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Abstract. Results from direct detection experiments are typically interpreted by employing
an assumption about the dark matter velocity distribution, with results presented in the
mχ−σn plane. Recently methods which are independent of the DM halo velocity distribution
have been developed which present results in the vmin− g̃ plane, but these in turn require an
assumption on the dark matter mass. Here we present an extension of these halo-independent
methods for dark matter direct detection which does not require a fiducial choice of the
dark matter mass. With a change of variables from vmin to nuclear recoil momentum (pR),
the full halo-independent content of an experimental result for any dark matter mass can
be condensed into a single plot as a function of a new halo integral variable, which we
call h̃(pR). The entire family of conventional halo-independent g̃(vmin) plots for all DM
masses are directly found from the single h̃(pR) plot through a simple rescaling of axes. By
considering results in h̃(pR) space, one can determine if two experiments are inconsistent
for all masses and all physically possible halos, or for what range of dark matter masses
the results are inconsistent for all halos, without the necessity of multiple g̃(vmin) plots for
different DM masses. We conduct a sample analysis comparing the CDMS II Si events
to the null results from LUX, XENON10, and SuperCDMS using our method and discuss
how the mass-independent limits can be strengthened by imposing the physically reasonable
requirement of a finite halo escape velocity.
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1 Introduction

The strong astrophysical evidence for dark matter (DM) has prompted an extensive program
of experiments to detect DM terrestrially [1–9]. Such direct-detection experiments exploit
the possibility that DM can scatter off nuclei in a large detector volume [10], with a DM
scattering event identified through the ensuing detection of the nuclear recoil energy ER.
However, the event rate as a function of ER is strongly dependent on the incident DM
velocity distribution. In particular, the scattering rate is proportional to the integral over
the entire velocity distribution of dark matter in the Galactic halo, which has never been
measured directly.

For simplicity it is often assumed that the speed distribution is Maxwell-Boltzmann in
nature. However, even in this simple case varying the Sun’s circular velocity and the Galactic
escape speed can significantly alter the interpretation of direct detection results [11–13]. Sim-
ilarly, marginalising over the parameters associated with the speed distribution motivated by
dark matter numerical simulations, which show departures from pure Maxwell-Boltzmann,
leads to uncertainty in interpretation of results [14, 15]. Given the coarse resolution of numer-
ical simulations and the uncertainties associated with the extracted speed distributions, one
may instead parameterise the speed distribution in some general way [16–18]. With sufficient
data, and a judicious choice of basis for the parameterisation, one can hope to determine both
the astrophysical and particle physics properties of dark matter simultaneously [19].

However, motivated by our present lack of understanding of the local dark matter ve-
locity distribution, techniques have been developed which interpret direct detection results
independent of assumptions about the astrophysics. Given at least two experimental mea-
surements of dark matter scattering, on different elements, it is possible to determine the dark
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matter mass without making assumptions about the form of the velocity distribution [20].
Even without two positive results it is possible to compare experiments in an astrophysics
independent fashion by constraining the halo integral itself, rather than the DM-nucleus scat-
tering cross section [21]. For a given nuclear recoil energy, only DM traveling at sufficiently
high velocities can provoke a nuclear recoil at that energy. Thus, such halo-independent con-
straints are a function of the minimum DM velocity vmin(ER) required to provoke a recoil
energy ER, which for elastic scattering is

vmin(ER) =

√
mNER
2µ2Nχ

. (1.1)

While we will limit our discussion to the case of elastically scattering dark matter in a single
target experiment, these astrophysics-independent techniques have been extended to include
multiple targets [22], inelastic dark matter [23], other more general forms of dark matter
scattering [24], searchs for the modulating signal [25], and have been applied to compare
data from many experiments [26–34]. The techniques have also been extended to enable a
halo-independent combined-likelihood function to be constructed [35], allowing for the tension
between DM hints and null results to be quantified in a systematic way, see also [36].

As can be seen from Eq. (1.1), vmin depends explicitly on the DM mass mχ through
the DM-nucleus reduced mass µNχ. Thus, to analyze a direct detection experiment using
existing halo-independent methods, one must make a choice for mχ. This is undesirable
since it leads to a proliferation of plots, one for each choice of mass. Furthermore, the goal
of halo-independent methods is to “factor out” uncertainties about dark matter properties.
Indeed, the DM mass is probably less well-constrained than the velocity distribution: while
DM velocity in the Galactic halo is bounded by the Galactic escape velocity, there exist
well-motivated DM candidates with masses spanning some twenty orders of magnitude [37].
Even in the range of masses 1 GeV−1 TeV typically probed by direct detection experiments,
different choices of DM mass can alter constraints derived from halo-independent analyses,
and hints of positive signals can be either excluded or allowed in different regions of vmin
depending on the DM mass [33].

In this paper we show that, for DM which undergoes non-relativistic elastic scattering
with nuclei, many ambiguities related to the unknown DM mass can be resolved by a simple
change of variables. By presenting limits and preferred values for the halo integral as a
function of nuclear recoil momentum pR, instead of DM minimum velocity vmin or nuclear
recoil energy ER, one can condense the halo-independent results from an experiment in a
way which is valid for any value of the DM mass. This is a direct consequence of a kinematic
relation for non-relativistic elastic scattering, derived from Eq. (1.1),

pR = 2µNχvmin(ER) =
√

2mNER , (1.2)

which implies that pR is related to vmin by a constant rescaling, but is manifestly independent
of mχ.1 To put it another way, relating the observable ER to vmin requires a choice for the
DM mass, whereas relating ER to pR does not. Thus, for a given experiment, the entire
1-parameter family of vmin plots for all DM masses can be condensed into a single pR plot,

1This is the essential reason for working in pR-space. A similar statement cannot be made about an ER-
space plot where, for nonrelativistic scattering, the rescaling of the x-axes into vmin-space is nonlinear in ER
and explicitly depends on the DM mass. For relativistic scattering, though, one can make a mass-independent
plot in ER-space [38].
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where the scale on the pR-axis does not change as mχ is varied.2 Furthermore, pR enjoys the
same advantage of vmin in that multiple experiments with different nuclear targets, which
may have different ranges of sensitivity in ER, can in principle have overlapping sensitivity
in pR.

While momentum-space plots are useful for a single experiment, the dependence of pR
on the target mass mN means that care must be taken in comparing two different experiments
on the same pR plot. Naively one would expect that the comparison must be carried out on a
mass-by-mass basis, necessitating again that a large number of plots be made and compared.
However, we show that this issue can be avoided entirely by considering the ratios of exclusion
curves or envelopes of preferred values in pR-space. By plotting these ratios as a function of
a rescaled halo integral h̃, which does not depend on the target mass, a single plot contains
sufficient information to determine if a dark matter signal is excluded for all dark matter
halos and for all dark matter masses, or whether there is a range of masses for which there
is agreement. The rescaled halo integral h̃ has a conceptually straightforward interpretation
as the differential scattering rate normalized to a single nucleon. In the most general case,
it is simple to read off from this plot the range of DM masses for which two experiments are
inconsistent for any DM halo.

This paper is organized as follows. In Sec. 2, we review the general setup of halo-
independent methods, with particular emphasis on the role of vmin. In Sec. 3, we describe
the change of variables from vmin-space to pR-space and show how this can be used to present
experimental data in a halo-independent manner which is also independent of the DM mass.
The key results of this paper are in Sec. 3.2, where we show how pR-space can be used to
compare null results from one experiment with positive results from another experiment to
derive regions of inconsistency which are valid for all DM masses above or below (depending
on the ratio of target masses) a critical value. Finally, in Sec. 4, we perform a sample analysis
on CDMS II Si, LUX, XENON10, and SuperCDMS data to illustrate the utility of pR-space.
For the convenience of the reader we summarize the minimal analysis recipe in Sec. 5. We
conclude in Sec. 6. In App. A we comment on the use of mass-independent methods for
comparing the relative strengths of different null results.

2 Review of Halo-Independent Methods

Here we briefly review the standard techniques for halo-independent analyses of direct de-
tection experiments. For spin-independent DM-nuclear scattering, the differential event rate
at a direct detection experiment is given by

dR

dER
=
NAρχσnmn

2mχµ2nχ
C2
T (A,Z)

∫
dE′RG(ER, E

′
R)ε(E′R)F 2(E′R)g(vmin(E′R)) , (2.1)

where mχ is the DM mass, mn the nucleon mass, µnχ the nucleon-DM reduced mass, σn
the DM-nucleon scattering cross-section, ρχ the local DM density, NA is Avogadro’s number,
F (ER) is the nuclear form factor which accounts for loss of coherence as the DM resolves sub-
nuclear distance scales, CT (A,Z) = (fp/fnZ + (A − Z)) is the usual coherent DM-nucleus
coupling factor, ε(ER) is the detector efficiency, and G(ER, E

′
R) is the detector resolution

function.

2This conclusion holds only for elastic scattering. The extent to which one can derive constraints without
mass assumptions for more general kinematics is explored in a forthcoming paper [39].

– 3 –



The integral over the velocity distribution (which we will often refer to as the “halo
integral”) is

g(vmin) =

∫ ∞
vmin

f(v + vE)

v
d3v , (2.2)

where f(v) is the unknown DM velocity distribution and vE is the Earth’s velocity, both
in the Galactic frame. We shall ignore the small time dependence of the Earth’s velocity in
the Galactic frame. The lower limit of the halo integral, vmin, is the recoil energy-dependent
minimum DM velocity required to produce a nuclear recoil ER, and depends on the kinematics
of the interaction. For elastic scattering vmin(ER) is given by Eq. (1.1).

As first pointed out in [21, 40], since the DM velocity distribution f(v) is positive semi-
definite, g(vmin) must be a monotonically decreasing function of vmin. This leads to powerful
constraints on the shape of the halo integral derived from either null or positive experimental
results, which we will review shortly. First, though, we summarize the essential differences
between the usual mχ − σn analyses and halo-independent analyses.

• m− σ plots. Given a choice of DM velocity distribution f(v) and DM local density
ρχ, event rates can be calculated as a function of mχ and σn from Eq. (2.1). Null results
give exclusion contours, while positive results generally give closed preferred regions in
mχ − σn space. For each choice of f(v), a different plot must be made.

• Halo-independent plots. By rescaling the halo integral as

g̃(vmin) =
ρχσn
mχ

g(vmin) , (2.3)

to absorb all the detector independent terms in Eq. (2.1), event rates can be calculated
from Eq. (2.1) as a function of g̃, making the most conservative choice for f(v). A
choice for mχ is still necessary to relate vmin to ER through Eq. (1.1). Null results
once again give exclusion contours, but in vmin − g̃(vmin) space. Positive results give
preferred shapes for the halo integral g̃(vmin), which is constrained to be a monoton-
ically decreasing function; thus positive results generally give open envelopes of such
curves in vmin − g̃(vmin) space, rather than closed regions. For each choice of mχ, a
different plot must be made.

The choice of vmin as the x-axis variable for halo-independent plots is one of convenience, as
it is the natural argument for the halo integral g̃, but since vmin(ER) is monotonic for elastic
scattering, one may just as easily present results in ER − g̃(ER) space, since g̃(ER) is also
monotonically decreasing. The advantage of vmin is that experiments with non-overlapping
sensitivity in ER may have overlapping sensitivity in vmin, due to the dependence of vmin
on the target mass mN . However, we will see in Sec. 3 that the choice of pR for the x-axis
variable shares this same advantage, while at the same time obviating a choice of mχ.

To derive halo-independent exclusion curves, note that for a given point v0 on the vmin-
axis, the halo integral which gives the least number of events consistent with monotonicity
is

g̃(vmin) = g̃0Θ(v0 − vmin) . (2.4)

Setting an upper bound on the number of events using this choice of halo integral, one derives
the weakest (i.e. most conservative) possible bounds on g̃(v0). Thus, by sweeping over v0 in
the vmin range of an experiment, one can build up an exclusion contour which at every x-
coordinate v0 sets the most conservative bounds on the halo integral: the true halo integral
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must lie entirely below this exclusion contour for every vmin. Such an exclusion curve is
extremely robust, as any positive signal so excluded can be said to be excluded for all DM
halos.

Determining best-fit values and envelopes for the halo integral for a positive result
can be done in many ways. As a representative example, one may interpret Eq. (2.1) as a
component of an unbinned extended likelihood function

L =
e−NE

NO!

NO∏
i=1

dR

dER

∣∣∣∣
ER=Ei

, (2.5)

where NO total events are seen at recoil energies Ei.
3 The monotonicity of g̃ can then be

used to reduce the possible shapes of g̃(vmin) to a finite-dimensional subset, allowing a simple
numerical maximization of the likelihood function. For details, we refer the reader to [41]
where these statements are proven and expanded upon, as well as [42] which describes an
alternate maximization technique. Including finite energy resolution effects, the preferred
region at a given confidence level is an envelope in vmin− g̃(vmin) space. Thus, for any point
inside the envelope there is a curve which lies entirely within the envelope and which passes
through that point which is consistent with the data at the required confidence. In addition,
there are no curves within the required confidence containing points which lie outside the
envelope. Consequently, an exclusion limit which crosses the lower boundary of this envelope
is able to rule out all DM halos preferred by the data, and thus excludes the putative signal
in a halo-independent fashion.

When carrying out a halo-independent analysis, as mentioned above, a particular DM
mass must be assumed. The constraints on, or predictions for, g(v) for another DM mass can
be determined by simple rescalings [41]. For a DM mass, mχ, a point (vmin, g̃) is mapped to
a new point (v′min, g̃

′) for DM mass mχ′ , by

(vmin , g̃ ;mχ)→
(
µNχ
µNχ′

vmin ,
µ2nχ′

µ2nχ
g̃ ;mχ′

)
. (2.6)

Since the mapping depends on the mass of the nuclear target, this will shift different detectors
by differing amounts. In the following section we will present a change of variables which
allows the presentation of results in a fashion independent of the DM mass. Essentially this
change of variables ‘factors out’ the re-scaling freedom of Eq. (2.6) to leave a single plot
which is the same for all mχ.

Of course, one could alternatively present results in the usual vmin− g̃(vmin) space plot
for a single choice of mχ and then all other vmin − g̃(vmin) space results for different masses
could be immediately found from the rescaling of Eq. (2.6).4 However, there would be am-
biguity surrounding which fiducial DM mass to take when presenting results in publications.
Furthermore, as we will see, the pR − h̃(pR) space option advocated here allows for the po-
tential inconsistency of two different experimental results for any halo and any DM mass to
be determined directly by eye from the pR − h̃(pR) space plot, whereas this is not possible
for a vmin − g̃(vmin) space plot with a specific choice of DM mass.

3For large NO the events may be binned. In this case it is very simple to extract the preferred region of
g̃(vmin) from binned likelihood or χ2 methods.

4This was described in more detail in [41].
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3 Halo-Independent Direct Detection Without Mass Assumptions

In Sec. 3.1 we will describe the change of variables for calculating momentum-space con-
straints for a given experiment and then discuss how the standard halo-independent plot for
any choice of DM mass may be easily constructed from this single plot. The momentum-
space plot is unique as only one such plot exists for any set of direct detection data, and is
universal in the sense that it applies for all dark matter masses, and does not need to be
reconstructed on a mass-by-mass basis, as is the case for the usual vmin-space plots. Follow-
ing this, in Sec. 3.2 we demonstrate the utility of the momentum-space plot by showing how
the momentum-space constraints may in some cases be used to draw strong and general con-
clusions on the comparison between different direct detection experiments which hold for all
DM halos and for all DM masses, making these conclusions halo-independent and true for all
masses. Alternatively, the same information may, in some cases, imply a range of DM masses
for which experiments are inconsistent, independent of DM halo. We show in Sec. 3.3 how
these conclusions may be strengthened by restricting to halos with a finite escape velocity.

3.1 Direct Detection in Momentum Space

Eq. (2.1), which describes the differential DM event rate, contains a number of unknown fac-
tors which depend on the DM mass, cross section, and local density. To compare observations
with specific models, one must make choices for these factors, but to simply compare results
at different detectors this is unnecessary. Thus, we may absorb all detector-independent
factors into a single unknown, which we write as

h̃(pR(ER)) =
NAρχσnmn

2mχµ2nχ
g(vmin(ER)) =

NAmn

2µ2nχ
g̃(vmin) . (3.1)

We emphasize that the rescaling factor between h̃ and g̃ is independent of the detector
nucleus, since it only depends on the nucleon mass mn. As our notation makes clear, we are
thinking of h̃ as a function of recoil momentum,

pR =
√

2mNER = 2µNχvmin , (3.2)

which for a given recoil energy ER is independent of DM mass, rather than vmin which is
not. Both h̃ and g̃ are implicitly monotonically-decreasing functions of ER, since vmin is a
monotonic function of ER and the halo integral g is constrained by the arguments of Sec. 2
to be a monotonic function of vmin. We can now rewrite Eq. (2.1) as

dR

dER
= C2

T (A,Z)

∫
dE′RG(ER, E

′
R)ε(E′R)F 2(E′R)h̃(pR(E′R)) . (3.3)

Notice that in Eq. (3.1) we break with the convention of [21, 40], and instead of the quantity
g̃ we opt for h̃ which absorbs all dependence on the DM mass, and is also independent of
the detector. The use of h̃ also has a conceptual advantage because it is a physical quantity:
the differential scattering rate normalized to a single nucleon, before correcting for resolution
and detection efficiency, analogous to the normalized WIMP-nucleon cross section used by
experimental collaborations to report limits. This interpretation makes clear that halo-
independent comparisons of experiments are just direct comparisons of recoil energy spectra,
after a simple rescaling to account for the kinematic effects of different target masses.5

5We thank Felix Kahlhoefer for emphasizing this interpretation to us.
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Since there is a one-to-one relation between vmin and pR, it is simple to repeat the
discussion of Sec. 2 in terms of pR. For instance, if DM scattering were to produce an event
with nuclear recoil momentum p0, then the halo integral which could lead to this event while
producing the minimum number of scattering events at other recoil momenta is described by

h̃(pR) = h̃0Θ(p0 − pR) . (3.4)

Here, p0 is taken over the whole range of pR sensitivity of the experiment: if the experiment
is sensitive to energies satisfying Elow ≤ E ≤ Ehigh, then

√
2mNElow ≤ pR ≤

√
2mNEhigh.

Thus, one can set limits on h̃0, and thus h̃(p0), based on the null results of an experiment by
integrating over ER and e.g. using a Poisson upper limit on the total number of events at a
given confidence level, for each value of p0. Just as easily, h̃(pR) can be chosen to be a sum
of step functions as proposed in [41, 42] in order to find best-fit regions for the halo integral
in the case of positive signals. In either case, by construction this analysis makes only the
most conservative assumptions about the DM velocity distribution. We emphasize that at
no point in calculating the constraints on Eq. (3.3) is it necessary to make a choice for mχ.

It is convenient at this stage to make a few observations on the possible form of
momentum-space exclusion curves which will be useful later.

• As a detector is not sensitive to nuclear recoils at vanishing momentum, and most
analyses have a low-momentum threshold, the exclusion curves will in general become
weaker at low recoil momenta and asymptote to infinity at some fixed small recoil
momentum.

• As the most conservative choice of halo (3.4) predicts larger numbers of events for
larger recoil momenta, the limits will in general become stronger towards higher recoil
momenta. The result is that the exclusion curve in momentum-space will in general be
a monotonically decreasing function.6

• Detectors in principle have sensitivity out to infinite recoil momenta, as a signal beyond
the high momentum threshold of a detector implies a nonzero number of predicted
events within the signal region. Thus, the momentum space exclusion contour will in
principle extend to infinite recoil momenta, but due to the finite energy range of the
signal region, the bound will approach a constant value in h̃.

The momentum-space representation of experimental results contains all of the infor-
mation conveyed by the usual vmin-space plots, and these plots may actually be constructed
directly from one another. From Eqs. (3.1) and (3.2), the mapping is linear for any choice of
DM mass: (

pR, h̃
)
7→
(

1

2µNχ
pR,

2µ2nχ
NAmn

h̃

)
= (vmin, g̃) . (3.5)

From the behaviour of g̃(v) under changes of DM mass, Eq. (2.6), we see that the single
momentum-space plot contains all halo-independent information.

We can also compare the results of two different experiments on the same pR plot. For
any DM mass, the mapping of Eq. (3.5) rescales both curves in the vertical direction by the

6Although h̃ should, on general grounds, be a monotonically decreasing function, the limits on h̃ extracted
from real data may not be monotonically decreasing. For example, if Yellin’s methods [43] are used, then
limits can increase near the vmin where the limit-setting method switches from one interval to another.
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vmin

gé

pR

h
é

A

B

A

B

1/2µA�

1/2µB�

 =
2µ2

n�

NAmn



Momentum-Space vmin-Space

(a) (b)

Figure 1. (a) A schematic of the momentum-space plot proposed in this work for two different
detectors with target nuclei masses satisfying MA > MB . (b) A schematic of the standard vmin-space
plot. The mapping from the unique momentum-space plot to the vmin-space plot is also shown in (a)
for a typical choice of DM mass making clear that the differences only arise in the horizontal direction,
see Eq. (3.5).

same factor, but rescales them in the horizontal direction by different factors depending on
both the DM mass and the target nucleus mass. Hence, in mapping from recoil momentum
space to vmin-space, exclusion curves for two different detectors are shifted relative to each
other only in the horizontal direction, as depicted in Fig. 1. We now show how this may
be exploited to draw very general halo-independent conclusions on the relative behavior of
different experiments which hold for all DM masses.

3.2 Comparisons Between Null and Positive Results

A principal purpose of the momentum-space method will be to serve as a general tool to
determine the consistency of potential positive results with bounds from detectors which
observe no hint of DM scattering. There is a great deal of value in this sort of comparison, as
it may shed light on the nature of an emerging DM discovery and possibly point towards DM
mass ranges which are preferred for such a signal. In general, positive results give preferred
regions which explain the observed scattering events in a detector to within some given
statistical confidence. Technology for determining these best-fit regions has been developed in
the context of halo-independent vmin-space plots and may be easily adapted for momentum-
space plots. As an example, using the method described in [41] it is possible to determine
the preferred parameter space using an unbinned likelihood function, leading to preferred
regions such as those depicted schematically in Fig. 2. Unlike the preferred regions in mχ−σn
space, the preferred parameter regions in vmin-space will not in general be closed due to the
monotonicity constraint on the halo integral.

At this point it is worth discussing some general features of the preferred parameter
regions in momentum space. The upper boundary of a preferred region will be very similar
to an exclusion contour. Signal events are preferred, but not too many; this boundary acts as
an exclusion contour which may extend to non-zero values for arbitrarily high recoil momenta.
It also becomes weak below the threshold of the detector, approaching infinity as the recoil
momentum tends to zero. The lower boundary of a preferred region is different. Above the
high energy threshold of a detector there is no preference for signal events, thus the lower
boundary will tend towards zero at high recoil momenta. At recoil momenta below the low
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pR

h
é

pR

h
é

1/2µA�

1/2µB�

 =
2µ2

n�

NAmn



(a)

(b)

(c)

(d)

h̃low h̃low

pR,lim(h̃) pR,low(h̃)

h̃

Figure 2. Illustrative possibilities of momentum-space plots for results from an experiment B (shaded
red) which observes a tentative DM signal and a null experiment A (black lines) which is used to set
constraints. The target nuclei masses are here assumed to satisfy MA > MB . The rescaling to map
from momentum-space to vmin-space is only shown in one case for clarity, but this mapping holds for
all cases. In (a) an experiment A finds constraints which exclude a DM interpretation of all anomalous
events observed in B as the exclusion contour crosses the lower boundary of the preferred region. Any
mapping to vmin-space will shift the region for B further to the right relative to A, implying that
experiment A excludes a DM interpretation of B for all DM masses and all DM halos. In (b) it may
be that A excludes a DM interpretation of B for all halos for some finite range of DM masses. In (c)
and (d), experiment A can never exclude a DM interpretation of B for all halos for any choice of DM
mass, as shifting B to the right never causes A to cross the lower boundary of B. However, in (c)
there is tension between the results of A and B independent of the DM mass, whereas in (d) there
is only tension for a range of DM masses. See the text for a general method to resolve and quantify
these differences. In green we also show the construction of the variable R(h̃), defined in Eq. (3.7)
which allows for a quantitative assessment of all possibilities.

energy threshold there is also no preference for signal, however monotonicity combined with
the preference for signal at higher momenta means that the lower boundary of the preferred
region will approach a fixed value at low recoil momenta, which we denote h̃low. All of these
features are depicted in Fig. 2; it is worth emphasizing that these features would be expected
for a momentum-space plot for any DM hint.

We consider two experiments: the null experiment A which may be used to place con-
straints in momentum-space, and experiment B which observes anomalous scattering events
which may be interpreted as DM scattering. In the schematic of Fig. 2, the black curves
are from A and the red shaded regions are from B. In some simple cases it is possible to
determine the relative strengths of bounds from two different detectors directly from their
h̃(pR) plots as described in the caption.

In more general cases, determining the outcome of mapping the momentum-space exclu-
sions to vmin-space for a specific DM mass is less straightforward. To treat the general case we
exploit the fact that mapping from momentum-space to vmin-space only shifts curves relative
to each other in the horizontal direction. Each momentum-space exclusion curve or lower
boundary of a preferred region is given by a function h̃(pR); since this curve is monotonically
decreasing, we may define the inverse mapping pR(h̃) over the fixed range

h̃ ∈ [h̃(pR →∞),∞] . (3.6)
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In order to quantify the relationship between exclusion contours and preferred regions of
parameter space it is useful to consider ratios of pR as a function of h̃. Specifically, we define

R(h̃) =
pR,lim(h̃)

pR,low(h̃)
, (3.7)

where pR,lim is an exclusion curve, and pR,low(h̃) is the curve describing the lower boundary
of a preferred region.7 This construction is shown in green in Fig. 2. In the case of a positive
signal, it is the lower boundary of the preferred region which determines the consistency
between a DM interpretation of experiment B relative to an exclusion from experiment A.
We also define a related quantity

Rχ(h̃) =
vmin,lim(h̃)

vmin,low(h̃)
, (3.8)

which is the ratio of the two curves in vmin space.8 As the notation makes clear, Rχ depends
explicitly on mχ. If Rχ(h̃) < 1, the exclusion contour from A crosses below the lower
boundary of the preferred region from B, and we can say that the signal from B is inconsistent
with the null results from A for the particular mass mχ which defines the mapping into vmin-
space.

The relationship between R and Rχ is a simple scaling,

Rχ = FχR , (3.9)

with

Fχ =
µBχ
µAχ

=
MB

MA

MA +Mχ

MB +Mχ
. (3.10)

This scaling is inherited from the scaling of pR given in Eq. (3.5). Crucially, over all DM
masses Fχ satisfies the inequality{

MB
MA
≤ Fχ ≤ 1, if MA > MB

1 ≤ Fχ ≤ MB
MA

, if MB > MA .
(3.11)

This restricted range of Fχ is a key tool for extracting mass-independent statements concern-
ing different experiments. Consider the case of MA > MB. If R lies entirely above MA/MB,
then the two results are consistent for all DM masses, since as the DM mass is varied, Rχ can
never dip below 1 thanks to the inequality (3.11). If any of the R curve lies below 1, then A
and B are inconsistent for all DM masses since some point on Rχ will lie below 1 for all mχ.
Similar reasoning holds for the case MA < MB, but with the roles of the critical lines at 1
and MA/MB reversed; see Fig. 3.

Suppose the global minimum of R(h̃) is located at h̃ = h̃0. In the case where R(h̃0) lies
between 1 and MA/MB (for either mass ordering), define

δ = R(h̃0)− 1 . (3.12)

7In some cases, such as (c) and (d) of Fig. 2, R is not well-defined as there is no overlap in the regions of
h̃ explored by the exclusion contour and the lower boundary of the preferred region. In these cases it is clear
by eye that there are no DM masses for which A can exclude B independent of the DM halo.

8Since the mapping from h̃ to g̃ is the same for both A and B, we prefer to think of Rχ as a function of h̃
rather than g̃ for simplicity of notation.
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Figure 3. Some possibilities for the variable Eq. (3.7), for both possible mass orderings. When
moving from pR-space to vmin-space, the height of any line is rescaled by the DM mass-dependent
parameter Eq. (3.10) which satisfies the appropriate inequality in Eq. (3.11). Case (a) in Fig. 2
corresponds to the solid red curve, and case (b) corresponds to the dashed or dot-dashed red curves.
Cases (c) and (d) cannot be plotted because the lower boundary and the exclusion curve have no
overlap in h̃, and R(h̃) is undefined.

Note that δ < 0 for the case MB > MA. Depending on δ, there will be a range of DM masses
for which A excludes B. The lower or upper endpoint of that range (depending on the mass
ordering) will be the value of Mχ where Rχ(h̃0) = 1, given by

MAB(δ) =
MAMBδ

MA − (1 + δ)MB
. (3.13)

For the two cases the range of DM masses for which A excludes B is{
Mχ > MAB(δ), if MA > MB

Mχ < MAB(δ), if MB > MA .
(3.14)

A schematic of these various scenarios is shown in Fig. 3.
We emphasize that all of the results discussed above hold for all DM halos because the

constraints are constructed for the most conservative halo possible. Furthermore, carrying
out the mapping into vmin-space to obtain Rχ is actually unnecessary, since the R(h̃) plot
contains all the necessary information. Thus in practice, the entire analysis can be carried
out without a choice of mχ by working exclusively with R(h̃).9

We focus here on pairwise comparisons of one hint (defined by a best fit region at
confidence level CLhint) with one exclusion (defined by a bound at confidence level CLbound)
at a time. It would be straightforward to combine all hints in a joint likelihood function and
compare this region with each constraint individually. We do not attempt to quantify the
level of tension, if there is any, beyond the statement that the two results are inconsistent at
their respective confidence levels. Such techniques do exist [36], but we have not yet tried

9The mapping into vmin-space in this section was performed to make explicit the connection between
previous methods and this method.
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to extend them to h̃-space. We have assumed the bounds are derived using techniques that
do not require the form of the background be known, such as the techniques of Yellin [43].
However, if the background is well-modeled one can go further and combine both signals
and bounds into one global likelihood function and compare the relative likelihood of various
hypotheses to fit all the data [35].

3.3 Additional Constraints from Escape Velocity

Up to this point, our analysis has been completely halo-independent, in the sense that we have
imposed no constraints on the DM velocity distribution, no matter how physically reasonable.
Astrophysical halos, however, have escape velocities, and it is worth considering the effect
of imposing a cutoff on the velocity distribution at vesc on the behavior of momentum-space
exclusion limits. In vmin-space, a cutoff at vesc means that a preferred region for a positive
signal at vmin > vesc should no longer be interpreted as coming from DM scattering. Consider
again the relation between vmin and pR,

vmin =
pR

2µNχ
. (3.15)

Thanks to the reduced mass in the denominator, the rescaling to vmin-space is a monotoni-
cally decreasing function of mχ, which means that for sufficiently small mχ, a given point on
the pR-axis will always be mapped to vesc:

mχ,min =
mNpR

2mNvesc − pR
=⇒ pR 7→ vesc . (3.16)

For this pR value, only mχ larger than mχ,min can be consistent with a DM interpretation.
As a consequence, halo-independent exclusion limits which hold only for limited DM

mass ranges may in fact hold over all DM masses consistent with physically reasonable halos.
Suppose that MA > MB, and let pB,max be the largest pR-coordinate of the lower boundary
of envelope B. Setting mN = MB in Eq. (3.16) and comparing with Eq. (3.14), one can
conclude that A excludes B for all DM halos with escape velocity less than or equal to

vesc =
(MA −MB)pB,max(1 + δ)

2MAMBδ
. (3.17)

Put another way, the minimum DM mass required to bring A and B into agreement is already
small enough that every halo in the preferred region implies vmin values greater than this vesc.
Note that such an analysis is not possible when MB > MA, because in that case Fχ ≥ 1 and
the relevant inequalities are reversed. However, if mχ,min > MAB(δ), then the constraints
on DM masses from the escape velocity are stronger than the requirements for consistency
between results from R(h̃).

4 A Sample Analysis: Comparing CDMS II Si with SuperCDMS, LUX,
and XENON10

To demonstrate the methods of section 3.2 for comparing positive signals with exclusions,
we consider the case of the SuperCDMS, LUX, and XENON10 limits and the preferred halo
for the Si detectors of the CDMS II experiment.

The SuperCDMS collaboration has publicly released data from their analysis of 577 kg d
of exposure on their seven Ge detectors with the lowest energy thresholds [7, 44]. The blind
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analysis observed 11 events with 6.1+1.1
−0.8 events expected from background. Although the

observed events are consistent with the background estimate, the SuperCDMS collaboration
did not perform a background subtraction before calculating the limit, conservatively as-
suming that all observed events are potential DM scattering. Using the efficiency, ionization
yield, and energies of the 11 events from the data release, we set 90% C.L. limits using the
“Pmax” method [43].

The CDMS II Si analysis observed three events in 140.2 kg d of exposure. We follow the
analysis approach used in [41], taking a gaussian detector resolution of 0.2 keV, the acceptance
from [45], and backgrounds from [46]. We furthermore assume that the distribution of ∆L is
χ2 corresponding to five degrees of freedom: one for each step position and height in the halo,
minus one for the monotonicity constraint. The χ2 assumption is a reasonable approximation
to the sampling distribution of ∆L [41], a more precise determination could be made by a
Monte Carlo simulation, varying the number of events in each pseudoexperiment. A value of
∆L = 9.2 then corresponds to 90% C.L. We perform Markov Chain Monte Carlo (MCMC)
sampling10 of the 6-dimensional parameter space, and use halos with ∆L < 9.2 to calculate
the envelope preferred by the CDMS II Si result.

For comparison, we also compute limits for LUX and XENON10 at a fixed dark matter
mass as described in section 2. Similar to [41], we use events and ionization yield Qy from
the XENON10 S2-only analysis [47]. We conservatively assume that the ionization yield
drops to zero below 1.4 keVnr because the signal acceptance cannot be reliably estimated
below this energy. The energy resolution is taken to be ∆ER = ER/

√
ERQy(ER), while the

acceptance is 95% on an exposure of 15 kg d. Yellin’s “Pmax” method [43] is used to set
limits at 90% C.L., using the conservative assumption that all observed events are potential
DM scatterings. Following [41], we deduce Poisson upper limits from the results of the LUX
experiment [6]. The background distributions for the LUX experiment have not been made
public, so we cannot compute limits based on the profile likelihood ratio test statistic as
done by the LUX collaboration. Because no events were observed in LUX in the low-energy
nuclear recoil band, we instead use the 90% upper limit for an observation of 0 events for a
Poisson process with no background, taking the efficiency from [6]. This simplification gives
reasonable agreement with the limits reported by LUX in the low-mass region.11

In the left panel of Fig. 4 we compare limits from XENON10, LUX, and SuperCDMS,
for 10 GeV DM in the usual vmin-space plot. As pointed out in [41], the limits in vmin-space
exhibit a simple scaling with the DM mass,

v′min(ER) =
µNχ
µNχ′

vmin(ER) . (4.1)

This can be visualized in a single plot, such as the right panel of Fig. 4, which shows the range
of limits for SuperCDMS, when referred to 10 GeV DM using the scaling factor appropriate for
Ge. Such a plot will contain, for every possible mass, the correct positioning of the CDMS-Si
preferred region relative to SuperCDMS. For sufficiently large DM masses, the exclusion limit
from SuperCDMS drops below the lower boundary of the CDMS II Si contour, indicating
strong tension between the inferred dark matter halos of the two experiments. The mass at
which the SuperCDMS exclusion drops below the lower limit of the CDMS II Si preferred
region can be assessed using the methods of Sec. 3.2.

10A computer code developed to determine these envelopes in general is available from the authors upon
request.

11See [30, 33] for more details on reconstructing the published LUX results.
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Figure 4. Exclusion limits from XENON10 (dot-dashed green), LUX (solid purple), SuperCDMS
(dotted orange) overlaid on the preferred region (90% C.L.) for CDMS II Si (shaded blue) and best fit
halo (dashed blue) in vmin-space. Left: vmin-space plot for 10 GeV DM. Right: range of SuperCDMS
limits scaled with respect to 10 GeV DM using the factor appropriate for Si (shaded orange) (analogous
to Fig. 7, right), overlaid with the preferred region for CDMS II Si (shaded blue).

The same information is more directly accessed in the corresponding momentum-space
plots, shown in Fig. 5, which have the advantage of not requiring a choice of reference DM
mass. Because the lower boundary of the CDMS II Si region and the SuperCDMS exclusion
have some overlap along the h̃-axis, their comparison corresponds to case (b) in Fig. 2.
Using equation (3.14) and the minimum ratio between the SuperCDMS exclusion and the
lower boundary of the CDMS II Si region, δ = 0.22, we conclude that SuperCDMS excludes
the CDMS II Si preferred region for all DM halos whenever mχ & 11 GeV. This corresponds
to the dot-dashed red line in Fig. 3, left.

Since MGe > MSi, we can applying the escape velocity constraints from Sec. 3.3. Using
pB,max ' 2.1×10−2 GeV/c, we find that SuperCDMS excludes CDMS II Si for all DM masses
and all halos with escape velocity less than vesc ' 410 km/s. Indeed, this can be seen in the
left panel of Fig. 4: for mχ = 10 GeV, the lower boundary of the oreferred envelope contains
points with vmin > 410 km/s. Consequently, while the SuperCDMS exclusion does not
cross the lower boundary of the envelope, a DM interpretation is still excluded for halos with
sufficiently small escape velocities, since going to smaller DM masses would push the envelope
further to the right. This implies that a consistent interpretation even for mχ . 11 GeV
will require scattering from DM particles in the tail of the DM velocity distribution above
410 km/s. Of course, the Galactic halo almost certainly has a larger escape velocity than
410 km/s, but we regard this example as an interesting proof-of-principle for a method which
helps point towards particular DM mass ranges and halo properties.
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Figure 5. Momentum-space plot comparisons between CDMS II Si and SuperCDMS. Left: exclusion
limits from SuperCDMS (dotted orange) in pR-space overlaid with preferred region of CDMS II Si
(shaded blue) and best fit halo (dashed blue). Right: R-ratio of SuperCDMS exclusion with lower
boundary of CDMS II Si preferred region. Deviations from monotonicity are smoothed so that the
limits h̃(pR) can be inverted to form R(h̃), as in equation (3.7). The minimum value of δ = 0.22,
implies that SuperCDMS excludes CDMS II Si across the full range of vmin only for mχ & 11 GeV.
For halos with escape velocity less than vesc ' 410 km/s, SuperCDMS excludes CDMS II Si for all
DM masses. The critical horizontal line at MGe/MSi is above the top of the plot.

5 Analysis Recipe

In order to develop a halo-independent momentum-space analysis framework, we have had
to introduce a good deal of notation, as well as several types of plots which were useful for
pedagogical purposes. However, in practice the momentum-space method is straightforward,
and here we summarize the approach. The minimal analysis recipe is as follows:

1. For each experiment, compute limits (for null results) or best-fit regions (for signals)
in pR − h̃ space as in Fig. 5, left panel. This is accomplished by constraining the
differential event rate in Eq. (3.3) using whichever statistical technique is desired. For
each individual experiment, this represents the universal halo-independent momentum-
space result which can be derived from the data and this plot is the same for all DM
masses, i.e. it is mass-independent.12

2. To compare the consistency of two experiments, construct the R(h̃) plot from the ratio
of the h̃(pR) curves for each experiment as in Fig. 5, right panel, using Eq. (3.7). The
value of δ (defined in Eq. (3.12)) extracted from such a plot determines the endpoint of
the range of masses for which the two experiments are inconsistent, using Eq. (3.13).

3. As an optional extension, if the target mass for the null experiment is greater than the
target mass for the experiment which observes a signal, determine the value of vesc for

12By definition this contains all of the information required to make the standard vmin-space plot for any
specific choice of DM mass if desired.
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which the two experiments are inconsistent for all halos and all masses, using Eq. (3.17).
The value of pB,max required can be read off the momentum-space plot constructed in
step 1.

Note that in the recipe we have described it is never necessary to pick a fiducial mχ and actu-
ally construct the mapping into vmin-space. In particular, the plots in Fig. 4 are not necessary
for the analysis, and were provided here only for pedagogical reasons. The momentum-space
plot, which is unique and independent of the DM mass, contains all of the information
necessary to construct the halo-independent vmin-space plot for any DM mass. Thus, in
the presentation of new experimental data, a single momentum-space plot contains all of
the information required for external groups to perform halo-independent analyses. In this
way one automatically avoids introducing the errors in interpretation which may arise from
those external to an experimental collaboration attempting to recreate quantitative details
of experimental analyses.

6 Conclusions

In this paper we have shown how a simple change of variables, from vmin-space to recoil
momentum space, allows a presentation of halo-independent DM direct detection results
without a fiducial choice of the DM mass. While previous applications of halo-independent
methods required a choice for mχ, resulting in a proliferation of plots, the positive or null
results of an experiment for all DM masses can be shown on a single pR − h̃ plot. To
compare results between experiments, an accompanying R(h̃) plot which shows the ratios of
the various experimental constraints may also be useful. Such a plot is easily derived from
the pR − h̃ plot, although we emphasize that it this additional plot is not necessary for the
analysis of a single experiment. Depending on the mass orderings of the detector materials,
one can in some cases determine directly from single pR − h̃ plot, or in all cases from the
R(h̃) plot, whether a DM interpretation for any possible halo is ruled out either (a) for all
DM masses, or (b) for a limited range of DM masses, where the upper or lower endpoint of
this range can be computed from an equation like Eq. (3.14) and read directly off the R(h̃)
plot.

In our discussion, only certain simplified scenarios have been sketched, and more com-
plex exclusion curves and preferred regions are possible in the momentum-space plot. How-
ever, the generalization of our results is completely straightforward, and our sample analysis
in Sec. 4 (and App. A) shows that our method can be easily applied to real data. As the
momentum-space plot is unique, in that it does not need to be recreated for multiple DM
mass values, we believe that it is ideally suited for any halo-independent analysis by an ex-
perimental collaboration. This would allow the presentation of experimental results in a way
which is as complementary as possible to the m− σ plots already in common use.
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A Comparisons Between Null Results

While the ultimate purpose of the mass-independent method is as a diagnostic tool in com-
paring emerging hints of DM detection with null direct detection results, in this appendix
we consider the comparison between momentum-space exclusion curves for two different ex-
periments.

A.1 Ratio Plots for Null Results

We consider two direct detection experiments A and B, with target nuclei of mass MA and
MB respectively. Since we are comparing two null results we can assume, without loss of
generality, that MA > MB.13

As discussed in Sec. 3.2, in some simple cases it is possible to determine the relative
strengths of bounds from two different detectors directly from their h̃(pR) plots. For instance,
in Fig. 1 experiment A finds the strongest constraints in pR-space, and as any mapping to
vmin-space will shift the curve for B further to the right relative to A, we may conclude that
experiment A finds the strongest exclusion for all DM masses. However, in general the two
exclusion curves may in principle cross any number of times while remaining consistent with
the monotonically decreasing behavior.

To treat the general case we again exploit the fact that mapping from momentum-
space to vmin-space only shifts curves relative to each other in the horizontal direction.
Each momentum-space exclusion curve is given by the function h̃(pR); since this curve is

13Note that this was not the case in comparing a null result to a putative positive result.
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Figure 7. Exclusion limits from XENON10 (dot-dashed green), LUX (solid purple), and SuperCDMS
(dotted orange) in vmin-space. Left: vmin-space exclusions for 10 GeV DM. Kinks and slight devi-
ations from monotonicity are present in the SuperCDMS limit, occuring when the “Pmax” method
switches the interval used to calculate the exclusion. Similar discrete artifacts are not present in LUX
because an observation of zero events is used to calculate the limit, nor in XENON10 because the
experiment observed a large number of events. Right: limits with vmin calculated for a range of DM
masses and scaled to mχ = 10 GeV using the factor appropriate for Ge µGe,χ/µGe,χ′ , where µGe,χ
is the reduced mass for 10 GeV DM and Ge target. This has the effect of mapping SuperCDMS
limits to a single line (dotted orange), independent of mass, while limits from Xe experiments are
mapped to different locations depending on the DM mass. Dark bands correspond to the range of
limits with masses 5-100 GeV, while the light bands show the range of limits for all possible masses,
which facilitates comparison of the relative strengths of the limits for different DM masses.

monotonically decreasing, we may again define the inverse mapping pR(h̃) as in Eq. (3.6).
We now define the ratio of the momentum-space exclusions for the two experiments

RAB(h̃) =
pR,A(h̃)

pR,B(h̃)
, (A.1)

which is the analogue of R(h̃) defined in Eq. (3.7). The subscript AB is meant to indicate
the mass ordering, MA > MB.

It is useful to consider first the general form of the RAB curves. In general, two ex-
perimental exclusion lines in momentum-space may cross any number of times, and thus
RAB may cross unity and change gradient any number of times. In particular, RAB(h̃) need
not be monotonic. Its asymptotic behavior is somewhat simpler, though. As h̃ → ∞, the
asymptotic value of RAB(h̃) is the ratio of the low-energy thresholds of experiments A and
B. The behavior in the other extreme h̃→ 0 is determined by the constraint which extends
to lower h̃ at high pR; if A’s constraint extends to lower h̃, then RAB(h̃→ 0)→ 0, otherwise
RAB(h̃ → 0) → ∞. These two cases inform the definition of δAB, the analogue of δ defined
in Eq. (3.12):

δAB =

{
Rmin
AB (h̃)− 1, if RAB(h̃→ 0)→∞

Rmax
AB (h̃)− 1, if RAB(h̃→ 0)→ 0 .

(A.2)
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Here, δAB is always positive since we have assumed MA > MB. For curves that have
RAB(h̃ → 0) → 0, δAB is the furthest distance the curve gets above 1, and for RAB(h̃ →
0)→∞, δAB is the distance of closest approach to 1.

With these general discussions in hand we now discuss the various classes of behaviour
for the RAB curves, illustrated in Fig. 6. As in Sec. 3.2, the rescaling of RAB into vmin-space
is RAB,χ = RABFχ, with Fχ = µBχ/µAχ satisfying MB/MA ≤ Fχ ≤ 1. We first discuss the
cases in Fig. 6, left:

(a) Since RAB < 1 everywhere then for all DM masses A would give the strongest constraint
over all of vmin-space, as B would shift further to the right than A in all cases. This is
the case shown in Fig. 1. A gives the strongest constraint over all of vmin-space, and
thus for all possible DM halos for all DM masses.

(b) This is the complementary case to (a) as RAB > MA/MB everywhere. The rescaling
in going to vmin-space is insufficient to alter the relative strength of the constraints,
for all DM masses. In going to vmin-space, the smallest factor by which the curve (b)
is rescaled is MB/MA, corresponding to Mχ →∞. This cannot push any point on (b)
below unity, so in this case B gives the strongest constraint over all of vmin-space and
hence for all possible DM halos and all DM masses.

(c) This case corresponds to a situation where, for all DM masses, the two experiments
provide complementary constraints. There is no DM for which either experiment will
give the strongest constraints over all of vmin-space: at low h̃, A is a stronger bound,
and at high h̃, B is a stronger bound.

(d) The same as (c) but with the roles of A and B reversed: at low h̃, B is a stronger
bound, and at high h̃, A is a stronger bound.

Cases (b′) and (c′) in Fig. 6, right, are those for which A or B can give the strongest
constraint for a range of DM masses. As in Sec. 3.2, the endpoints of these ranges are
determined by MAB(δAB), defined in Eq. (3.13).

(b′) If the DM mass mass satisfies

Mχ < MAB(δAB) , (A.3)

B will give the strongest constraint over all of vmin-space and hence for all DM halos.

(c′) If the DM mass satisfies
Mχ > MAB(δAB) , (A.4)

then A will give the strongest constraint over all of vmin-space and hence for all DM
halos.

A.2 A Sample Analysis: Comparing LUX, XENON10, and SuperCDMS

The dark matter mass scaling relations introduced in section A.1 for comparing null results
can be used to concisely illustrate the mass ranges for which Xe-based and Ge-based exper-
iments give stronger results. In the left panel of Fig. 7 we compare limits from XENON10,
LUX, and SuperCDMS, for a 10 GeV DM. As was demonstrated in Sec. 4, this can be visu-
alized in a single plot, such as the right panel of Fig. 7, which shows the range of limits for
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Figure 8. Comparison of mass-independent exclusion limits. Left: momentum space exclusion limits
from XENON10 (dot-dashed green), LUX (solid purple), and SuperCDMS (dotted orange). Right:
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inverted to form RXe−Ge(h̃), as in equation (A.1). The minimum value of δ = 0.25 implies that
SuperCDMS is stronger than XENON10 across the full range of vmin only for mχ . 59 GeV. The
SuperCDMS and LUX limits, on the other hand, probe complementary ranges of vmin for all DM
masses.

each experiment, when referred to 10 GeV DM using the scaling factor appropriate for Ge.
Such a plot will contain, for each possible mass, the correct positioning of LUX or XENON10
limits relative to SuperCDMS. Although one cannot directly infer the value of vmin at which
curves cross at each DM mass, it is manifestly clear from the plot that SuperCDMS is al-
ways stronger than XENON10 at small DM masses, and that SuperCDMS and LUX are
complementary across all DM masses due to the higher vmin threshold of LUX.

Fig. 8 shows the momentum-space exclusion plots for SuperCDMS, XENON10, and
LUX. The left panel shows the exclusions as a function of recoil momentum, while the right
panel shows the ratio of LUX and XENON10 limits to the SuperCDMS limit, as a function of
h̃. Comparing Fig. 8 to the cases enumerated in Fig. 6 indicates that the pair of limits from
SuperCDMS and LUX corresponds to case (c), while the pair of SuperCDMS and XENON10
corresponds to case (b′). In case (c), both limits are complementary in vmin space for all
possible DM masses, and this is clearly apparent for SuperCDMS and LUX in Fig. 7. In case
(b′), SuperCDMS is stronger than XENON10 for DM masses below the bound in equation
(A.3). Using the value of δ = 0.25 read off from the RXe−Ge plot constructed from the
SuperCDMS and XENON10 limits, we find that SuperCDMS is stronger for all vmin when
mχ . 59 GeV. This behavior is also qualitatively visible in the right panel of Fig. 7.
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