Sunyaev-Zel’dovich Effect and X-ray Scaling Relations from Weak-Lensing Mass Calibration of 32 SPT Selected Galaxy Clusters

J. P. Dietrich⋆1,2, S. Bocquet3,4, T. Schrabback5, D. Applegate4, H. Hoekstra6, S. Grandis1,2, J. J. Mohr1,7,2, S. W. Allen8,9,10, M. B. Bayliss11, B. A. Benson12,13,4, L. E. Bleem3,4 M. Brodwin14, E. Bulbul11, R. Capasso1,2, I. Chiu1,2, T. M. Crawford4,13, A. H. Gonzalez15, T. de Haan16, M. Klein1,2, A. von der Linden17, A. B. Mantz10,8, D. P. Marrone18 M. McDonald11, S. Raghunathan19, D. Rapetti20,21, C. L. Reichardt19, A. Saro1,2,22, B. Stalder23, A. Stark24, C. Stern1,2, C. Stubbs25

Affiliations are listed at the end of the paper

Accepted 2018 November 8. Received 2018 November 7; in original form 2017 November 14

ABSTRACT
Uncertainty in the mass-observable scaling relations is currently the limiting factor for galaxy cluster based cosmology. Weak gravitational lensing can provide a direct mass calibration and reduce the mass uncertainty. We present new ground-based weak lensing observations of 19 South Pole Telescope (SPT) selected clusters at redshifts 0.29 ≤ z ≤ 0.61 and combine them with previously reported space-based observations of 13 galaxy clusters at redshifts 0.576 ≤ z ≤ 1.132 to constrain the cluster mass scaling relations with the Sunyaev-Zel’dovich effect (SZE), the cluster gas mass \(M_{\text{gas}} \), and \(Y_X \), the product of \(M_{\text{gas}} \) and X-ray temperature. We extend a previously used framework for the analysis of scaling relations and cosmological constraints obtained from SPT-selected clusters to make use of weak lensing information. We introduce a new approach to estimate the effective average redshift distribution of background galaxies and quantify a number of systematic errors affecting the weak lensing modelling. These errors include a calibration of the bias incurred by fitting a Navarro-Frenk-White profile to the reduced shear using N-body simulations. We blind the analysis to avoid confirmation bias. We are able to limit the systematic uncertainties to 5.6% in cluster mass (68% confidence). Our constraints on the mass–X-ray observable scaling relations parameters are consistent with those obtained by earlier studies, and our constraints for the mass–SZE scaling relation are consistent with the simulation-based prior used in the most recent SPT-SZ cosmology analysis. We can now replace the external mass calibration priors used in previous SPT-SZ cosmology studies with a direct, internal calibration obtained on the same clusters.

Key words: cosmology: observations – gravitational lensing: weak – galaxies: clusters: general

1 INTRODUCTION
The cluster mass function, i.e. the abundance of clusters of galaxies as a function of redshift and mass, is a sensitive cosmological probe (see Allen et al. 2011, for a review). Because the cluster mass function is sensitive to both the expansion history and the history of structure formation in the Universe, cluster cosmology is in principle able to break degeneracies between cosmological parameters arising in purely geometric probes such as the primary Cosmic Microwave
Background (CMB), baryonic acoustic oscillations, and supernovae type Ia. Observable properties of galaxy clusters like X-ray luminosity and temperature, optical richness, and the strength of the Sunyaev-Zel’dovich Effect (SZE, Sunyaev & Zel’dovich 1970, 1972) have been shown to scale with galaxy cluster mass following mass–observable scaling relations (MOR). These scaling relations have intrinsic scatter around the mean relationship between the observable, which is used as a proxy for cluster mass, and the cluster mass, which has been used to parametrise the theoretical cluster mass function. Cosmological constraints from cluster mass function studies are currently limited by uncertainties in the mass–scaling relation parameters.

Weak gravitational lensing offers the best opportunity to determine the normalisation of the MOR as it can estimate projected cluster masses with near zero bias on average (Corless & King 2009; Becker & Kravtsov 2011; Bahé et al. 2012). The scatter between lensing inferred cluster masses and true halo mass, however, is large and typically exceeds the intrinsic scatter of the mass–observable relations employed for cosmological purposes. Sources of this scatter include the shape noise of the lensed background galaxies, correlated and uncorrelated large-scale structure (LSS, Hoekstra 2001; Dodelson 2004; Becker & Kravtsov 2011) along the line-of-sight, and halo triaxiality (Clowe et al. 2004; Corless & King 2007; Meneghetti et al. 2010), the latter being the dominant source of scatter for massive galaxy clusters. Therefore, large numbers of clusters are required to achieve a competitive calibration of the normalisation of mass–observable scaling relations. Several programs making use of gravitational lensing to this end have published results (e.g. Bardeau et al. 2007; Okabe et al. 2010; Hoekstra et al. 2012; Marrone et al. 2012; Applegate et al. 2014; Utsumi et al. 2014; Gruen et al. 2014; Hoekstra et al. 2015; Okabe & Smith 2016; Battaglia et al. 2016; Applegate et al. 2016; Hilton et al. 2018), or are underway employing data from current wide-field imaging surveys such as the Dark Energy Survey (Melchior et al. 2017) or the HyperSuprimeCam survey (Murata et al. 2017). Future surveys and missions such as LSST(1) (LSST Dark Energy Science Collaboration 2012), Euclid(2) (Laureijs et al. 2011), or CMB-S4(3) (Abazajian et al. 2016) will lead to much tighter constraints while at the same time imposing much stricter requirements for the control of systematic errors.

Here we describe the weak lensing analysis of 19 intermediate redshift clusters selected from the 2500 square degree SPT-SZ survey (Bleem et al. 2015), five of which have already been presented in an earlier weak lensing study (High et al. 2012). After discussing these data in Section 2 we present our weak lensing methods in Sections 3 and 4, paying particular attention to controlling systematic effects. In Section 5 we then combine our 19 clusters with 13 high redshift clusters from the SPT-SZ survey with existing weak lensing data from the Hubble Space Telescope (HST, Schrabback et al. 2018, S18, hereinafter) and X-ray data from the Chandra X-ray satellite for 89 clusters to perform a joint mass–observable scaling relations analysis using a newly developed framework that self-consistently accounts for selection effects and biases.

For quantities evaluated at a fixed cosmology we assume a flat ΛCDM cosmology with Ωm = 0.3, ΩΛ = 0.7, H0 = 70 h70 km s−1 Mpc−1, h70 = 1, throughout this paper. When reporting cluster masses, denoted as MΔ, we follow the convention of defining masses in terms of spherical overdensities that are a factor Δ above the critical density ρc(z) of the Universe at redshift z. Likewise rΔ corresponds to the radius of the sphere containing the mass MΔ = 4π/3rΔ3(z). We use standard notation for statistical distributions, i.e. the normal distribution with mean μ and covariance matrix Σ is written as Ν(μ, Σ) and U(a, b) denotes the uniform distribution on the interval [a, b].

2 DATA

2.1 Cluster sample

The South Pole Telescope (SPT, Carlstrom et al. 2011) is a 10-m telescope located at the Amundsen-Scott South Pole Station. From 2007 to 2011 SPT observed a contiguous 2500 sq. deg. region in three bands (95, 150, and 220 GHz) to a fiducial depth of 18 μK-arcmin in the 150 GHz band. Details of the survey strategy and data processing are provided elsewhere (Staniszewski et al. 2009; Vanderlinde et al. 2010; Williamson et al. 2011). Galaxy clusters in the survey were detected via their thermal SZE. The full cluster catalog of the SPT-SZ survey was published in Bleem et al. (2015). In the SPT-SZ survey 677 galaxy clusters were detected above signal to noise ξ > 4.5 and 516 were confirmed by optical and near-infrared imaging (Bleem et al. 2015). Of these, 415 were first identified by SPT, and 109 have been spectroscopically confirmed (Ruel et al. 2014; Bayliss et al. 2016). The median mass of this sample is M200 ≈ 3 × 1014 M⊙ with a median redshift of 0.55 and with the maximum above 1.4 (Bleem et al. 2015). The selection function of the survey is well understood and almost flat in mass at z > 0.25 with a slightly higher sensitivity to lower mass systems at higher redshifts.

Cosmological constraints have been presented in de Haan Figure 1. Overview of the SPT cosmology cluster sample, its coverage by X-ray data employed in this study, and the two weak lensing subsamples used in the scaling relation analysis in Sect. 5. The axes show detection significance ξ plotted against cluster redshift z.

1 https://www.lsst.org/
2 https://www.euclid-ec.org/
3 https://www.cmb-s4.org/
et al. (2016) based on the “cosmology subset” of the entire SPT-SZ cluster sample with redshift \(z > 0.25\) and detection significance \(\xi > 5\). This \(\xi > 5\) threshold corresponds to a sample with 95% purity from SZE selection alone. The mass calibration employed in that analysis adopted information from the cluster mass function together with information from X-ray observable \(Y_X = M_{\text{gas}} T_X\) available for 52 systems. The \(Y_X\)–mass relation calibration was informed from earlier weak lensing analyses of different cluster samples (Vikhlinin et al. 2009; Hoekstra et al. 2015; Applegate et al. 2014). We limit the analysis in this paper to this cosmology subset.

We obtained pointed follow-up observations of 19 clusters in the redshift range \(0.29 \leq z \leq 0.61\) with the Megacam imager (McLeod et al. 2006) at the Magellan Clay telescope. In the following we first describe these data and their analysis before combining it with space-based HST weak-lensing follow-up data of 13 SPT-SZ clusters in the redshift range \(0.576 \leq z \leq 1.132\). (Schrabback et al. 2018).

2.2 Optical data

Our sample of 19 SPT clusters was observed with Megacam at the 6.5-m Magellan Clay telescope. This sample includes 5 galaxy cluster observations previously presented by High et al. (2012). This previous work also describes the observing strategy, data reduction, and photometric and astrometric calibration in detail. We briefly summarise the observing strategy for the remaining 14 clusters. These were observed in November 2011 through \(g'\), \(r'\), and \(i'\) filters, for total exposure times of 1200 s, 1800 s, and 2400 s, respectively. In \(g'\) and \(r'\) bands a three point diagonal dither pattern, which covers the chip gaps, was used, while a five point linear dither pattern was utilised for the \(i'\) band exposures. As an exception from this strategy, SPT-CL J0240–5946 was observed in 4 \(r'\) band exposures.

Care was taken to observe the \(r'\) band images, which are used to generate the shear catalogues, in the most stable and best seeing conditions. Seeing values for all \(r'\) band images are given in Table 2. The median seeing of our exposures is 0.79, the minimum and maximum values are 0.54 and 1.11, respectively. The clusters observed with Megacam were generally the most significant SPT cluster detections that were known and visible at the time of the observing runs. An attempt was made to observe higher redshift clusters during better seeing conditions.

As in High et al. (2012), a stellar locus regression code

<table>
<thead>
<tr>
<th>Cluster</th>
<th>(\alpha) (J2000.0)</th>
<th>(\delta) (J2000.0)</th>
<th>(z)</th>
<th>(\xi)</th>
<th>Telescope</th>
<th>Chandra data</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPT-CL J0000–5748</td>
<td>00:00:59:98</td>
<td>−57:48:23:0</td>
<td>0.702</td>
<td>8.49</td>
<td>HST</td>
<td>✓</td>
</tr>
<tr>
<td>SPT-CL J0234–5833</td>
<td>02:34:42:87</td>
<td>−58:31:17:1</td>
<td>0.415</td>
<td>14.66</td>
<td>Megacam</td>
<td>✓</td>
</tr>
<tr>
<td>SPT-CL J0240–5946</td>
<td>02:40:38:54</td>
<td>−59:46:10:9</td>
<td>0.400</td>
<td>8.84</td>
<td>Megacam</td>
<td>✓</td>
</tr>
<tr>
<td>SPT-CL J0254–5857</td>
<td>02:54:17:50</td>
<td>−58:57:09:3</td>
<td>0.438</td>
<td>14.13</td>
<td>Megacam</td>
<td>✓</td>
</tr>
<tr>
<td>SPT-CL J0307–6225</td>
<td>03:07:20:08</td>
<td>−62:25:57:8</td>
<td>0.579</td>
<td>8.46</td>
<td>Megacam</td>
<td>✓</td>
</tr>
<tr>
<td>SPT-CL J0317–5935</td>
<td>03:17:17:18</td>
<td>−59:35:06:5</td>
<td>0.469</td>
<td>6.26</td>
<td>Megacam</td>
<td>✓</td>
</tr>
<tr>
<td>SPT-CL J0348–4515</td>
<td>03:48:17:70</td>
<td>−45:15:03:5</td>
<td>0.358</td>
<td>10.12</td>
<td>Megacam</td>
<td>✓</td>
</tr>
<tr>
<td>SPT-CL J0426–5455</td>
<td>04:26:04:78</td>
<td>−54:55:10:8</td>
<td>0.642</td>
<td>8.85</td>
<td>Megacam</td>
<td>✓</td>
</tr>
<tr>
<td>SPT-CL J0509–5342</td>
<td>05:09:20:97</td>
<td>−53:42:19:2</td>
<td>0.461</td>
<td>8.50</td>
<td>Megacam</td>
<td>✓</td>
</tr>
<tr>
<td>SPT-CL J0516–5430</td>
<td>05:16:36:31</td>
<td>−54:30:39:0</td>
<td>0.295</td>
<td>12.41</td>
<td>Megacam</td>
<td>✓</td>
</tr>
<tr>
<td>SPT-CL J0533–5005</td>
<td>05:33:36:22</td>
<td>−50:05:24:4</td>
<td>0.881</td>
<td>7.08</td>
<td>HST</td>
<td>✓</td>
</tr>
<tr>
<td>SPT-CL J0546–5345</td>
<td>05:46:36:60</td>
<td>−53:45:45:0</td>
<td>1.066</td>
<td>10.76</td>
<td>HST</td>
<td>✓</td>
</tr>
<tr>
<td>SPT-CL J0551–5709</td>
<td>05:51:36:99</td>
<td>−57:09:20:4</td>
<td>0.423</td>
<td>8.21</td>
<td>Megacam</td>
<td>✓</td>
</tr>
<tr>
<td>SPT-CL J0559–5249</td>
<td>05:59:42:02</td>
<td>−52:49:33:6</td>
<td>0.609</td>
<td>10.64</td>
<td>HST</td>
<td>✓</td>
</tr>
<tr>
<td>SPT-CL J0615–5746</td>
<td>06:15:51:60</td>
<td>−57:46:34:7</td>
<td>0.972</td>
<td>26.42</td>
<td>HST</td>
<td>✓</td>
</tr>
<tr>
<td>SPT-CL J2030–5638</td>
<td>20:30:48:87</td>
<td>−56:38:10:2</td>
<td>0.394</td>
<td>5.50</td>
<td>Megacam</td>
<td>✓</td>
</tr>
<tr>
<td>SPT-CL J2138–6008</td>
<td>21:38:01:26</td>
<td>−60:08:00:0</td>
<td>0.319</td>
<td>12.64</td>
<td>Megacam</td>
<td>✓</td>
</tr>
<tr>
<td>SPT-CL J2145–5644</td>
<td>21:45:52:37</td>
<td>−56:44:51:2</td>
<td>0.480</td>
<td>12.60</td>
<td>Megacam</td>
<td>✓</td>
</tr>
</tbody>
</table>

1 Chandra data excluded from the analysis. See Sect. 2.3.
(High et al. 2009) and cross-matching with the 2MASS cata-
logue (Skrutskie et al. 2006) is employed in the photometric calibration of our data. The resulting uncertainties on the absolute photometric calibration and the colour measurements are $\sim 0.05\text{ mag}$ and 0.03 mag, respectively.

2.3 X-ray data
The X-ray data in this work consist of 89 galaxy clusters observed with the Chandra satellite and is mostly identical to the data described in de Haan et al. (2016). The reduction and analysis of these data is described in detail in McDonald et al. (2013). Changes in the data since this earlier SPT publication include the addition of eight new clusters at $z > 1$ (McDonald et al. 2017), none of which currently have weak lensing data, and the omission of SPT-CL J0551–5709. The latter cluster is part of our Megacam sample. However, after the observations were obtained it was realized that this cluster is indeed a projection of two clusters at different redshifts (Andersson et al. 2011), the SPT selected cluster at $z = 0.423$ and the local cluster Abell S0552 with a redshift of $z = 0.09$ inferred from the cluster red-sequence (High et al. 2012). We thus exclude this cluster from the X-ray analysis but not the weak lensing analysis, where the inclusion of such projections is correctly accounted for (see Sects. 4.4 and 5.2.2).

Figure 1 gives an overview of the different subsamples in this study and their (partial) overlap. All 13 clusters with HST weak lensing data (S18) have X-ray data, while this is the case for only 10 out of the 19 clusters observed with Megacam after the exclusion of SPT-CL J0551–5709. See also Table 1 where all clusters with lensing data are listed.

3 WEAK LENSING ANALYSIS
Weak gravitational lensing by massive foreground structures such as galaxy clusters (see Hoekstra et al. 2013, for a review of cluster lensing studies) changes the observed ellipticities of background galaxies and imprints a coherent shear pattern around the cluster centre. The azimuthally averaged tangential shear at a distance r from the cluster centre

$$
\gamma_\text{t}(r) = \frac{\langle \Sigma(<r) \rangle - \Sigma(r)}{\Sigma\text{crit}},
$$

depends on the mean surface mass density $\langle \Sigma(<r) \rangle$ inside and the surface mass density at this radius. This differential surface mass density profile is scaled by the critical surface mass density

$$
\Sigma\text{crit} = \frac{c^2}{4\pi G \beta D_l},
$$

where c is the speed of light, G is the gravitational constant, $\beta = D_\text{ls}/D_a$ is the lensing efficiency and the D_i are angular diameter distances, where ‘l’ denotes the lens and ‘s’ the source galaxy.

The observable quantity is not the shear but the reduced shear

$$
g = \frac{\gamma}{1 - \kappa},
$$

where $\kappa = \Sigma/\Sigma\text{crit}$ is the dimensionless surface mass density. A galaxy of intrinsic complex ellipticity $\varepsilon^{(s)}$ is sheared by the reduced gravitational shear g to have an observed (image) ellipticity (Seitz & Schneider 1997)

$$
\varepsilon = \frac{\varepsilon^{(s)} + g}{1 + g^2},
$$

so that, because $\langle \varepsilon^{(s)} \rangle = 0$, the expectation value of ε is g.

We average the reduced shear over an ensemble of galaxies at different redshifts. Strictly speaking redshifts for all background galaxies would be required for the correct weighting with the geometric lensing efficiency β. In the absence of such information, however, the average reduced shear can be corrected to first order using (Seitz & Schneider 1997)

$$
\frac{\langle g_{\text{cor}} \rangle}{\langle g_{\text{true}} \rangle} = 1 + \left(\frac{\langle \beta^2 \rangle - 1}{\langle \beta \rangle^2} \right) \kappa.
$$

The averages $\langle \beta \rangle$ and $\langle \beta^2 \rangle$ of the distribution of lensing efficiencies can be computed from the redshift distribution of lensed galaxies (see Sect. 3.2).

3.1 Shear catalogue creation
Our shear analysis is based on the pipeline developed for the Canadian Cluster Comparison Project (CCCP; Hoekstra et al. 2012). In this section we briefly review the main steps, but we refer the interested reader to the more detailed discussion in Hoekstra (2007) and in particular the updates discussed in Hoekstra et al. (2015), which used image simulations to calibrate the bias in the algorithm to an accuracy of 1–2%.

The observed galaxy shapes are biased, because of smearing by the point-spread function (PSF): the seeing makes the galaxies appear rounder, whereas PSF anisotropy will lead to coherent alignments in the observed shapes. Noise in the images leads to additional biases (e.g. Viola et al. 2014). To obtain accurate cluster masses it is essential that the shape measurement algorithm is able to correct for these sources of bias.

The shape measurement algorithm we use is based on the one introduced by Kaiser et al. (1995) and Luppino & Kaiser (1997) with modifications described in Hoekstra et al. (1998) and Hoekstra et al. (2000). It uses the observed moments of the surface brightness distribution to correct for the PSF. However, as shown in Hoekstra et al. (2015) the measurements are still biased, predominantly because of noise. These biases can be calibrated using image simulations. Because our data cover a similar range in signal-to-noise ratio and seeing, we adopted the correction parameters found by Hoekstra et al. (2015).

Similar to what was done in Hoekstra et al. (2012), we analyse each of the Megacam exposures and combine the measurements in the catalogue stage, to avoid the complex PSF pattern that would otherwise arise. We use SEXTRACTOR (Bertin & Arnouts 1996) to detect objects in the images and select objects with no flags raised. We use the observed half-light radius to define the width of the Gaussian weight function to measure the quadrupole (and higher) moments of the surface brightness distribution of an object.

The next step is to find an adequate model to describe the spatial variation of the PSF (both size and shape) as a function of the width of the weight function used to analyse the galaxies (see Hoekstra et al. 1998, for details). To quantify the properties of the PSF, we select a sample of bright, but
unsaturated, stars based on their half-light radius and shape. The number of available stars varies from field to field and chip to chip with a median of 16 stars per chip and 519 stars per field. As shown in Figure 2 the PSF is anisotropic, and in many cases it shows a coherent tangential pattern around the central parts of the field-of-view. Such a pattern mimics the expected cluster lensing signal (although that should decline with radius, rather than increase as is the case for the PSF anisotropy). Therefore we have to take special care to model the PSF (also see High et al. 2012).

To capture the dominant PSF pattern we fit a tangential pattern around the centre of the focal plane, with a radial dependence that is a polynomial in radius r up to order 4, where the order was chosen based on a visual inspection of the residuals. We also fit for a slope as a function of x and y. This model is fit to the full field-of-view. Inspection of the residuals showed coherent variations on more or less the chip scale. We therefore also fit a first order polynomial chip-by-chip in x and y to the residuals. The resulting model represents a good description of the residuals of stellar ellipticity between the observed stellar pattern almost perfectly centred on the cluster location. Because a constant shear will average out in an azimuthal average around the cluster position we show the PSF without connecting the stars. We used the tree code ATHENA to compute this and all other correlation functions. If the PSF shows a strong tangential alignment of the stellar ellipticity pattern almost perfectly centred on the cluster location. We therefore also take special care to model the PSF (also see High et al. 2012).

This procedure is carried out for each exposure and bad regions are masked. The resulting catalogues (typically three per cluster) are then combined, with the shape measurements for objects that appear more than once averaged accordingly. The averaging takes into account the measurement uncertainties, thus naturally giving more weight to the better seeing data. This results in a single catalogue of galaxy shapes that is used to determine the cluster masses.

3.1.1 Shear catalogue systematic tests

We tested the PSF correction of the shear catalogues for a range of systematic residuals to ascertain that these have negligible influence on our cluster mass estimates. These are illustrated for the extreme case of the second exposure of the cluster SPT-CL J2032–5627 in Figure 2. This exposure shows a strong tangential alignment of the stellar ellipticity pattern almost perfectly centred on the cluster location. Left uncorrected, this PSF would lead to a spurious cluster lensing signal and thus provides a good illustration of the quality of our PSF correction. A randomly chosen, more representative example of the Megacam PSF pattern and our diagnostic plots is shown in Figure A1 in Appendix A. Because a constant shear will average out in an azimuthal average around the cluster position we show the PSF without its mean value across the field-of-view (FOV) in panel (d) and the corresponding PSF model components in panel (e). As a first diagnostic we examined the distribution of the residuals of stellar ellipticity between the observed stellar ellipticity and the smooth model describing the spatial variation of the PSF across the focal plane. We verified that the mean of both Cartesian ellipticity components as well as the tangential ellipticity residuals with respect to the cluster centre are statistically compatible with zero. A histogram showing the binned distribution of these three ellipticity components is shown in panel (f) of Figure 2. All exposures of all fields pass this basic test.

Next we computed the correlation functions

$$\xi_{\pm} = \langle e_{\pm} e_{\mp} \rangle = \langle e_{x} e_{x}\rangle$$

(6)

for the residuals of stellar ellipticity, where the tangential and cross-components are defined with respect to the line connecting the stars. We used the tree code ATHENA to compute this and all other correlation functions. If the PSF

4 http://www.cosmostat.org/software/athena/
Figure 2. PSF correction diagnostic plots for the second exposure of SPT-CL J2030−5638. Red diamonds in panels (a)–(e) indicate the SZE derived cluster centre. Panel (a): Measured stellar ellipticity pattern; Panel (b): Model of the PSF pattern in panel (a); Panel (c): Residual between panels (a) and (b); Panel (d): Same as panel (a) with the mean ellipticity subtracted; Panel (e): Same as panel (b) with the mean ellipticity subtracted; Panel (f): Histogram of the stellar ellipticity residuals from panel (c) in the two Cartesian ellipticity components $e_{1/2}$ and the tangential ellipticity around the cluster centre e_t. Panel (g): Ellipticity correlation functions ξ_{ℓ} of the stellar ellipticity residuals; Panel (h): Ellipticity correlation functions ξ_{ℓ} between measured stellar and corrected galaxy ellipticity; Panel (i): Ellipticity-position correlation function between stellar residual tangential and cross-component ellipticity, and the cluster centre. The blue dashed line shows a comparison to the expected tangential shear signal based on the SZE mass estimate of the cluster. The grey shaded regions are radii that are omitted in the NFW fitting procedure.
The bias correction parameters derived in Hoekstra et al. (2015) and discussed in the previous section are for a circular PSF on these scales, but the values of these bins are 2–3 orders of magnitude below that of the cluster-induced gravitational shear on the angular scales of interest (cf. panel (i) in the same Figure). Moreover, this overfitting happens on individual exposures and may not be coherent across all three exposures, in which case it should approximately average out and its real impact decreased even further.

A common diagnostic in cosmic shear analyses for the absence of leakage from PSF ellipticity to the shear catalogue is the star-galaxy correlation function (Bacon et al. 2003)

\[\xi_{\gamma}^{\gamma s} = \left\langle \frac{(e_i^* \gamma_i)^2}{\langle e_i^* e_i^* \rangle} \right\rangle \]

which can be computed for the tangential \((i = t)\) and cross-components \((i = c)\) of the uncorrected stellar ellipticities \(e^*\) and the observed shear of the galaxies \(\gamma\). For random fields, there should not be any correlation between the stellar ellipticity and the measured shear. However, observations centred on galaxy clusters are not random fields. The cluster centre is a special location around which we expect a tangential alignment of galaxies. The absence of a significant star-galaxy correlation thus indicates that no PSF leakage into the shear catalogue occurred; its presence, however, would not be a cause for concern. Taking the covariance between spatial correlation function bins into account, we find no significant deviations of \(\xi_{\gamma}^{\gamma s}\) from zero.

Finally, in panel (i) of Figure 2 we show the tangential and cross-components of the residual stellar ellipticity around the cluster centre in radial bins. A non-zero tangential component would immediately bias our cluster mass measurements, while a non-zero cross-component would render the diagnostic power of radially binned cross-shear used later worthless. We find that these ellipticity profiles are all consistent with zero mass for all exposures and fields. The occasional outlier bin is more than one order of magnitude below the expected shear signal.

The bias correction parameters derived in Hoekstra et al. (2015) and discussed in the previous section are for a circular PSF and as shown in their appendix, in the presence of PSF anisotropy, the smear polarisability is somewhat biased. We therefore artificially boosted the smear polarisability by 4% for each object to correct for this bias. We find that the cluster masses estimated from the boosted catalogues, which are used in our analysis, are on average 1.1% higher than in the uncorrected catalogues, but not significantly so because the mass scatter between boosted and unboosted catalogues is 2.5%.

3.1.2 Blind analysis

Attempting to measure cluster masses with gravitational lensing when other estimates of the cluster mass – such as SZE measurements – are already known presents the danger of the experimenter being influenced by confirmation bias. A number of procedures described in the following sections required careful checking of their behaviour with respect to varying input parameters. Any experimenter is faced with the challenge of deciding when the results of such tests are of sufficient quality. It is imperative that the metric of this decision does not make use of the actual mass measurement. If it did we would be more likely to stop testing our procedures when the cluster masses seem to agree with our expectations from SZE measurements than when there is a discrepancy. To avoid such experimenter bias, the practice of “blind analyses” has found wide-spread acceptance in particle and nuclear physics (Klein & Roodman 2005) and is being adopted in cosmology as well (e.g. von der Linden et al. 2014; Hildebrandt et al. 2017; DES Collaboration et al. 2017).

The analysis presented herein has been blinded so that no comparisons between the weak lensing and SZE derived masses were made, which otherwise would have allowed premature inferences of the weak lensing–X-ray observable scaling relation parameters. At the same time we aimed to retain shear profiles that resemble those of massive clusters to test our analysis pipeline with the actual but blinded data. To ensure this we adopt the following procedure to blind the normalisation and scatter of the scaling relation. First, a random number \(0.80 < x_1 < 0.95\) is drawn from a uniform probability distribution. Then for each cluster \(i\) a second random number \(f_i\) is drawn from the interval \([x_1, 1)\). The shear values of each cluster are multiplied by \(f_i\). We enforce \(f_i < 1\) to avoid unphysical shears; at the same time \(f_i\) cannot be very small to not wipe out the lensing signal. The intrinsic ellipticity dispersion used in the calculation of the lensing weights (see Sect. 4.2) is not rescaled, i.e., the relative weighting of galaxies in any given cluster field is not changed by the blinding procedure.

3.1.3 Changes after unblinding

Although great care was taken to unblind the shear profiles only after the analysis was finalised, we realized that we inadvertently did not apply the multiplicative shear bias correction. This biased our masses low by much more than the average blinding factor turned out to be. The analysis we present in this paper has the multiplicative shear bias correction applied. We stress that these correction factors were already computed at the time of unblinding and they remained unchanged by all further analysis changes.

We took the opportunity of this one very large shift in the analysis after unblinding, corresponding to a \(\sim 20\%\) shift in mass, to make two small adjustments at the same time:

(i) We transitioned from the unboosted PSF correction catalogues to the boosted smear polarisability (see Sect. 3.1.1).

(ii) At the time of unblinding the 2500 sq. deg. SPT-SZ catalogue (Bleem et al. 2015) was not finalized and we used centroids, redshifts, and estimated \(M_{\text{SZ}}\) from the catalogue of Andersson et al. (2011). We afterwards updated our analysis to use the quantities from the final SPT-SZ catalogue.

Both of these changes lead to shifts at the \(\sim 1\%\) level in the absolute mass scale.

We also made changes to the scaling relation analysis scheme for our X-ray data. Theoretical considerations as well as tests against mocks revealed that the analysis scheme used in previous SPT cluster analyses led to a bias of the X-ray slope toward steeper values. The updated analysis method is described in Sect. 5.3 and was shown to produce
unbiased results. We note that our constraints on the slope are dominated by the informative prior applied (see Sect. 5.5), and that we choose a pivot point in the scaling relation that essentially decouples the slope from the amplitude. Therefore, our final results are not much affected by this change.

Finally, while this manuscript was edited for submission, one of us realized that the blinding scheme described in the previous Section only has a $\sim 2\%$ scatter on the mean blinding factor, while during the creation of this work we assumed it to be in the 10–15% range. The mean blinding factor determines how well the true MOR normalisation is hidden from us and is more important than the cluster-to-cluster blinding, which is indeed large in our method. Our erroneous assumption kept us effectively blind during the analysis. However, now that this flaw has been revealed, we strongly advocate against using this scheme and advise to use a blinding scheme that first determines the mean blinding factor from a random variable with a large variance.

3.2 Background galaxy selection and critical surface mass density

The reduced shear g measured in weak-lensing data is a dimensionless quantity. To connect it to the physical mass scales of our galaxy clusters we need to determine the redshift distribution of the background galaxies, which enters in the critical surface mass density (eq. 2). The three Megacam passbands in which we have data are not sufficient to estimate photometric redshifts for galaxies in our catalogues.

We used redshift dependent colour cuts to reject likely foreground and cluster galaxies. Rather than optimising these colour cuts for every cluster, we divided the sample into four redshift slices. The polygons that define our color cuts are illustrated in Fig. 3. These are based on the color cuts defined in an earlier SPT weak-lensing study (High et al. 2012) and were constructed in the same way. The density distribution of galaxies in the CFHTLS Deep Field 3 (Coupon et al. 2009) with $i < 25$ mag was plotted in ($g-r,r-i$) colour–colour space for (1) galaxies with photometric redshifts $|\Delta_{\text{phot}} - z| < 0.05$ (“non-sources”) and (2) for all other galaxies (“sources”). Polygons were drawn by hands to reject the majority of non-source galaxies. More sophisticated approaches to select only background galaxies have been proposed, e.g. by Okabe & Smith (2016) and Medezinski et al. (2018), but the present scheme is sufficient for our purposes and its efficacy is demonstrated by the background map in Fig. 3. Additionally, we rejected all galaxies with $i < 20.5$ mag from the lensing catalogue because such bright galaxies are very unlikely to be background galaxies.

We use an external catalogue with well calibrated photometric redshifts to estimate the redshift distributions of the lensing catalogues. By applying the same cuts we use for the shear catalogues to the reference catalogue and by matching galaxy properties such as magnitude and size, we can draw photometric samples from the reference catalogue. Their photometric redshifts can then be used to determine the effective redshift distribution of our lensing catalogues.

We used a version of the COSMOS0 photometric redshifts catalogue (Ilbert et al. 2013), which makes use of additional near-infrared photometry provided by the Ultra-VISTA survey (McCracken et al. 2012). We transformed the magnitudes in the catalogue to the CFHT system, to which our Megacam data was calibrated by using the colour terms from Capak et al. (2007)

\[
\begin{align*}
 g &= g^+ - 0.084(g^+ - r^+) - 0.007 \\
 r &= r^+ - 0.019(g^+ - r^+) - 0.001 \\
 i &= i^+ + 0.018(g^+ - r^+) - 0.005
\end{align*}
\]

This catalogue is complete to $i \gtrsim 24.5$ mag. Consequently, this is the limit we must adopt when doing a faint magnitude cut on the shear catalogues. We further impose the following constraints on galaxies in the reference catalogue:

(i) No flags set in i-band;
(ii) Full width at half maximum (FWHM) > 2 px, to reject the stellar locus;
(iii) Unsaturated in $g,r,$ and i-band;
(iv) Above 5σ detection in $g,r,$ and i-band, to reject spurious objects;
(v) Same colour cuts as for the lensing catalogue;
(vi) $z < 5$, to reject objects with unrealistic photo-z estimates.

We emphasise that cuts (iii) and (iv) remove only objects from the COSMOS catalogue that cannot be present in our lensing catalogues because they are either rejected by the bright magnitude cut on the lensing catalogue or are too faint to be detected in our Megacam data where we require detection in all three passbands.

Galaxies in the shear catalogue have weights assigned to them (see Section 4.2). These are taken into account in all lensing derived quantities. Simply sampling from the reference catalogue such that the samples reproduce the
The photometric properties of the shear catalogue without taking the lensing weights into account could bias the computation of $\langle \beta \rangle$ and $\langle \beta^2 \rangle$. The lensing weight chiefly depends on signal-to-noise ratio (SNR) and to a lesser degree on the object size. We thus have to map lensing weights to the β distribution of COSMOS galaxies with the same magnitude-size distribution as in the shear catalogue.

Our version of the COSMOS catalogue (P. Capak, priv. comm.) has a column with the object FWHM on the i-band detection image, which has not been convolved to homogenise the PSF across passbands. Assuming that atmospheric seeing causes a simple Gaussian convolution, we added the size of convolution kernels in quadrature to achieve the same seeing in the reference catalogue as the field seeings in Table 2. This is almost always possible because the average seeing in the COSMOS field is $0\farcs57$ and thus less than the seeing in our fields, with the one exception of SPT-CL J0348–4514, which has a seeing of $0\farcs54$. In this case the COSMOS detection FWHM column was left unaltered.

We developed an algorithm to infer (from the COSMOS catalogue) the expected β distribution for galaxies with the magnitude and size distribution of objects in the cluster field shear catalogues, correctly applying the lensing weights. This algorithm first constructs a joint probability distribution in i-size–lensing weight space from the observed shear catalogue for each cluster field. Then a random deviate from this distribution is drawn and the closest match in the matched COSMOS object is assigned to the random deviate. In this respect the algorithm is similar to photo-z methods based on nearest-neighbour identification in multi-color space (e.g., Lima et al. 2008; Cunha et al. 2009), except that we require that galaxies in the reference catalogue follow the same magnitude and size distribution whereas those other methods only used color information. With a redshift (from COSMOS) and a lensing weight (from the random deviate), we can now compute weighted $\langle \beta \rangle$ and $\langle \beta^2 \rangle$. In detail the algorithm works as follows:

We construct a Gaussian kernel density estimator (KDE) of the density distribution in i–FWHM–weight space from the shear catalogue. The number of lensing galaxies with weights below a characteristic value drops sharply. This discrete feature of the density distribution, as well as the sharp magnitude cut at $i = 24.5$ mag are not well represented by a smooth KDE. To avoid biases at the edges of the probability density distribution, we mirror the size and magnitude distributions at their extreme values. This ensures that we have smooth distributions, which can be well described by a Gaussian KDE.

We then draw random samples from this KDE. Samples in the mirrored quadrants are flipped back into the original quadrant. For each random sample we identify the COSMOS galaxy that minimises the quantity

$$d = \left[\frac{(i_{\text{sample}} - i_{\text{COSMOS}})}{\sigma_i} \right]^2 + \frac{(\text{FWHM}_{\text{sample}} - \text{FWHM}_{\text{COSMOS}})^2}{\sigma_{\text{FWHM}}} \right]^{1/2},$$

where the σ_i with $x \in \{i, \text{FWHM}\}$ are the standard deviations of the i-band and FWHM distributions in the shear catalogue. This sample galaxy is assigned the weight drawn from the KDE and β and β^2 for this galaxy are computed. We verify that the samples drawn in this way from the reference catalogue are distributed consistently with the lensing catalogues by computing the Kolmogorov-Smirnov test for the marginal distributions in size and i-band magnitude.

The first two moments of the β distribution are then computed as weighted average of β and β^2 using the lensing weights. These values are reported in Table 3.

We tested the ability of this procedure to correctly reproduce input distributions that are very different from the intrinsic COSMOS30 galaxy properties. We divided the COSMOS30 reference into two halves and created mock catalogues from one of the halves. To create the mock catalogues we subsampled from the first half such that the magnitude distribution $P(i)$ follows the linear distribution

$$P(i) = \frac{2(i - 20.5)}{(25.0 - 20.5)^2}, \quad 20.5 \leq i \leq 25.0,$$

the size distribution is log-normal $\mathcal{N}(1, 0.0625)$, and the lensing weights are distributed according to $P(w) \sim \exp(-w)$. Just like the actual shear catalogues, these magnitude and weight distributions have sharp cut-offs to test the unbiasedness of our mirroring approach.

Following the construction of the KDE as described above, we resampled from the second half of the reference catalogues and compared the estimated values of $\langle \beta \rangle$ and $\langle \beta^2 \rangle$ to the known values of the mock catalogues. We find that our resampling slightly underestimates the true values of $\langle \beta \rangle$ between 0.3% and 0.9% as a function of redshift. At the median redshift of the cluster sample the bias is 0.5%. The values of $\langle \beta^2 \rangle$ are biased low between 0.3% and 0.6% with a bias of 0.5% at $z = 0.42$. This level of bias is negligible for our analysis. It is caused by a slight oversampling of bright galaxies with redshifts $z < z_i$.

We consider a number of effects contributing to uncertainties in our estimates of $\langle \beta \rangle$ and $\langle \beta^2 \rangle$. First, COSMOS is a small field and variations between the LSS in COSMOS and the lines-of-sight to our galaxy clusters (“cosmic variance”) can lead to biases. We computed $\langle \beta \rangle$ separately from all four CFHTLS fields and took the variance between these fields as our estimate for the impact of cosmic variance. We find $\sigma(\beta), CV = 0.0082$. The CFHTLS photometric catalogues do not come with object size information. Computing the variance among CFHTLS fields only rather than also with

5 We ignore the wavelength mismatch between our seeing values measured in the r-band and the FWHM of the COSMOS objects detected in the i-band. In standard seeing theory the difference in FWHM is only $\sim 4\%$.

6 Although we include the effect of $\langle \beta^2 \rangle$ in our mass calibration, it is generally completely negligible for the radial ranges employed in this work. We therefore do not separately quote the small uncertainties on $\langle \beta^2 \rangle$.

MNRA 000, 1–41 (2018)
the COSMOS fields allows us to isolate the impact of cosmic variance from the influence of object size.

Second, even with the high quality of the photometric redshifts of the COSMOS30 catalogue, some biases may exist, particularly at the faint, high-redshift end. To evaluate this, we matched our COSMOS catalogue with the 3D-HST catalogue (Momcheva et al. 2016). This catalogue contains redshifts based on spectroscopic, grism, and photometric redshift estimates. We limited our comparison to objects for which the 3D-HST catalogue lists either spectroscopic or grism redshifts to which the COSMOS redshifts may be reliably compared. We have 1980 objects of this type in common with their catalogue. We first computed the additional uncertainty stemming from only randomly sampling 1980 objects from the COSMOS photo-z catalogue. This is $\sigma_{\beta, \text{sample}} = 0.0013$. We then recomputed $\langle \beta \rangle$ for all clusters using only the 1980 3D-HST redshifts and find $\langle (\beta \text{COSMOS} - \beta \text{3D-HST}) / \langle \beta \text{COSMOS} \rangle \rangle = 0.6\%$, which is fully consistent with no redshift bias, up to the sampling uncertainty, where the outer average runs over all clusters. This test is reliable as long as any possible redshift bias in the COSMOS catalogue is not different for objects with or without spectroscopic or grism redshifts. At the present we have no indication for such a type dependent bias but also cannot confidently rule out that hitherto undiscovered biases in the COSMOS catalogue exist for faint objects.

Third, we also investigate the impact of the uncertainties of the photometric calibration on our estimation of the lensing efficiency by shifting the relative and absolute photometry within the systematic calibration uncertainties. We find an additional uncertainty of $\sigma_{\beta, \text{pc}} = 0.0018$.

Finally, a more recent version of the COSMOS photo-z catalogue (Laigle et al. 2016) was published after we finalized our data vectors. We verified that this catalogue gives consistent results for $\langle \beta \rangle$ and $\langle \beta^2 \rangle$ with $\Delta \langle \beta \rangle = 0.2\%$ and $\Delta \langle \beta^2 \rangle = -0.2\%$ and treat the difference between these catalogues as an additional source of uncertainty, $\sigma_{\beta, \text{NC}} = 0.002$.

We add all four $\sigma_{\beta,i}$ in quadrature and arrive at a final uncertainty of $\sigma_{\beta} = 0.0087$. Cluster mass scales with $M \propto \gamma^{1/\Gamma}$, where the exponent Γ depends on the cluster centric radius. For a wide range of radial fitting ranges $\Gamma = 0.75$ (Melchior et al. 2017) and hence the systematic uncertainty on cluster mass due to uncertainty on the redshift distribution of background galaxies is 1.2%. We confirmed this value by rescaling the tangential shear by a factor of 1.0087, fitting NFW profiles (see Section 4.2) to the unscaled and scaled shear profiles, and comparing the mass estimates.

Our sampling from the reference catalogue also enables us to estimate the fraction of foreground galaxies surviving our colour cuts and diluting the shear signal without biasing it. This is shown in Fig. 4. The fraction of low-redshift interlopers is below 2% for clusters at redshift $z < 0.45$. At higher redshifts it jumps to $\sim 5\%$. It is possible to optimise the colour cuts to keep the low-z contamination at $\sim 2\%$ also for the 0.45 $< z < 0.55$ redshift bin, but this optimisation happens at the cost of an increased contamination of the shear catalogue by cluster galaxies, as we discuss in detail in the next Section.

\begin{figure}
\centering
\includegraphics[width=0.8\textwidth]{fraction_lowz_interlopers.png}
\caption{Fraction of low-redshift galaxies surviving our colour cuts as a function of redshift estimated by sampling from the reference catalogue. The error bars are the standard deviation of the mean number of low-z interloper galaxies. The vertical dotted lines indicate the transitions from one colour cut to another as illustrated in Fig. 3.}
\end{figure}

\begin{table}
\centering
\begin{tabular}{lcccc}
\hline
Cluster Name & z_1 & $\langle \beta \rangle$ & $\langle \beta^2 \rangle$ & n_{gal} (arcmin$^{-2}$) \\
\hline
SPT-CL.J0234–5831 & 0.41 & 0.48 & 0.25 & 12.1 \\
SPT-CL.J0240–5946 & 0.40 & 0.50 & 0.27 & 12.3 \\
SPT-CL.J0254–5857 & 0.44 & 0.46 & 0.23 & 11.1 \\
SPT-CL.J0307–6225 & 0.58 & 0.40 & 0.18 & 7.9 \\
SPT-CL.J0317–5935 & 0.47 & 0.40 & 0.23 & 9.2 \\
SPT-CL.J0346–5439 & 0.53 & 0.40 & 0.18 & 13.1 \\
SPT-CL.J0348–4515 & 0.36 & 0.56 & 0.32 & 12.1 \\
SPT-CL.J0426–5455 & 0.63 & 0.35 & 0.14 & 8.9 \\
SPT-CL.J0509–5342 & 0.46 & 0.46 & 0.23 & 11.7 \\
SPT-CL.J0516–5430 & 0.29 & 0.60 & 0.37 & 9.3 \\
SPT-CL.J0551–5709 & 0.42 & 0.48 & 0.24 & 8.4 \\
SPT-CL.J2022–6323 & 0.36 & 0.51 & 0.28 & 7.4 \\
SPT-CL.J2030–5638 & 0.39 & 0.50 & 0.27 & 9.0 \\
SPT-CL.J2032–5627 & 0.28 & 0.60 & 0.37 & 8.4 \\
SPT-CL.J2135–5726 & 0.43 & 0.47 & 0.24 & 9.7 \\
SPT-CL.J2138–6008 & 0.32 & 0.54 & 0.31 & 4.9 \\
SPT-CL.J2145–5644 & 0.48 & 0.44 & 0.21 & 9.9 \\
SPT-CL.J2332–5358 & 0.40 & 0.51 & 0.27 & 11.5 \\
SPT-CL.J2355–5055 & 0.32 & 0.57 & 0.34 & 10.1 \\
\hline
\end{tabular}
\caption{Cluster redshift, source galaxy lensing efficiency, and density after color cuts.}
\end{table}

3.3 Cluster contamination correction

Sampling from the reference catalogue – as in the preceding section – allows us to estimate the background properties and foreground contamination of the shear catalogues. However, it does not allow us to estimate the contamination by cluster galaxies remaining after the colour cuts in the shear...
catalogues, because cluster galaxies are a very significant overdensity in redshift space not present in the reference catalogue. Contamination of the shear catalogues by cluster galaxies dilutes the shear signal as these galaxies are not lensed and show no specific alignment (e.g. Sifón et al. 2015). Thus, they should be counted as contributing $\beta = 0$ in the estimation of the lensing efficiency.

We implement and test two different methods to estimate the contamination fraction in our cluster sample. All methods looking at radial variations of a population must carefully keep track of areas not available for observations of that population (Simet & Mandelbaum 2015; Hoekstra et al. 2015). We therefore use the mask files created for the magnification study of Chiu et al. (2016a), where details on their generation are provided. Briefly, regions covered by extended bright objects are automatically masked by SEXTTRACTOR while satellite trails and diffraction spikes are manually masked. We determine the cluster contamination fraction in radial bins and correct the bin area for masked pixels in both methods, keeping track of the area covered by bright galaxies not already included in the pixel masks. An increased incidence of blending could in principle also lead to a depletion of object detections in higher density environments. The simulations of Chiu et al. (2016b) show that this is not a problem for the choice of radial range (0.75–2.5 Mpc) considered in the present study.

3.3.1 Number density profile

As in Applegate et al. (2014) – based on an approach by Hoekstra (2007) – the radial profile of contaminating galaxies is modeled as

$$f_{\text{cl}}(r) = \frac{n_{\text{cl}}(r)}{n_{\text{gal}}} = f_{500} \exp \left(1 - \frac{r}{r_{500}}\right),$$

where f_{500} is the contamination fraction at r_{500}, the SZE determined radius, and n_{gal} is the number density of background galaxies. An important consideration in our case is that this approach does not rely on measuring the background number density of galaxies far away from the cluster centres but treats it as a free parameter. The virial radius of most clusters in our sample is only slightly smaller than the FOV of Megacam affording us no area completely free from cluster galaxies.

As Applegate et al. (2014) we see an upturn in the number density in most cluster fields towards the centre. Per field measurements of cluster contamination fractions are nevertheless too noisy to be meaningful and we adopt their strategy of fitting all clusters simultaneously with a single contamination fraction f_{500} and per field n_{gal} values. We radially bin the shear catalogue in angular bins of width $1'$ from the cluster centre out to a maximum radius of $12'$. We assume Poisson errors on the binned number counts. After binning we rescale the bin locations to units of the SZE derived r_{500} of each cluster. We emphasise that this is the only step in our analysis that depends on an SZE derived cluster mass. Its only purpose is to correct for the range in cluster mass and any systematic covariance between the weak lensing derived cluster masses and their SZE based estimates introduced by this scaling are subdominant to the relatively large statistical errors on the contamination fraction.

Table 4

<table>
<thead>
<tr>
<th>Method</th>
<th>Bin Rejection</th>
<th>f_{500}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applegate et al. (2014)</td>
<td>$< 2'$</td>
<td>$(4.8 \pm 2.5)%$</td>
</tr>
<tr>
<td></td>
<td>$< 3'$</td>
<td>$(5.5 \pm 3.1)%$</td>
</tr>
<tr>
<td></td>
<td>$< r_{\text{SZ},500}$</td>
<td>$(4.9 \pm 3.2)%$</td>
</tr>
<tr>
<td>Gruen et al. (2014)</td>
<td>$-$</td>
<td>$(2.3 \pm 1.7)%$</td>
</tr>
</tbody>
</table>

We reject some inner bins in the fitting procedure because we do not fit the shear profiles all the way to the centre. Among other reasons, we try to minimise the impact of cluster miscentring, which would also affect the number density profiles. Another effect that could potentially be important in the inner bins but was verified to be of negligible influence in our analysis is the impact of magnification (Chiu et al. 2016b).

Table 4 shows the result of performing the fit in this way and removing a varying number of bins close to the cluster centre.\(^7\) We find no dependence of f_{500} on the inner fit radius, indicating that over the radial ranges considered here the catalogue completeness does not change strongly. The error bars are estimated by bootstrap resampling from the cluster sample. The estimated background galaxy number densities are reported in Table 3.

To test a possible redshift dependence of the cluster contamination we split the sample at $z = 0.45$ where the foreground contamination shows a strong jump when we transition to a different colour cut regime. We find $f_{500}^{z<0.45} = (4.1 \pm 4.82)\%$ and $f_{500}^{z>0.45} = (5.0 \pm 2.9)\%$ when the fit is restricted to $r > 2'$. Both numbers are consistent with each other and the value reported in Table 4 if $r > 2'$ is imposed.

Additionally, we test whether we can reduce the foreground contamination by adjusting the colour cuts without adversely affecting the cluster contamination fraction. We remove the colour cut transition at $z = 0.45$ and apply the colour cuts used for objects in the redshift range $0.35 \leq z < 0.45$ over the range $0.35 \leq z < 0.55$ instead. Indeed this reduces the foreground contamination for the four clusters in this bin to $\lesssim 2\%$–3%. At the same time we notice a significant steepening of the number density profiles of these four clusters, indicating an increased contamination by cluster galaxies. On the one hand the dilution of the shear signal by foreground galaxies is reliably taken care of by setting their $\beta = 0$ in the estimation of $\langle \beta \rangle$ and $\langle \beta^2 \rangle$. On the other hand we know that the reference field cannot be a faithful representation of the galaxy density in redshift space in the presence of a massive cluster. Given the low SNR of our f_{500} measurement and the relative straightforwardness of the redshift sampling in Section 3.2 we prefer to optimise our colour cuts for rejection of cluster galaxies.

3.3.2 Redshift space decomposition

An alternative method to fitting an analytical number density profile was proposed by Gruen et al. (2014). Briefly, they

\(^7\) For most clusters in our sample $r_{\text{SZ},500} > 3'$.\n
looked at the probability distribution of the lensing efficiency \(\beta \) and decomposed the observed probability distribution at a given cluster centric radius \(r \) into the cluster and the field galaxy probability distribution

\[
p(\beta, r) = f_{cl}(r)p_{cl}(\beta, r) + (1 - f_{cl}(r))p_f(\beta),
\]

(12)

where \(f_{cl}(r) \) is the radially dependent cluster contamination fraction. Once \(p(\beta, r) \), \(p_{cl}(\beta, r) \), and \(p_f(\beta) \) are known, the contamination fraction can be found by simple \(\chi^2 \)-minimisation. We additionally imposed the constraint that \(f_{cl} \in [0, 1] \). This method works if its two underlying assumptions are fulfilled:

(i) the redshift distribution of galaxies is constant over the image;
(ii) the cluster and field probability distributions \(p_{cl} \) and \(p_f \) are sufficiently independent such that the full distribution function \(p(\beta) \) can be written as a linear combination of the two.

It is reasonable to assume that the first condition is met in our case, because our images have a homogeneous depth per field and cover only a small solid angle. We experimentally verified that the second condition is also fulfilled by plotting \(p_{cl}(\beta) \) and \(p_f \). We estimated these distributions from the reference catalogue in the manner described by Gruen et al. (2014), which we summarise here.

The distributions \(p(\beta, r) \) and \(p_{cl}(\beta, r) \) are estimated in annuli around the cluster centre. We chose 9 bins of width 1\' starting at the cluster centre. In each bin, for every object in the shear catalogue with magnitudes \(\{g, r, i\} \) we take galaxies with \(\sqrt{(\Delta g)^2 + (\Delta r)^2 + (\Delta i)^2} < 0.1 \text{ mag} \) from the reference catalogue. For each such sample we compute the probability \(P_i \) that the respective object is a cluster galaxy by assigning it the fraction of sample galaxies that have \(|z - z_i| \leq 0.06(1 + z_i) \). Also, for every sampled galaxy, we compute \(\langle \beta \rangle \) from the COSMOS sample. The unweighted histogram of these \(\langle \beta \rangle \) values is \(p(\beta) \). The histogram weighted by the \(P_i \) values is \(p_{cl}(\beta) \).

The probability distribution of \(\beta \) for field galaxies is estimated in a similar fashion. For each object in the shear catalogue at a large distance from the cluster – we choose \(r > 10^{\prime} \) – samples are drawn in the same way. The probability \(P_i \) that a galaxy is a field galaxy is assigned the fraction of sample objects with \(z < z_i - 0.06(1 + z_i) \). Again, the value of \(\langle \beta \rangle \) is the distribution \(P_i \). Following Gruen et al. (2014), the choice of 0.06(1 + \(z_\text{cl} \)) as separation here and for computing the probability that a galaxy is a cluster galaxy is based on the 2\(\sigma \) uncertainty of the photometric redshifts in our reference catalogue. Varying this parameter does not systematically influence our estimates of the contamination fraction.

Figure 5 shows the radial contamination profile fraction derived in this way for the ensemble of all clusters. Like in the case of the exponential contamination model we found that individual cluster estimates are very noisy and that there is no obvious redshift trend. Instead of correcting each cluster profile with its own noisy contamination profile \(f_{cl}(r) \), we estimate an average contamination profile and its error using the robust location and scale estimator of Beers et al. (1990).

We compare the impact both methods have when they are applied over different radial ranges in the process of fitting NFW profiles (Navarro et al. 1997, see Sect. 4.2) to the tangential shear. We measure the relative change of mass compared to a profile fit ignoring the contamination correction. In all cases the outer radial range considered is 2.5 Mpc and the inner radius takes the values listed in Table 5. We conclude that both methods agree to better than 2% outside 0.65 \(r_{500} \). As one would expect larger corrections are necessary if one decreases the inner radius of the shear profile analysis. Nevertheless, we find that the purely empirical decomposition method is significantly steeper than the exponential model at smaller radii indicating that the latter is not a good model and the actual contamination profile is more similar to the cored 1\(/r \) profile employed in Hoekstra et al. (2015). We take the difference of 0.9% in mass (see the last line of Table 5, which uses the inner radius later employed in this work) between both methods considered here as an upper limit on the impact of the systematic uncertainty of the contamination correction.

We also tested for the existence of mass dependent trend in the mean \(f_{500} \) by splitting the cluster sample into two equal sized bins along the detection significance \(\xi \). The contamination fractions measured in both bins are statistically indistinguishable and fully consistent with the one determined for the whole cluster sample, excluding any significant mass trend at the current level of uncertainty.
4 WEAK-LENSING MASS MEASUREMENTS

We present reconstructions of the projected mass density in Section 4.1 and constrain the mass of our galaxy clusters with fits to analytical shear profiles in Section 4.2. As we will discuss, these fits represent biased mass estimators, which can be calibrated with simulations. First, however, the uncorrected fits can be compared to mass estimates obtained for a subset of our clusters from the same data by High et al. (2012).

4.1 Mass reconstruction maps

Cluster mass maps are often instructive to assess the weak-lensing detection of a galaxy cluster and to compare light and mass distributions. We used the finite field inversion method of Seitz & Schneider (2001) to obtain reconstructed κ-maps from the observed shear fields with a smoothing of 2σ, which was selected based on the visual impression of the reconstructed maps. To compute the noise levels of the surface mass density reconstruction we create 800 realisations of the shear catalogue with randomly rotated galaxy ellipticities while keeping the absolute value of the ellipticity and the galaxy positions fixed. The variance of these random maps is used as a noise estimator for each pixel, although pixels within the smoothing scale are of course highly correlated. Dividing the κ-map by noise maps created in this way gives SNR maps whose contours we show in the left panels of Figures B1–B19 in Appendix B.

In these figures we compare the weak lensing significance contours with significance contours of filtered SPT-SZ maps and significance contours of the density of colour selected red sequence cluster galaxies. Although the SNR of the WL reconstruction is low, in most cases we find good agreement between the SPT and the WL centroid. Sizeable offsets between these are expected due to shape noise and smoothing of an asymmetric mass distribution with a symmetric kernel (Dietrich et al. 2012) even in the absence of collisional processes separating the dark matter and gas components of a galaxy cluster (e.g., Clowe et al. 2006). The only noteworthy case in this gallery is SPT-CL J2355-5055 (Fig. B19) whose field shows another cluster west of the SPT detection in the galaxy density contour with almost identical colours and an elongated structure extending NE from this second cluster. These are not detected by SPT but seem to be broadly traced, albeit at very low significance, by the mass reconstruction.

4.2 NFW profile fits

Average density profiles of galaxy clusters in cosmological simulations are known to follow a universal density profile

$$\rho(r) = \frac{\delta_c \rho_{200}}{(cr/r_{200})(1 + cr/r_{200})^2}, \quad (13)$$

first described by Navarro et al. (1997) to a very good approximation. Here r is the three-dimensional radius from the cluster centre, r_{200} is the critical density of the Universe at the cluster redshift, c is the concentration parameter, which determines how fast the density profile turns over from $\propto r^{-1}$ to $\propto r^{-3}$, and δ_c is a characteristic overdensity

$$\delta_c = \frac{200}{3} \frac{c^2}{\ln(1 + c) - c/(1 + c)}. \quad (14)$$

Although the NFW profile is a very good approximation of the average density profile of galaxy clusters (e.g. Johnston et al. 2007), better fitting descriptions exist. The Einasto (1965) profile is a better description of the density profile close to the centre. At large radii ($> r_{200}$) correlated large-scale structure leads to systematic deviations from the NFW profile (Johnston et al. 2007). For the radial ranges of interest in this work, however, the original NFW profile with its well known lensing properties (Bartelmann 1996; Wright & Brainerd 2000) is a sufficiently good description of isolated haloes. We will calibrate the impact of deviations from spherical NFW profiles using simulations (cf. Section 4.4).

We fit spherical NFW profiles to the binned tangential shear over the range of 750 kpc to 2.5 Mpc. Going further inwards would increase our sensitivity to miscentring (e.g., Johnston et al. 2007; Mandelbaum et al. 2010), the cluster contamination correction (see Table 5), and the mass–concentration relation, which is difficult to measure using weak lensing data alone. Going further outwards, deviations from an NFW profile become more pronounced (Becker & Kravtsov 2011) due to correlated (Johnston et al. 2007) and uncorrelated (Hoekstra 2003; Dodelson 2004) LSS. We choose the SZE peak position as cluster centre for the Megacam cluster sample and the X-ray centroid as cluster centre for the HST sample. We use 8 linearly spaced bins over this radial range and compute weighted averages of the reduced shear in each bin

$$\langle g_i \rangle = \frac{\sum_n w_n g_{i,n}}{\sum_n w_n}, \quad i \in \{t, x\}, \quad (15)$$

using the lensing weights

$$w = \frac{P^2}{\sigma^2 P^2 + (\Delta \epsilon)^2}, \quad (16)$$

where P^2 is the shear polarisability (Hoekstra et al. 1998), σ is the intrinsic ellipticity dispersion, which we fixed to 0.25, and $\Delta \epsilon$ is the error estimate for the polarisation (Hoekstra et al. 2000). The errors of the mean shear in each bin are computed as

$$\frac{1}{\sigma_{g_i}^2} = \sum_n w_n. \quad (17)$$

We use the weighted average of the radial galaxy positions in a bin as the effective bin location. We verified that the number of radial bins and their location has no systematic influence on the recovered cluster masses for a wide range of binning schemes, if we restrict the fitting procedure to the chosen radial range of 0.75 Mpc $< r < 2.5$ Mpc.

We correct the binned tangential shear for the remaining contamination with cluster galaxies via

$$\langle g_i, \text{corr} \rangle (r) = \frac{\langle g_i \rangle (r)}{1 - f_{a3}(r)}, \quad (18)$$

where we use the mean contamination fraction of all clusters derived from the method of Gruen et al. (2014) in Sect. 3.3.2. We propagate the uncertainties of this $f_{a3}(r)$ profile to the reduced shear error estimates, eq. (17).

When fitting the model to the observed reduced shear
profile, we treat the NFW model as a one-parameter family with \(M_{200} \) being the only free parameter and fix the concentration parameter \(c \) to exactly follow a mass–concentration scaling relation with no intrinsic scatter. Specifically we adopt the \(M–c \) relation of Diemer & Kravtsov (2015). This choice is justified by recent observational constraints on the \(M–c \) relation for the mass and redshift range of the Megacam cluster sample (Merten et al. 2015; Cibirka et al. 2017) and by measurements of the concentration in the HST sample itself (S18).

Observed shear profiles with best fit NFW models are presented in Appendix B. For all clusters, the cross-shear is consistent with zero, as expected for shear catalogues that are not significantly affected by systematics.

4.3 Comparison with earlier mass measurements

Our weak lensing analysis of Megacam data is a significant expansion of an earlier analysis of a subset of five clusters (High et al. 2012). A comparison of the mass estimates obtained is a natural part of our analysis. Although we use the same data as High et al. (2012) our analysis differs in a few key features as described in the previous sections. Most importantly these are: (i) new shear catalogues with new PSF model and multiplicative shear bias correction; (ii) updated estimates for \(\beta \) and \(\beta^2 \); (iii) improved estimation of the cluster contamination correction; (iv) different mass–concentration scaling relation.

Nevertheless, the mass estimates from this previous work and our analysis are in agreement. Figure 6 shows a comparison of the \(M_{500} \) masses obtained from NFW fits of High et al. (2012) and our masses estimates. The weighted difference is \(\langle M_{500} - M_{500}^{\text{H12}} \rangle = (0.0 \pm 1.3) \times 10^{14} M_\odot \). Given the changes in the analysis mentioned above, we consider this agreement to be a coincidental. We also emphasize that these changes were made to make our mass estimates more robust and obtain better limits on the systematic uncertainties of our analysis procedures.

One example where our new methods lead to significantly different results from the one described in High et al. (2012) is the \(\langle \beta \rangle \) estimation for shallow fields whose completeness drops sharply before our limiting magnitude of \(i = 24.5 \mathrm{mag} \). SPT-CL J2138–6008 is one such field not present in High et al. (2012) in which the cluster mass would have been overestimated by \(\sim 14\% \) in the original analysis, leaving everything else the analysis pipeline unchanged.

4.4 Calibration of the NFW fits with simulations

As mentioned in the previous section, systematic deviations from the NFW profile and miscentring lead to biased mass estimates when fitting an NFW profile to the tangential shear. Furthermore, halo triaxiality (Clowe et al. 2004; Corless & King 2007) and projected LSS lead to additional scatter. We characterise the relation between measured weak lensing mass and true mass with a bias parameter \(b_{\text{WL}} \),

\[
M_{\text{WL}} = b_{\text{WL}} M_{500} \, ,
\]

and scatter \(\sigma_{\text{WL}} \). This scatter consists of two components: (i) a local component caused by the aforementioned deviations from a spherical NFW profile and correlated LSS, \(\sigma_{\text{WL,local}} \), assumed to be log-normal in weak-lensing mass at fixed true mass; (ii) scatter caused the projection of uncorrelated LSS, \(\sigma_{\text{WL,LSS}} \).

Our approach to calibrate \(b_{\text{WL}} \) and \(\sigma_{\text{WL,local}} \) is to create an ensemble of simulated observations that match the observational properties of a random subset of cluster fields and then apply the same measurement technique as we do to the real data. In general, we are aiming to reconstruct the probability distribution \(P(M_{\text{WL}} | M_{\text{true}}) \), which can then be included in forward probabilistic modelling of the cluster sample. However, we simplify the relation as stated above to one log-normal distribution that is the same for all observed cluster fields. Any residuals from such an oversimplification are still insignificant compared to the statistical precision of our dataset.

To build our simulated observations for one observed cluster field, we start with the \(N \)-body simulations from Becker & Kravtsov (2011). These are \(1 \mathrm{Gpc} \) boxes with \(1024^3 \) dark matter particles with a mass of \(6.98 \times 10^{10} M_\odot \) each. We cut out \(400 h^{-1} \mathrm{Mpc} \) long boxs centred on the most massive \(788 \) haloes with \(M_{500,c} > 1.5 \times 10^{14} h^{-1} M_\odot \) from the \(z = 0.5 \) snapshot. Particles are projected to form 2D mass maps that are then used to create shear maps via Fast Fourier transform. The observed \(\langle \beta \rangle \) from a cluster observation is used to scale the shear and \(\kappa \) maps appropriately. Random Gaussian noise is added to the shear map to match the observed shape noise in the observations. Because in our real observations we fit a 1-D profile, we select an “observed” cluster centre for each simulation map. We assume that the displacement between the true expected centre of the simulated cluster and the “observed” centre is randomly oriented with respect to the underlying structure, a reasonable assumption given the noise sources of SPT observations and the statistical power of this sample. Centre offsets are randomly chosen following the form specified by Song et al. (2012), a Gaussian
distribution with a width dependent on the SPT beam size and the core radius of the matched filter used to detect the observed cluster. The simulated 1-D profiles are then fit with an NFW model as in the data analysis.

We assume that \(P(M_{\text{WL}}|M_{\text{true}}) \) follows a log-normal distribution with location and scale parameters \(\mu = \ln b_{\text{WL}} \) and \(\sigma = \sigma_{\text{WL,local}} \), respectively. For the set of simulated fields, we find the maximum \textit{a posteriori} location for the probability distribution

\[
P(b_{\text{WL}}, \sigma_{\text{WL,local}}|\text{mocks}) \\
\propto \prod_i \int P(b_{\text{WL}}, \sigma_{\text{WL,local}}|M_{\text{WL}}) P(M_{\text{WL}}|\text{mock}) \, dM_{\text{WL}}.
\]

(20)

Uninformative priors were used for the parameters of interest. Simulated observations were also created and analysed using the \(z = 0.25 \) snapshot from Becker & Kravtsov (2011) as well as the Millennium-XXL simulations (Angulo et al. 2012). No significant trends were seen between snapshots or simulations. We also did not see any significant trend with the observational properties of each observed field, including the amount of shape noise or different filter core size. Our final bias \(((b_{\text{WL}} = 0.938 \pm 0.028) \) and scatter \(\sigma_{\text{WL,local}} = 0.214 \pm 0.040) \) are then the average across the random subset of cluster fields targeted for mock up when the mass–concentration relation of Diemer & Kravtsov (2015) is used.

4.5 Impact of the mass–concentration relation

Weak lensing data often provide poor constraints on the concentration parameter of the NFW profile. The shear signal is determined by the enclosed mass at each radius, and the NFW scale radius is typically interior to the innermost radius at which the shear is reliably measured. Without observing the mass profile shape around the scale radius, via the shear profile, our analysis can only provide very weak lower bounds on the concentrations. Because most mass–concentration relations in the literature seem to agree that there is a lower bound on concentrations at \(c \sim 2-3 \), we only fit for the NFW mass of our clusters and enforce that they follow a mass–concentration scaling relation. Any mismatch between this relation and true galaxy clusters then introduces another source of systematic error that we need to take into account.

We can estimate the sensitivity of our analysis to uncertainty of published mass–concentration relation by carrying out the NFW fit bias analysis of the previous section for different fixed concentrations. We find that the average mass bias at concentrations \(c = 5 \) and \(c = 3 \) is \(b_{\text{WL}} = 0.978 \) and \(b_{\text{WL}} = 0.907 \), respectively, implying \(\text{db}_{\text{WL}}/\text{dc}|_{c=4} = -0.0355 \). Using Gaussian error propagation on eq. (19) we obtain

\[
\left(\frac{\sigma_M}{M_{\text{true}}} \right)^2 = \frac{1}{b_{\text{WL}}} \left(\frac{\text{db}_{\text{WL}}}{dc} \right)^2 \sigma_c^2.
\]

(21)

Because we calibrated the bias resulting from NFW fits in Sect. 4.4 using our chosen \(M–c \) relation, namely the one of Diemer & Kravtsov (2015), the systematic uncertainty is not given by how well this relation describes the actual cluster sample, but by how faithfully the simulated clusters represent true clusters in the Universe. The simulations used in the previous section are Dark Matter only and thus the question is how much would the concentrations for clusters of the mass and redshift in our sample and redshift be impacted by baryonic effects. Duffy et al. (2010) constrain this to an upper limit of 10%. Evaluating eq. (21) we set \(\sigma_c|_{c=4} = 0.4 \) and obtain a mass uncertainty due to the mass–concentration relation of 1.5%.

4.6 Impact of the miscentring model

Our baseline model for the distribution of offsets between the SZE peak position, which we use as the cluster centre in our analysis of the Megacam data, and the true cluster centre is the analytical form of Song et al. (2012) described in Sect. 4.4. We estimate limits on the impact on the mass calibration of this miscentring uncertainty by running the NFW bias analysis of Sect. 4.4 with a different miscentring model. We use a miscentring distribution adopted from the analysis of Saro et al. (2014) but based on cosmological hydrodynamical simulations with both large volume and high resolution (see, e.g. Bocquet et al. 2016; Gupta et al. 2017). This includes a mock SZE signal and a simulation of the SPT cluster detection procedure, which uses the multi-frequency adaptive filter method (Melin et al. 2006). Briefly, a \(\beta \)-profile with \(\beta = 1 \) is used as cluster template, with 12 different core radii \(\theta_{\text{core}} \), the same as used by SPT (Roe et al. 2015). The highest signal-to-noise peaks within in the larger of \(\theta_{\text{true}} \) or \(\theta' \) are picked as individual cluster candidates with the peak position as the centre. The SZE peaks identified in this way are matched to the projected halo centre, which is the most bound particle.

For this miscentring distribution and the Diemer & Kravtsov (2015) \(M–c \) relation, we find a weak lensing bias \(b_{\text{WL}} = 0.960 \pm 0.027 \). From the difference to the \(b_{\text{WL}} \) value in our baseline analysis, we conservatively assume an uncertainty of 3% in the weak lensing bias parameter.

4.7 Summary of systematic uncertainties

We now briefly summarise all contributions to our systematic uncertainty budget. An overview is presented in Table 6. Broadly, these fall into two categories, observational uncertainties and modelling uncertainties. We considered observational biases in Sect. 3. The first two of these four pertain to how well we can measure shear. Based on Hoekstra et al.

<table>
<thead>
<tr>
<th>Error Source</th>
<th>Impact on Mass</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicative shear bias</td>
<td>2%</td>
<td>§ 3.1</td>
</tr>
<tr>
<td>PSF boost correction</td>
<td>2.5%</td>
<td>§ 3.1.1</td>
</tr>
<tr>
<td>(\langle \beta \rangle) and (\langle \beta^2 \rangle) estimation</td>
<td>1.2%</td>
<td>§ 3.2</td>
</tr>
<tr>
<td>Contamination correction</td>
<td>0.9%</td>
<td>§ 3.3</td>
</tr>
<tr>
<td>NFW mass bias</td>
<td>2.8%</td>
<td>§ 4.4</td>
</tr>
<tr>
<td>(M–c) relation</td>
<td>1.5%</td>
<td>§ 4.5</td>
</tr>
<tr>
<td>Miscentring distribution</td>
<td>3%</td>
<td>§ 4.6</td>
</tr>
<tr>
<td>Total</td>
<td>5.6%</td>
<td></td>
</tr>
</tbody>
</table>
(2015) the impact on mass of the multiplicative shear bias was estimated to be < 2%. Additionally, the shear calibration of Hoekstra et al. (2015) was derived for a circular PSF. For the strongly anisotropic PSF in our data, an additional boost to the shear polarisability was suggested by Hoekstra et al. (2015) to avoid biases. Applying this correction led to an additional scatter of 2.5% in mass.

The second set of observational systematics is due to uncertainties in the redshift estimates of galaxies. First, uncertainties in (β) and (β^2) come from cosmic variance of the reference field, uncertainties in the photometric redshifts of the reference field itself, and uncertainties in our photometric calibration. This contributes 1.2% to our systematic errors. Second, cluster galaxies evading our colour-colour cuts dilute the shear signal. We model this small signal in Sect. 3.3 using two approaches. We propagate the uncertainties of the model we judged to be more reliable to the statistical error budget and treat the difference between the two models as a source of systematic uncertainty. This difference amounts to 0.9% in mass.

We considered the second category of modelling errors in Sects. 4.4–4.6. We discussed three sources of modelling errors. First, a bias incurred by fitting an NFW profile following a fixed mass–concentration relation to shear profiles that could deviate from an NFW profile, e.g., from correlated LSS, miscentring, and obeying a different $M–c$ relation. We calibrate this bias factor b_{WL}, eq. (19), on N-body simulations and use its uncertainty of 2.8% as the systematic error number in Table 6. Second, we used previous estimates (Duffy et al. 2010) by which how much the concentration of simulated dark-matter only haloes may depart from the true cluster concentration to estimate the impact of baryonic effects on mass. This amount to 1.5% in our error budget. Finally, we studied how much uncertainties in our miscentring model affect the mass estimates. The 2.8% error on b_{WL} quoted above is only the uncertainty of the NFW mass bias calibration for our chosen miscentring baseline model. Replacing this model with another leads to a different estimate of b_{WL}. We take this difference of 3% as uncertainty caused by the choice of miscentring model.

Because the various sources of systematic uncertainties are not expected to be correlated, we sum them in quadrature to obtain final systematic error budget of 5.6%.

5 MASS–OBSERVABLE SCALING RELATIONS AND LIKELIHOOD FUNCTION

We use our cluster data set, containing SZE, X-ray, and weak-lensing measurements, to constrain the mass–observable relations for all observables. We consider two different observables for the X-ray scaling relations, the gas mass M_{gas} and Y_X. Because both observables share the same gas mass measurements, they are not independent, and we do not run any fits for both X-ray relations simultaneously; rather, we either fit for one or the other relation. In the following, we discuss all mass–observable relations, the likelihood function, and our choice of priors.

5.1 SZE and X-ray scaling relations

Galaxy clusters in the SPT-SZ survey were detected via their thermal SZE in the 95 and 150 GHz maps via a multi-scale matched filter technique (Melin et al. 2006). The observable used to quantify the cluster SZE signal is ξ, the detection significance maximised over all filter scales. These filter scales are a set of 12 linearly spaced values from 0.5 to 2.5 and the filter scale that maximises the detection significance is associated with the cluster core radius θ_c. Due to noise bias, ξ is a biased estimator of SNR. Therefore, an unbiased SZE significance ζ is introduced, corresponding to the signal-to-noise at the true cluster position and filter scale (Vandenberg et al. 2010). For $\xi > 2$,

$$\zeta = \sqrt{(\xi^2 - 3)}$$

(22)

describes the relation between ξ and ζ, with scatter described by a Gaussian of unit width, where the average is taken over many noise realizations.

The unbiased SNR ζ can be related to cluster mass by the mass–observable scaling relation

$$\zeta = A_{\text{SZ}} \left(\frac{0.7 M_{500}}{3 \times 10^{14} M_{\odot} h^{-1}} \right)^{b_{\text{SZ}}} \left(\frac{E(z)}{E(0.6)} \right)^{C_{\text{SZ}}},$$

(23)

where A_{SZ} is the normalisation, b_{SZ} the mass slope, C_{SZ} the redshift evolution and $E(z) = H(z)/H_0$. An additional parameter $\sigma_B \zeta$ describes the intrinsic scatter in ζ, which is assumed to be log-normal and constant as a function of mass and redshift.

We also relate the X-ray observables to cluster mass via mass–observable scaling relations

$$\frac{Y_X}{10^{14} M_{\odot} \text{ keV}} = A_{Y_X} \left(\frac{M_{500}}{5 \times 10^{14} M_{\odot} \sqrt{0.7} h^{-1}} \right)^{B_{Y_X}} \left(\frac{E(z)}{E(0.6)} \right)^{C_{Y_X}},$$

(24)

and

$$\frac{M_{\text{gas}}}{5 \times 10^{14} M_{\odot}} = A_{M_{\text{gas}}} \left(\frac{M_{500}}{5 \times 10^{14} M_{\odot}} \right)^{B_{M_{\text{gas}}}} \left(\frac{E(z)}{E(0.6)} \right)^{C_{M_{\text{gas}}}},$$

(25)

and assume a corresponding log-normal scatter $\sigma_{\text{int}} Y_X$ ($\sigma_{\text{int}} M_{\text{gas}}$) in Y_X (M_{gas}) at fixed mass. Note that we use the same redshift pivots as for the SZE scaling relation, but apply a slightly larger pivot point in mass, approximately corresponding to the median mass of the subsample with available X-ray observations. Also note that the parametrisation of the Y_X-mass relation we use here departs from the one used in previous work by the SPT collaboration (e.g. de Haan et al. 2016). We write Y_X as a function of mass so that all mass–observable-relations (23)–(25) have the observable on the left-hand side.

5.2 Weak-lensing modelling systematics

As discussed in Section 4.4 we assume a relation between the weak lensing mass that is obtained from fitting an NFW profile to our shear data and the unobservable, true mass $M_{\text{WL}} = b_{WL} M_{500}$. The normalisation b_{WL} and the scatter about this mean relation are calibrated taking modelling and measurement uncertainties into account; we use numerical simulations for the modelling part. As our weak-lensing
Weak Lensing Calibrated SZE and X-ray Scaling Relations

5.2.1 Weak-lensing bias

We model the weak-lensing bias as two independent components: mass model and measurement systematics. We calibrate the amplitude of the bias due to mass modelling against numerical simulations, and model the measurement systematics such that we expect zero bias. For our likelihood analysis, we parametrise the weak-lensing bias as

\[b_{WL,i} = b_{\text{sim}_i} + \delta_{\text{WL bias}} \Delta b_{\text{mass model}_i} + \delta_i \Delta b_{\text{shear cal}, N(z)_i}, \]

where \(b_{\text{sim}_i} \) is the mean expected bias due to the mass modelling, \(\Delta b_{\text{mass model}_i} \) is the uncertainty in our calibration of \(b_{\text{sim}_i} \), and \(\Delta b_{\text{shear cal}, N(z)_i} \) is the quadrature sum of the uncertainties in shear calibration and in the determination of the distribution of background galaxies; \(\delta_{\text{WL bias}}, \delta_{\text{Megacam}}, \) and \(\delta_{\text{HST}} \) are free parameters in our likelihood. With this parametrisation, we put Gaussian priors of unit width centred at zero \(N(0, 1) \) on the three parameters \(\delta_{\text{WL bias}}, \delta_{\text{Megacam}}, \) and \(\delta_{\text{HST}} \). We investigate a possible redshift dependence of \(b_{\text{sim}_i} \) and \(\Delta b_{\text{mass model}_i} \) and find no indications for it, so we treat these terms as redshift independent.

Due to the different observing strategies for the Megacam and HST samples, the mean expected biases \(b_{\text{sim}_i} \) are determined for each sample separately. The uncertainty on the mass model \(\Delta b_{\text{mass model}_i} \) is modelled as the quadrature sum of the uncertainty obtained from the numerical simulations, the uncertainty in the \(M-c \) relation, and the uncertainty due to miscentring. These uncertainties are determined in identical ways for both subsamples (although the numbers differ), and so we adopt a common fit parameter \(\delta_{\text{WL bias}} \). This effectively correlates the uncertainties due to mass modelling between both samples. The shear calibration and determination of the distribution of background galaxies, however, is independent for each sample, and we therefore adopt a fit parameter \(\delta_{\text{shear cal, Megacam/HST}} \) for each sample.

5.2.2 Weak-lensing scatter

We decompose the weak-lensing scatter into two components: uncorrelated SLS modelled by a normal distribution and scatter intrinsic to the NFW modelling of the lensing halo. The latter term includes scatter due to the miscentring distribution, halo triaxiality, and correlated LSS. Our motivation for this approach is twofold: First, the simulations used to calibrate the bias and scatter in Sect. 4.4 are not full light and do not capture the entirety of projected large-scale structure. Second, these simulations indicate that this local scatter is well described, at least for our purposes, by a log-normal distribution, while uncorrelated LSS leads to an additional Gaussian scatter contribution to the tangential shear. We model the latter term as Gaussian scatter on the cluster mass, although this is not entirely correct as the relation between cluster mass and shear is non-linear (see also Hoekstra 2003). The combination of log-normal local scatter and normal non-local scatter gives us enough flexibility to model the true mass scatter, which is also neither exactly normal nor log-normal.

We calibrate the local, log-normal scatter against simulations. The Megacam and HST samples have different scatter properties, but these numbers are calibrated against the same simulations, and therefore share the same systematics. We use

\[\sigma_{\text{local},i} = \sigma_{\text{sim}_i} + \delta_{\text{WL scatter}} \Delta \sigma_{\text{sim}_i}, \quad i \in \{\text{Megacam, HST}\} \]

where \(\Delta \sigma_{\text{sim}_i} \) is the uncertainty of the simulation calibrated scatter \(\sigma_{\text{sim}_i} \), and \(\delta_{\text{WL scatter}} \) is a free parameter in our likelihood, on which we apply a Gaussian prior \(N(0, 1) \).

We estimate the uncorrelated LSS contribution to the weak-lensing scatter in our NFW fits of the Megacam data by calculating the variance of the surface mass density inside our fit aperture following the prescription presented in Hoekstra (2001). A key difference between our work and that of Hoekstra (2001) is that they compute the variance inside an aperture for the aperture mass statistics while we perform NFW fits to the shear profile. The aperture mass is radially weighted average of the mass inside a cylinder where the weight is given by a fixed filter function chosen by the user. To adapt the prescription of Hoekstra (2001) to our case we weigh the surface mass density power spectrum by an NFW profile representing the average mass and redshift of the Megacam cluster sample. For a cluster with \(M_{200} = 8 \times 10^{14} M_{\odot} \) at \(z = 0.4 \) we obtain

\[\sigma_{\text{WL, SLS, Megacam}} = 9 \times 10^{13} M_{\odot}. \]

This value is close to and slightly larger than the average value reported for the HST clusters, \(\sigma_{\text{WL, SLS, HST}} = 8 \times 10^{13} M_{\odot} \). This may seem surprising at first because the lensing catalog of the HST is much deeper than the Megacam data and consequently integrates over more large-scale structure. The apertures employed in the lower redshift Megacam sample are, however, larger than in the HST sample. This more than compensates our shallower redshift distribution.

In our analysis we only use the mean value \(\sigma_{\text{WL, SLS, HST}} = 8 \times 10^{13} M_{\odot} \) of the LSS scatter values reported in S18 as the mean of a Gaussian prior rather than an individual prior for each cluster. This reduces computational complexity and the impact on our analysis is negligible because the various sources of scatter are (almost) fully degenerate so that tiny deviations from reality in one scatter term are easily absorbed by another. The Gaussian prior for \(\sigma_{\text{MW, Megacam}} \) is centred on the value computed above. Both priors have a standard deviation of \(\Delta \sigma_{\text{WL, SLS, HST}} = 10^{14} M_{\odot} \), based on the estimated scatter of \(\sigma_{\text{WL, SLS, HST}} \) (S18).

As mentioned in Sect. 4.4, the bias \(b_{\text{WL}} \) and scatter \(\sigma_{\text{WL, local}} \) depend on the miscentering model one adopts. In general the centroid of the X-ray emission of the intra-cluster medium is expected to be a more reliable indicator of the
true cluster centre than the SZE peak position based on observations with a relatively broad beam. The HST sample has X-ray data for all clusters and thus we choose the X-ray positions and their corresponding bias and scatter values from S18 as input to our analysis. The Megacam sample is not fully covered by *Chandra* data. For these data we take the SZE peak position as the cluster centre.

5.3 Likelihood function and analysis pipeline

We simultaneously constrain the SZE and X-ray scaling relations (four parameters each) and the weak lensing model (six parameters) using an extension of the framework described in Bocquet et al. (2015). We summarize the main points of their likelihood function and discuss our extensions. All fit parameters are also listed in Table 7.

The translation of the weak lensing observable, i.e. the reduced shear η_i, into a physical mass scale depends on the cosmological parameters in a number of ways. First, the critical density of the Universe at the cluster redshift enters the NFW profile. Second, the translation of the angular shear profile into a radial shear profile measured in physical distances depends on the distance-redshift relation. Similarly, the distance-redshift relation enters the computation of the critical surface mass density, eq. (2). Finally, while many mass–concentration relations are strictly speaking valid only for the cosmological parameters for which they were derived, the $M-c$ relation of Diemer & Kravtsov (2015) we employ, has an explicit cosmological dependence.

We use the observed reduced shear with cluster contamination correction applied, η_i,corr, and redshift distribution $N(z)$ as input to the weak lensing portion of the likelihood code, which then computes $\langle \beta \rangle$, $\langle \beta^2 \rangle$, and fits an NFW profile as described in Section 4.2 at every sample point of the MCMC chain. In this way the cosmology dependence of the NFW shear profile due to the evolution of the critical density with redshift and the redshift-distance relation are taken into account.

Our cluster sample is SZE-selected. To properly take selection effects into account, for each cluster i in our sample, we evaluate the likelihood

$$P(X_i, M_{\text{WL}}, | \xi, z_i, \mathbf{p}) = \left[\int \int dM \xi P(\xi) P(X_i, M_{\text{WL}}, | M, z_i, \mathbf{p}) P(M | z_i, \mathbf{p}) \right]_{\xi_i}$$

(28)

where, for simplicity, we denote the X-ray observable as X, $P(M | z, \mathbf{p})$ is the halo mass function at redshift z, and \mathbf{p} is the vector of cosmological and scaling relation parameters. The multiplication with the halo mass function is a necessary step to account for the Eddington bias.

The term $P(X, M_{\text{WL}}, | M, z, \mathbf{p})$ contains the mass–observable relations defined in Sect. 5.1 as well as the intrinsic scatter about each relation. Extending the original analysis framework (Bocquet et al. 2015), we allow for correlated scatter between all observables. Namely $\sigma_{\ln \xi}$, $\sigma_{\ln X}$, and σ_{WL} are linked by correlation coefficients $\rho_{\text{SZ},-Y}$, $\rho_{\text{SZ},-\text{WL}}$, and $\rho_{\text{WL},-Y}$, so that the intrinsic covariance matrix is

$$\Sigma_Y = \begin{pmatrix}
\sigma_{\ln \xi}^2 & \sigma_{\ln \xi} \sigma_{\ln X} & \sigma_{\ln \xi} \sigma_{\text{WL},\text{local}} \\
\sigma_{\ln \xi} \sigma_{\ln X} & \sigma_{\ln X}^2 & \sigma_{\ln X} \sigma_{\text{WL},\text{local}} \\
\sigma_{\ln \xi} \sigma_{\text{WL},\text{local}} & \sigma_{\ln X} \sigma_{\text{WL},\text{local}} & \sigma_{\text{WL},\text{local}}^2
\end{pmatrix}
$$

(29)

and equivalently for $\sigma_{\ln M}$.

We use the observed reduced shear with cluster contamination correction applied, η_i,corr, and redshift distribution $N(z)$ as input to the weak lensing portion of the likelihood code, which then computes $\langle \beta \rangle$, $\langle \beta^2 \rangle$, and fits an NFW profile as described in Section 4.2 at every sample point of the MCMC chain. In this way the cosmology dependence of the NFW shear profile due to the evolution of the critical density with redshift and the redshift-distance relation are taken into account.
only evaluated for clusters that pass the SZE and redshift selection functions ($\xi > 5$ and $z > 0.25$), and the target selection of the follow-up observations (X-ray and weak lensing) is not based on these observables themselves (e.g., X-ray properties or weak lensing strength). Obviously, one must not reject follow-up observations that did not lead to a detection of the cluster. This frequently happens in the weak lensing observable due to its large scatter. Our forward modelling approach naturally deals with clusters whose radial shear profile is consistent with zero or less.

We use the emcee (Foreman-Mackey et al. 2013) implementation of the affine-invariant ensemble sampler algorithm (Goodman & Weare 2010) to evaluate the likelihood function of eq. (31). We use an ensemble of 192 walkers and discard the first five autocorrelation lengths of the chain as burn-in period. We consider chains to be converged if no evolution of the mean and standard deviation are visible in trace plots and if the Gelman & Rubin (1992) criterion is $\hat{R} < 1.1$ for all parameters.

5.4 Test on mock catalogues

We test that our implementation of the calibration framework described above recovers unbiased parameter estimates using mock galaxy cluster catalogs. These are created by Poisson sampling the halo mass function over the redshift range of the SPT-SZ cluster sample. The SZE detection significance $\ln \xi$ and the follow-up quantities Y_X and weak-lensing mass are drawn together from a multivariate normal distribution according to the fiducial scaling relation parameters including the full intrinsic covariance matrix of eq. (29). NFW shear profiles are generated from the weak-lensing mass set in this way. In the mock catalogues we select the 80 most significant clusters or randomly sample from all significances. In this way we also verify the independence of the recovered scaling relation parameters on the follow-up strategy.

We generate mock catalogues for an SPT-SZ-like 2500 sq. deg. survey and for a survey 10 fold the size of the actual SPT-SZ survey. For all cases we recover the input scaling relations within 1σ uncertainty. Additionally, these mock catalogues allow for predictions about which parameters our dataset will be able to constrain and choose appropriate priors for these parameters where the information content is too low to give meaningful constraints.

5.5 Choices of priors

In analyzing the scaling relations described above we aim to put informative priors only on parameters that our data cannot constrain. In addition to testing the constraining power of our data by running Monte Carlo chains with different prior choices we also create mock realisations of the SPT + X-ray + weak lensing catalogs to ascertain that the real data behave as expected from these simulations.

The weak lensing bias b_{WL} and the overall scaling of the per cluster bias factors of the S18 samples are obviously fully

Table 7. Parameters and priors used in the scaling relations analysis. The weak-lensing parametrisation is such that the fit parameters rescale the expected central values and uncertainties.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Prior</th>
<th>Parameter</th>
<th>Prior</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{SZ}</td>
<td>$1/A_{SZ}$</td>
<td>A_{Y_X}</td>
<td>$1/A_{Y_X}$</td>
</tr>
<tr>
<td>B_{SZ}</td>
<td>$N(1.63, 0.1^2)$</td>
<td>B_{Y_X}</td>
<td>const.</td>
</tr>
<tr>
<td>C_{SZ}</td>
<td>const.</td>
<td>C_{Y_X}</td>
<td>$N(0.702, 0.351^2)$</td>
</tr>
<tr>
<td>$\sigma_{\ln \xi}$</td>
<td>$N(0.13, 0.13^2)$</td>
<td>$\sigma_{\ln Y_X}$</td>
<td>$N(0.12, 0.08^2)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SZE and M_{gas}</th>
<th>SZE as above</th>
<th>$A_{M_{gas}}$</th>
<th>$1/A_{M_{gas}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B_{M_{gas}}$</td>
<td>$N(0.1)$</td>
<td>$C_{M_{gas}}$</td>
<td>$N(0.1, 0.2^2)$</td>
</tr>
<tr>
<td>$\sigma_{\ln M_{gas}}$</td>
<td>$N(0.1, 0.1^2)$</td>
<td>$\sigma_{\ln M_{gas}}$</td>
<td>$N(0.12, 0.08^2)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weak-lensing systematics</th>
<th>$\delta_{WL,bias}$</th>
<th>$N(0, 1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta_{MegaCam}$</td>
<td>$N(0, 1)$</td>
<td></td>
</tr>
<tr>
<td>δ_{HST}</td>
<td>$N(0, 1)$</td>
<td></td>
</tr>
<tr>
<td>$\delta_{WL, scatter}$</td>
<td>$N(0, 1)$</td>
<td></td>
</tr>
<tr>
<td>$\sigma_{WL, LSS \text{MegaCam}}/M_\odot$</td>
<td>$N(9 \times 10^{13}, 10^{26})$</td>
<td></td>
</tr>
<tr>
<td>$\sigma_{WL, LSS \text{HST}}/M_\odot$</td>
<td>$N(8 \times 10^{13}, 10^{26})$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Correlated scatter</th>
<th>ρ_{SZE-X}</th>
<th>$U(-1, 1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_{SZE-WL}</td>
<td>$U(-1, 1)$</td>
<td></td>
</tr>
<tr>
<td>ρ_{WL-X}</td>
<td>$U(-1, 1)$</td>
<td></td>
</tr>
<tr>
<td>Eq. (29)</td>
<td>$\text{det}(\Sigma) > 0$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cosmology</th>
<th>Ω_m, σ_8</th>
<th>$N\left(0.291, 0.783\right)$, $\left(0.0016 - 0.0010 \quad 0.0010 - 0.0019\right)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H_0/(\text{km s}^{-1} \text{Mpc}^{-1})$</td>
<td>$N(73.8, 2.4^2)$</td>
<td></td>
</tr>
</tbody>
</table>
degenerate with the normalisations of the scaling relations we aim to constrain. We therefore put Gaussian priors with widths corresponding to the uncertainties obtained from the calibration with simulations on them. Also the various sources of intrinsic scatter cannot be disentangled by our analysis, and we fix them using Gaussian priors.

Putting noninformative priors on the mass slopes B_{SZ}, B_{XY}, and $B_{M_{\text{gas}}}$ and the redshift evolution coefficients C_{SZ}, C_{XY}, and $C_{M_{\text{gas}}}$ we learn that our data are not able to obtain meaningful constraints for these parameters. Our mock catalogues confirm that – given the current data set – we should not expect to be able to constrain these parameters. We therefore choose a Gaussian prior $B_{\text{SZ}} \sim \mathcal{N}(1.63, 0.1^2)$. The mean and central values are determined by running a full cosmological analysis of the SPT cosmology sample plus the weak-lensing data sets, similarly to what was done in the recent SPT-SZ cosmology analysis (de Haan et al. 2016). Using the cluster number count data we constrain the mass slope B_{SZ}, obtaining those values for its mean and uncertainty. We choose to put flat priors on $B_{\text{SZ}}/B_{M_{\text{gas}}}$ because these are constrained through their degeneracy with B_{SZ} once B_{SZ} is fixed.

We use a prior $C_{\text{XY}} \sim \mathcal{N}(0.70, 0.35^2)$ to encode our belief that the X-ray gas in clusters evolves (approximately) self-similarly. These values correspond to the self-similar exponent $-2/5$ in the form of the Y_X–mass relation chosen by Vikhlinin et al. (2009) and allow for 50% scatter around self-similarity. We put a flat prior on C_{SZ} because it is degenerate with C_{XY}. Likewise for the M_{gas} scaling relation we assume no redshift evolution with the same uncertainty as for C_{XY}, i.e. we set $C_{M_{\text{gas}}} \sim \mathcal{N}(0, 0.2^2)$.

This leaves the normalisations A_{SZ}, A_{XY}, and $A_{M_{\text{gas}}}$ to be determined. Because these are the parameters we are chiefly interested in, we put non-informative priors on them. Specifically, because the scaling relations are linear in log-space and the non-informative prior on the intercept of a line is flat, the non-informative prior for the normalisation of a power law is proportional to $1/A_i, i \in \{\text{SZ}, Y, M\}$.

Finally, we note that the scaling relation parameters are mildly cosmology dependent. This is due to the distance-redshift relation as well as the critical density at a given redshift being dependent on cosmology. In our analysis we marginalize over the uncertainty of the parameters most affecting these two quantities, Ω_m, σ_8, and H_0. For the first two, our prior is a bivariate Gaussian describing the degeneracy between these parameters, based on the posterior probability distribution of the cosmology chain of de Haan et al. (2016). For the Hubble constant we choose the Riess et al. (2011) value of $H_0 = (73.8 \pm 2.4) \text{ km s}^{-1} \text{ Mpc}^{-1}$ as our prior, which was also utilized in de Haan et al. (2016). We list all priors in Table 7.

6 RESULTS AND DISCUSSION

We show parameter constraints for the Y_X and M_{gas} analyses in Figs. 7 and 8, respectively, and summarize the best fit scaling relations parameters and their 68% credible intervals in Table 8. Our key results are the normalisations of the mass–SZE and mass–X-ray scaling relations, which directly affect the systematic uncertainty limits of the SPT cluster cosmology results (de Haan et al. 2016, Bocquet et al. in prep). The best-fit A_{SZ} values of the Y_X and M_{gas} chain are almost identical to each other at $A_{\text{SZ}} = 5.56_{-0.90}^{+0.90}$ and $A_{\text{SZ}} = 5.57_{-1.41}^{+0.83}$, as one would expect because these numbers are essentially set by the weak-lensing calibration. We will discuss these results in detail below.

For the mass–SZE scaling relation a comparison to earlier works is best illustrated by looking at the probability distribution of the mass of a typical SPT-SZ selected cluster (Fig. 9). Our measurement of $A_{\text{SZ}} = 5.56_{-1.35}^{+0.90}$ is in agreement both with the simulation-based prior of $A_{\text{SZ}} = 6.01 \pm 1.80$ used in early SPT-SZ work (Vanderlinde et al. (2010) who used N-body simulations and a gas model from Shaw et al. (2009)) and the updated prior $A_{\text{SZ}} = 5.38 \pm 1.61$ based on the cosmo-OWLS hydrodynamic simulations (Le Brun et al. 2014) and used in the latest SPT-SZ cluster cosmology analysis (de Haan et al. 2016).

We also compare our value of A_{SZ} to normalisations obtained from data in other works. Outside the SPT collaboration, Gruen et al. (2014) measured weak-lensing masses of SPT and Planck selected galaxy clusters using the Canada-France-Hawaii Telescope Legacy Survey and pointed follow-up observations using WFI at the 2.2m ESO/MPG telescope. Their $A_{\text{SZ}} = 6.0^{+1.2}_{-0.9}$ is in excellent agreement with ours. Gruen et al. (2014) find a slightly shallower mass slope ($B_{\text{SZ}} = 1.25_{-0.28}^{+0.36}$) than we adopt from the 2500 sq. deg. SPT-SZ cosmology analysis (de Haan et al. 2016) and more in line with the expectation from simulations. Our pivot points are, however, identical so that we can directly compare normalisations, except for a slight mismatch in C_{SZ}, which was also held fixed in their analysis but at a value of $C_{\text{SZ}} = 0.83$, which is about 1σ below our value.

Our normalisation of the mass–SZE scaling relation is also in good agreement with earlier SPT work (Bocquet et al. 2015; de Haan et al. 2016). Visually, the largest disagreement is with the SPT cluster cosmology analysis of Bocquet et al. (2015) when it is combined with the first release of the Planck primary CMB cosmology results (Planck Collaboration et al. 2014). The combination of the velocity dispersion based MOR normalisation constraints of Bocquet et al. (2015) with the CMB data leads to a shift in Ω_m, σ_8 orthogonal to the cluster SPT cosmology constraints on these parameters. As a result the normalisation of the mass–SZE MOR shifts accordingly to account for the different cluster mass scale leading to the difference seen in Fig. 9.

For a quantitative comparison we follow Bocquet et al. (2015) to compute the significance of the difference of two distributions. We randomly draw points from two distributions and compute the difference δ between pairs of points. We use this to estimate the probability distribution P_δ of these differences and compute the likelihood that zero is within this distribution. Assuming a normal distribution this likelihood is then converted to a significance. The lower normalisation parameter A_{SZ}, corresponding to higher cluster masses, inferred from a joint cosmological analysis of the SPT cluster sample and Planck CMB data sets (Bocquet et al. 2015) disagrees with our result at the 2.6σ level.

We emphasise that the change in normalisation in Bocquet et al. (2015, yellow to cyan line in Fig. 9) when the underlying cosmology shifts is caused by the self-calibration of the scaling relations from cluster number counts. In this work we adopt a cosmology with Ω_m, σ_8, and H_0 close to the results of Bocquet et al. (2015) without the Planck data.
Figure 7. Parameter constraints for the SZE and Y_X scaling relation parameters. Solid black lines are the priors imposed on parameters (see Sect. 5.5). We show here the correlated scatter coefficients and the cosmological parameters varied within the prior ranges (see Table 7) and omit the lensing nuisance parameters due to space constraints. They are shown for the M_{gas} scaling relations analysis in Fig. 8 and are virtually identical to the ones omitted here.

added. Because we use the cluster mass function only for the Eddington bias correction and not for self-calibration of the MOR, small changes in the cosmological parameters do not have any big impact on our recovered normalization A_{SZ}. In particular, changing the cosmological parameters to the ones obtained from SPT clusters with Planck data (Bocquet et al. 2015), changes our normalisation by less than 1% and does not bring it into better agreement with their lower A_{SZ} value.

Also used in the SPT-SZ cosmology analysis is the mass-Y_X scaling relation. As for the mass-ζ relation our marginalized posterior for the normalisation is in very good agreement with the prior utilised in the cosmology analysis (de Haan et al. 2016). This is an important result as the prior was based on an external calibration of the normalisation of the mass-Y_X scaling relation, namely the Vikhlinin et al. (2009) scaling relation updated with the weak lensing mass calibration of the Weighing the Giants (WtG) and CCCP projects.
Figure 8. Same as Fig. 7 for the SZE and M_{gas} scaling relations. Here we show the lensing nuisance parameters omitted from Fig. 7 and omit the correlation coefficients of the scatter and the cosmological parameters instead.

(von der Linden et al. 2014; Applegate et al. 2014; Hoekstra et al. 2015). We are now able to confirm that these priors were appropriate for the cosmology analysis based on an internal calibration. Figure 10 shows a comparison of the marginalized and joint posterior probability distributions for the normalisations A_{SZ} and A_{YX} in comparison with the results obtained by de Haan et al. (2016) and the priors used in this previous SPT work. Our posterior distributions are a little broader than theirs and consequently we do not yet expect that our mass calibration efforts will lead to tighter cosmological constraints with the current data set (Bocquet et al., in prep.). We note, however, that the width of the A_{SZ} posterior distributions of de Haan et al. (2016) is narrower than their prior range. This indicates that their constraint on the MOR normalisation benefits from self-calibration. We do not use this self-calibration from the number counts of galaxy clusters (see Sect. 5.3) and thus obtain broader posterior distributions given the still relatively small sample of SPT clusters with weak-lensing information.

The mass-slope and redshift evolution parameters follow their prior probability distribution in the observable on which an informative prior was imposed. The B_{YX} constraint is
Table 8. Marginalized scaling relations parameter constraints for the ζ-M_{500} scaling relation and the Y_X-M_{500} scaling relation (top half) and the M_{gas}-M_{500} scaling relation (bottom half). The values reported are the mean of the posterior and the shortest 68% credible interval.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{SZ}</td>
<td>5.56+0.96−1.35</td>
<td>A_{YX}</td>
<td>2.5+0.44−0.47</td>
</tr>
<tr>
<td>B_{SZ}</td>
<td>1.656+0.121−0.101</td>
<td>B_{YX}</td>
<td>2.1+0.14−0.18</td>
</tr>
<tr>
<td>C_{SZ}</td>
<td>0.96+0.43−0.164</td>
<td>C_{YX}</td>
<td>0.8+0.15−0.03</td>
</tr>
<tr>
<td>σ_{ln}</td>
<td>0.155−0.079</td>
<td>σ_{ln}</td>
<td>0.154−0.085</td>
</tr>
</tbody>
</table>

A_{SZ} 5.57+0.96−1.41 A_{M_X} 0.112+0.012−0.017
B_{SZ} 1.648+0.094−0.103 B_{M_X} 1.310+0.080−0.084
C_{SZ} 0.79±0.43 C_{M_X} 0.06+0.19−0.20
σ_{ln} 0.131−0.053 σ_{ln} 0.120+0.044−0.039

Figure 9. The probability distribution of the mass M_{500} of a typical (median) SPT cluster with $\xi = 6.5$ at $z = 0.5$ according to different mass calibration efforts. The vertical lines correspond to the predictions from simulations in Vanderlinde et al. (2010, dotted line) and the cosmo-OWLS simulation (Le Brun et al. 2014, dashed line). The mass scale in this work agrees equally well with both simulation predictions.

determined purely by the B_{SZ}-B_{YX} degeneracy. Likewise the C_{SZ} constraint is governed by the C_{SZ}-C_{YX} (C_{M_X}) degeneracy. The C_{SZ} values derived in this way differ by 0.3σ between the Y_X (C_{SZ}= 0.96+0.43) and M_{gas} ($C_{SZ} = 0.79 \pm 0.43$) chains. Both values are higher than the C_{SZ} prior in de Haan et al. (2016), but even the higher C_{SZ}(Y_X) value deviates by only 0.5σ. All C_{SZ} posteriors of de Haan et al. (2016) agree with our values at better than 1σ.

Our modelling of the weak-lensing bias and scatter (Sect. 5.1) introduces numerous nuisance parameters that we are not able to constrain with the data. They all follow the priors. Similarly we are not able to distinguish between various sources of scatter in our data. As the degeneracy between σ_{ln} and σ_{ln}(M_X) shows, we are only able to put limits on the sum of their squares, i.e. the total scatter of the scaling relations.

It is expected from numerical simulations that the intrinsic scatter of the weak-lensing and SZE measurements...
are correlated (e.g., Shirasaki et al. 2016). For the current data, however, we cannot constrain any of the three correlation coefficients. Furthermore, for all parameters the constraints obtained by leaving the correlation coefficients free are indistinguishable from those where we set all correlation coefficients to zero.

In Figs. 11–13 we show the scaling relations (23)–(25) with marginalised uncertainties in comparison to the data points. In these plots green circles indicate the 19 clusters followed-up with Megacam while light brown triangles are the 13 HST observations from S18. In all of these figures, the distributions of the Megacam and HST data points appear to be consistent with each other. This visual impression is confirmed by finding consistent normalisations of the scaling relations when the sample is split in redshift at \(z = 0.6 \) (Bocquet et al., in prep.).

Note that we do not directly observe the weak lensing mass \(M_{\text{WL}} \), and that the X-ray observables are radial profiles and not scalar quantities. In the following, we briefly describe how we extracted the quantities displayed in the figures. The X-ray measurements consist of a temperature measurement of the hot ICM and a radial gas mass profile \(M_{\text{gas}}(r) \). Both quantities can be combined to give the radial \(Y_X(r) \) profile. In principle the temperature also varies radially but this is slow enough to be accurately approximated by a global average temperature. In the case of \(M_{\text{gas}} \), the scaling relation (25) relates the gas mass to the cluster total mass \(M_{500} \), from which the radius \(r_{500} \) can be uniquely determined. Assuming the best-fit scaling relation parameters for the \(M_{\text{gas}} \)-mass relation, we can now solve for \(M_{\text{gas}} \) by solving the implicit equation \(M_{\text{gas}}^{\text{data}}(r) = M_{\text{gas}}^{\text{model}}(r) \). We can then obtain the mean and standard deviation of the recovered distribution in Mgas for Figs. 12 and 14. The same procedure is used for \(Y_X \) and eq. (24) and Fig. 11.

Our likelihood framework also never computes a weak lensing mass that best fits the observed radial shear profile \(g_\chi(r) \). Instead it computes how probable it is to find the observed shear profile given the mass predicted from the scaling relations. To nevertheless be able to plot weak lensing masses we perform maximum likelihood fits to the contamination corrected shear profiles and use their location and uncertainty when plotting weak lensing masses.

Furthermore, when we plot cluster data points in \(\zeta \)-mass scaling relations we also need an estimate of \(\zeta \) for each cluster. We obtain this from the observable SNR \(\xi \) via

\[
\hat{\zeta} = \sqrt{\xi^2 - 3/f_{\text{field}}},
\]

where \(f_{\text{field}} \) is a scaling factor to correct for the different depths of fields in the 2500 sq. deg. SPT-SZ survey.

Figures 11–14 show the predicted scaling relations for the underlying cluster population and are not corrected for our SZE selection. This is most obvious in Fig. 14 where the two low-scatter mass proxies \(\zeta \) and \(M_{\text{gas}} \) are plotted against each other for a cluster population selected in \(\xi \).
Eddington bias is clearly visible in the lower left corner of this plot from the points falling below the best fit line, i.e. they are preferentially scattered towards higher ζ. We remind the reader that the scaling relation analysis takes this bias into account through the shape of the mass function and the SPT cluster selection function. The scaling relation plotted in Fig. 14 is obtained by combining eqs. (23) and (25) into

$$\frac{M_{\text{gas}}}{5 \times 10^{14} M_\odot} = A_{M_{\text{gas}}} \left(\frac{6}{7} \right) B_{M_{\text{gas}}} \left(\frac{\zeta}{\zeta_{\text{SZ}}} \right)^{B_{M_{\text{gas}}} / B_{\zeta_{\text{SZ}}}},$$

and omitting the redshift evolution terms, because they are taken care of when the plotted data are rescaled to a common redshift.

Our estimates for the normalisations of the X-ray scalings relations show good agreement with previous studies (Vikhlinin et al. 2009; Pratt et al. 2009; Mahdavi et al. 2013; Mantz et al. 2016). For the mass–Y_X relation this holds over the entire mass range under investigation here. For the mass–M_{gas} relation the sometimes significantly different slopes lead to good agreement only in the vicinity of our pivot point $M_\rho = 5 \times 10^{14} h_{70}^{-1} M_\odot$ and marginal discrepancies at the extreme ends of the mass range under investigation here. This is particularly obvious for the relations of Mahdavi et al. (2013), who find a slope slightly smaller than but consistent with self-similarity, and Mantz et al. (2016), whose slope is very nearly exactly self-similar. However, at our pivot $M_{500} = 5 \times 10^{14} M_\odot$ we agree with all cited studies within our mutual uncertainties.

We note again that we are not able to constrain the slope $B_{M_{\text{gas}}}$ with our present data set. Rather our value for the slope is determined by the prior we put on $B_{\zeta_{\text{SZ}}}$ – based on the cosmology analysis of de Haan et al. (2016) – and the degeneracy between $B_{\zeta_{\text{SZ}}}$ and $B_{M_{\text{gas}}}$. Future weak lensing analyses of SPT selected clusters covering a wider ξ and thus mass range will enable us to constrain the slope directly from weak lensing observations instead of only through self-calibration in a cosmological framework, as in de Haan et al. (2016) and Mantz et al. (2016).

In Fig. 13 we show the scaling relation between cluster mass and debiased SPT detection significance ζ. In this plot we also highlight those clusters with $\textit{Chandra}$ X-ray data used in the scaling relation analysis. We find no indication that the 10 clusters from the Megacam sample without X-ray follow-up come from a different population.

Finally, we compare our mass estimate for the stack of all 19 Megacam clusters to that of a previous study using gravitational magnification instead of shear (Chiu et al. 2016b), who found a mass estimate of $M_{500} = (5.37 \pm 1.56) \times 10^{14} M_\odot$. This is in very good agreement with our weighted mean mass $M_{500} = (5.96 \pm 0.61) \times 10^{14} M_\odot$ for these clusters.

7 CONCLUSION

In this paper we describe the observations and weak lensing analysis of 19 clusters from the 2500 sq. deg. SPT-SZ survey. We pay particular attention to controlling systematic uncertainties in the weak lensing analysis and provide stringent upper limits for a large number of systematic uncertainties and avoided confirmation bias by carrying out a blind analysis. The upper limit of our total systematic error budget is 5.4% (68% confidence) and is dominated by uncertainties stemming from the modelling of haloes as NFW profiles.

We used N-body simulations to calibrate our mass modelling method. The sources of systematic errors in this approach are the uncertainty in this calibration, the mass–concentration relation, and the miscentering distribution.
Future analyses could mitigate these either by employing a larger suite of simulations and an improved understanding of the sources of discrepancies of published \(M-c\) relations, or by using other mass estimators that avoid these complications. Hoekstra et al. (2015) for example used the aperture mass (Fahlman et al. 1994; Schneider 1996) to mitigate these problems. This, however, is done at the cost of increased statistical uncertainties, so that future studies will have to carefully weigh the cost and benefits of using either the aperture mass or an NFW modelling approach. We emphasise that in our present work we are still dominated by statistical and not by systematic errors. The total uncertainty (systematic and statistical) on the mass scale is \(\sigma_{M200} = A_{SZ}\frac{\sigma_{\nuE}}{\nuE} = 8.9\%\).

We combined the weak-lensing data of our 19 clusters with those of 13 clusters from the SPT-SZ survey at high redshift observed with HST (S18) and Chandra X-ray data to calibrate mass-observable scaling relations. We described an extension of the scaling relations framework of Bocquet et al. (2015) to include weak lensing information. An important feature of our method is its ability to correct for Eddington bias while at the same time not using cluster number counts to self-calibrate mass-observable relations.

The normalisation of the mass–SZE relation is in good agreement with the prior used in the latest SPT cosmology analysis (de Haan et al. 2016), which are based on an external calibration of this mass-observable relation. Future SPT cosmology analyses (Bocquet et al., in prep.) will now be able to use an internal calibration of the absolute mass scale, i.e. a calibration that is performed on the same clusters used for obtaining cosmological constraints. Also, our values for the normalisations of the mass–X-ray scaling relations all agree within 1σ with those found by other authors (Vikhlinin et al. 2009; Pratt et al. 2009; Mahdavi et al. 2013; Mantz et al. 2016; Chiu et al. 2017). For example, at \(Y_X = 5 \times 10^{14} \, M_\odot\) keV our \(M_{500}\) normalisation is 2.4% higher than that of Vikhlinin et al. (2009) and 6.3% lower than that of de Haan et al. (2016). At \(M_{gas} = 6 \times 10^{13} \, M_\odot\) we obtain \(M_{500}\) values 4.6% higher than Vikhlinin et al. (2009).

At the same time our choice to avoid self-calibration of the mass–observable scaling relation from cluster number counts limits our ability to constrain the slopes and evolution parameters of these relations with a cluster sample of the present size. We therefore chose to impose informative priors on these quantities based on the self-calibration results of the SPT-SZ cluster cosmology analysis.

We already have secured more follow-up data, including HST data, so that we can expect to overcome this limitation in the near future. Particularly, the planned combination of SPT-SZ data with the shear catalogues of the DES survey (Zuntz et al. 2017) combined with an expanded SZE cluster sample from the SPTPol experiment (Austermann et al. 2012) should allow us to extract meaningful constraints on the slope of the mass–SZE scaling relation and lead to a more stringent estimation of the mass-observable scaling relation normalisations.

ACKNOWLEDGEMENTS

We acknowledge the support by the DFG Cluster of Excellence “Origin and Structure of the Universe” and the Transregio program TR33 “The Dark Universe”. The emcee runs have been carried out on the computing facilities of the Computational Center for Particle and Astrophysics (C2PAP), located at the Leibniz Supercomputer Center (LRZ) in Garching. The South Pole Telescope is supported by the National Science Foundation through grant PLR-1248097. Partial support is also provided by the NSF Physics Frontier Center grant PHY-1125897 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation and the Gordon and Betty Moore Foundation grant GBMF 947. DA and TS acknowledge support from the German Federal Ministry of Economics and Technology (BMWi) provided through DLR under projects 50 OR 1210, 50 OR 1308, 50 OR 1407, and 50 OR 1610. Work at Argonne National Laboratory was supported under U.S. Department of Energy contract DE-AC02-06CH11357. DR is supported by a NASA Postdoctoral Program Senior Fellowship at NASA’s Ames Research Center, administered by the Universities Space Research Association under contract with NASA. CR and SR acknowledge support from the Australian Research Councils Discovery Projects funding scheme (DP150103208). A. Saro is supported by the ERC-StG ClustersXCosmo, grant agreement 71676. We thank Peter Capak for providing the COSMOS30+UltraVISTA photo-z catalogue ahead of publication. Based on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under ESO programme ID 179.A-2005 and on data products provided by Terapix and the Cambridge Astronomy Survey Unit on behalf of the UltraVISTA consortium. This research made use of Astropy, a community-developed core Python package for Astronomy (Astropy Collaboration et al. 2013) and TOPCAT (Taylor 2005). Figures 7, 8, and 10 were created with PyGTC (Bocquet & Carter 2016).
APPENDIX A: PSF RESIDUAL AND SHEAR SYSTEMATIC FIGURES
Figure A1. Same as Fig. 2 for a typical, randomly chosen exposures. In this case exposure 2 of SPT-CLJ0234–5831.
APPENDIX B: MASS RECONSTRUCTIONS
AND SHEAR PROFILES
Figure B1. Left panel: This panel shows significance contours of the surface mass density reconstruction in yellow. These rise in steps of 1σ starting at 0 (solid lines) and decrease in steps of 1σ (dashed lines). See Section 4.1 for details on their computation. The solid red lines are the SPT SNR, also rising in steps of 1σ. The solid white lines show the SNR of the density of colour selected red sequence cluster galaxies. The colour image in the background is a composite of the Megacam gri images. Right panel: This panel shows the binned tangential shear around the SZ derived cluster centre and its best fit NFW shear profile (see Section 4.2) in the top panel. Shaded areas were not used in the fitting procedure. The bottom panel shows the cross-shear component, which should be consistent with zero in the absence of systematic errors.

Figure B2. Same as Figure B1 for SPT-CL J0240–5946.
Figure B3. Same as Figure B1 for SPT-CL J0254−5857.

Figure B4. Same as Figure B1 for SPT-CL J0307−6225.
(a) Surface mass density of SPT-CL J0317−5935.

(b) Tangential shear profile of SPT-CL J0317−5935.

Figure B5. Same as Figure B1 for SPT-CL J0317−5935.

(a) Surface mass density of SPT-CL J0346−5439.

(b) Tangential shear profile of SPT-CL J0346−5439.

Figure B6. Same as Figure B1 for SPT-CL J0346−5439.
(a) Surface mass density of SPT-CL J0348−4515.

(b) Tangential shear profile of SPT-CL J0348−4515.

Figure B7. Same as Figure B1 for SPT-CL J0348−4515.

(a) Surface mass density of SPT-CL J0426−5455.

(b) Tangential shear profile of SPT-CL J0426−5455.

Figure B8. Same as Figure B1 for SPT-CL J0426−5455.
(a) Surface mass density of SPT-CL J0509−5342.

(b) Tangential shear profile of SPT-CL J0509−5342.

Figure B9. Same as Figure B1 for SPT-CL J0509−5342.

(a) Surface mass density of SPT-CL J0516−5430.

(b) Tangential shear profile of SPT-CL J0516−5430.

Figure B10. Same as Figure B1 for SPT-CL J0516−5430.
(a) Surface mass density of SPT-CL J0551−5709.

Figure B11. Same as Figure B1 for SPT-CL J0551−5709.

(b) Tangential shear profile of SPT-CL J0551−5709.

(a) Surface mass density of SPT-CL J2022−6323.

Figure B12. Same as Figure B1 for SPT-CL J2022−6323.

(b) Tangential shear profile of SPT-CL J2022−6323.
Figure B13. Same as Figure B1 for SPT-CL J2030−5638.

Figure B14. Same as Figure B1 for SPT-CL J2032−5627.
(a) Surface mass density of SPT-CL J2135−5726.

(b) Tangential shear profile of SPT-CL J2135−5726.

Figure B15. Same as Figure B1 for SPT-CL J2135−5726.

(a) Surface mass density of SPT-CL J2138−6008.

(b) Tangential shear profile of SPT-CL J2138−6008.

Figure B16. Same as Figure B1 for SPT-CL J2138−6008.
Figure B17. Same as Figure B1 for SPT-CL J2145–5644.

Figure B18. Same as Figure B1 for SPT-CL J2332–5358.
(a) Surface mass density of SPT-CL J2355−5055.

(b) Tangential shear profile of SPT-CL J2355−5055.

Figure B19. Same as Figure B1 for SPT-CL J2355−5055.
AFFILIATIONS

1 Faculty of Physics, Ludwig-Maximilians-Universität, Scheinerstr. 1, 81679 Munich, Germany
2 Excellence Cluster Universe, Boltzmannstr. 2, 85748 Garching, Germany
3 Argonne National Laboratory, High-Energy Physics Division, 9700 S. Cass Avenue, Argonne, IL, USA 60439
4 Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL, USA 60637
5 Argelander-Institut für Astronomie, Auf dem Hügel 71, 53121 Bonn, Germany
6 Leiden Observatory, Leiden University, Niels Bohrweg 2, 2300 CA Leiden, The Netherlands
7 Max-Planck-Institut für extraterrestrische Physik, Giessenbachstr. 85748 Garching, Germany
8 Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305
9 SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025
10 Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305
11 Fermi National Accelerator Laboratory, Batavia, IL 60510-0500
12 Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637
13 Department of Physics and Astronomy, University of Missouri, 5110 Rockhill Road, Kansas City, MO 64110
14 Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
15 Department of Astronomy, University of Florida, Gainesville, FL 32611
16 Department of Physics, University of California, Berkeley, CA 94720
17 Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA
18 Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721
19 School of Physics, University of Melbourne, Parkville, VIC 3010, Australia
20 Center for Astrophysics and Space Astronomy, Department of Astrophysical and Planetary Science, University of Colorado, Boulder, CO 80309, USA
21 NASA Ames Research Center, Moffett Field, CA 94035, USA
22 INAF-Osservatorio Astronomico di Trieste, via G. B. Tiepolo 11, 34143 Trieste, Italy
23 LSST, 950 North Cherry Avenue, Tucson, AZ 85719
24 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138
25 Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138