Characterization of the IOTA Proton Source

Samantha Young, Loyola University Chicago
Lee Teng Internship Presentations
9 August 2017

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
Integral-Optics Test Accelerator (IOTA)

- Formed from the High Intensity Neutrino Source (HINS)
- Goals
 - integrable optics with non-linear magnets and with electron lenses
 - optical stochastic cooling of particle beams
 - innovative emittance exchange
- Storage ring
 - 39m in circumference
 - protons and ions
- Focus on injection into RFQ
 - Duoplasmatron
 - Nickel filament
Methodology

• Testing variables associated with beam current
 – Beamline solenoids (2)
 – Source solenoid, “Lens”
 – Horizontal and vertical trims
 – Gas pressure

• Systematic scans of one variable within a “safe” range
 – Dependent on cooling abilities of the source
 – Capacity of the “old” filament

• Adapt source to optimized parameters based on peaks of current measured
Results