like a simple button, an
input box or a more sophisticated element - data table, dynamic plot, etc. Controllers, portlets

3

EPJ Web of Conferences 214, 01044 (2019) https://doi.org/10.1051/epjconf/201921401044
CHEP 2018



and components are represented as Javascript/CSS files within the application code base. All
the above mentioned portal objects are described in more details below.

4.1 Workspace

Workspace is the top level content container which is predefined and comes from the metadata
repository. At the time of writing, OMS had one central workspace - CMS. At the level of
workspaces the administration role is being checked: individual CERN users or/and e-groups
can be added into the set of workspace administrators. They are able to manage the lower
level dynamic objects of the presentation layer.

4.2 Folder

Folders are the intermediate grouping objects that contain one or more pages. At the time
of writing OMS had 4 folders: Index, Fills, Runs and Triggers. This sequence follows the
actual data taking workflow of the LHC and an experiment: the LHC starts a Fill by inserting
bunches into the accelerator then detector starts a Run to record event data each initiated by
the Trigger. Folders can be added, edited, arranged or removed by workspace administrators.
Folders are identified by a unique (within workspace) name or title which directly translates
into a URL path and optional description.

4.3 Page

Page (see Figure 2) is the final dynamic container which contains an optional controller and
one or more portlets (see the list in Table 1). As well as folders, pages can be added, edited,
arranged or removed by workspace administrators. Pages are identified by a unique name or
title within workspace which directly translates into a URL path and an optional description.
Optional controller can be chosen from the list of available controllers while portlets can be
added afterwards. The page controller is not visible by default but can slide-in from the portal
header by clicking on the page title or selection abbreviation. Once the page is created, the
workspace administrator can add/edit/remove portlets by using the drag-and-drop technique
from within the main portal display. Once portlets are added to the page and all the content
are rendered, the administrator can re-arrange the page layout by dragging/re-sizing portlets.
This real-time layout editing technique allows administrators to adjust the portlet sizes to the
actual content.

4.4 Controller

Controller is a static portal object which can be edited only in the code base and the update
requires to re-deploy the application. The list of main controllers is presented in Table 2.
Each page can have no more than one controller which, on the other hand, can be used in
many pages. The controller is a special selection widget which maintains a clear defined
interface to provide the selected value to page portlets. The controller has two states - open,
all the selection components, like input boxes, drop-down boxes, buttons, etc. are visible
on the page (see Figure 3), and closed, all the selection components are hidden and only
the selection snippet is visible. This open-closed technique allows to provide sophisticated
widgets for value selection as well as to hide it once the selection is done and the focus is
on the data portlets instead. Controllers are based on re-usable controller components which
are discussed below. Eventually, a controller allows the user to apply a selection on the page,
i.e. Run range, date range, Fill number, boolean operators. All selections in a controller are
translated into a shareable URL with parameters.

4

EPJ Web of Conferences 214, 01044 (2019) https://doi.org/10.1051/epjconf/201921401044
CHEP 2018



and components are represented as Javascript/CSS files within the application code base. All
the above mentioned portal objects are described in more details below.

4.1 Workspace

Workspace is the top level content container which is predefined and comes from the metadata
repository. At the time of writing, OMS had one central workspace - CMS. At the level of
workspaces the administration role is being checked: individual CERN users or/and e-groups
can be added into the set of workspace administrators. They are able to manage the lower
level dynamic objects of the presentation layer.

4.2 Folder

Folders are the intermediate grouping objects that contain one or more pages. At the time
of writing OMS had 4 folders: Index, Fills, Runs and Triggers. This sequence follows the
actual data taking workflow of the LHC and an experiment: the LHC starts a Fill by inserting
bunches into the accelerator then detector starts a Run to record event data each initiated by
the Trigger. Folders can be added, edited, arranged or removed by workspace administrators.
Folders are identified by a unique (within workspace) name or title which directly translates
into a URL path and optional description.

4.3 Page

Page (see Figure 2) is the final dynamic container which contains an optional controller and
one or more portlets (see the list in Table 1). As well as folders, pages can be added, edited,
arranged or removed by workspace administrators. Pages are identified by a unique name or
title within workspace which directly translates into a URL path and an optional description.
Optional controller can be chosen from the list of available controllers while portlets can be
added afterwards. The page controller is not visible by default but can slide-in from the portal
header by clicking on the page title or selection abbreviation. Once the page is created, the
workspace administrator can add/edit/remove portlets by using the drag-and-drop technique
from within the main portal display. Once portlets are added to the page and all the content
are rendered, the administrator can re-arrange the page layout by dragging/re-sizing portlets.
This real-time layout editing technique allows administrators to adjust the portlet sizes to the
actual content.

4.4 Controller

Controller is a static portal object which can be edited only in the code base and the update
requires to re-deploy the application. The list of main controllers is presented in Table 2.
Each page can have no more than one controller which, on the other hand, can be used in
many pages. The controller is a special selection widget which maintains a clear defined
interface to provide the selected value to page portlets. The controller has two states - open,
all the selection components, like input boxes, drop-down boxes, buttons, etc. are visible
on the page (see Figure 3), and closed, all the selection components are hidden and only
the selection snippet is visible. This open-closed technique allows to provide sophisticated
widgets for value selection as well as to hide it once the selection is done and the focus is
on the data portlets instead. Controllers are based on re-usable controller components which
are discussed below. Eventually, a controller allows the user to apply a selection on the page,
i.e. Run range, date range, Fill number, boolean operators. All selections in a controller are
translated into a shareable URL with parameters.

Figure 2. Fill Report page is made up of the open controller (1), vertical Data table (2), horizontal Data
table (3), dynamic Chart (4), UTC and local time (5)

Table 1. List of OMS pages (as of paper publication time)

Folder T itle Description
Index Index Start page. Features introductory and overview content.
Fills Fill Summary Brief information about LHC Fills.
Fills Fill Report Detailed information about the single LHC Fill (various ta-

bles, plots, etc.) and table with links to Runs.
Runs Run Summary Brief information about CMS Runs.
Runs Run Report Detailed information about the single CMS data taking Run

(tables, plots, etc.), links to other pages.
Runs Lumisections Detailed information about each lumisection.
Runs Prescaling List of prescale sets of each Algorithm Trigger.
Triggers L1 Current Rates Displays Trigger configuration, rate and count, Overall and

Beam Active Deadtimes.
Triggers L1 Trigger Rates Same as L1 Current Rates, but for finished CMS Run.
Triggers L1 Algorithm Report Detailed information about single L1 Algorithm Trigger,

rate and count per lumisection in tabular form and chart.
Triggers Trigger Report Full information about Trigger: menus, keys, etc.

Figure 3. Run Summary controller. Selectors: LHC Fill, CMS Run range, date range, sequence,
included subsystems

5

EPJ Web of Conferences 214, 01044 (2019) https://doi.org/10.1051/epjconf/201921401044
CHEP 2018



Table 2. List of main OMS controllers (13 in total as of paper publication time)

Title Description
Fill Summary Filtering by LHC Fill range, date range, era, runtime type.
Run Summary Filtering by LHC Fill, CMS Run range, date range, sequence, subsystems.
Run Report Filtering by CMS Run number.
Fill Report Filtering by LHC Fill number.
L1 Algo Trigger Filtering by Bit and CMS Run number.

Figure 4. Integrated Luminosity Chart. First bar - start of LHC stable beam, sequent bars - downtimes,
black dashed lines - start of new CMS runs

4.5 Portlet

Portlet, as well as controller, is a static portal object which can be edited only in the code
base and the update requires to re-deploy the application. Each page can have more than one
portlet which can be used in many pages as well. The portlet is the ultimate content con-
tainer which displays a single well-defined aspect of the information, like a specific table or
plot. Portlet objects maintain a specific interface which allows a page to propagate selection
(controller values), refresh, minimize, maximize, edit and so on. This makes it possible to
re-use portlets in many different pages as well as provide a unified and recognizable function-
ality for the different content portlets. Portlets are based on the re-usable portlet components
which are discussed below. Every portlet has basic functionalities: description tool-tip, col-
lapse(minimize), full-screen and refresh. There are many ways to refresh a portlet: refresh
the whole page, apply a new selection in controller, click a button or set a timer. Portlets can
fetch data from multiple sources, combine and visualize them. Data from four endpoints are
used in order to construct Figure 4.

By definition a portlet is an isolated component, however it is possible to assign a group
number to a portlet. Multiple portlets with the same group number can communicate with
each other within the group scope, that works like "master-details" pattern (see Figure 5).
The table on the left displays several quantities of the last lumisection (sub-section of a run
during which time the instantaneous luminosity is constant). A user can select multiple check-
boxes on the table and these quantities are plotted at the right chart over time or lumisections
(optional).

4.6 Selector

A selector is a simple portal object which is used for synchronization between controller
and portlets as well as master and detail portlets. It is identified by a name which must be
unique within the portal. If a certain selector is attached to both controller and portlet, then

6

EPJ Web of Conferences 214, 01044 (2019) https://doi.org/10.1051/epjconf/201921401044
CHEP 2018



Table 2. List of main OMS controllers (13 in total as of paper publication time)

Title Description
Fill Summary Filtering by LHC Fill range, date range, era, runtime type.
Run Summary Filtering by LHC Fill, CMS Run range, date range, sequence, subsystems.
Run Report Filtering by CMS Run number.
Fill Report Filtering by LHC Fill number.
L1 Algo Trigger Filtering by Bit and CMS Run number.

Figure 4. Integrated Luminosity Chart. First bar - start of LHC stable beam, sequent bars - downtimes,
black dashed lines - start of new CMS runs

4.5 Portlet

Portlet, as well as controller, is a static portal object which can be edited only in the code
base and the update requires to re-deploy the application. Each page can have more than one
portlet which can be used in many pages as well. The portlet is the ultimate content con-
tainer which displays a single well-defined aspect of the information, like a specific table or
plot. Portlet objects maintain a specific interface which allows a page to propagate selection
(controller values), refresh, minimize, maximize, edit and so on. This makes it possible to
re-use portlets in many different pages as well as provide a unified and recognizable function-
ality for the different content portlets. Portlets are based on the re-usable portlet components
which are discussed below. Every portlet has basic functionalities: description tool-tip, col-
lapse(minimize), full-screen and refresh. There are many ways to refresh a portlet: refresh
the whole page, apply a new selection in controller, click a button or set a timer. Portlets can
fetch data from multiple sources, combine and visualize them. Data from four endpoints are
used in order to construct Figure 4.

By definition a portlet is an isolated component, however it is possible to assign a group
number to a portlet. Multiple portlets with the same group number can communicate with
each other within the group scope, that works like "master-details" pattern (see Figure 5).
The table on the left displays several quantities of the last lumisection (sub-section of a run
during which time the instantaneous luminosity is constant). A user can select multiple check-
boxes on the table and these quantities are plotted at the right chart over time or lumisections
(optional).

4.6 Selector

A selector is a simple portal object which is used for synchronization between controller
and portlets as well as master and detail portlets. It is identified by a name which must be
unique within the portal. If a certain selector is attached to both controller and portlet, then

Figure 5. Master-details. Portlet on the right side displays selected series from the left portlet

Figure 6. Portlet/component configuration

Table 3. List of main generic OMS components (around 20 in total as of paper publication time)

Title Description
Datatable Data table is most advanced and most used component in OMS. Data table can

be configured to display vertically (key:value) or horizontally (multiple rows vs
columns). Horizontal data table provides extensive functionality to manipulate
dataset: sort by column, add/remove columns, filter on column, paginate and change
page size. Numerical values within a page can be aggregated by one of the func-
tions: avg/sum/min/max. Units are displayed in a header row of a data table in
KaTeX [12] format. Under certain conditions column might have different units
within a page, in this case data table displays both value and units in the same cell.

Image Displays one or more images. Only one image is displayed at a time, carousel
allows interation over multiple images.

Links Displays both static and dynamic links.

we can state both components can communicate together. Thus a selector acts as common
denominator for the controller and multiple portlets to co-exist in the same page.

4.7 Components

Main page objects - controllers and pages - are driven by reusable components and custom
configuration (see list in Table 3). Components are included into the code base and imple-
mented by using Javascript/CSS. Components can define specific configuration requirements
i.e. data URL endpoint, page size, image URL, image size, etc. Some endpoints allow the
content to be added as in the frame of configuration, i.e. portlet which displays links (URLs)
to other resources reads a list of links from the configuration. An example configuration is
in Figure 6. The first block dynamically generates a link using a pattern, the second block
converts duration in seconds into human readable format (hh:mm:ss), the third block formats
received value and sets no more than 3 digits of precision.

7

EPJ Web of Conferences 214, 01044 (2019) https://doi.org/10.1051/epjconf/201921401044
CHEP 2018



5 Conclusions

This paper describes the architecture and implementation of the Online Monitoring System
(OMS). It provides a clear separation between data retrieval (querying and formatting, aggre-
gation API) and presentation (formatting and display, presentation) layers. This separation
allows the two layers to be developed and deployed independently as long as the specified
interface is maintained.

Hierarchical content organization and the metadata API of the Presentation Layer pro-
vides flexibility in content display organization by rapid display re-factoring without code
changes. In addition, the presentation layer object schema makes it possible to reuse con-
trollers, portlets and components on any level of organization thus providing a consistent
look-and-feel and functionality throughout the application by reducing the need for devel-
opment. Administration access control on workspace level is well leveraged for the CMS
experiment needs as most of the performance and control management is done on the group
or project level.

References

[1] J.A. Lopez-Perez, K. Maeshima, W. Badgett, U. Behrens, I. Chakaberia, Y. Jo,
S. Maruyama, J. Patrick, V. Rapsevicius, A. Soha et al., J. Phys., Conf. Ser. 898, 092040.
8 p (2017)

[2] C. Wernet, C. Zirpins, A. Petrucci, Unifying access to data from heterogeneous sources
through a RESTful API using an efficient and dynamic SQL-query builder (2017), http:
//cds.cern.ch/record/2644673

[3] Katharsis-framework, https://github.com/katharsis-project/
katharsis-framework

[4] jsonapi.org, https://jsonapi.org/
[5] Flask web development, http://flask.pocoo.org/
[6] The python sql toolkit and object relational mapper, https://www.sqlalchemy.org/
[7] Pep 8 - style guide for python code, https://www.python.org/dev/peps/

pep-0008/

[8] React - a javascript library for building user interfaces, https://reactjs.org/
[9] Redux - predictable state container for javascript apps, https://redux.js.org/

[10] Material-ui - react components that implement google’s material design, https://
material-ui.com/

[11] Highcharts - make your data come alive, https://www.highcharts.com/
[12] Katex. the fastest math typesetting library for the web, https://katex.org/

8

EPJ Web of Conferences 214, 01044 (2019) https://doi.org/10.1051/epjconf/201921401044
CHEP 2018




