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Abstract—Particle accelerators are host to myriad nonlinear 

and complex physical phenomena. They often involve a multitude 
of interacting systems, are subject to tight performance demands, 
and should be able to run for extended periods of time with 
minimal interruptions. Often times, traditional control 
techniques cannot fully meet these requirements. One promising 
avenue is to introduce machine learning and sophisticated 
control techniques inspired by artificial intelligence, particularly 
in light of recent theoretical and practical advances in these 
fields. Within machine learning and artificial intelligence, neural 
networks are particularly well-suited to modeling, control, and 
diagnostic analysis of complex, nonlinear, and time-varying 
systems, as well as systems with large parameter spaces. 
Consequently, the use of neural network-based modeling and 
control techniques could be of significant benefit to particle 
accelerators. For the same reasons, particle accelerators are also 
ideal test-beds for these techniques. Many early attempts to apply 
neural networks to particle accelerators yielded mixed results, 
due to the relative immaturity of the technology for such tasks. 
The purpose of this paper is to re-introduce neural networks to 
the particle accelerator community and report on some work in 
neural network control that is being conducted as part of a 
dedicated collaboration between Fermilab and Colorado State 
University (CSU). We describe some of the challenges of particle 
accelerator control, highlight recent advances in neural network 
techniques, discuss some promising avenues for incorporating 
neural networks into particle accelerator control systems, and 
describe a neural network-based control system that is being 
developed for resonance control of an RF electron gun at the 
Fermilab Accelerator Science and Technology (FAST) facility, 
including initial experimental results from a benchmark 
controller. 
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I. INTRODUCTION 
Particle accelerators are host to myriad complex and 

nonlinear physical phenomena. Adding to this inherent 
complexity, they often involve a multitude of interacting 
systems, exhibit long-term process cycles, and endure changes 
in individual machine components over time. In addition, they 
are often subject to tight tolerances on beam parameters and 
other performance metrics, and it is often desirable for them to 
run for extended periods of time with minimal interruptions. 
In addition, many particle accelerators are concurrently 
supporting a variety of request-driven or cyclic processes (i.e. 
they are often not running in a steady-state condition). There 
will also inevitably be deviations between the system design, 
numerical or analytic physics-based simulation models, and 
the installed system. Finally, as increasingly high-intensity, 
high-energy, and high-gradient accelerators are built that 
fundamentally rely on increasingly complex/nonlinear 
phenomena, traditional control techniques become inadequate 
in some domains. Taken together, this leaves us with many 
challenges for designing control systems that will reliably 
meet performance demands for both present and future 
accelerators. 

 These challenges can become more acute for applications 
of particle accelerators in medicine, industry, and defense. 
These applications range from relatively well-established use 
cases where increased automation and better control could be 
of significant benefit (e.g. particle beam therapy for cancer 
treatment), to as-yet unrealized applications that require 
substantial improvements in controller robustness, flexibility, 
and/or portability before they will be feasible (e.g. compact, 
high-average-power FELs for EUV lithography). Furthermore, 
outside of large accelerator facilities, day-to-day reliance on 
highly-skilled operators and technicians is often undesirable. 

One avenue toward meeting these challenges is the 
incorporation of recently improved techniques from the fields 
of machine learning (ML) and artificial intelligence (AI) into 
the design of control systems for particle accelerators. In 
particular, techniques based on neural networks (NNs) are 
well-suited to modeling, control, and diagnostic analysis of 
complex, time-varying systems, and systems with large 
parameter spaces [1, 2]. These techniques can be used in 
conjunction with actual machine data, thereby accounting for 
noise, variable delays, subtle statistical correlations, and 
complex effects that may not be easily addressed a prioi. NNs 
can also be useful in cases where accurate data from 
simulations or some other computationally intensive 
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procedure is available, but the input-output relationship needs 
to be computed more rapidly for effective real-time 
deployment. Because of their functional flexibility, they are 
able to operate effectively for many different kinds of tasks. 

Here we present an overview of some challenges in particle 
accelerator control, provide an overview of relevant AI 
concepts, describe some ways in which we are applying these 
to accelerators, and present an example of our work at FAST. 

 The remaining discussion is organized in the following 
manner. Sections II.A—II.C provide an overview of some 
challenges encountered in particle accelerator control and 
collectively provide the corresponding motivation for 
developing AI- and ML-based control techniques for particle 
accelerators. Section II.D highlights some of the ways in 
which the skills employed by accelerator operators can be 
used to inform the design of AI-based control schemes. 
Section II.E briefly describes several other advanced methods 
that the particle accelerator community is pursuing at present 
to improve performance. Section III provides some definitions 
and very basic technical background on ML, AI, and NNs. 
Section IV.A highlights some proposed use cases for NNs in 
the modeling, control, and diagnostic analysis of particle 
accelerators, many of which the authors are presently pursuing 
or plan to pursue. Section IV.B.1 describes some of the 
developments that have dramatically improved the practical 
usefulness of NNs in recent years. Section IV.B.2 highlights 
some previous efforts (both successful and unsuccessful) to 
apply NNs and AI to particle accelerators. Section IV.B.3 
provides some examples of recent successes in other scientific 
and engineering disciplines. Finally, section V describes some 
initial results and planned work for NN-based resonance 
control of an RF gun at FAST.  

II. CHALLENGES FOR PARTICLE ACCELERATOR CONTROL AND 
MOTIVATION FOR THE USE OF MACHINE LEARNING AND 
ARTIFICIAL INTELLIGENCE 

A. Preliminary Terminology  
 In the following discussion, we will use the term 
“optimization” to indicate an iterative search process through 
which better combinations of operating parameters are found 
such that specific performance goals are better met. This could 
in principle be done manually by a human operator or 
automatically using a mathematical optimization routine.  

We will use “control” to indicate a dedicated process 
encoded by a set of rules through which a set point, series of 
set points, or other set of performance goals is achieved and 
maintained despite the presence of disturbances in the 
machine. “The machine,” for our purposes refers to a particle 
accelerator system or sub-system.  

We will use the term “tuning” as shorthand for one kind of 
task that a human operator performs: adjusting a setting or 
group of settings such that criteria for good performance are 
met. Here, tuning is not strictly equivalent to optimization in 
the sense described above (i.e. search). Rather, tuning requires 
the operator to combine elements of model learning, control 
policy learning, planning, and prediction as well.  

Finally, the terms “online” and “offline” are used differently 
in different disciplines.1 Here, we will follow typical use 
within the accelerator community: “online” will indicate that a 
given computational procedure is running and interacting with 
the machine concurrent to operation, and “offline” will 
indicate a process that does not run in this manner (e.g. using a 
simulation to find optimal parameter settings prior to running 
the machine, or analysis of data gathered from a diagnostic 
after an operating run has been finished). 

B. Challenges for Human Operators 
Typically, particle accelerator systems and subsystems are 

extensively simulated and optimized. Once running, data from 
the machine can be used to update these offline models and 
provide a more accurate set of predicted optimal settings. 
Even with such measures, operators will often conduct 
extensive tuning each time the machine is put into a new 
operating condition or turned on after a shut-down. This can 
work well for dynamics that operate on a few human-
compatible timescales (i.e. ones that are not too long or too 
short—hundreds of milliseconds to tens of minutes) or that 
involve only a few parameters. However, the task can become 
unwieldy as the dynamics become more nonlinear or as the 
number of parameters and interrelations increases. The 
presence of multiple timescales of behavior can also make 
isolation of relevant parameters extremely difficult.  

Experienced accelerator operators can become adept at 
handling complex dynamics and many parameters quickly, 
particularly on machines with which they are very familiar 
and/or for tasks that are frequently repeated. However, clearly 
there is a point at which even the most capable human will not 
be able to efficiently and effectively synthesize all of the 
information required to achieve good performance. 
Furthermore, machines that require frequent changes in beam 
parameters or operating conditions vastly increase the number 
of learned control strategies and specific procedures that 
operators must employ. 

Ultimately, human operation is limited in the following 
ways: 
1) Humans can only process a handful of input parameters at 
once; 
2) Humans can only act on a few parameters at once; 
3) Humans can only operate on a relatively narrow set of 
timescales, and separating multiple timescales during problem 
diagnosis can rapidly become infeasible as the number of 
these increases; 
4) Humans are expensive and their skill levels may vary 
dramatically even in the execution of a standard procedure. 

Instead, one would like to automate many of the routine 
tasks historically handled by operators (preferably in a way 
that does not itself require extensive, ongoing human 
intervention to function properly). Time lost during tasks such 
as tuning tends to be expensive, both with regard to the 
personnel and energy costs incurred by running the machine 

 
1 For example, in neural network training, “online” can mean incremental 

training as samples become available and “offline” can mean batch training 
with a segment of previous samples—which can still occur concurrently with 
the process that is producing training samples. 
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and with regard to the scientific goals of researchers who are 
generally allocated a limited amount of machine time in which 
to run an experiment. As such, sufficiently automating routine 
tasks can significantly improve performance in terms of the 
beam parameters achieved, time efficiency, and overall 
operational costs (both in the narrow sense of cost per unit 
time and in the broader sense of cost per experimental 
investigation).  

C. Challenges for Automated Systems 
Despite the limitations noted above, humans are remarkably 

good at collecting disparate kinds of information and putting 
them to judicious collective use in ways that are challenging 
for many automated systems and traditional control techniques 
at present.  

For example, some machines have limited diagnostics, and 
thus one must properly adjust a large number of variables 
using just a few measureable outputs. Without the human-
level knowledge and deductive reasoning ability of the 
operator, it can be very difficult to reliably automate this kind 
of process. Conversely, some machines have many diagnostics 
that ideally should be used both individually and collectively 
(e.g. by extracting higher-level state information from a 
variety of readings and generating an appropriate response). 
Nuances in the way the evaluation is made in an automated 
system can result in poor decisions that the designers of the 
system would not have anticipated and that a human operator 
would have rightly never considered. 

Another example centers around planning. Systems that 
involve significant time delays relative to the timescale on 
which adjustments must occur may also benefit from 
incorporating planning what the next series of actions should 
be given some predicted and desired behavior. That decision 
process itself can be difficult to automate, let alone codifying 
the required representations of the system dynamics in a way 
that is sufficiently accurate and can be executed quickly. The 
complexity of accelerators increases this difficulty 
substantially. Thus, a process that is relatively simple for an 
operator becomes a challenging task for an automated system. 

In taking stock of some tasks and capabilities that would 
ideally be achieved with an automated system, the challenges 
become more apparent. We may wish for such systems to be 
able to do the following: 
—Make efficient use of high-fidelity models for online use in 
control routines (e.g. for prediction or for filling in details on 
behavior for which diagnostics are unavailable); 
—Create models that can be continuously adapted to match 
the real machine; 
—Identify and compensate for long-term process cycles and 
drift (due to hardware aging, incremental component 
replacements, and slowly varying dynamics that are not 
accounted for in other ways); 
—Compensate for deviations from the ideal design, such as 
noise, misalignment, and deleterious effects arising from 
system interactions; 
—Quickly distill large amounts of data into useful 
information, even for cases where data analysis is not 
straightforward, so that it can be used effectively in a control 
system or by an operator—this is applies to both system-wide 

higher-level diagnostic analysis and readings from individual 
components; 
—Simultaneously optimize machine parameters system-wide 
to maximize overall performance metrics, as optimizing just 
one subsystem or set of parameters may produce undesirable 
results overall; 
—Perform rapid adjustment of settings in the face of new 
operating conditions (e.g. new beam parameters); 
—Take pre-emptive control actions where necessary and find 
a good series of future control actions to achieve a desired set 
of predicted outputs; 
—Strictly adhere to hard constraints and allow reasonable 
violation of soft constraints. 

D. Expanding the Scope: Artificial Intelligence and Neural 
Networks 

When trying to achieve human-level performance in a given 
task, it is useful to think about what the human operator does 
in that context. Often, significant advances can be made by 
critically examining the real-world human problem solving 
process and breaking it into constituent parts for a given task. 
Take, for example, a recent advance in NN-based recognition 
of written characters that significantly outperforms competing 
methods, even with far fewer training examples: the key 
insight was to incorporate a process through which the NN 
learns to mimic the way a human learns to produce letters in 
the first place, i.e. “learning to learn,” rather than simply 
providing extensive training on a large data set of examples 
[3]. Thus, a human-inspired process that at first might seem 
tangential to a typical character recognition task was in fact of 
substantial importance for achieving improved performance. 

In the context of accelerator operators, we see first that the 
operator has an understanding of the dynamics of the machine 
(i.e. a system model) through both a theoretical understanding 
of the ideal behavior of the machine and through the observed 
behavior of the machine. This model is adapted through 
experience and can be compared with similar machines for 
further insights.  

Second, the operator has and uses memories of previous 
states visited, actions taken, and resultant outcomes to help 
them form better control policies and return to previously 
visited operational states efficiently.  

Third, the operator has the ability to plan a series of future 
control actions based on their mental model of the machine.   

Fourth, the operator can do fast data reduction, image 
processing (e.g. taking visual input from a diagnostic and 
making inferences based on it), and pattern recognition (e.g. 
recognizing when an instability is starting to develop). 

Finally, an operator with many years of experience or deep 
knowledge of a given system does not typically need to solve 
partial differential equations or run a physics-based simulation 
to have a good idea of what will happen when they take 
certain actions in certain machine states, even when the 
outcome of a specific combination of states and actions has 
not previously been observed—they have learned fast, 
heuristic representations of the relevant processes that allow 
for generalization beyond direct experience and memory. 

Thus, operators are not merely searching for the best 
combination of machine settings that produce the desired 
beam parameters at any given time (as an online stochastic 
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optimization procedure applied directly to controllable 
parameters would). They are also making predictions based on 
mental models of the system, checking observed behavior 
against the models to improve them over time, planning series 
of future control actions, interpreting a substantial amount of 
diagnostic information, and using present and past 
performance to adjust the rules by which control decisions are 
made in various sets of observed or inferred machine states 
(i.e. developing and remembering control policies). In short, 
operators simultaneously use a combination of optimization, 
model learning, planning, prediction, diagnostic analysis, and 
policy learning to control the machine.  

For each of these capabilities of an experienced operator, 
there is an analogous set of techniques in ML, AI, and 
advanced control. If we can capture some of these capabilities 
while also circumventing some of the limitations of manual 
operation, we can address the control challenges described 
earlier far more effectively. Our work in developing NN-based 
control systems for particle accelerators is specifically guided 
by this line of thinking.  
 

E. Some Other Recent Approaches Toward Achieving 
Greater Automation and Improved Performance 

Here, we will very briefly highlight some other advanced 
modeling, optimization, and control approaches being pursued 
within the accelerator community. 

First, online optimization using stochastic optimization 
methods is being pursued in various forms (see, for example 
[4, 5]). Techniques such as particle swarm optimization (PSO) 
and genetic algorithms (GAs) have been of particular of 
interest [6, 7]. 

A promising technique based on extremum-seeking control 
has recently been developed [8, 9], and it has been used for 
control, optimization, and prediction of multiple parameters in 
several particle accelerator applications [10, 11, 12, 13]. 

Finally, there have been many recent advances in online 
modeling for particle accelerators that significantly improve 
the computation speed of high-fidelity physics-based models. 
This can be accomplished through both parallelization (e.g. 
GPU acceleration) and establishing a judicious balance in the 
tradeoff between the speed and accuracy of the calculations 
employed. A pioneering example is given in [14]. 

III. ARTIFICIAL INTELLIGENCE, MACHINE LEARNING, AND 
NEURAL NETWORKS: BACKGROUND AND DEFINITIONS 

A. Machine Learning and Artificial Intelligence 
Broadly speaking, machine learning is concerned with 

improving the performance of an algorithm on some task over 
time through interaction with data (e.g. learning to make 
predictions about a system, learning to recognize handwritten 
characters, learning to detect aberrant credit card activity). It is 
a sub-field of artificial intelligence, which is concerned more 
generally with creating systems that are capable of behaving 
“intelligently” (i.e. creating intelligent agents). Though the 
exact definitions used within the field vary, behavior is 
generally considered to be “intelligent” when it includes some 
combination of planning, interpreting environmental input, 

self-assessment, adaptation of behavior in response to the 
environment, and rational decision making.  

ML and AI rely heavily on techniques from computational 
statistics and stochastic optimization.2 Indeed, the lines 
between these fields are also very blurry, particularly as 
methods become increasingly hybridized.3 ML techniques also 
tend to become absorbed by relevant surrounding fields once 
they are well-established.4  
 Some typical tasks in ML include classification 
(categorizing instances of data), clustering (collecting similar 
kinds of data together), dimensional reduction (reducing the 
number of random variables by finding and exploiting 
relationships between them or mapping them to a new set of 
variables), and regression (estimating relationships between 
variables).  
 Some typical frameworks for learning include supervised 
learning—in which examples demonstrating correct 
relationships are given (e.g. data with labels, such as pairs of 
input-output data), unsupervised learning—in which no 
specifically correct examples are given and underlying 
structures in the data must be found on their own (e.g. 
unlabeled data that must be grouped into similar categories 
without specifying what those categories are), and 
reinforcement learning—in which an agent interacts with the 
environment and alters its behavior based on the “reward” it 
receives. Methods which combine these frameworks, as well 
as more specialized learning paradigms,5 are becoming 
increasingly common.  

B. Reinforcement Learning 
Supervised and unsupervised learning are fairly intuitive 
concepts, and as such it is relatively straightforward to 
understand how one might go about implementing them. 
Reinforcement learning (RL), however, requires a little more 
description. In a RL task, an agent learns how to respond to its 
environment (i.e. it learns a policy) such that some 
representation of its performance is maximized over time.  

A traditional reinforcement learning scheme typically 
includes the following components: 
1) A policy which maps observed system states to actions 

(i.e. these are rules by which control actions are chosen); 
2) A reward function that delivers a scalar value indicating 

how “good” the environmental response to the chosen 
behavior is; 

 
2 For a simple example, consider that the connections in a neural network 

can be trained using gradient descent, genetic algorithms, PSO, or any other 
standard stochastic optimization technique, and improvements in these 
optimization techniques open the doors for increasingly complex neural 
network structures to be trained efficiently and reliably. 

3 Take, for example, reactive search optimization (RSO) [15,16], which 
uses machine learning to automate the choice of algorithm parameters in more 
traditional optimization methods. 

4 As one well-known researcher, John McCarthy, purportedly lamented “as 
soon as it works, no one calls it AI anymore”—a sentiment echoed by many in 
the field.  

5 For example, take transfer learning, which specifically focuses on how to 
reliably transfer previously learned information to new situations or problem 
domains. Similarly, learning to learn is inspired by the way humans optimize 
the way they learn to complete new tasks through experience. 
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3) A means of estimating long-term future expected rewards 
for given states or state-action pairs (in other words, a 
value function); in this way, the long-term value of a 
given state transition can be assessed, including the 
benefit of accessing “better” states later on by entering 
“worse” states in the interim. 

By observing states, choosing actions, and assessing the 
efficacy of those actions over time, the agent eventually learns 
to choose actions such that the highest long-term reward is 
received. Some architectures for RL also use and/or develop a 
process model of the system to facilitate planning and 
learning.  

There are a variety of ways in which the elements above can 
be computed, learned, and stored. The way in which they 
relate to one another in any given RL scheme also varies 
considerably. Some methods, for example, take the policy 
being followed into account during learning of the value 
function, whereas others do not. A good overview of the basic 
schemes and further discussion can be found in [17, 18], and 
discussion on NN implementations specifically can be found 
in [19]. 

Note that RL can be re-framed as a stochastic optimization 
problem in which one is searching the policy space directly. In 
particular, there is general interest in applying evolutionary 
computation methods to RL problems; however, the various 
merits of each approach have long been a subject of debate 
within the RL community.  For some discussion, see [20]. 

 

C. Artificial Neural Networks 
Artificial neural networks (NNs) are particularly appealing 
tools for completing machine learning tasks and for creating 
intelligent agents. They are universal function approximators 
[21, 22] that are tailored specifically for a given 
task/computation. As such, they are highly flexible and are in 
principle able to operate effectively in many different 
situations and serve many different purposes. 

In its simplest form, a NN consists of a collection of 
functions with weighted connections between them. These 
weighted connections can be adjusted (“trained”) until a 
desired output behavior is achieved, typically through an 
automated optimization procedure. Elements of the network 
structure itself (for example, the number of nodes and layers), 
can also be adjusted as part of training.  

NNs can be trained entirely from simulation data, entirely 
from measured data, or from a combination thereof. There are 
numerous architectures and training methods that are each 
suited to different kinds of problems (for an introduction, see 
[23]). For accessible overviews of basic concepts in NN-based 
control, see [24, 25]. 

IV. NEURAL NETWORKS FOR PARTICLE ACCELERATORS 

A. Some Proposed Use Cases 
In the context of modeling, diagnostic analysis, and control, 
there are many ways in which NNs can be used, and many of 
these are highly relevant to particle accelerators. Here, we 
propose some specific use cases of NNs that may be of interest 
to the particle accelerator community. The authors are actively 
pursuing several of these approaches.  

 
1)  As an identified system model for control or simulation 

NNs are able to account for physical characteristics of 
systems which (a) have many interactions between a large 
number of parameters, (b) are not able to be realistically or 
completely modeled through analytic or standard 
simulation-based methods (due to practical considerations 
or limitations in the theoretical framework), and/or (c) vary 
significantly over time or involve behavior over multiple 
timescales. NN models can be deployed directly in model-
based control routines. One area where NN-model based 
control is particularly appealing is in predictive control for 
accelerators, especially for subsystems where time delays 
and nonlinear behaviors are present. 

In addition to simply creating a static model generated 
using previously gathered data, these models can be 
automatically updated over time to account for changing 
behavior due to drift or intentional changes in basic 
operating conditions. This can be done continuously, on a 
pre-set schedule, or when triggered by a specific event 
(such as a spike in modeling error). NN models can also be 
trained initially using data from an existing model or 
simulation first to speed up learning of un-modeled 
behavior once measured data is obtained.  

NN models can also be used just as any other machine 
model might be (e.g. simulation for control design, 
simulations for experiments being planned for an existing 
machine, simulation of adjacent subsystems in the context 
of new components). 
 

2) As a fast stand-in for a computation whose speed usually 
limits real-time deployment 

Because the computation time for a trained NN is 
generally quite fast, they could be useful in cases where 
some known input-output relationship needs to be 
computed more rapidly for real-time deployment. For 
example, a NN model could be trained on high-fidelity 
physics-based simulation data and used as a fast, accurate 
stand-in for the full physics-based model.  

Similarly, a NN could be trained by example to complete 
a computationally intensive control calculation or 
diagnostic procedure.  For example, NNs can be trained to 
approximate the optimization procedure used in model 
predictive control to determine a future series of control 
actions [26, 27], thus enabling rapid computation of 
solutions during operation.  
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3) As a way of doing fast, sophisticated diagnostic analysis 
and feedback 

NNs trained to do classifications, feature selection, and 
dimensional reduction could be used both for individual 
diagnostics and for collective higher-level control and 
machine protection.  

For example, one could imagine a NN classifier that is 
used with an image-based accelerator diagnostic to 
sensitively identify when an undesirable beam instability is 
starting to develop, perhaps long before the effect is large 
enough for an operator to notice it. 

NNs could also be used to provide bunch-to-bunch 
analysis and feedback, particularly if implemented in 
hardware or firmware. This avenue of study could prove to 
be particularly advantageous for accelerator systems with 
high repetition rates that require fast processing of 
diagnostic information and controller reactions.  

 
4) As a means of codifying and executing an existing policy 
that is not already codified 

For example, one could train a NN to mimic the observed 
behavior of an operator to automate some routine tuning 
task. 

 
5) As a means of improving an existing controller or 
optimization scheme 

NNs could be trained to mimic an existing controller or 
model and then improve upon its behavior through 
additional training during operation. This could be useful 
in cases where a traditional controller performs somewhat 
adequately but needs some small unknown adjustments.  

NNs can also act as an adaptive “helper” function on top 
of another controller or model (e.g. as an adaptive addition 
to PID gains, or a nonlinear term on top of a linear model). 
As such, NN-based controllers can work in tandem with 
traditional control techniques to improve performance. 

 It is also useful to note that approaches using ML for 
self-tuning of optimization algorithm parameters are now 
appearing in the literature (e.g. see [15]). Such hybrid 
approaches to optimization could be readily put to use by 
the accelerator community in existing applications of 
online optimization. 

 
6) As part of a tool to learn and execute a new control policy  

NNs can be used to develop a control policy from scratch 
by examining the success of individual actions over time. 
In this way, instead of relying on an operator or an 
extensive control design procedure, the NN can discover 
the best way to interact with the machine. As with NN 
models, the solution that is finally deployed can be static 
or adaptive.  

The main advantage of using NNs in this case (as 
opposed to other approaches used in the reinforcement 
learning) is that they enable continuous-valued functions to 
be estimated, enabling better generalization, and they can 
more efficiently represent the information that needs to be 
stored for large parameter spaces [18]. Their use also 
confers some added flexibility in the architecture: for 
example, one might have a joint actor/critic NN, as 

opposed to having two separate modules. Similarly, their 
ability to be trained as both models and as controllers can 
aid the process of learning in the latter capacity. For a 
particularly novel example of this, see [123], in which a 
pre-training step consisting of model learning is used to 
speed up learning of the value function in a NN-based RL 
control scheme. 

 
B. Historical Impediments and Recent Advances 
1) Recent Advances in Neural Networks and Their 
Deployment 

Neural networks have a somewhat tortured history, 
including a long series of boom-and-bust hype cycles. Early 
attempts at real-time control of complex systems with large 
parameter spaces using NNs were met with limited success, 
primarily due to issues with long computation times, a lack of 
sufficiently powerful architectures, and algorithmic 
instabilities. In the former case, early potential applications 
were limited by the computational speed of these techniques 
relative to the speed of the system dynamics to be controlled. 
Early attempts to apply these techniques in real-time to 
complicated problems were thus inherently limited, as only 
simple algorithms and structures could be investigated in the 
available time. These simplistic, early algorithms were also 
highly sensitive to small, arbitrary changes in input data, 
preventing the robust generation of solutions. In the interim, 
advances in the theoretical underpinnings of NNs have 
removed many of the previous impediments that once caused 
many would-be practitioners to abandon attempts to use NNs 
for control of complicated systems like particle accelerators. 

Several major developments have since removed or 
mitigated many of these difficulties. First, improvements in 
computing technology over the past two decades have made 
successful implementation of more complicated NN structures 
and their training algorithms feasible in real-time applications. 
Such advancements have also greatly increased the speed of 
training in general, allowing much larger training data sets to 
be used in practice. 

These improvements in computing have also allowed ever-
larger data sets to be easily collected and stored. Along with 
this, the rise of the internet has enabled large stores of data to 
be accessed and shared by researchers world-wide, which both 
facilitates basic research and rigorous comparisons of 
algorithm performance. 

In addition, many advances have been made in 
implementing NNs in hardware/firmware, such as FPGAs 
(e.g. see [28]) and neuromorphic chips. These include cutting-
edge, high-end developments driven by large companies like 
IBM [124] as well as the production of more accessible 
commercial products (e.g. see General Vision’s “BrainCard” 
[125]). A historical review on neuromorphic hardware can be 
found in [126], and an example of a comparative experimental 
study can be found in [127].  

Next, beneficial co-developments in related fields such as 
stochastic optimization and computational learning theory 
have enabled more powerful learning algorithms to be 
developed. Similarly, advances in reinforcement learning, 
optimal control, adaptive control, and nonlinear control have 
facilitated successful deployment of NNs within these 
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frameworks (e.g., see nonlinear model predictive control 
[121]). General theoretical research in the area of NN-based 
nonlinear control techniques also has been aimed at mitigating 
the issue of system stability in the context of control (see [29, 
30, 31, 32]).  

 Critically, much theoretical work over the past two decades 
has been devoted to understanding the behavior NNs and 
developing more sophisticated architectures and associated 
training methodologies (see, for example, the more modern 
architectures described in [35]). Along with this, the growing 
body of experience with specific real-world applications has 
both informed theoretical developments and resulted in 
empirically-derived improvements in implementation and 
training procedures; the past five years have been particularly 
fruitful in this regard. Comprehensive reviews of these 
developments are given in [33, 34]. Some particularly 
important examples include: 

—The introduction of selective data dropout techniques 
during training to reduce over-fitting [36]; 

—The introduction of an initial unsupervised learning stage 
in multi-layered, feed-forward NNs to capture data features 
and form progressively higher-level representations for 
subsequent layers prior to supervised learning [37, 38, 39, 40]; 

—Improvements in the training of recurrent NNs (RNNs) 
[41, 42], which contain recursive connections to enable 
representation of more complicated sequence-dependent 
dynamics (these recurrent connections also introduced 
additional mathematical difficulties for many gradient-based 
training algorithms  [43, 44]); 

—The development and advancement of long short term 
memory (LSTM) RNNs and their associated training 
techniques [45, 46, 47, 48, 49, 50], which can be  used to more 
effectively represent long-term dependencies than many other 
architectures; 

—GPU-accelerated training of convolutional NNs (CNNs) 
[51], which are designed to take more complete advantage of 
relationships within 2D input data (for example, they have 
substantially improved the state of the art in image-oriented 
tasks such as object recognition and speech recognition—
where a 2D time-frequency representation is often used); 

—The development of advanced neuroevolution methods 
such as NEAT and HyperNEAT [52]. 

Combined, these broad areas of advancement have enabled 
significantly more complicated problems to be effectively 
addressed both in theory and in practice.  
 
2) Previous Efforts to Apply Neural Networks to Particle 
Accelerator Control 
The idea of applying artificial intelligence and neural 
networks to particle accelerators is by no means a new one 
(e.g. see [53, 54, 55, 56, 57]).  During an initial wave of 
interest during the early/mid-1990s, these efforts obtained 
mixed results. This quickly led to stagnation of efforts to apply 
AI to particle accelerators. A summary of work in this area up 
until 2008 is provided in [58]. 

As part of one notable dedicated effort in the mid-1990s, 
Vista Control Systems and University of New Mexico 
collaborated on the development of an AI-based beamline 
tuning prototype [59, 60, 61, 62]. Several studies also 
demonstrated the implementation of a distributed AI system 

for fault detection and management [63, 64]. Several recent 
(2012-2013) simulation-based studies propose some multi-
agent designs for orbit control, beamline tuning, and 
mitigating the impact of sensor failures [65, 66, 67]. 

During the 1990s to mid-2000s, NNs in particular were  
investigated for orbit/trajectory control [68, 69, 70, 71, 72], 
with mixed results. Also during this time, a NN was 
successfully implemented to detect faulty beamline and 
diagnostic components [73]. In the early 1990s at Los Alamos, 
a NN-based PID tuner for a low level RF system was 
implemented [74]. Also at Los Alamos, several neural 
network schemes were used to control a negative ion source 
[75, 76, 77].   

In work conducted at the Australian Synchrotron and the 
Linac Coherent Light Source, members of our group 
demonstrated the use of a combined NN and PI controller to 
compensate for jitter in the upstream klystron phase and 
voltage using downstream corrections, thus stabilizing 
electron beam energy and bunch length [78, 79]. In that 
control scheme, a NN was used to predict future beam 
parameter deviations so that an appropriate correction could 
be applied. In another study, a multi-agent NN tuning tool was 
used to optimize machine settings for reduced electron beam 
energy spread and increased transmission at the Australian 
Synchrotron Linac [80]. This optimization agent was then 
used in a control experiment at the FERMI@Elettra FEL to 
stabilize beam energy.  

 
3) Some Successes in Other Science and Engineering 
Disciplines 

Numerous examples of successes in using modern neural 
networks for various tasks are provided in [33] and [34]. Here 
we will specifically highlight a few examples that intuitively 
relate to the problems found in modeling, diagnostic analysis, 
and control of particle accelerators. 

First, NN-based techniques to automatically process 
complicated measured scientific data have seen great success 
in recent years. For example, they have become useful tools in 
the analysis of astronomical data [e.g. see 81, 82, 83, 84, 85]. 
Some applications include image-based object classification 
from sky surveys and rejection of artifacts and interference in 
astronomical data. NNs have also proven useful in the analysis 
of data generated by high-energy particle physics experiments 
[86, 87, 88], which require detection and analysis of 
statistically improbable events from data sets with high 
backgrounds for event selection and particle identification.  

Moving toward the application of NNs to real-time analysis 
of complex machines, an instructive example can be found in 
the recent literature surrounding fault prevention in 
tokamaks—a type of magnetic confinement device that is a 
promising candidate for thermonuclear fusion-based power 
production. In studies conducted within the last four years at 
the Joint European Torus, NNs have shown promise in the 
modeling of tokamak behavior [89, 90], in instability detection 
[91, 92], and in disruption prediction [93, 94]. Furthermore, 
real-time early detection of potentially problematic features 
such as hot spots or instabilities through the use of NN-based 
classification of video frames has been demonstrated 
experimentally [95, 96].  
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More generally, examples of NN applications in industrial 
control include the regulation of nonlinear chemical mixing 
processes [97, 98, 99], parameter/process optimization in 
manufacturing to achieve specific material properties [100] 
and greater product consistency [101], temperature control of 
variable-frequency systems with nonlinearities and time 
delays [102, 103], optimization for energy savings in the 
temperature control of buildings [104], self-tuning in 
traditional control schemes such as PID [105], and process 
optimization for reduced operating costs [106]. For a survey of 
reinforcement learning results in robotics, see [107]. 
Approaches that specifically pair advanced optimal control 
techniques with NNs have also been the subject of numerous 
successful experimental and simulation-based studies (see, for 
example, NN-based model predictive control [108, 109, 110, 
111, 112, 113, 114]).  

V. AN EXAMPLE APPLICATION: RESONANCE CONTROL AT 
FAST 
The system that is used to regulate the resonant frequency of 
the electron gun at the Fermilab Accelerator Science and 
Technology (FAST) facility was identified as a good initial 
candidate for the application of NN-based control methods. 
This was due to the large thermal time constants, long 
transport delays, and recursive behavior in the cooling system 
that collectively result in long settling times and large 
overshoots under PI control (these are described in parts A.2 
and B below, respectively). 

The electron gun at FAST [115-117] is a 1½-cell copper RF 
photoinjector operating at 1.3 GHz in the TM010,π mode, and it 
is powered by a 5-MW klystron. It has a loaded Q of ~ 11,700, 
is water-cooled, and shows a measured 23-kHz shift in 
resonant frequency per °C change in cavity temperature. The 
gun is designed to produce 1-ms duration macropulses at a 1-
Hz to 5-Hz repetition rate, with a bunch frequency of 3 MHz. 
The intended operational gradient is 40-45 MV/m, and the 
maximum gradient thus far achieved is 47.5 MV/m. For 
adequate phase stability, existing requirements state that the 
temperature of the water entering the gun should be regulated 
to within ± 0.02 °C [116]. At 40 MV/m and 5-Hz macropulse 
repetition rate, the expected average dissipated power in the 
gun is 15 kW.  

 

A. Water System Description and Control Challenges 
A simplified schematic of the water system is given in Fig. 1. 
The two controllable variables are 1) the flow control valve 
setting (FCV) and 2) the heater power setting (HP). The T01 
sensor reads the cold water supply temperature, the T02 sensor 
reads the temperature just after the mixing chamber, the 
TCAV sensor reads the cavity temperature, and the TOUT 
sensor reads the temperature of the water leaving the cavity. 
The TCAV sensor is located in the iris of the gun. Henceforth, 
we will generally refer to the abbreviated names only (e.g. 
“T01” indicates either “the T01 sensor” or “the T01 sensor 
reading”). 

 
Figure 1: Layout of the water system and relevant instrumentation (not drawn 
to scale). T01, T02, TIN, TCAV, TOUT, and T06 are temperature sensors. The 
piping is not insulated. Note that for the regions marked “long transport 
delay,” the piping traverses several parts of the building that at various times 
may have different ambient temperatures. The control valve and 
heater/mixing chamber are located outside of the radiation-shielding cave, 
whereas the gun is located inside of it. 
 
1) Instrumentation 
A description of the instrumentation is given in [118]. 
However, several important details regarding the resistance 
temperature detectors (RTDs) and the associated data 
acquisition process have changed. 

The original analog-to-digital converter (ADC) hardware 
units were found to have unstable read-backs, likely due to 
differences in the exact versions of the MODBUS protocol 
used in those units and in the programmable logic computer 
(PLC) to which they were connected. They were subsequently 
replaced with RTD temperature transmitters made by Laurel 
Electronics, Inc. This hardware change resulted in lower-
resolution readings in T01, T06, and T02 (0.1-°C resolution 
rather than 0.01-°C resolution). Noise in the readings typically 
results in a variation of ± 0.2 °C. Some of the data described in 
later sections were obtained under this configuration. 

After several months, the conversion method for T02 was 
changed again in order to achieve higher resolution. It is now 
converted to a digital reading by a Fluke 8846A multimeter 
with a resolution of 0.01°C. The noise on the readings results 
in a variation of ± 0.02°C. This is the same ADC setup that is 
used for TIN, TCAV, and TOUT. 

 
2) Control Challenges 
For this particular system there are several control challenges: 

TABLE I 
TYPICAL TIME DELAYS BETWEEN SYSTEM ELEMENTS 

System Segment Approximate Time [s] 

Flow valve to T02 8-10 
Heater to T02 5-11 
T02 to TIN 32 

TIN to TCAV 19-23 

TOUT to T06 60 
TIN to cavity frequency 16-18 

 

Note that we have included transport delays as well as thermal responses; 
these are typical values seen under normal system operation. 
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—Due to water transport time and thermal time constants, 
long, variable time delays exist between various elements in 
the system. A selection of these is shown in Table I. 
—Without compensation, any change in the temperature of the 
water exiting the gun (either due to a change in the amount of 
waste heat from the RF power or a change in the temperature 
of the water entering the gun) will circulate back into the 
mixing chamber and have a secondary impact on the cavity 
temperature. This results in a minutes-long, damped 
oscillation in the temperature of the water entering the gun. An 
example of such an oscillation (under no control, i.e. open 
loop) is shown in Fig. 2. 
—There are fluctuations in the low conductivity water (LCW) 
supply temperature. While it is nominally regulated to within 
± 0.5 °C, larger spikes do occur, especially during operation of 
other large heat sources in the wider system at FAST (e.g. the 
cryomodule high-level RF system is cooled by the same LCW 
supply that cools the RF gun). 
—The pipes through which the water flows are not insulated 
and pass through several different areas of the building. 
Additionally, the closest ambient air temperature sensors, 
which read the south cave temperature and south hall 
temperature, show variations of several degrees day-to-day 
and more than 15 °C over longer durations. These two 
temperature readings are not always closely correlated. The 
relationships between T02, TIN, and TCAV vary measurably 
with these ambient temperatures, as does the relationship 
between TOUT and T06. Occasionally the steady state 
difference between TIN and T02 temporarily changes without 
a change in the ambient temperature readings being registered. 
Presumably, this is due to highly localized variation in 
temperature (e.g. cooling from a fan, heating from nearby 
equipment, etc.).  
—Due to the TCAV sensor location and the cavity geometry, 
the temperature recorded there will be higher than the real 
bulk cavity temperature under RF power. Thus, for resonance 
control using operator-specified TCAV set points, it is 
important to note that the set point required to maintain the 
proper resonant frequency will increase with increasing 
average RF power. This is also a good reason to regulate the 
measured resonant frequency directly, rather than regulating 
the TCAV sensor read-back. An estimate of cavity 
temperature from TIN and TOUT could be used instead, but 
ultimately this is still a little circuitous relative to the end goal 
of keeping the gun at the desired resonant frequency.  

 
Figure 2: Oscillatory open-loop (uncontrolled) response in the water 
temperature at T02 due to mixing of the cold supply water and the water 
returning from the gun (TOUT). This oscillation was induced by reducing the 
heater power setting from 7 kW to 2.5 kW for 20 seconds, after which it was 

returned to 7 kW. Qualitatively, the response from an increase in the flow 
control valve is very similar (however, the system sensitivity to changes in 
the flow valve vs. the heater power setting are different). 
 

B. Description and Assessment of the Existing Feed-
forward/PI Loop 

Presently, the cavity temperature is regulated using a feed-
forward/proportional-integral (PI) controller that was 
developed at Fermilab by P. Stabile (one of the authors). The 
feed-forward component is used to initialize the controller. It 
determines an appropriate flow control valve setting based on 
the RF power parameters and the expected cooling power of 
the water. It then continuously adjusts the valve setting such 
that a desired TCAV set point is reached, and the heater power 
level is kept at a constant setting. An older version of the 
controller and its performance is described in [118].  

The response of the controller to a 1-°C step change in the 
set point under no RF power is shown in Fig. 3. The ~0.6-°C 
initial overshoot, the subsequent oscillations, and the long 
settling time are due to the combined effect of the long time 
delays and the recirculation of the water through the system. 
In the instance shown, the system takes ~23 minutes to reach a 
steady state. Note that this is without significant disturbances 
in the supply temperature (T01).  

Typically, without disturbances from the RF power or T01, 
this controller regulates the TCAV temperature to within ± 
0.03 °C of the set point during steady-state operation under RF 
power. The standard deviation of the TCAV temperature over 
47,132 representative data points is 0.012 °C. This 
corresponds to the water temperature at TIN being kept within 
± 0.04 °C of the mean temperature at steady state and a 
standard deviation of 0.013 °C.  

While this is acceptable for long periods of steady-state 
operation, regulation using this controller becomes 
problematic under more dynamic conditions. For example, 
during RF turn-on, the overshoot results in reflected power 
often nearing and sometimes exceeding the threshold at which 
damage to ancillary components becomes a concern. To 
illustrate this, we examined 8 turn-on instances. Even with 
operator-mediated, gradual increase of RF power during 
normal operations at ~2.33 MW forward RF power, the 
controller initially overshoots the TCAV set point by an 
average of 0.19 °C (with a standard deviation of 0.02 °C). This 
results in a mean increase in reflected power of 70.6 kW over 
the steady-state value (with a standard deviation of 17.4 kW), 
culminating in a total mean reflected power of 103.0 kW. An 
administrative limit for reflected power at the RF window is 
set to 100 kW to avoid potential damage, and reaching it 
prompts the operator to turn off the gun. There is no self-
excited loop mode implemented for this cavity to circumvent 
this issue during start-up. 

Furthermore, in relying on manual adjustment of the TCAV 
set point for resonance control, operational time constraints 
combined with the long settling time make it less likely that 
the gun will be put at the desired resonant frequency 
consistently (and indeed, experience has borne this out).  

This also reduces overall operational efficiency, as the low 
level RF system increases the forward RF power in response 
to the reduction in field caused by moving away from the 
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desired resonant frequency. In light of this, it quickly becomes 
apparent that a controller capable of automatically making 
adjustments in the water system until the gun is operating at 
the proper resonant frequency (or some optimal distance off-
resonance) is needed. 

Overall, a significant improvement in the settling time, 
amount of overshoot, and disturbance rejection could be 
gained by adopting alternative control techniques. This would 
increase the operational efficiency of the gun by reducing the 
need to rely on the RF overhead to keep the cavity field 
constant, increase the total useful machine time by reducing 
the time spent waiting for the system to settle, and assist in the 
management of reflected power by more tightly regulating the 
cavity temperature under dynamic conditions. 
 

 
Figure 3: A 1-°C step change under the existing feed-forward/PI controller. 
Note that the oscillations are due to the time delays, thermal responses, and 
recurrent effect of the water system, not a poorly tuned set of PI gains. 
 
E. System Characterization 
The main goals for the characterization of this system were the 
following: 
1) Accurately identify the transport delays; 
2) Quantify the combined effects of TOUT, T01, FCV 

setting, and HP setting on T02 (and subsequently on TIN 
and TCAV); 

3) Quantify the combined effects of TIN and RF power on 
TCAV; 

4) Quantify the impact of ambient temperature on the 
temperature differences seen within the water system and 
the cavity (from TOUT to T06, from T02 to TIN, and 
from TIN to TCAV). 
 

1) Data Sets Obtained 
Figures 4-6 show a selection of the main data sets. Variables 
that relay redundant information or did not undergo significant 
changes are not shown. 

The purpose of Set 1 (shown in Fig. 4) was to obtain data 
for many combinations of FCV and HP settings. The purpose 
of Set 2 (shown in Fig. 5) was to obtain data for several RF 
power settings, primarily targeting the relationship between 
TIN, RF heating, and TCAV. The purpose of Set 3 (shown in 
Fig. 6) was to obtain larger variations in the FCV and HP 
settings. Set 4 consists of changes in the temperature set point 
under PI control. Set 5 (shown in Fig. 7) consists of data 
gathered over several days during normal operation at a cavity 
gradient of 42 MV/m. The sensor replacements described 

earlier (section A.1, Instrumentation) occur after Sets 1 and 
Set 3. Several other smaller data sets were also examined. 

 
Figure 4: Data Set 1. This consists of water system data with the gun running 
at low average power (~81-kW forward RF power, 200-µs pulse duration, 1-
Hz repetition rate). Changes to the FCV and HP settings were made in a 
pseudo-random fashion. The PI controller was not active. 
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Figure 5: Data Set 2. This consists of system data under RF power to 
characterize the relationship between the temperature of the water 
entering the gun, the cavity temperature, and the RF power. For 
comparison with the other data sets shown here, T02, T01, FCV, and RF 
power are shown. Due to operator concerns about reflected power, the 
PI loop was enabled during this time. Note that in between Set 1 and Set 
2, the ADC hardware for some of the sensors (T01, T06, T02) was 
changed, resulting in lower-resolution readings. 
 
 
 
 

 
Figure 6: Data Set 3. This consists of higher-magnitude changes in the FCV 
and HP settings. The gun was off during this set, and the PI loop was not 
enabled. 
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Figure 7: Data Set 5. This shows normal operations at 2.33-MW forward 
RF power. Note that, aside from the changes in the un-powered vs. 
powered state, smaller changes in the T02 temperature roughly inversely 
track changes in the ambient temperatures (shown in Fig. 8). This is 
because the relationship between T02 and TCAV slowly changes and the 
PI loop compensates for this by adjusting the FCV setting. Note also that 
operation of the gun does appear to be correlated with some variation in 
the LCW temperature (T01). 
 
2) Influence of Ambient Temperature 
The three primary areas where thermal losses could potentially 
impact the system are: 
1) The water in transit from T02 to TIN; 
2) The water in transit from TOUT to T06; 
3) Losses from the cavity surface to air or attached 

components. 
Given the location of the ambient temperature sensors, their 

readings give us only a rough approximation of the air 
temperatures encountered by the bare pipes.  Figure 8 shows 

the variation in the south hall and south cave temperatures 
over the course of several days. Figure 9 shows the 
temperature difference between TCAV and TIN as a function 
of the difference between TCAV and the cave temperature. 

 

 
Figure 8: Variation in ambient air temperature over several days. A greater 
range of variation does occur over longer timescales. 
 

 
Figure 9: Temperature difference between TCAV and TIN, relative to the 
temperature difference between TCAV and the ambient air temperature 
reading. 

 
The difference between T02 and TIN as a function of the 

estimated average ambient temperature shows a much less 
significant trend (the linear slope is 0.002), and the intercept 
changes slightly when the gun and its associated equipment is 
running, perhaps indicating that some additional local heating 
is raising the temperature at TIN. 
 
3) System Under Power 
Figure 10 shows the steady state difference between TOUT 
and TIN, and the steady state difference between TCAV and 
TIN, as a function of average RF power. This is useful for 
determining what set point is needed for TIN such that the 
desired cavity temperature reading under a given average RF 
power level is reached (note again that this is distinct from the 
real bulk cavity temperature). TOUT–TIN diverges 
significantly from TCAV–TIN. This demonstrates, in part, the 
effect that local heating from the RF has on the iris region of 
the gun where the TCAV sensor is located. At steady state, the 
cooling power given by Pcool = (TOUT – TIN) x (Flow rate 
[GPM]/ water cooling capacity [GPM-°C/kW]) is balanced 
with the power input to the cavity (Pcool = PIN ≈ PRFavg). This 
relationship is shown in the dashed line on Figure 10. 
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Figure 10: Difference between TIN and TCAV sensor readings, as well as 
TOUT and TIN sensor readings, as a function of RF power at steady state. The 
data were recorded at relatively constant cave temperature and a constant flow 
of water to the gun at 14.5 GPM. 
 
F. Neural Network Modeling 
In modeling the system, the primary aim was to investigate 
several model structures and use these to inform the controller 
design. While elements of the system can be modeled 
analytically or with other data-driven techniques, by using 
NNs we are also setting the stage for NN-centric controllers.  

The main variables examined were 1) the choice of model 
inputs, 2) the combination of training data to use, and 3) the  
NN architecture. In addition to training and testing with 
previously-gathered data, a few studies in online updating 
during operation were conducted. The following general 
model structures were derived from training data and assessed: 
1) A model to predict T02 from TOUT, T01, FCV, and HP 

readings; 
2) A model to predict TCAV from TOUT, T01, FCV, HP, 

and RF power readings; 
3) A model to predict TCAV from TIN and RF power 

readings, and a similar model that uses T02 instead of 
TIN; 

4) A model to predict T02 that also includes the south cave 
and south hall temperature readings as inputs. 

Note that these models were developed in parallel with both 
control development and analysis of the impact of ambient 
temperature. In retrospect, it is likely that ambient temperature 
is only needed for the TCAV model. Because the benchmark 
controller (described later) primarily relies on a T02 model, a 
TCAV model with ambient temperature included as an input 
has not yet been constructed, but likely will be in the future. 

 
1) Data Preprocessing 

The mean values were subtracted from the data, and the 
data were scaled to a range of ± 0.5. The 2.44-°C offset in T02 
for Sets 1-4 relative to Set 5 was adjusted for by subtracting it 
from the measured values. In addition, a zero-phase digital 
filter was applied to T02 readings for data sets containing the 
noisier, lower-resolution data. The remaining data were not 
filtered. This produced more consistent results than either 

excluding any filtering procedure or filtering all of the data 
and using incremental filtering during online testing. 

 
2) Training Procedure 

The training procedure described applies to all trials for 
ruling out different model input-output structures and NN 
architectures. The training data were used to teach the NN the 
proper input-output relationship via supervised learning. In 
this case, the Broydon-Fletcher-Goldfarb-Shanno (BFGS) 
algorithm, a popular quasi-Newton optimization method for 
unconstrained nonlinear problems, was used to find the 
optimal weights and biases of the network. During training, 
every other input-output pair was used for calculating weight 
updates, while the remaining data were used for validation 
(i.e. assessment during the training process). Validation data 
are used to ensure that the solution is generalizable (i.e. the 
model is not over-fitted to the training data and the proper 
relationships have been learned). The predictive performance 
on the testing data was used to assess the models, both in one-
step-ahead prediction and in larger prediction horizons (20-
200 steps ahead). To help ensure that the particular training 
algorithm used was not skewing the results significantly, 
results were compared with those obtained using the 
Levenberg-Marquardt algorithm (LMA).  

For each candidate model architecture and set of inputs, 
multiple individual networks were trained and subsequently 
tested on the remaining data sets. This helps to ensure that the 
network architecture and configuration of the training data 
itself is responsible for the performance, rather than a single 
exceptionally poor or good solution.  

It was found that there were various merits to training on 
Set 1 (which had higher-resolution T02 readings and 
contained a variety of flow valve and heater setting 
combinations, but also consisted of relatively small 
adjustments) and on Set 3 (which had fewer, but higher-
magnitude adjustments and lower-resolution T02 readings). 
The best performance was obtained when the networks were 
trained first on Set 1 and then subsequently trained on a 
portion of Set 3 (with the rest of Set 3 being reserved for 
testing along with the remaining data sets). This is likely due 
to the fact that Set 3 had higher-magnitude changes than Set 1, 
but Set 1 had lower noise on the readings and thus the initial 
learned relationship had higher sensitivity to small changes in 
input parameters. Set 1 also consisted of many more 
individual training examples than Set 3, so training on the 
latter likely does not impact the final solution as much as the 
former. For the TCAV models, additional training was also 
conducted with a selection of data from Set 2 under RF power. 

 
3) Neural Network Structures and Model Inputs 
Starting with a simple approach, a feed-forward architecture 
was adopted. Because the time delays can vary, a short series 
of previous values is given for each input. For long transport 
delays, only relevant values are provided (i.e. dead time is 
removed by introducing a delay in the inputs).  
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Figure 11: Simplified illustration of the T02 NN model inputs and outputs. A 
series of n previously measured samples are provided. Initial previous inputs 
are delayed by an amount d governed by system dead times. 

For the T02 models, the best performance was obtained 
when the NN was provided with 15 prior seconds of FCV, HP, 
and T01 readings, and 30 seconds of prior TOUT data. The 
TOUT data inputs are delayed by 50 seconds and interspersed 
at a varied interval such that the 60-70 second range is 
represented more heavily (the intervals were determined 
experimentally). It was also found that the T02 models 
generally performed better when excluding the ambient 
temperatures. In addition, better solutions for long-term future 
predictions were obtained when excluding previous values of 
T02 as an input (thus forcing the NN to really learn the 
relationships between T02 and the other input variables, rather 
than relying on autocorrelation). 

For the T02 models, a variety of configurations were 
examined (including variations in the number of layers, the 
number of nodes in each layer, and the type of activation 
functions used). Out of these, the best performing models used 
two hidden layers, with 20 hidden nodes in the first layer and 
5 hidden nodes in the second layer. The nodes in the hidden 
layers use an approximate hyperbolic tangent sigmoidal 
activation function, given by 𝑓 𝑥 = !

(!!!!!!)
− 1. 

The performance of the best models is given in Table II. 
The T02 models were the most extensively trained and vetted, 
and the final T02 model performs well across all data sets. The 
best-performing full TCAV model is very close in structure to 
the T02 model. Without power, it performs better than the T02 
model (even without ambient temperature included). This may 
be due to the sets of lower-resolution T02 measurements 
included in training the latter, or due to the fact that TCAV is 
less susceptible to oscillations and noise in the water system 
because of its large thermal mass. In testing the TCAV models 
under RF power, there were steady-state offsets in the 
predicted output. Additional training under a greater variety of 
RF power levels would be needed to improve this. 

 

G. Control Over the Water System 

Eventually, the aim is to have a NN controller that adjusts the 
FCV and HP settings such that the desired resonant frequency 
or some optimal amount of detuning is achieved. An 
additional aim is to control the rate at which RF power is 
brought up to its operational level during turn-on. 

Establishing satisfactory control of the water temperature at 
the cavity entrance is the first step toward ensuring the gun is 
kept at the proper resonant frequency. Because the long 
transport delays and recursion in the water system are a major 
challenge for the feed-forward/PI controller, it makes sense to 
address this problem individually before moving on to a 
complete controller. Furthermore, while the cavity 
temperature (as reported by the TCAV sensor) is just an 
intermediate variable when considering the final goal, framing 
an initial controller around the water entering the gun and 
TCAV enables direct comparison with the existing feed-
forward/PI loop.  

As such, we aimed to design a modular controller that could 
be altered with ease to fit either TCAV-oriented regulation or 
resonant frequency-oriented regulation. The base controller 
regulates the temperature of the water entering the gun by 
modulating the FCV and HP settings. This controller can then 
be nested within another control loop that determines what the 
water temperature needs to be in order to either a) directly 
minimize the detuning or b) achieve an operator-specified 
cavity temperature set point. 

H. Benchmark Controller for the RF Gun 
First, we developed a simple benchmark controller for the 
water system. This serves two purposes: 1) it provides a more 
suitable benchmark than feed-forward/PID by which to judge 
the performance of more advanced NN controllers, and 2) it 
provides an initial policy that a NN can be trained to mimic 
and improve upon. 

Because of the long time constants, the effect of the water 
returning from the gun, and the presence of two controllable 
variables, a model predictive control (MPC) [119,120,121] 
scheme is appealing. In MPC, a system model and an 
optimization algorithm are used in conjunction to determine 
an optimal sequence of future controller actions such that the 
target output is reached within some future time horizon, 
subject to the satisfaction of any defined constraints. Such a 
scheme is useful for compensation of delayed system 
behavior. In addition, if a series of future set points is known 
in advance, the controller can act anticipatively. Figures 12 
and 13 illustrate the basic concept of MPC. Because MPC 
relies on repeatedly computing an optimal future trajectory for 
a series of future time steps, there is a substantial tradeoff 
between model complexity and the ability to obtain a good 
solution within the control interval. 
 

TABLE II 
AVERAGE PERFORMANCE OF SELECTED NN MODEL DESIGNS 

NN Model 
Mean 

Absolute 
Error 

STD of 
Error 

Max. 
Error 

T02 Sigmoid  0.018 0.037 1.049 
T02 Sigmoid w/Ambient Temp. 0.022 0.043 1.317 

T02 Linear 0.058 0.266 2.915 
TCAV Sigmoid (tested without power) 0.011 0.012 0.131 

TCAV Sigmoid (tested with power) 0.259 0.287 1.390 
 

Table II shows the performance of several NN model designs. For the best-
performing network out of each model category, the average absolute error 
across all prediction instances in all of the data sets is reported, along with 
the standard deviation. The maximum error out of all data sets is also 
reported. For TCAV, the performance with and without RF power is reported 
separately. “Linear” and “Sigmoid” denote the activation function types. 
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Figure 12: The basic concept of model predictive control. 
 

 
Figure 13: The basic elements of a model predictive control scheme. Np 
is the prediction horizon, Nm is the number of previous measured values 
used for modeling, k is the present time step, Nc is the control horizon, 
ucv are the controlled variables, um are measured variables, and yp is the 
predicted plant output. 
1) Controller Structure 
T02 was chosen as the variable to control for the benchmark 
system. The basic structure of the benchmark MPC is shown 
in Figure 14. First, the operator provides a TCAV set point, 
which is then translated into an approximate T02 set point by 
exploiting the relationship between average RF power, T02, 
and TCAV. The MPC then manipulates the FCV and HP 
settings such that the desired T02 trajectory is obtained.  

By monitoring temperature changes in the water leaving the 
gun, the controller can compensate for them before they reach 
T02. Monitoring TOUT provides plenty of time for actuation 

of the heater to take effect. By also monitoring T01 and using 
this as a model input, adjustments can be made to compensate 
for fluctuations in the LCW supply temperature. One critical 
weakness of this design is that the ambient temperature can 
affect the relationship between T06 and TOUT, and at present 
this is unaccounted for (e.g. by model updating or an adaptive 
offset on the TOUT input). 

 
Figure 14: Conceptual structure of the benchmark MPC for temperature 
control of the RF gun. 
 
For the optimization of future controller actions, the cost 
function is defined by the weighted rate of controllable 
variable changes, the weighted discrepancy between the 
present predicted output trajectory and the output reference 
trajectory, the weighted discrepancy between the desired 
trajectory of controllable variables and their present trajectory 
(if applicable), and the weighted degree to which any 
constraints are violated. Each of these terms is evaluated over 
the entire prediction horizon. If desired, small constraint 
violations are allowed via constraint softening. The general 
formulation for the cost function at time-step k for one output 
variable is given by: 
 

𝑤!,! 𝑢! 𝑘 + 𝑖 − 𝑢! 𝑘 + 𝑖 − 1
!!!!!

!!!
!!"
!!!     

+    𝑤!,! 𝑢! 𝑘 + 𝑖 − 𝑢!,!"# 𝑘 + 𝑖
!!!!!

!!!
!!"
!!!   (1) 

+ 𝑤! 𝑦! 𝑘 + 𝑖 − 𝑦! 𝑘 + 𝑖
!
+   𝑤!

!!
!!! b , 

 
where 𝑤!,! is the weight for rates of change in the 𝑗!!  
controllable variable, 𝑤!,! is the weight for the 𝑗!! controllable 
variable target trajectory, 𝑤! is the weight for output variable 
target trajectory,  𝑤! is a penalty weight for constraint 
softening,  𝑁! is the prediction horizon, 𝑖 is a future time step, 
𝑦! is the reference trajectory, 𝑦! is the predicted output, 𝑘 is 
the present control step, 𝑢! is 𝑗!! the controllable variable 
value, 𝑢!,!"# is the reference trajectory for the 𝑗!! controllable 
variable, 𝑏 is a measure of constraint violation, and 𝑛!" is the 
number of controllable variables. The constraints are given by: 
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𝑦!"# − 𝑏𝑎!!"# ≤ 𝑦 𝑘 + 𝑖 ≤ 𝑦!"# + 𝑏𝑎!!"#  
𝑢!,!"# − 𝑏𝑎!!,!"# ≤ 𝑢 𝑘 + 𝑖 − 1 ≤ 𝑢!,!"# + 𝑏𝑎!!,!"#  (2) 
Δ𝑢!,!"# − 𝑏𝑎∆!!,!"# ≤ Δ𝑢! 𝑘 + 𝑖 − 1 ≤ Δ𝑢!,!"# + 𝑏𝑎∆!!,!"#   
 
where Δ𝑢!   is the change in the 𝑗!! controllable variable, 
𝑎!!,!"# and 𝑎!!,!"#   are variables for constraint softening for 
the 𝑗!! controllable variable limits,  𝑎∆!!,!"# and 𝑎∆!!,!"#   are 
variables for constraint softening for the 𝑗!! controllable 
variable movement, 𝑎!!"# and 𝑎!!"# are variables for 
constraint softening for the output variable limits, and 𝑏 is a 
slack variable. 
 
2) Implementation 

For the benchmark MPC, we were only concerned with 
getting a rough idea of how well a simple MPC system might 
perform compared with the existing feed-forward/PI loop. To 
this end, we linearized the NN model around the present 
operating point at each time step and used the sequential 
quadratic programming solver QPKWIK [122].  
 In the benchmark controller, all constraints were hard (i.e. 
𝑎!!,!"# = 𝑎!!,!"# = 𝑎!!!,!"# = 𝑎!!!,!"# = 𝑎!!"# = 𝑎!!"# =
0), and y was unconstrained. Because there is no constraint 
softening, 𝑤! was set to 0. Finally, there is no specifically 
desired controllable variable trajectory; as such, 𝑤! was also 
set to 0. Through a combination of simulation and testing on 
the gun, a set of the remaining MPC parameters that achieve 
reasonably good performance were obtained. These 
parameters are given in Table III. 

A rudimentary NN model was used to translate between the 
TCAV set point and the T02 set point. One could instead use 
the simple steady-state relationship, but we wanted to capture 
the dynamic response as well.  

 

 
 
 
3) Performance 

Figure 15 shows the performance of the benchmark MPC 
for a 1-°C step change in the TCAV set point. The settling 
time is ~5x faster than that of the pre-existing feed-forward/PI 
loop, and there is virtually no overshoot. After the step 
command for the cavity is issued, the MPC brings T02 to 

within ± 0.02 °C of its respective set point in about 3 minutes. 
Correspondingly, TCAV is brought to within ± 0.02 °C of its 
set point in about 5 minutes. While the transient behavior in 
this instance is clearly an improvement over the transient 
behavior of the PI loop, additional data is needed to fully 
characterize both the transient and steady state performance. 

Note that the scales in Fig. 15 are smaller than those shown 
for the feed-forward/PI controller in Fig. 2 (1.5-°C vertical 
extent in the former vs. 2.5-°C vertical extent in the latter, and 
10-minutes extent in the former vs. 30-minutes extent in the 
latter). As with the results shown in Fig. 2, no RF power is 
going to the gun. 

Figure 16 shows the measured FCV and HP actions, and 
Figure 17 shows the requested FCV and HP actions. We see an 
initial adjustment (the valve opens and the heater power 
decreases), followed by an adjustment in the opposite 
direction to compensate for the lower temperature of the water 
exiting the gun. 

Overall, despite this being just a simple benchmark test, the 
performance achieved was a substantial improvement over 
that obtained with the pre-existing feed-forward/PI controller. 
 

 
Figure 15: A 1-°C step change in TCAV under the benchmark MPC. 
Note that the scales are smaller than those of Fig. 2. These data were 
recorded as part of a series of steps in the TCAV set point. Note that this 
is not a perfect 1-°C step, as there is an offset between the original 
TCAV set point and the final value it obtained in the prior to step. 
 

TABLE III 
BENCHMARK MPC PARAMETERS 

Parameter Value Units 

Valve max rate 10 % open/sec 
Valve upper limit 70 % open 

Valve lower limit 2 % open 
Heater max rate 4 kW/sec 

Heater upper limit 9 kW 
Heater lower limit 1 kW 
Prediction horizon 100 s 

Control horizon 20 s 
Control interval 2 s 

Valve rate weight   0.4 - 
Heater rate weight 0.5 - 
T02 output weight 0.3 - 
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Figure 16: Measured flow control valve and heater power actions.  
 

 
Figure 17: Requested flow control valve and heater power actions. 
 
4) Limitations and Potential Improvements 

First, improvement could be made to the timing of control 
actions. The small oscillations in T02 that start around the 4-
minute mark are the result of imperfect timing in the 
compensative actions for the recirculating water. The 
oscillations were replicated in simulation by introducing a 
mis-match in the timing of TOUT in the plant relative to that 
in the model used for the MPC controller. During training, the 
time delay between when the controller issues a command, 
when the command is received by ACNET (Fermilab’s main 
control system), and when the actuators in the hardware 
respond were not accounted for.   

Another limitation of the controller is that it used previous 
requested FCV and HP settings in the model, rather than using 
measured values. Given how much the requested values 
deviated from the measured values, the performance of the 
controller could likely be improved by using the measured 
values instead. 

The controller also needs to be tested over the RF power 
range of the cavity. The T02 model performs well under 
powered conditions, and thus in principle the MPC should be 
able to compensate for temperature changes in the water 
exiting the gun associated with RF power adjustments. 
However, the component that converts the TCAV set point to a 
T02 set point needs to be more carefully designed before this 
is implemented for regular use. Steady state offsets in the 
modeling could be accounted for by adding slow feedback to 
the component that translates between TCAV and T02 under 
RF power. Alternatively, additional training data under a wider 
variety of RF power levels could be obtained, and ambient 
temperature could also be included as an input. Because 
TCAV does have a slow thermal response, an extension of this 
is to use a second MPC to determine a desirable T02 trajectory 
(rather than a single set point) or simply lump the whole 
system together in one MPC.  

I. Future Work and Extensions To Pure NN Control 
The future work at FAST falls into two categories: 
1) Expansion of and improvement upon the benchmark MPC  
2) NN-centric schemes that build on (1) 

 
The primary interest in (1) is that it can facilitate the 

learning of good initial controllers in (2). A number of 
possible improvements to the MPC are discussed in section 
H.4, but ultimately for our purposes it just needs to be good 
enough to provide a starting point for training. For control of 
the water entering the gun, the benchmark controller is good 
enough. We are training a NN to mimic the benchmark MPC 
behavior. This initial policy will subsequently be improved 
through additional training during simulated interaction with 
the machine. Finally, it will be experimentally tested. This 
module can then be extended to direct resonance control using 
another MPC or a reinforcement learning component.  

Extending that approach further, we are creating a separate 
MPC unit that determines trajectories for T02 and RF power 
such that the requested operational RF power is reached 
without significant increases in reflected power. This would 
use resonant frequency (as measured by detuning) as the 
reference parameter. We will also examine using a NN-based 
reinforcement learning controller directly from scratch for this 
application (i.e. one that operates without the benefit of 
learning an initial policy from the MPC). 
 At present, we are also working on resonance control for an 
RFQ that will be used in the PXIE accelerator at Fermilab. 

VI. CONCLUSION 
There is a clear need for the development and validation of 

reliable, adaptive control techniques for complex problems in 
particle accelerators. Achieving this objective becomes 
particularly challenging as these systems achieve higher 
energies and intensities, are required to operate with ever-
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more stringent tolerances on beam parameters, and are needed 
for a rapidly growing range of applications with highly varied 
requirements. Incorporating artificial intelligence and machine 
learning techniques into particle accelerator control systems 
could greatly assist the community in its effort to meet these 
challenges. 

The work at FAST provides just one example of how more 
advanced control methods that include learned models and 
planning can provide advantages over primarily reactive 
control paradigms. In that example, the presence of long, 
variable time delays and multiple controllable parameters 
resulted in a challenging control problem that was not handled 
effectively by the existing feed-forward/PI controller. A 
relatively simple neural network-based model predictive 
controller was able to substantially improve the control over 
the system, resulting in a ~5x shorter setting time and virtually 
no overshoot in the target parameter. Coupled with the 
previous work conducted by our group at LCLS, the 
FERMI@Elettra FEL, and Australian Synchrotron, it is 
apparent that modern AI- and machine learning-based control 
techniques can be put to highly effective use in particle 
accelerators.  

Within artificial intelligence and machine learning, we 
highlighted neural networks specifically. Neural networks are 
highly flexible tools that could be used in many ways to 
improve particle accelerator performance. They can be used to 
learn system relationships (e.g. dynamic models), to do 
perform rapid computations, and to act as controllers. Myriad 
advances over the past decade have greatly improved the 
practicality of these techniques. 

Furthermore, accelerators are useful test-beds for neural 
network-based control. By focusing simultaneously on 
incremental development and experimental testing, actual 
problems encountered in accelerator control can guide 
algorithmic development, resulting in a suite of new 
techniques that are uniquely well-suited to the field’s 
operational challenges. 

We plan to continue our research in this area to develop 
advanced controllers based on artificial intelligence and 
machine learning for a wide variety of control problems found 
in particle accelerators.  
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