

Longitudinal Effects in Space Charge Dominated Cooled Bunched Beams

Sergei Nagaitsev Fermilab Oct 5, 2017

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

Summary (in advance)

- Longitudinal space-charge effects manifest themselves in several fascinating ways:
 - Self-consistent stationary longitudinal distribution
 - Synchrotron modes shifts with beam current
- These effects are easily accessible in low-energy electroncooled ion beams
- This talk is based on my research at the Indiana University Cyclotron Facility (IUCF) Cooler, but easily applicable to all other cooler rings

IUCF Cooler synchrotron (1988 – 2002)

- These experiments were conducted with electron-cooled proton beams (45 – 150 MeV) below transition energy.
- Longitudinal and transverse profiles were measured for a range of beam currents. Also, the synchrotron dipole and quadrupole frequencies were measured.

🚰 Fermilab

Measurements

From measured long and transv beam profiles we can calculate the SC tune shifts:

Figure 4. Normalized rms emittance as a function of the average bunched proton beam current before (\Box) and after (Δ) the alignment of electron and proton beams. Solid line is $I^{2/3}$.

5 10/05/17 S. Nagaitsev

....First, a quiz...

- These are measured stationary beam distribution profiles for a 150 MeV proton beam with continuous electron cooling. One profile is taken with "good" vacuum, one with "bad" vacuum.
- Question: Which profiles correspond to "bad" vacuum?
- Bad vacuum: (1) A and C; (2) B and C; (3) A and D; (4) B and D

🛟 Fermilab

The correct answer is (3)

- (3) A and D;
- Transverse beam profile gets broader (D) from Coulomb scattering (because of "bad" vacuum) but the bunch length gets shorter (A) because the longitudinal space-charge defocusing is reduced.

‡ Fermilab

With electron cooling, the Vlasov equation becomes the Fokker-Plank equation

$$\frac{\partial \Psi}{\partial t} + \dot{\phi} \frac{\partial \Psi}{\partial \phi} + \dot{\delta} \frac{\partial \Psi}{\partial \delta} = \frac{\partial}{\partial \delta} \left(\lambda \,\delta \,\Psi + \frac{D}{2} \frac{\partial \Psi}{\partial \delta} \right),$$
$$\dot{\phi} = h \,\eta \,\omega_o \,\delta \,, \quad \dot{\delta} = f_o \frac{e \,V_{rf}}{\beta^2 \,E} \sin(\phi) + \frac{Z_o \,g \,e^2 \,N \,f_o}{\gamma^2 \,\beta^2 \,E} \frac{c \,h^2}{R} \frac{\partial \rho(\phi, t)}{\partial \phi},$$
$$\rho(\phi, t) = \int_{-\infty}^{+\infty} \Psi(\phi, \delta, t) \,d \,\delta \,.$$

For a uniform transverse distribution g = log[chamber radius/beam radius] + ½ -- geometric factor

• This equation can be solved analytically for a stationary distribution function

The stationary distribution

$$\Psi_{o}(\phi, \delta) = \frac{1}{(2\pi)^{1/2} \sigma} e^{-\delta^{2}/2\sigma^{2}} \rho_{o}(\phi),$$

$$\rho_{o}(\phi) e^{-\alpha \rho_{o}(\phi)} = \rho_{o}(0) e^{-\alpha \rho_{o}(0)} \exp\left[\kappa \left(1 - \cos(\phi)\right)\right].$$

$$\rho_{o}(0) \text{ must be chosen such that } \rho_{o}(\phi) \text{ is normalized to unity}$$

$$\pi - \alpha e^{2} N = -\alpha h = -1 = -\alpha N$$

$$\alpha = \frac{Z_o g e^2 N}{2 \pi \gamma^2 \beta^2 \sigma^2 \eta E} \frac{c h}{R}; \kappa = \frac{1}{2 \pi \sigma^2 \beta^2 \eta h} \frac{e V_{rf}}{E}$$

- There are two unknowns: *σ* and *g*, the rms momentum spread and the geometric factor.
- For vanishing space-charge ($\alpha = 0$) the linear density $\rho_o(\phi)$ becomes Gaussian.
- For vanishing momentum spread ($\sigma \rightarrow 0$) the linear density becomes $\rho_o(\phi) = \frac{\gamma^2}{g h^2} \frac{V_{rf} R}{Z_o e N c} (\cos(\phi) - \cos(\phi_o)),$

Stationary longitudinal bunch charge density distributions for a fixed momentum spread (σ) and various bunch charges

— 🛟 Fermilab

11 10/05/17 S. Nagaitsev

Measured (solid, 2) and theoretical (dashed, 2) linear density. Cosine (1) and Gaussian (3) fits are also presented. $I_o \approx 400 \ \mu\text{A}$, $V_{rf} \approx 12 \text{ V}$. IUCF Cooler, 1994

The fit with two parameters (σ and g) is unambiguous

Figure 4. Geometric factor g vs. proton beam current. $V_{rf} = 10 V (\Box), V_{rf} = 126.4 V (\Delta)$.

For gaussian beam distributions: (arXiv:1508.00153, R. Baartman) $g = \frac{1}{a} + \ln\left(\frac{b}{a}\right)$

 $2 \times \text{rms size}$

Cross-checking *g* vs transverse beam radius

- Best fit corresponds to $b \approx 20 \text{ mm}$
- The IUCF cooler had the average beam pipe radius of 25 mm

辈 Fermilab

Ratio of the effective rf voltage to the applied rf voltage derived from the bunch shape fitting. $V_{rf} = 12 \text{ V} (\Box), V_{rf} = 126.4 \text{ V} (\Delta).$

Longitudinal dynamics of space-charge dominated bunched beams

- Linear rf voltage model (from Neuffer's 1979 paper)
- Long envelope equation: $\ddot{\phi}_o = \left(2\pi h/\eta/f_o\right)^2 \left(\frac{\varepsilon_L^3}{\phi_o^3} + \frac{N}{N_o}\frac{1}{\phi_o^2} A\phi_o\right),$
- The dipole synchrotron frequency is not affected by SC
- After linearization, one obtains for the small-amplitude quadrupole (bunch length) oscillation frequency:

$$\left(\frac{\omega_q}{\omega_{so}}\right)^2 = \frac{V_{eff}}{V_{rf}} + 3.$$

- With no SC: $\omega_q = 2\omega_{so}$ -- it's a simple bunch rotation
- With zero momentum spread: $\omega_q = \sqrt{3}\omega_{so}$
- For the sin() rf voltage the situation is more complicated

Long. bunch modes with sin() rf voltage

 We found approx. analytic solutions for bunch modes with zero momentum spread. The modes are solutions to this equation

$$\frac{d}{d\phi}\left(\frac{d\rho_n}{d\phi}\left(\cos(\phi) - \cos(\phi_o)\right)\right) + \left(\frac{\omega_n}{\omega_{so}}\right)^2 \rho_n = 0.$$

$$\left(\frac{\omega_{I}}{\omega_{so}}\right)^{2} \approx \frac{\int\limits_{-\phi_{o}}^{+\phi_{o}} (\cos(\phi) - \cos(\phi_{o})) \cos(\phi) d\phi}{\int\limits_{-\phi_{o}}^{+\phi_{o}} (\cos(\phi) - \cos(\phi_{o})) d\phi} - - \text{ the dipole mode}$$

The quadrupole mode was found numerically

- For non-zero momentum spread we solved the timedependent F-P equation numerically
- Both modes were measured in the IUCF cooler

The dipole mode

For a space-charge dominated regime the bunch length is primarily a function of a beam current, thus, for a sinusoidal rf voltage, the synchrotron frequency depends on the beam current! (solid lines are numerical models)

🛟 Fermilab

The quadrupole mode

19 10/05/17 S. Nagaitsev

Summary

- The beam momentum spread can not be determined from the bunch length alone! Need to perform a fit with two parameters.
- Electron-cooled bunched beams are typically space-charge dominated longitudinally: the effective rf voltage amplitude in the bunch is small, ~20% of external rf voltage.
 - Need to take this into account in modeling of IBS, etc
- The coherent synchrotron (dipole) frequency depends on the beam current! Also, no decoherence in large amplitude synchrotron oscillations is observed.

