
Spack-Based Packaging and Development for HEP

Chris Green1,∗, James Amundson1,, Lynn Garren1,, Patrick Gartung1,, and Marc Paterno1,

1Scientific Computing Division, Fermi National Accelerator Laboratory

Abstract. The art event-based analysis framework is used by multiple Intensity

Frontier and other experiments and projects in High Energy Physics (HEP).

A system of tools and scripts based around a Fermilab-originated package

management system called UNIX Product Support (UPS) has evolved to provide

development, packaging, release management, and distribution of the art suite,

related experimental software and external dependencies in relocatable binary

form.

The existing system has limitations in environments such as macOS with System

Integrity Protection (SIP) enabled and the various High Performance Computing

(HPC) systems that the field of HEP is increasingly looking to leverage. This

has led to a search for other ways of providing experiments with a packaging

and build system that meets their needs. We describe our efforts to develop a

packaging and release management system based on the Spack HPC package

management tool to replace the existing UPS-based system. We additionally

describe a companion system: SpackDev and cetmodules, allowing simultaneous

development of multiple HEP software packages in a consistent environment.

A successful implementation of the intended system would have applicability

across HEP rather than merely to the users of the art framework.

1 Introduction

The art[1, 2] event-based analysis framework is a multi-package suite with ∼15 external

dependencies in addition to libraries from the operating system. It is used by multiple HEP

experiments and projects1[3] and supported with an effort equivalent to less than 3 fulltime

people including development, build, test, release, distribution and support activities. The

same team also produces release distributions for the software produced by these entities and

the more than 120 external products upon which they rely. This is sustainable in part due to

a development, packaging, build, release and distribution system that allows the creation of

a binary distribution for a release consisting of packages of specified versions built with a

particular compiler and language standard and with specified options for each package where

appropriate. We describe this system and some of its essential characteristics, and motivations

for replacing it. Additionally, we describe our efforts to implement a replacement system

based around the Spack[4, 5] packaging system, and our plans for completion and deployment.

∗e-mail: greenc@fnal.gov
1ArgoNeuT, DUNE, ICARUS, LArIAT, MicroBooNE, Mu2e, Muon g-2, NOνA, SBND, artdaq, and LArSoft

FERMILAB-CONF-18-576-CD
ACCEPTED

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the 
U.S. Department of Energy, Office of Science, Office of High Energy Physics.



2 The Existing System and Motivation for Change

UPS[6, 7] was developed at Fermilab and released in 1990 as a package management ap-

plication allowing the activation of consistent sets of built software of specified versions

and variants (compiler, C++ language standard and build configuration options) in a UNIX

shell environment. Exactly one version and variant of any given product can be active in an

environment at any time. In more recent incarnations UPS packages can be trivially relocat-

able. UPS does not prescribe the build system for each product but relies on auxiliary (table

and version) files to instruct it on the relationships between packages and what constitutes

activating or deactivating a package (e.g. alterations to environment variables such as PATH,

LD_LIBRARY_PATH or PYTHONPATH). UPS does not have a build description language so its

use is supplemented by the ad hoc script package ssibuildshims.

The build instructions for external products and associated auxiliary files such as patches

and table files are stored in their own source control repository. Products developed in-house

such as the art suite itself, and experimental software are built using CMake[8] in conjunction

with a Fermilab-developed macro package (cetbuildtools[9]) to facilitate building, testing and

producing UPS packages. The high level macros provide high level directives for common

operations like comparing test output against a reference, or generating and building auxiliary

data for the ROOT application[10, 11]. They also handle coordination across multiple aspects

of CMake functionality for common operations such as ensuring that built libraries and

executables are available for use in dependent packages, or encoding the setup of the required

dependencies into a generated table file. A further system—Multi-Repository Build, or MRB—

allows the simultaneous development, build and test of multiple cetbuildtools-based packages

against a local or central install of packages upon which they depend. Additional scripts and

utilities assist in the tagging and production of releases and the upload of binary packages to

the distribution site.

The art suite is supported on the current and immediately-previous Scientific Linux and

related distributions, the current and immediately-previous macOS, and (on a best effort basis)

the current Ubuntu and related distributions. In addition, the art suite has occasionally been

used on HPC systems, usually with the aid of containerization software such as Docker, Shifter

or Singularity, but the required effort level for each release relative to off-the-shelf platforms is

quite high given the particular characteristics of each HPC machine. We also support multiple

GCC compilers on Linux and multiple Clang compilers on both Linux and macOS.

The recent ramping-up of efforts across HEP to utilize HPC systems—not a natural fit due

to the embarrassingly-parallel character of most event-based HEP algorithms—points towards

the mainstreaming and streamlining of support for those platforms. In addition, while client

experiments are keen to continue running the software on macOS it is necessary currently to

disable the SIP security feature. SIP is fundamentally incompatible with the environment-

based method used by UPS to provide binary relocatability due to SIP’s enforced sanitization

of environment variables such as DYLD_LIBRARY_PATH. It is expected that the ability to

disable SIP will be removed in a future incarnation of macOS. Client experiments have also

long expressed the desire for flexibility in the versions of some software in a release (e.g.

Geant4) for evaluation purposes, an attribute the current system does not possess. With the age

of UPS and the effort involved in supporting it as platforms and packaging and deployment

requirements evolve, it is time to look for alternative ways of satisfying those requirements.

The packaging group of the HEP Software Foundation (HSF)[12, 13] has been addressing

issues like this common to HEP as a whole over the last few years. It is intended and hoped

that a solution resulting from the work described here would have applicability and eventual

use across the wider HEP community.



3 Spack as the Basis for a New System

Spack is a package management tool designed to support multiple versions and

configurations of software on a wide variety of platforms and environments.[14]

Originating from LLNL and written in Python with an open source license, Spack was

originally conceived to satisfy the requirements of HPC system administrators for a package

management tool. It features almost 2900 built-in package recipes (“specs”) as of October

2018 with more added almost daily, and the ability to use external repositories of specs in

a configured hierarchy. Spack has a “build language” of provided Python functions and

objects to allow users to write their own specs. Specs can have variants which may be

boolean (+python) or value-based (nmxhep=4000, cxxstd=17) and these variants may be

required (or not) when specifying dependencies. Multiple versions and/or variants of a given

package may be installed contemporaneously. Different compilers may be used, which become

dependencies that must be satisfied consistently within a given dependency tree. Working in

conjunction with a module management system (Environment Modules, Lmod, and dotkit are

all supported), packages can be activated for use within a UNIX environment. In addition,

the Spack community is accessible and open to contributions, not only of new specs but also

improvements to specs, and bugfixes and new features for core code.

4 Evolving a Product for a New Community: Extending Spack to

Meet New Requirements

As conceived and implemented currently, Spack, like UPS before it, was not intended to satisfy

the full set of requirements we have for our whole system. Some of those requirements, such

as the need to support individual and simultaneous multiple product development, can be met

by external tools as described in section 5. Others are more intimately related to package

building and are more appropriately satisfied by enhancements to Spack itself. Buildcache is an

enhancement to Spack to enable the production of relocatable binary packages and their upload

to (and installation from) a local or remote cache. A proposal and initial implementation of a

new Spack command, spack chain, is currently being fleshed out by the community and

will provide the ability to “layer” Spack installations and take advantage of centrally-installed

packages while augmenting the package set with those installed.

Spack’s treatment of compiler dependencies is currently quite rigid: every package depends

upon the compiler active when the package was built. Very often, for binary-only, C-only

or data-only packages, we do not care that a dependency might have been “built” against a

different compiler than a package requiring it. Complex variant propagation (making sure all

relevant packages are built with the same C++ standard, for example) is also currently quite

cumbersome. Additionally, the reliance of the package ID hash calculation mechanism on

the current spec rather than being baked into a given package build presents challenges for

situations involving multiple releases of evolved product sets installed at the same time, and

some work and investigation remains in order to resolve them.

Other opportunities for enhancement have arisen, and will continue to crop up as devel-

opment continues: pull requests are welcomed, with a friendly and reasonable review, test

and merge system in place to incorporate them into the Spack code base. For cases where

enhancements are not yet ready for prime time, a fork from the GitHub repository serves to

allow progress on the wider goals while keeping up with developments in the Spack codebase.

Enhancements which have been accepted into the Spack codebase bring the base application

closer to meeting our requirements, and will evolve as necessary with other contributions and

enhancements to Spack more naturally and with less effort than maintaining a separate fork

would require.



5 Facilitating HEP Product Development: cetmodules and SpackDev

We have created two tools, cetmodules and SpackDev[15] to replace, respectively, cetbuildtools

and MRB. cetmodules is, like its predecessor, a CMake macro system, but with its reliance

on the presence of UPS and the environment it sets up for each package removed in favor of

CMake idioms such as find_package(). SpackDev is an external Python application that

interrogates Spack for the information necessary to generate a working area with checked-

out sources for one or more products to be developed together. It ensures that lower level

dependencies are built in the correct way, and that any intermediate products required for

consistency are checked out in addition to the ones specified explicitly.

SpackDev’s principal command is init, which sets up a “SpackDev area” containing:

a srcs directory where the products to develop are checked out and the generated top-level

CMakeLists.txt file is placed; the build and install trees; and spackdev-aux, where

support files and wrappers are placed for use by the build and by SpackDev itself.

The init command invokes Spack in order to obtain information about dependencies,

and the products to be developed. Spack reads relevant specs and information about already-

installed packages in order to “concretize” the dependency information into a fully-specified

set of packages to be built. SpackDev ascertains whether any intermediate products must

be checked out in addition to those specified in order to maintain consistency during code

development, checks out all the specified products and then ensures that Spack correctly builds

and installs the correct versions and variants of all dependencies. SpackDev additionally creates

a top-level CMakeLists.txt file to coordinate the building of the checked-out products after

using Spack to extract the build arguments from the specs, and ensures that building of each

package can take place in the correct environment.

6 A Milestone: the Minimum Viable Product

In the interests of producing a usable product that could be evaluated by interested clients,

a Minimum Viable Product (MVP) was envisaged. Completed and released in August of

2018, the MVP is a source-based build of all of the art suite’s dependencies from Spack specs

for one platform (Scientific Linux 7), compiler (GCC 7.3), and C++ standard (C++17) for

one minimally-modified release of art, and an implementation of SpackDev and cetmodules

capable of allowing the simultaneous development of all ten of the art suite’s products.

The MVP bootstrap script will create two Spack installations: one for the compiler and

other utilities such as git and another for the dependencies. The MVP treats products from

the former installation as “system”-installed commands via Spack’s packages.yaml file.

The latter is configured to satisfy dependencies as far as possible from the system via the

same method when they can be reasonably be expected to be installed. Specs for the art

suite are checked out from an external repository, as are support files such as a template for

packages.yaml and a required file describing the entire product dependency tree in the form

of the arguments to a single spack install command that would install everything. After

the tools are installed, the user sources a generated setup script and is ready to use SpackDev

to create a development area, compile necessary dependencies and start code development

with (as a demonstration) the art suite.

7 Critical evaluation of the MVP

In the implementation of the MVP, every installation is individual, self-contained, and built

from source, leading to a disk-space- and time-consuming init phase. SpackDev’s use of



Spack is external rather than internal, meaning that several Spack commands are executed—

each of which has its own concretization step, which could be time-consuming individually

and in aggregate.

The necessity of specifying fully the dependency tree as a spack install command

presents a source of errors: ideally this would be generated from a more simple input file by a

utility which would be able to keep version and variant specifications consistent and identify

missing information early.

The concretization time is heavily dependent on the complexity of the dependency graph.

The art suite’s dependency graph has in excess of 2000 edges, and a single concretization

operation can take on the order of a minute. The dependency graph for LArSoft[16, 17]—a

multi-package toolkit for simulation and reconstruction of HEP events in liquid argon Time

Projection Chambers (TPCs)—is significantly more complicated, taking possibly several times

longer to concretize, and the results are not cached in any way.

The SpackDev system can only accommodate the development of CMake-based products

currently due to the way the build arguments must be extracted from Spack. Also, due to

technical details of the way the products are specified to CMake, a top-level parallel build

cannot include tests, as the coordinated level of parallelism is lost and tests are executed

serially. Due to this, and the difficulty of determining a suitable “best common environment

for development,” Code–build–test-debug cycles are best implemented using the spackdev

env command, which puts one’s shell into the appropriate environment for one of the products

to be developed. From here, the tests for a particular package can be executed and debugged

as a developer might expect, dropping back to a global build for integration verification.

8 Remaining Issues and Future Work

The MVP was deliberately limited in scope, leaving several known issues unaddressed in

the interests of producing something functional enough to be evaluated meaningfully in the

context of our overall requirements. Even so, several issues were identified by the MVP.

The problem of multiple croncretization may be conceivably addressed by taking advantage

of a not-yet-merged third-party contribution to Spack and reformulating SpackDev as an

extension to Spack. Invoked as a Spack command (e.g. spack dev init) utilizing Spack’s

functionality as Python modules, the concretization step could be done only once. Currently-

cumbersome and ad hoc steps such as the extraction environment and build arguments could

be regularized and enhanced when done utilizing the SpackAPI rather than the command line

interface. The global versus per-product build dichotomy would stand some investigation and

possible improvement; regardless, adding parallel test executions into the global build is a

desirable goal if technically feasible. Improving the speed and flexibility of the concretization

step is certainly desirable, and long term efforts to that effect by core Spack developers are

expected to bear fruit in the next few months.

Use of the buildcache facility of Spack will be integrated into the system in the current

months, and as the feature matures, layered Spack installations using spack chain. Release

manamgement utilities will be developed in order to facilitate consistent version, variant and

(where appropriate) compiler flag specification across a release in for consistent SpackDev

development areas.

In Spack proper, we will be taking advantage of the upcoming improvements to concretiza-

tion, and investigating how to enhance Spack to allow non-compiler-dependent (e.g. data-only

and binary-only) products. “Umbrella” (no-source) products are also desirable to facilitate

simple setup of experiment analysis environments. Also, a significant task will be investigating

how to handle the availability of multiple releases, and the reuse of already-built packages

between same in the face of hash changes due to spec evolution.



9 Acknowledgments

We gratefully acknowledge the Spack community in general, and its principal authors in

particular, for their help.

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No.

DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High

Energy Physics.

References

[1] C. Green, J. Kowalkowski, M. Paterno, M. Fischler, L. Garren, Q. Lu, The Art Framework,

in Proceedings, 19th International Conference on Computing in High Energy and

Nuclear Physics (CHEP 2012): New York, USA, May 21–25, 2012 (2012), Vol. 396, p.

022020

[2] The SciSoft Team <scisoft-team@fnal.gov>, The art event processing framework,

http://art.fnal.gov/

[3] The SciSoft Team <scisoft-team@fnal.gov>, Who uses art? (2018), https://web.

archive.org/web/20181030144907/http://art.fnal.gov/who-uses-art/

[4] G. Todd, M. LeGendre, M.R. Collette, G.L. Lee, A. Moody, B.R. de Supinski, S. Futral,

The Spack Package Manager: Bringing Order to HPC Software Chaos, in Proceedings

of the International Conference for High Performance Computing, Networking, Storage

and Analysis (ACM, New York, NY, USA, 2015), SC ’15, pp. 40:1–40:12, ISBN 978-1-

4503-3723-6, http://doi.acm.org/10.1145/2807591.2807623

[5] T. Gamblin et al., Spack on github, https://github.com/spack/spack

[6] M. Votava, W. Bliss, S. Cutts-Bone, C. Debaun, F. Donno-Raffaelli, R. Herber,

K. Leininger, B. Lindgren, J. Nicholls, G. Oleynik et al., UPS UNIX Product Sup-

port, in Seventh Conference Real Time ’91 on Computer Applications in Nuclear, Particle

and Plasma Physics Conference Record (1991), pp. 156–159

[7] M. Mengel et al., The ups redmine project, https://cdcvs.fnal.gov/redmine/

projects/ups

[8] Kitware, Inc., CMake (2012), http://cmake.org/

[9] The SciSoft Team <scisoft-team@fnal.gov>, The cetbuildtools project, https://

cdcvs.fnal.gov/redmine/projects/cetbuildtools

[10] R. Brun, F. Rademakers, Nuclear Instruments and Methods in Physics Research Section

A: Accelerators, Spectrometers, Detectors and Associated Equipment 389, 81 (1997),

new Computing Techniques in Physics Research V

[11] The ROOT Team <root-dev@cern.ch>, ROOT, https://root.cern.ch

[12] The HSF Coordination Team <hsf-coordination@googlegroups.com>, The hep

software foundation, https://hepsoftwarefoundation.org/

[13] B. Morgan, G. Stuart et al., The hep software foundation, packaging working group,

https://hepsoftwarefoundation.org/workinggroups/packaging.html

[14] T. Gamblin et al., Spack documentation (2018), https://web.archive.org/web/

20180717162302/https://spack.readthedocs.io/en/latest/

[15] J. Amundson, P. Gartung, C. Green, SpackDev on github, https://github.com/

chissg/spackdev

[16] E. Snider, G. Petrillo, J. Phys. Conf. Ser. 898, 042057 (2017)

[17] The SciSoft Team <scisoft-team@fnal.gov>, The LArSoft project, https://

larsoft.org/




