Homogenizing OSG and XSEDE: Providing Access to XSEDE
Allocations through OSG Infrastructure

Suchandra Thapa, Robert W. Gardner, Jr
University of Chicago
Chicago, IL, USA
sthapa@ci.uchicago.edu,rwg@uchicago.edu

Dirk Hufnagel, Ken Herner
Fermi National Laboratory
Batavia, IL, USA
hufnagel@fnal.gov,kherner@fnal.gov

ABSTRACT

We present a system that allows individual researchers and virtual
organizations (VOs) to access allocations on Stampede2 and Bridges
through the Open Science Grid (OSG), a national grid infrastructure
for running high throughput computing (HTC) tasks. Using this
system, VOs and researchers are able to run larger workflows than
can be done with OSG resources alone. This system allows a VO or
user to run on XSEDE resources (with their allocation) using the
same framework used with OSG resources. The system consists of
two parts: the compute element (CE) that routes workloads to the
appropriate user accounts and allocation on XSEDE resources, and
simulated access to the CernVM Filesystem (CVMFS) servers used
by OSG and VOs to distribute software and data. This allows jobs
submitted through this system to work on a homogeneous envi-
ronment regardless of whether they run on XSEDE HPC resources
(like Stampede2 and Bridges) or OSG.

CCS CONCEPTS

« Computer systems organization — Grid computing;

KEYWORDS

OSG, XSEDE, distributed data access, CVMFS, CMS, ATLAS, TACC,
Stampede2, Bridges, PSC

ACM Reference Format:

Suchandra Thapa, Robert W. Gardner, Jr, David Lesny, Dirk Hufnagel, Ken
Herner, and Mats Rynge. 2018. Homogenizing OSG and XSEDE: Providing
Access to XSEDE Allocations through OSG Infrastructure. In PEARC ’18:
Practice and Experience in Advanced Research Computing, July 22-26, 2018,
Pittsburgh, PA, USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.
1145/3219104.3219157

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.

PEARC 2018, July 22-26 2018, Pittsburgh, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.

ACM ISBN 978-1-4503-6446-1/18/07...$15.00
https://doi.org/10.1145/3219104.3219157

David Lesny

University of Illinois Urbana-Champaign
Urbana, IL, USA
ddl@illinois.edu

Mats Rynge
University of Southern California
Los Angeles, California, USA
rynge@isi.edu

1 INTRODUCTION

The Open Science Grid (OSG) [11] provides an infrastructure for ex-
ecuting distributed high throughput computing (DHTC) workflows
across many loosely coupled computational facilities. As opposed
to a traditional HPC resource, jobs on OSG tend to use relatively
few cores (1-8) and can run without any communication between
jobs. When a researcher submits a job, he or she does not know a
priori at which computing site the job will run. Rather they specify
functional job requirements such as the memory needed, number
of cores (for multi-core applications), or whether there is support
for containers at the site. A metascheduling system then attempts
to match their job request to available resources. Although OSG
tracks and monitors accounting information for jobs, OSG does not
use this information to limit user job execution. Facilities may prior-
itize jobs from resource owners and/or projects, but users running
opportunistically do so in a fair share (and potentially preempt-
able) fashion regardless of the total wall hours users may have used
through OSG.

On the other hand, the Extreme Science and Engineering Discov-
ery Environment (XSEDE) [15] requires users to access resources
through granted allocations in order to run jobs and workflows on
its resources. Users must apply for an allocation which allows them
to use a limited amount of service units (SUs) on specific resources.
In order to run workflows on a resource, they must log in via SSH
to each individual resource and submit their workflow there. There
is no provision for running workflows across multiple resources.
Once a researcher exhausts their allocation, they are not able to
run any additional jobs.

Historically, users have not been able to submit jobs from OSG
to XSEDE resources. Although there is a gateway that allows users
with XSEDE allocations to submit jobs to OSG, a general mechanism
to do the reverse does not exist.

In this paper, we present a system that bridges the differences
between OSG and XSEDE compute environments and allows users
to treat XSEDE resources as if they were OSG resources. This system
allows virtual organizations (VOs) like ATLAS [2] and CMS [4]
to consume allocations on XSEDE resources as if the resources
were an OSG resource. In order to achieve this, the system had to
handle several issues: software access and distribution (the size of
experiment-specific software releases with their dependencies is
rather large), authenticating to XSEDE resources, and routing jobs

https://doi.org/10.1145/3219104.3219157
https://doi.org/10.1145/3219104.3219157
https://doi.org/10.1145/3219104.3219157

PEARC 2018, July 22-26 2018, Pittsburgh, USA

to the correct allocation on those resources. We’ve configured this
system with access to accounts on Stampede2 [14] and Bridges [10],

y
T — 0SG a User 1 Jobs
Jobs
Y User 2 Jobs
J >
T— User n Jobs /]
Job Management OSG XSEDE XSEDE HPC

System Gateway Resource

Figure 1: High level architecture for OSG - XSEDE gateway

2 BACKGROUND

Most OSG researchers run workflows by utilizing a pilot model [12].
This allows users to easily and efficiently run their workflow on
available sites. Users submit their workflows to a central submit
system. The system then matches jobs within the workflow to pilots
running on computational facilities. Once a job is matched to a pilot,
the pilot then downloads the job information, inputs, and binaries
(the job "payload") and executes it.

A central "factory” such as GlideinWMS[13], HEPCloud [6], or
PanDA [8] is responsible for tracking the number of idle jobs on
the central submit system queue. If the number of idle jobs exceed
certain thresholds, the factory then submits pilot jobs to batch
systems at OSG computational facilities. All facilities on OSG use
the HTCondor-CE [3] compute element to accept incoming jobs
and submit them to a local batch manager so the factory can submit
pilot jobs to any OSG facility using the same method.

Although previous work has been done to incorporate XSEDE
resources into workflows run by OSG users [16, 17], these attempts
were either specific to a given researcher or required resources
unique to a given XSEDE resource. LIGO was able to use 2M SUs on
Stampede [17] as part of their analysis campaign in 2016. However
this infrastructure was specific to LIGO’s processing framework.
The Comet Virtual Clusters [16] was used to by several VOs (LIGO,
CMS, Xenon1T) to run workflows on OSG and the Comet system
at the San Diego Supercomputer Center (SDSC). However, these
jobs were limited to using a portion of the resources set aside on
Comet. In addition, the virtual clusters required several services to
be commissioned at SDSC in order to operate.

3 OSG-XSEDE GATEWAY: HTCONDOR-CE

OSG uses HTCondor-CE [3] to allow jobs to run on resources. The
typical mode of operation is to authenticate and authorize incom-
ing jobs using a X.509 proxy certificate [19]. The HTcondor-CE
then submits the pilot job to the local batch manager (e.g. HT-
Condor, SGE, Slurm, PBS). By using the BOSCO [18] module for
HTCondor-CE, this can be altered. Instead of directly calling the
submit commands for a batch manager, the HTCondor BOSCO
module will submit jobs to a remote system. BOSCO does this by
using SSH to login to a specified host, transferring any input files
to the host, and then calling the appropriate submit command. The
HTCondor BOSCO module will then periodically log in to the re-
mote system to track the job’s status and update its own records

temp

for the job. Once the job has completed, BOSCO will then transfer
the job outputs back. We utilized this method of operation to allow
OSG jobs to be submitted to XSEDE resources.

This implementation allows for users on OSG to run their work-
flows seamlessly on XSEDE and OSG resources. We set up and ran
a HTCondor-CE system for each XSEDE resource that will accept
jobs from OSG VOs. We then created entries for OSG VOs on the
HTCondor-CE for those that have an allocation on the correspond-
ing XSEDE resource. This allows OSG users with XSEDE allocations
to submit jobs while preventing OSG users without allocations from
running jobs on XSEDE resources. The appropriate pilot factory
can then submit pilots to these HTCondor-CEs and run jobs on the
XSEDE resource for VOs.

3.1 Routing Jobs to Allocations

A key requirement for the OSG-XSEDE gateway is to properly route
incoming jobs. When an user submits a job through the gateway, the
job must run using that user’s account and allocation. In addition,
the gateway must reject jobs from users without allocations. Finally,
adding or removing an OSG to XSEDE routing for an user should
be straightforward and easy.

The standard installation and configuration for HTCondor-CE
and BOSCO is to use a single account to run all incoming jobs. Nat-
urally, this is incompatible with properly running jobs on XSEDE
resources. We solved this problem by modifying the job routing
in HTCondor-CE and by modifying the job submission scripts for
each account that is used to submit jobs.

We used the JobRouter component of HTCondor-CE to send
jobs to the correct accounts on XSEDE resources. Figure 2 shows
how the job routing works in our modified setup. All incoming
jobs are submitted with a X.509 proxy that authenticates the origin
of the job. We configured the JobRouter to examine the VO name
attribute of the proxy. Based on that, the JobRouter was set to route
incoming jobs to the cms or atlas user accounts. In addition, we
modified the BOSCO configuration for each user account so that
BOSCO used different usernames and public keys when logging
into corresponding account on the XSEDE resource. Jobs submitted
with a proxy that does not match a configured entry are rejected by
HTCondor-CE. Adding or removing support for a VO, consists of
modifying a single configuration file for the JobRouter and another
configuration file for the X.509 proxy to user mapping.

Finally, we made modifications to the BLAH[9] submit scripts
used for each user. HTCondor-CE installs a set of submit scripts in
user accounts on the individual resources (e.g. the uscms account
on Stampede2). HTCondor-CE uses these submit scripts to translate
job parameters (e.g. memory or cores required) into a submit file that
can be understood by the batch manager on the local resource (e.g.
SLURM, PBS, SGE). We modified these scripts to generate submit
files incorporating site and user specific requirements for jobs. For
example, running jobs on a particular SLURM partition or loading
needed modules such as Singularity [7] into the environment for
the user job.

3.2 Authenticating to Resources

The HTCondor-CE gateway requires the ability to login into the
appropriate XSEDE resource in order to run OSG jobs using a

Homogenizing OSG and XSEDE

PEARC 2018, July 22-26 2018, Pittsburgh, USA

Job Submission
Scripts

BOSCO using using ssh pub
key for user 1

User 1

Job Submission

BOSCO using using ssh pub T
Scripts

key for user 2

4
4

User 2

Job Manager

Job Submission
Scripts

BOSCO using using ssh pub
key for user 3

Subject = *cms*
Incoming Job
Job Queue
for user 1
X.509 Proxy Subject = *atlas*
Subject = .. >
Issuer = .. o
Job Queue
JobRouter for user 2
Subject = *osg* .
Job Queue
for user 3
HTCondor CE

User 3

XSEDE Resource

Figure 2: Job Routing from OSG gateway to XSEDE resource

Scripts on login nodes
determine updates needed

Stratum-R server mirrors
CVMFS repositories

Transfer updates using
(4 \ rsync
\)

CVMFS Servers

Stratum-R Server

Using STunnel connection
secured with X.509
certificates

WAN access over port 80
(encrypted using X.509
certificates)

— —

Stampede2 login
node

RSync places files into

scratch area on Lustre Access CVMFS files using

lcvmfs symlink to scratch
area

Lustre Filesystem
on Stampede2

Access over LAN

Compute Nodes

Figure 3: Stratum-R Architecture, the system which replicates the contents of a CVMFS repository to local filesystem.

SSH key pair. HTcondor-CE uses a SSH connection in order to
transfer input files and submit jobs. The SSH connections are then
subsequently used to monitor, remove jobs, and retrieve job output
from the XSEDE resource’s batch system. The gateway does not
support password based SSH logins or other SSH login methods
such as Kerberos or GSI authentication.

For Bridges, we configured the gateway to log into a community
account. A community account is required since the OSG-XSEDE
gateway can use the account to submit jobs on behalf of any member
of a VO. After the community account was created, we registered the
appropriate SSH public key through the Pittsburgh Supercomputing
Center (PSC) SSH Key management system. The gateway was then
able to use corresponding SSH key to log into Bridges.

However, several resources such as Stampede2 require multi-
factor authentication (MFA) using a one time token generated by a
hardware device or separate software application in order to login.

For access to Stampede2, we also needed to use community ac-
counts for access. Here, we requested separate community accounts
for the ATLAS and CMS VOs. In order to satisfy MFA requirements,
the system initially used the IP of the OSG-XSEDE gateway as a
factor in conjunction with a SSH key pair. Since the OSG gateway
would only login from a fixed IP address, logins to the commu-
nity account can be restricted to attempts originating from that IP

address. The gateway’s IP and the SSH constituted two different
factors satisfying Stampede’s MFA requirements.

Later on, we requested and obtained an MFA exception from the
TACC staff in order to allow to greater flexibility to allow alternate
gateways that we operate to submit jobs as well. The exception
allowed us to login using just a SSH key. For established projects that
can justify the need for a MFA exception, this is a viable alternative
to using IP address/SSH keys as factors to satisfy MFA requirements.

4 SOFTWARE ACCESS AND DISTRIBUTION

Most virtual organizations and a large majority of users on OSG
have moved to distributing and accessing software using the CernVM
Filesystem (CVMES) [1]. CVMFS distributes files and directories
through a hierarchy of servers and caches. Communications be-
tween CVMFS servers and a CVMFS client use the HTTP protocol.
The CVMFS client then uses FUSE to convert the filesystem in-
formation from a CVMFS server to a read-only POSIX filesystem
available to local applications.

For performance reasons, the CVMFS client maintains a local
cache of portions of the filesystem that have been used. In addition,
a site installation of the Squid HT TP proxy is used to cache data
for multiple clients within a computational facility.

In the last few years, CVMFS has been increasingly used by
virtual organizations participating with OSG to distribute software

PEARC 2018, July 22-26 2018, Pittsburgh, USA

Claimed Slots by Site.Entry

4000

3000

2000

1000

3/800:00 3/812:00 3/900:00

3/912:00

temp

@ timeshift -5m

3/10 00:00 3/10 12:00 3/11 00:00 3/11 13:00

Figure 4: Cores used on Stampede2 by CMS - HEPCloud Factory Monitoring

Completed jobs per site

0 2000 4000

[completed B app-successful app-failed m site-failed o aborted

8000 10000 12000

cancelled app-unknown

Figure 5: CMS Job Status on Stampede2

T
@dGSh b Running job Cores
2500 71 Hours from 2018-03-08 00:00 to 2018-03-10 23:59 UTC
— T T T T
2000 |+ 4
1500 | 4
1000 |+ 4
0 4
bw mw =W BW om ww Zwo o B0 @0 @@ o zwo @@

T3S T

Masimurn: 2,091, Minimam: 0.00, Average: 1175 , Current: 100

Figure 6: Cores used on Stampede2 by CMS - CMS Monitor-
ing

and configuration to computational facilities. In order to allow
CMS and ATLAS jobs to run on XSEDE resources, we needed to
provide access to repositories currently distributed through CVMES.
We used two different methods to access software on CVMFS on
Bridges and Stampede2.

4.1 Access Through the CVMFS Client

On Bridges, we were able to provide access to software on CVMFS
using the CVMFS client. The PSC admins installed FUSE, the CVMFS
client, automount, and configuration files provided by OSG on each
compute node. In addition, a modified Squid server was installed

at Bridges to provide a resource wide cache. Once installed and
started the CVMFS client accepts access attempts to files and direc-
tories within the /cvmf's mountpoint and provides the appropriate
information.

4.2 Access Through Stratum-R

On Stampede2, we were not able to use the CVMFS client to access
repositories on the compute nodes due to FUSE not being available.
Instead, we used a system called Stratum-R to provide jobs access
to these repositories. Figure 3 shows the high level architecture of
the Stratum-R system.

The Stratum-R server runs two CVMFS services: a CVMFS server
and CVMFS client. The CVMES server component integrates with
existing CVMFS servers and replicates full copies of repositories
from these servers. The CVMFS client then talks to the locally
running CVMFS server and creates a read-only filesystem with
these repositories under the /cvmf's mountpoint.

The Stratum-R client then uses rsync to transfer files from the
Stratum-R server to the scratch area on Stampede2. The client
compares files installed in the scratch area with the latest version
of these files under /cvmfs and then updates the scratch area to
match the latest repository version. In order to prevent a man-in-
the-middle attack, the rsync connection is secured with stunnel
using X.509 certificates. Since CVMFS repositories are updated
multiple times a day, the Stratum-R client is run periodically using
a cronjob.

5 CMS WORKFLOWS

CMS workflows are submitted through the regular CMS systems
and jobs are submitted though CMS HTCondor schedds connected
to HEPCloud. Once that happens, the HEPCloud factory sends pilot
jobs to Stampede2 or Bridges through the OSG-XSEDE gateway.

Homogenizing OSG and XSEDE

@idashbe

Compieted jobs Cumulative
23 Hours from 2018-03-25 00:00 to 2018-03-25 23:59 UTC
7 T T v T

8000 |

7.000

6000

gl
.00 10.00 12:00 14:00 16:00 18.00

™ CONNECT STAMPEDE_MCORE {8,395)

Total: 8,395 , Average Rate: 0.10 s

Figure 7: Cumulative # of jobs run on Stampede2 by ATLAS
on 3/25/2018

fdashoe NEvents Processed in MEvents (Miilion Events)

23 Hours from 2018-03-25 00:00 to 2018-03-25 23:59 UTC
— T T T T T

sf

10.00 1200 1a:00 16:00 18.00

™ CONNECT STAMPEDE_MCORE {7.69)

Total: 763, Average Rate: 0.00 /5

Figure 8: Cumulative # of events processed on Stampede2 by
ATLAS on 3/25/2018

When these pilots start running they match and run jobs queued
in the CMS schedd.

To provide a CMS-compatible runtime environment, jobs use
Singularity with standard CMS containers provided via CVMFS.
We access the CMS software and site configuration via CVMFS,
conditions through locally provided Squid proxies and read job
input data remotely via XRootD from Fermilab (and possibly other
CMS sites).

5.1 CMS-Stampede2 Integration

We needed to change several job parameters to run CMS jobs op-
timally on Stampede2. Incoming jobs were set to run only on the

PEARC 2018, July 22-26 2018, Pittsburgh, USA

@CICISh] Efficiency Good Jobs

23 Hours from 2018-03-25 00:00 to 2018-03-25 23:53 UTC
T T T T T T T T

14k o

08 @

06

04 f

02

00 N N N N N N N N N N N
00.00 02:.00 04:.00 06:00 08.00 10.00 12:00 14:00 16:.00 18:.00 20:00 22:00

W CONNECT_STAMPEDE_MCORE (0.90)

Total: 0.89 . Average Rate: 0.00 /s

Figure 9: Efficiency of ATLAS jobs on 3/25/2018

Knights Landing (KNL) nodes. Although the KNL nodes have 272
cores available, jobs only used 68 cores due to memory limitations.
In addition, incoming jobs only claimed a single node in order to
simplify testing and integration. With these changes, jobs could
use a total of 3400 KNL cores simultaneously.

We then ran several CMS workflows ranging from simple hello
world type jobs to workflows with 10,000 Monte Carlo simulations.
We were able to consistently see jobs utilizing over 3000 cores
(Figures 4 and 6). The difference in the number of cores is due to
differences between how HEPCloud Factory and CMS dashboard
record available job slots. Figure 5 shows the the final status Monte
Carlo workflow with all 10000 jobs having been successfully com-
pleted.

5.2 CMS-Bridges Integration

We made similar modifications to job parameters on Bridges. All
jobs were set to use 8-core/36GB RAM slots on the RSM-Shared
partition. These jobs ran on shared nodes with 28 cores and 128GB
of RAM. The submit scripts were also modified to load Singularity
so that jobs could get a Scientific Linux 6 environment while run-
ning. As with the Stampede2 integration, a site entry was added
to the HEPCloud integration factory. As with Stampede2, several
workflows from hello world jobs to progressively more complicated
workflows were run.

6 ATLAS WORKFLOWS ON STAMPEDE?2

ATLAS uses a job management system called PanDA to manage and
run jobs on OSG sites. We used a variation of the OSG-XSEDE gate-
way to allow PanDA to run pilots on Stampede2. In this variation,
PanDA submitted pilots to a standard HTCondor-CE installation.
Once pilots were submitted, they then flocked [5] to a server that
used BOSCO to SSH to the Stampede?2 login node.

Two types of production jobs were run on Stampede2: Event
Service (ES) jobs and standard jobs. ES jobs process blocks of events
and can be preempted or stopped at any time. Standard jobs must

PEARC 2018, July 22-26 2018, Pittsburgh, USA

Stampede Core Usage

35000

30000

25000

20000

15000

Core Uage

10000

5000

temp
Busy 30720 28128
- Idle 5128 540
Draining 0 0

3/25 325 325 3/25 3/26

Figure 10: Cores on Stampede2 used by ATLAS vs. Time

run to completion. The two job types can be combined to avoid
wasting CPU cycles by running ES jobs to fill in gaps where standard
jobs can’t run.

6.1 ATLAS-Stampede2 Integration

We needed to change several job parameters in order to run ATLAS
jobs more optimally on Stampede2. First, due to limitations on the
number of jobs allowed in the queues on Stampede2, the submit
files generated were changed so each job claimed multiple nodes
and the launcher command was used to run pilots on all of the
nodes. Second, the mix of ATLAS jobs was altered to utilize the
cores and memory more efficiently. Finally, jobs were set so that
they ran on Skylake nodes rather than KNL nodes in order to get
better I/O performance.

We also utilized software called pCache to cache data that jobs
request during processing. When a job requests data, the copy
command checks pCache to see if a cached copy is available. If the
data is not available locally, it is requested from a remote resource
and is placed into the local cache. This allows us to minimize the
network bandwidth that jobs use and to increase the CPU efficiency
by reducing I/O latency.

Once that was done, we were able validate and run production
jobs from ATLAS. Figure 10 shows monitoring information for
cores available to ATLAS from Stampede2. During March 25, 2018,
we were able to obtain and run on over 30000 cores. Figure 7 shows
the cumulative number of jobs run during that day. ATLAS was
able to run over 8000 jobs during this time period. The cumulative
number of events generated (figure 8) during that day was almost
8 million events. Figure 9 shows that the jobs also averaged more
89% CPU efficiency.

7 CONCLUSIONS AND FUTURE WORK

We have presented a system that allows XSEDE HPC resources to
be integrated into the OSG. This system allows VOs to incorporate
allocations on XSEDE resources into their existing job manage-
ment systems and to seamlessly utilize those allocations alongside
resources on the OSG.

The plans for moving forward includes further work on integrat-
ing the CMS workflows with Bridges and Stampede2 and moving
CMS usage of these resources into production status. Addition-
ally, we plan on integrating Comet, which should be fairly easy
as CVMES is already natively installed on the resource, and work
with some individuals with XSEDE allocations to get them access
to XSEDE via OSG.

ACKNOWLEDGMENTS

The work is supported by the National Science Foundation under
Grant No.: NSF PHY 1148698.

This work used the Extreme Science and Engineering Discovery
Environment (XSEDE), which is supported by National Science
Foundation grant number OCI-1053575. Specifically, it used the
Bridges system, which is supported by NSF award number ACI-
1445606, at the Pittsburgh Supercomputing Center (PSC).

The authors would like to acknowledge Derek Simmel (PSC) ,
Anirban Jana (PSC), and Todd Evans (TACC) for their assistance and
the Texas Advanced Computing Center (TACC) at The University of
Texas at Austin for providing HPC, storage, and network resources
that have contributed to the research results reported within this

paper.

Homogenizing OSG and XSEDE

REFERENCES

(1]

=

[7

[

(8]

=

[10

[11

[12

[13

[14]

[15

[16

[17]

[18

[19]

C. Aguado Sanchez, J. Bloomer, P. Buncic, L. Franco, S. Klemer, and P. Mato.
2008. CVMES - a file system for the CernVM virtual appliance. In Proceedings of
XII Advanced Computing and Analysis Techniques in Physics Research. Article 52,
52 pages.

W. W. Armstrong et al. 1994. ATLAS: Technical proposal for a general-purpose p
p experiment at the Large Hadron Collider at CERN. (1994).

B Bockelman, T Cartwright, J Frey, E M Fajardo, B Lin, M Selmeci, T Tannenbaum,
and M Zvada. 2015. Commissioning the HTCondor-CE for the Open Science
Grid. Journal of Physics: Conference Series 664, 6 (2015), 062003. http://stacks.iop.
org/1742-6596/664/i=6/a=062003

S. Chatrchyan et al. 2008. The CMS Experiment at the CERN LHC. JINST 3
(2008), S08004. https://doi.org/10.1088/1748-0221/3/08/S08004

D.HJ. Epema, M. Livny, R. van Dantzig, X. Evers, and J. Pruyne. 1996. A worldwide
flock of Condors: Load sharing among workstation clusters. Future Generation
Computer Systems 12, 1 (1996), 53 — 65. https://doi.org/10.1016/0167-739X(95)
00035-Q Resource Management in Distributed Systems.

Burt Holzman, Lothar A. T. Bauerdick, Brian Bockelman, Dave Dykstra, Ian Fisk,
Stuart Fuess, Gabriele Garzoglio, Maria Girone, Oliver Gutsche, Dirk Hufnagel,
Hyunwoo Kim, Robert Kennedy, Nicolo Magini, David Mason, P Spentzouris,
Anthony Tiradani, Steve Timm, and Eric W. Vaandering. 2017. HEPCloud, a New
Paradigm for HEP Facilities: CMS Amazon Web Services Investigation. 1 (12
2017).

Gregory M. Kurtzer, Vanessa Sochat, and Michael W. Bauer. 2017. Singularity:
Scientific containers for mobility of compute. PLOS ONE 12, 5 (05 2017), 1-20.
https://doi.org/10.1371/journal.pone.0177459

T. Maeno, K. De, T. Wenaus, P. Nilsson, G. A. Stewart, R. Walker, A. Stradling,
J. Caballero, M. Potekhin, and D. Smith. 2011. Overview of ATLAS PanDA
workload management. j. Phys. Conf. Ser. 331 (2011), 072024. https://doi.org/10.
1088/1742-6596/331/7/072024

Massimo Mezzadri, Francesco Prelz, and David Rebatto. 2011. Job submission
and control on a generic batch system: the BLAH experience. Journal of Physics:
Conference Series 331, 6 (2011), 062039. http://stacks.iop.org/1742-6596/331/i=6/
a=062039

Nicholas A. Nystrom, Michael J. Levine, Ralph Z. Roskies, and J. Ray Scott. 2015.
Bridges: A Uniquely Flexible HPC Resource for New Communities and Data
Analytics. In Proceedings of the 2015 XSEDE Conference: Scientific Advancements
Enabled by Enhanced Cyberinfrastructure (XSEDE ’15). ACM, New York, NY, USA,
Article 30, 8 pages. https://doi.org/10.1145/2792745.2792775

Ruth Pordes, Don Petravick, Bill Kramer, Doug Olson, Miron Livny, Alain Roy,
Paul Avery, Kent Blackburn, Torre Wenaus, Frank WAijrthwein, Ian Foster, Rob
Gardner, Mike Wilde, Alan Blatecky, John McGee, and Rob Quick. 2007. The
open science grid. Journal of Physics: Conference Series 78, 1 (2007), 012057.
http://stacks.iop.org/1742-6596/78/i=1/a=012057

1. Sfiligoi, D. C. Bradley, B. Holzman, P. Mhashilkar, S. Padhi, and F. Wurthwein.
2009. The Pilot Way to Grid Resources Using glideinWMS. In 2009 WRI World
Congress on Computer Science and Information Engineering, Vol. 2. 428-432. https:
//doi.org/10.1109/CSIE.2009.950

Igor Sfiligoi, Daniel C. Bradley, Burt Holzman, Parag Mhashilkar, Sanjay Padhi,
and Frank Wurthwrin. 2009. The pilot way to Grid resources using glideinWMS.
WRI World Congress 2 (2009), 428-432. https://doi.org/10.1109/CSIE.2009.950
TACC 2018. Texas Advanced Computing Center Stampede2. (mar 2018). Re-
trieved March 24, 2018 from https://www.tacc.utexas.edu/systems/stampede2
J. Towns, T. Cockerill, M. Dahan, 1. Foster, K. Gaither, A. Grimshaw, V. Hazlewood,
S. Lathrop, D. Lifka, G. D. Peterson, R. Roskies, J. R. Scott, and N. Wilkins-Diehr.
2014. XSEDE: Accelerating Scientific Discovery. Computing in Science Engineering
16, 5 (Sept 2014), 62-74. https://doi.org/10.1109/MCSE.2014.80

Rick Wagner, Philip Papadopoulos, Dmitry Mishin, Trevor Cooper, Mahidhar
Tatineti, Gregor von Laszewski, Fugang Wang, and Geoffrey C. Fox. 2016. User
Managed Virtual Clusters in Comet. In Proceedings of the XSEDE16 Conference on
Diversity, Big Data, and Science at Scale (XSEDE16). ACM, New York, NY, USA,
Article 24, 8 pages. https://doi.org/10.1145/2949550.2949555

Derek Weitzel, Brian Bockelman, Duncan A. Brown, Peter Couvares, Frank
Wiirthwein, and Edgar Fajardo Hernandez. 2017. Data Access for LIGO on the
OSG. In Proceedings of the Practice and Experience in Advanced Research Computing
2017 on Sustainability, Success and Impact (PEARC17). ACM, New York, NY, USA,
Article 24, 6 pages. https://doi.org/10.1145/3093338.3093363

D Weitzel, I Sfiligoi, B Bockelman,] Frey, F Wuerthwein, D Fraser, and D Swanson.
2014. Accessing opportunistic resources with Bosco. Journal of Physics: Conference
Series 513, 3 (2014), 032105. http://stacks.iop.org/1742-6596/513/i=3/a=032105
Von Welch, Ian Foster, Carl Kesselman, Olle Mulmo, Laura Pearlman, Steven
Tuecke, Jarek Gawor, Sam Meder, and Frank Siebenlist. 2004. X. 509 proxy
certificates for dynamic delegation. (01 2004).

PEARC 2018, July 22-26 2018, Pittsburgh, USA

http://stacks.iop.org/1742-6596/664/i=6/a=062003
http://stacks.iop.org/1742-6596/664/i=6/a=062003
https://doi.org/10.1088/1748-0221/3/08/S08004
https://doi.org/10.1016/0167-739X(95)00035-Q
https://doi.org/10.1016/0167-739X(95)00035-Q
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1088/1742-6596/331/7/072024
https://doi.org/10.1088/1742-6596/331/7/072024
http://stacks.iop.org/1742-6596/331/i=6/a=062039
http://stacks.iop.org/1742-6596/331/i=6/a=062039
https://doi.org/10.1145/2792745.2792775
http://stacks.iop.org/1742-6596/78/i=1/a=012057
https://doi.org/10.1109/CSIE.2009.950
https://doi.org/10.1109/CSIE.2009.950
https://doi.org/10.1109/CSIE.2009.950
https://www.tacc.utexas.edu/systems/stampede2
https://doi.org/10.1109/MCSE.2014.80
https://doi.org/10.1145/2949550.2949555
https://doi.org/10.1145/3093338.3093363
http://stacks.iop.org/1742-6596/513/i=3/a=032105

	Abstract
	1 Introduction
	2 Background
	3 OSG-XSEDE Gateway: HTCondor-CE
	3.1 Routing Jobs to Allocations
	3.2 Authenticating to Resources

	4 Software Access and Distribution
	4.1 Access Through the CVMFS Client
	4.2 Access Through Stratum-R

	5 CMS Workflows
	5.1 CMS-Stampede2 Integration
	5.2 CMS-Bridges Integration

	6 ATLAS Workflows on Stampede2
	6.1 ATLAS-Stampede2 Integration

	7 Conclusions and Future Work
	Acknowledgments
	References

