

Office of Science

Performance Characterization of LCLS-II Superconducting Radiofrequency Cryomodules

Ruth Gregory Lee Teng Internship Final Presentation 9 August, 2017

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics

In partnership with:

Outline

- Introduction
 - LCLS-II and Fermilab's Contributions
- Motivation for Cryomodule Testing
- Analysis Methods
- Results
- Conclusion/Outlook

Linear Coherent Light Source (LCLS-II) and Fermilab's Contributions

- LCLS II is a 2nd generation x-ray free electron laser being constructed at SLAC National Accelerator Laboratory.
- Fermilab's contributions to LCLS-II include designing, assembling, and testing seventeen 1.3 GHz and two 3.9 GHz cryomodules
- These cryomodules consist of eight nine-cell superconducting cavities.

1.3 GHz Superconducting Radio Frequency (SRF) cavity

SRF cavity at Fermilab's cryomodule test stand

Motivation for Cryomodule Testing

- Performance criteria are set for the level of field emission (radiation) and dark current produced by these cryomodules
- Assess which of the eight cavities produce the most (or any) radiation or dark current.
- Map out the radiation and dark current as a function of accelerating voltage.
- For each cavity determine:
 - Peak radiation
 - Cavity gradient (MV/m) where detectable radiation starts to appear
- This information will be included in the data travelers that will be sent to SLAC along with the cryomodules.

Analysis Methods

- Cryomodule data including gradient and radiation levels is collected through Fermilab's Accelerator Control System (ACNET) archiving routines.
- A C++/ROOT program was developed to view and analyze the cryomodule data.
- This program generates:
 - Plots of the data from each cryomodule device over time
 - Plots of cavity voltage vs radiation
 - Plots of dark current vs cavity voltage
 - Data tables containing:
 - Maximum values for each cryomodule device
 - Peak radiation within any gradient range

Cryo Module Test Cave Radiation Detector Placement

As of September 21, 2016

Chipmunks CMTS West Wall nos. 1-8 correspond to locations 1,2,3,4,5,6,7,8: G:RD3096,G:RD3097,G:RD3098, G:RD3099, G:RD3100, G:RD3101, G:RD3102, G:RD3103

Drawing adapted from CMTS Preliminary Shielding Assessment v.4 Anthony F Leveling 12/4/2014

G. Lauten AD Operational RSO

‡ Fermilab

Results

This plot shows the data from each cryomodule device plotted over time. The voltage cavity data has y-axis units of MV/m, and is plotted with dotted lines. The radiation detector data has y-axis units of mrem, and is plotted with solid lines.

Results (cont.)

- These plots show the radiation levels for various radiation detectors plotted over the gradient for voltage cavities 5 (left) and 2 (right).
- The lines are linear fits of the data points in the range of 12 MV/m to the cavity voltage corresponding to the maximum radiation level for the given radiation detector.
- The data points included in the fit function are star-shaped.

Results (cont.)

- These are the plots from the previous slide zoomed-in on the point at which (most of) the fit lines intersect.
- This intersection point is approximated as the gradient at which field emission starts to appear.
- From these plots one can conclude that the onset of field emission for cavity 5 is just below 14 MV/m, and that cavity 2 has very little (if any) field emission.

‡ Fermilab

Results (cont.)

Overall Maximum values for each device:

	25 224	Maximum	Value	2
T:LGSU	1C(V)	133.842	217834	1
T:8IDCH7(4V/m)		0.0826	5
T:8IDCH8(4V/m)	0.165200	000622	2
T:1LCVMV(4V/m)	21.254	377365	5
T:2LCVMV(I	4V/m)	20.962	310791	1
T:3LCVMV(I	4V/m)	20.95	986557	1
T:4LCVMV(I	4V/m)	20.956	142426	5
T:5LCVMV(I	4V/m)	21.126	306534	1
T:6LCVMV(I	4V/m)	16.8219	933746	5
T:7LCVMV(I	1V/m)	21.0498	373352	21
T:8LCVMV(I	4V/m)	20.955	367767	1
G:RD3096 (1	nrem)	66.0000	02623	3
G:RD3097 (1	nrem)	97.9500	003892	21
G:RD3098 (1	nrem)	142.500	000566	5
G:RD3099 (1	nrem)	220.650	000877	1
G:RD3100 (r	nrem)	256.200	01018	3
G:RD3101 (1	nrem)	238.050	000946	5
G:RD3102 (1	nrem)	193.050	000767	1
G:RD3103 (1	nrem)	170.250	000677	1
G:RD3104 (1	nrem)	0.30000	001192	21
G:RD3105 (1	nrem)	1	120)
G:RD3106 (1	nrem)		30)
G:RD3107 (1	nrem)	0.30000	001192	21
G:RD3108 (1	nrem)	0.30000	001192	21
G:RD3110 (1	nrem)	119.579	999733	3
G:RD3111 (1	nrem)	15.7799	999647	1
G:RD3112 (1	nrem)	1	54	11
G:RD3113 (1	nrem)	144.899	999676	5
G:RD3114 (r	nrem)	227.90	999949	11

Maximum Radiation values between 15.500000 and 16.600000 MV/m for each cavity T:1LCVMV|T:2LCVMV|T:3LCVMV|T:4LCVMV|T:5LCVMV|T:6LCVMV|T:7LCVMV|T:8LCVMV| C:PD30961 12 91 12 91 23 41 3 31 2 851 31 31

0.021933740	0.00000	12.5	12.5	12.9	23.4	5.5	2.05	5	2
1.049873352	G:RD3097	13.05	13.05	13.05	33.75	5.25	3	3.15	3.15
0.955867767	G:RD3098	15.9	15.9	15.9	49.8	6.75	4.05	4.21	4.21
6.000002623	G:RD3099	19.2	19.21	19.2	51.3	7.95	6.75	6.91	6.9
7.950003892	G:RD3100	22.05	22.05	22.05	35.7	8.55	8.4	8.55	8.55
20 65000300	G:RD3101	26.71	26.7	26.7	26.7	8.7	8.41	8.7	8.7
56.20001018	G:RD3102	25.5	25.5	25.5	25.5	6.45	6.45	6.45	6.45
38.05000946	G:RD31031	19.35	19.35	19.35	19.35	5.85	5.85	5.85	5.85
93.05000767	G:RD3104	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
70.25000677	G:RD3105	1201	1201	1201	120	30	301	301	30
30000001192	G:RD3106	15	15	151	15	15	151	151	15
120	G:RD3107	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
30000001192	G:RD3108	0.31	0.3	0.31	0.3	0.3	0.3	0.31	0.3
30000001192	G:RD3110	119.58	119.58	119.58	119.58	19.86	19.86	19.86	19.86
19.57999733	G:RD3111	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08
5.779999647	G:RD3112	91	91	91	11	71	7	71	7
54	G:RD3113	17 46	17.46	17 46	46 92	7.08	4 32	4 44	4 44
44.89999676	G. RD3114	32 88	32 88	32 881	32 88	9 96	9 721	9 96	9 96
221.9999949	OTTO DITT	52.00	52.00	52.00	52.00	2.20	14		2.20

- These are screenshots of the data tables produced by the ROOT/C++ program.
- The table on the left shows the maximum values recorded by each cryomodule device.
- The right table on the right shows the peak radiation values for each voltage cavity and for each radiation detector in the range of 15.5 and 16.6 MV/m.

Conclusion and Outlook

- Cryomodule field emission and dark current Data can now be obtained mostly automatically using an ACL script and the Root/C++ program.
- The Root/C++ program can be used to analyze data from any cryomodule.
- Next steps:
 - Find a more precise and objective way of finding the cavity gradient where detectable radiation starts to appear.
 - Perform a more complete analysis of dark current production.
 - Make a short tutorial for future users on how to use the ACL script and ROOT/C++ program.

Acknowledgements

Thank you to:

- Elvin Harms, my mentor
- Brian Hendricks, for creating the ACL scripting language
- Eric Prebys and Rosa Foote for coordinating the Lee Teng Internship

References

[1] T. Arkan et al., "LCLS-II 1.3 GHz Design Integration for Assembly and Cryomodule Assembly Facility Readiness at Fermilab," in Proc. 17th Int. Conf. on RF Superconductivity (SRF2015), Whistler, BC, Canada, Sep. 2015.

[2] E. Harms et al., "Fermilab Cryomodule Test Stand Design and Plans," in Proc. 17th Int. Conf. on RF Superconductivity (SRF2015), Whistler, BC, Canada, Sep. 2015.

Backup Slides

14 8/9/17 Ruth Gregory | Performance Characterization of LCLS-II Superconducting Radiofrequency Cryomodules Illinois Accelerator Institute

Results (cont.)

Top Plots: Full graph of cavity voltage vs radiation for cavities 5 (left) and 6 (right). Bottom Plots: Close up of the regions where the fit lines on the plots intersect.

Illinois Accelerator Institute

🛟 Fermilab