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Abstract— Commercial clouds bring a great opportunity to the scientific computing area. Scientific applications usually require 

significant resources, however not all scientists have access to sufficient high-end computing systems, may of which can be 

found in the Top500 list. Cloud Computing has gained the attention of scientists as a competitive resource to run HPC 

applications at a potentially lower cost. But as a different infrastructure, it is unclear whether clouds are capable of running 

scientific applications with a reasonable performance per money spent. This work studies the performance of public clouds and 

places this performance in context to price. We evaluate the raw performance of different services of AWS cloud in terms of the 

basic resources, such as compute, memory, network and I/O. We also evaluate the performance of the scientific applications 

running in the cloud. This paper aims to assess the ability of the cloud to perform well, as well as to evaluate the cost of the 

cloud running scientific applications. We developed a full set of metrics and conducted a comprehensive performance 

evlauation over the Amazon cloud. We evaluated EC2, S3, EBS and DynamoDB among the many Amazon AWS services. We 

evaluated the memory sub-system performance with CacheBench, the network performance with iperf, processor and network 

performance with the HPL benchmark application, and shared storage with NFS and PVFS in addition to S3. We also evaluated 

a real scientific computing application through the Swift parallel scripting system at scale. Armed with both detailed benchmarks 

to gauge expected performance and a detailed monetary cost analysis, we expect this paper will be a recipe cookbook for 

scientists to help them decide where to deploy and run their scientific applications between public clouds, private clouds, or 

hybrid clouds. 

Index Terms— Cloud computing, Amazon AWS, performance, cloud costs, scientific computing   

——————————      —————————— 

1 INTRODUCTION

HE idea of using clouds for scientific applications has 
been around for several years, but it has not gained 

traction primarily due to many issues such as lower net-
work bandwidth or poor and unstable performance. Sci-
entific applications often rely on access to large legacy 
data sets and pre-tuned application software libraries. 
These applications today run in HPC environments with 
low latency interconnect and rely on parallel file systems. 
They often require high performance systems that have 
high I/O and network bandwidth. Using commercial 
clouds gives scientists opportunity to use the larger re-
sources on-demand. However, there is an uncertainty 
about the capability and performance of clouds to run 
scientific applications because of their different nature. 
Clouds have a heterogeneous infrastructure compared 

with homogenous high-end computing systems (e.g. su-
percomputers). The design goal of the clouds was to pro-
vide shared resources to multi-tenants and optimize the 
cost and efficiency. On the other hand, supercomputers 
are designed to optimize the performance and minimize 
latency. 

However, clouds have some benefits over supercom-

puters. They offer more flexibility in their environment. 

Scientific applications often have dependencies on unique 

libraries and platforms. It is difficult to run these applica-

tions on supercomputers that have shared resources with 

pre-determined software stack and platform, while cloud 

environments also have the ability to set up a customized 

virtual machine image with specific platform and user 

libraries. This makes it very easy for legacy applications 

that require certain specifications to be able to run. Setting 

up cloud environments is significantly easier compared to 

supercomputers, as users often only need to set up a vir-

tual machine once and deploy it on multiple instances. 

Furthermore, with virtual machines, users have no issues 

with custom kernels and root permissions (within the 

virtual machine), both significant issues in non-

virtualized high-end computing systems.  
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There are some other issues with clouds that make 
them challenging to be used for scientific computing. The 
network bandwidth in commercial clouds is significantly 
lower (and less predictable) than what is available in su-
percomputers. Network bandwidth and latency are two 
of the major issues that cloud environments have for 
high-performance computing. Most of the cloud re-
sources use commodity network with significantly lower 
bandwidth than supercomputers  [13]. 

The virtualization overhead is also another issue that 
leads to variable compute and memory performance. I/O 
is yet another factor that has been one of the main issues 
on application performance. Over the last decade the 
compute performance of cutting edge systems has im-
proved in much faster speed than their storage and I/O 
performance. I/O on parallel computers has always been 
slow compared with computation and communication. 
This remains to be an issue for the cloud environment as 
well. 

Finally, the performance of parallel systems including 
networked storage systems such as Amazon S3 needs to 
be evaluated in order to verify if they are capable of run-
ning scientific applications  [3]. All of the above men-
tioned issues raise uncertainty for the ability of clouds to 
effectively support HPC applications. Thus it is important 
to study the capability and performance of clouds in sup-
port of scientific applications. Although there have been 
early endeavors in this aspect  [10] [14] [16] [20] [23], we de-
velop a more comprehensive set of evaluation and met-
rics. In some of these works, the experiments were mostly 
run on limited types and number of instances  [14] [16] [17]. 
Only a few of the researches have used the new Amazon 
EC2 cluster instances that we have tested  [10] [20] 0. How-
ever the performance metrics in those papers are very 
limited. This paper covers a thorough evaluation covering 
major performance metrics and compares a much larger 
set of EC2 instance types and the commonly used Ama-
zon Cloud Services. Most of the aforementioned above 
mentioned works lack the cost evaluation and analysis of 
the cloud. Our work analyses the cost of the cloud on dif-
ferent instance types.  

The main goal of this research is to evaluate the per-
formance of the Amazon public cloud as the most popular 
commercial cloud available, as well as to offer some con-
text for comparison against a private cloud solution. We 
run micro benchmarks and real applications on Amazon 
EC2 and S3 to evaluate its performance on critical metrics 
including throughput, bandwidth and latency of proces-
sor, network, memory and storage  [2]. Then, we evaluate 
the performance of HPC applications on EC2 and com-
pare it with a private cloud solution (FermiCloud  0). We 
also identify the weaknesses and advantages of the cloud 
environment in the scientific computing area. 

Finally, this work performs a detailed price/cost analy-
sis of cloud instances to better understand the upper and 
lower bounds of cloud costs. Armed with both detailed 
benchmarks to gauge expected performance and a de-
tailed monetary cost analysis, we expect this paper will 
be a recipe cookbook for scientists to help them decide 

where to deploy and run their scientific applications be-
tween public clouds, private clouds, or hybrid clouds.  

This paper is organized as follows: Section 2 provides 
the evaluation of the EC2, S3 and DynamoDB perfor-
mance on different service alternatives of Amazon AWS. 
We provide an evaluation methodology. Then we present 
the benchmarking tools and the environment settings of 
the testbed in this project. Section 2.4 presents the bench-
marking results and analyzes the performance. On 2.5 we 
compare the performance of EC2 with FermiCloud on 
HPL application. Section 3 analyzes the cost of the EC2 
cloud based on its performance on different aspects. In 
section 4, we review the related work in this area. Section 
5 draws conclusion and discusses future work. 

2 PERFORMANCE EVALUATION 

In this section we provide a comprehensive evaluation of 
the Amazon AWS technologies. We evaluate the perfor-
mance of Amazon EC2 and storage services such as S3 
and EBS. We also compare the Amazon AWS public 
cloud to the FermiCloud private cloud.   

2.1 Methodology 

We design a performance evaluation method to measure 
the capability of different instance types of Amazon EC2 
cloud and to evaluate the cost of cloud computing for 
scientific computing. As mentioned, the goal is to evalu-
ate the performance of the EC2 on scientific applications. 
To achieve this goal, we first measure the raw perfor-
mance of EC2. We run micro benchmarks to measure the 
raw performance of different instance types, compared 
with the theoretical performance peak claimed by the 
resource provider. We also compare the actual perfor-
mance with a typical non-virtualized system to better 
understand the effect of virtualization. Having the raw 
performance we will be able to predict the performance of 
different applications based on their requirements on dif-
ferent metrics. Then we compare the performance of a 
virtual cluster of multiple instances running HPL applica-
tion on both Amazon EC2 and the FermiCloud. Compar-
ing the performance of EC2, which we don’t have much 
information about its underlying resources with the Fer-
miCloud, which we know the details about, we will be 
able to come up with a better conclusion about the weak-
nesses of the EC2. On the following sections we try to 
evaluate the performance of the other popoular services 
of Amazon AWS by comparing them to the similar open 
source services. 

Finally, we analyze the cost of the cloud computing 
based on different performance metrics from the previous 
part. Using the actual performance results provides more 
accurate analysis of the cost of cloud computing while 
being used in different scenarios and for different pur-
poses.  

The performance metrics for the experiments are based 
on the critical requirements of scientific applications. Dif-
ferent scientific applications have different priorities. We 
need to know about the compute performance of the in-
stances in case of running compute intensive applications. 
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We also need to measure the memory performance, as 
memory is usually being heavily used by scientific appli-
cations. We also measure the network performance which 
is an important factor on the performance of scientific 
applications.  

2.2 Benchmarking tools and applications 

It is important for us to use wide-spread benchmarking 
tools that are used by the scientific community. Specifical-
ly in Cloud Computing area, the benchmarks should have 
the ability to run over multiple machines and provide 
accurate aggregate results.  

For memory we use CacheBench. We perform read 
and write benchmarks on single instances. For network 
bandwidth, we use Iperf  [4]. For network latency and hop 
distance between the instances, we use ping and trac-
eroute. For CPU benchmarking we have chosen HPL 
benchmark  [5]. It provides the results in floating-point 
operations per second (FLOPS). 

In order to benchmark S3, we had to develop our own 
benchmark suite, since none of the widespread bench-
marking tools can be used to test storage like this. We 
have also developed a tool for configuring a fully work-
ing virtual cluster with support for some specific file sys-
tems.  

2.3 Parameter space and testbed 

In order the better show the capability of Amazon EC2 on 
running scientific applications we have used two differ-
ent cloud infrastructures: (1) Amazon AWS Cloud, and 
(2) FermiCloud. Amazon AWS is a public cloud with 
many datacenters all around the world. FermiCloud is a 
private Cloud which is used for internal use in Fermi Na-
tional Laboratory. 

In order to compare the virtualization effect on the per-
formance we have also included two local systems on our 
tests: (1) A 6-core CPU and 16 Gigabytes of memory sys-
tem (DataSys), and (2) a 48-cores and 256 Gigabytes 
memory system (Fusion). 

2.3.1 Amazon EC2 

The experiments were executed on three Amazon cloud 
data centers: US East (Northern Virginia), US West (Ore-
gon) and US West (Northern California). We cover all of 
the different instance types in our evaluations. 

The operating system on all of the US West instances 
and the local systems is a 64bits distribution of Ubuntu. 
The US East instances use 64 bits CentOS operating sys-
tem. The US West instances use Para-virtualization tech-
nique on their hypervisor. But the HPC instances on the 
US East cloud center use Hardware-Assisted Virtualiza-
tion (HVM)  [7]. HVM techniques use the features of the 
new hardware to avoid handling all of the virtualization 
tasks like context switching or providing direct access to 
different devices at the software level. Using HVM, Vir-
tual Machines can have direct access to hardware with the 
minimal overhead. 

There is no information about the underlying architec-
ture and technologies of Amazon AWS publicly available. 

2.3.2 FermiCloud 

FermiCloud is a private cloud providing Infrastructure-
as-a-Service services internal use. It manages dynamically 
allocated services for both interactive and batch pro-
cessing. As part of a national laboratory, one of the main 
goals FermiCloud is being able to run scientific applica-
tions and models. FermiCloud uses OpenNebula Cloud 
Manager for the purpose of managing and launching the 
Virtual Machines  0. It uses KVM hypervisor that uses 
both paravirtualization and full virtualization tech-
niques  0.  The FermiCloud Infrastructure is enabled with 
4X DDR Infiniband network adapters. The main chal-
lenge to overcome in the deployment of the network is 
introduced when virtualizing the hardware of a machine 
to be used (and shared) by the VMs. This overhead slows 
drastically the data rate reducing the efficiency of using a 
faster technology like Infiniband. To overcome the virtu-
alization overhead they use a technique called Single Root 
Input/Output Virtualization (SRIOV) that achieves de-
vice virtualization without using device emulation by 
enabling a device to be shared by multiple virtual ma-
chines. The technique involves with modifications to the 
Linux’s Hypervisor as well as the OpenNebula manag-
er  0 0. 

Each server is anabled with a 4x (4 links) Infiniband 
card with a DDR data rate for a total theoretical speed of 
up to 20 Gb/s and after the 8b/10b codification 16 Gb/s. 
Network latency is 1 μs when used with MPI  [6]. Each 
card has 8 virtual lanes that can create 1 physical function 
and 7 virtual functions via SR-IOV. The servers are ena-
bled with 2 quad core 2.66 GHz Intel processors, 48Gb of 
RAM and 600Gb of SAS Disk, 12TB of SATA, and 8 port 
RAID Controller  0. 

2.4 Performance Evaluation of AWS 

2.4.1 Memory hierarchy performance 

This section presents the memory benchmark results. We 
sufficed to run read and write benchmarks. The experi-
ments for each instance were repeated three times.  

Memory bandwidth is a critical factor in scientific ap-
plications performance. Many Scientific applications like 
GAMESS, IMPACT-T and MILC are very sensitive to 
memory bandwidth  [8]. Amazon has not included the 
memory bandwidth of the instances. It has only listed 
their memory size. We also measure the memory band-
width of each instance. 

Fig. 1 shows the system memory read bandwidth in 
different memory hierarchy levels. The vertical axis 
shows the cache size. The bandwidth is very stable up to 
a certain cache size. The bandwidth starts to drop after a 
certain size. The reason for the drop off is surpassing the 
memory cache size at a certain hierarchy level.  

As shown in the figure, the memory performance of 
the m1.small instance is significantly lower than other 
instances. The low memory bandwidth cannot be only 
attributed to the virtualization overhead. We believe that 
the main reason for that is memory throttling imposed by 
EC2 based on the SLA of those instances. 
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Fig. 1. CacheBench Read benchmark results, one benchmark pro-

cess per instance 

 
Another noticeable point is the low bandwidth of the 

cc1.4xlarge, cc2.8xlarge and hi1.4xlarge. These instances 
have similar performance that is much lower than normal 
instances. A reason for that can be the result of the differ-
ent virtual memory allocation on the VMs by HVM virtu-
alization on these instances.  We have however observed 
an effect in large hardware-assisted virtual machines such 
as those on FermiCloud that it will take a while for the 
system to balloon the memory out to its full size at the 
first launch of the VM. 

After all, the results show that the memory bandwidth 
for read operation in the larger instances is close to the 
local non-virtualized system. We can conclude that the vir-
tualization effect on the memory is low, which is a good sign for 
scientific applications that are mostly sensitive to the memory 
performance. 

Fig. 2 shows the write performance of different cloud 
instances and the local system. The write performance 
shows different results from the read benchmark. As in 
write, the cc2.8xlarge instance has the best performance 
next to the non-virtualized local system.  

For each instance we can notice two or three major 
drop-offs in bandwidth. These drop-offs show different 
memory hierarchies. For example on the cc2.8xlarge in-
stance we can notice that the memory bandwidth drops at 
24 Kbytes. We can also observe that the write through-
puts for different memory hierarchies are different. These 
data points likely represent the different caches on the 
processor (e.g. L1, L2, L3 caches).  

Comparing the cluster instance with the local system, 
we observe that on smaller buffer sizes, the local system 
performs better. But cloud instance outperforms the local 
system on larger cache sizes. The reason for that could be 
the cloud instances residing on more powerful physical 
nodes with higher bandwidths. We can observe that the 
write bandwidth on the cloud instances drops off at cer-
tain buffer sizes. That shows the memory hierarchy ef-
fects on the write operation.   

Users can choose the best transfer size for write opera-
tion based on the performance peaks of each instance 
type to get the best performance. This would optimize a 
scientific application write bandwidth. 
   

 

 
Fig. 2. CacheBench write benchmark results, one benchmark pro-

cess per instance 

2.4.2 Network performance 

We have run many experiments on network performance 
of Amazon cloud. The experiments test the network per-
formance including bandwidth and latency. We also test 
wide area network bandwidth of the instances. 

We first test the local network bandwidth between the 
same types of instances. Fig. 3 shows the network per-
formance of different types of nodes. In each case both of 
the instances were inside the same datacenter. The net-
work bandwidth for most of the instances were as ex-
pected except for two instances.   

 
Fig. 3. iPerf benchmark results. Network bandwidth in a single 

client and server connection, internal network. 

The lowest performance belongs to the t1.micro and 
m1.small instances. These two instances use the same 1 
Gb/s network cards used by other instances. But they 
have much lower bandwidth. We believe that the reason 
is sharing the CPU cores and not having a dedicated core. 
This can affect network performance significantly as the 
CPU is shared and many network requests cannot be 
handled while the instance is on its idle time. During the 
idle time of the instance, the virtual system calls to the 
VMM will not be processed and will be saved in the 
queue until the idle time is over. The network perfor-
mance is highly affected by processor sharing techniques. 
Other works had the same observations and conclusions 
about the network performance in these two instance 
types  [9]. Another reason for the low performance of the 
m1.small and t1.micro instances could be throttling the 
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network bandwidth by EC2. The Xen hypervisor has the 
ability of network throttling if needed. 

Among the instances that use the slower network 
cards the m1.medium instance has the best performance. 
We did not find a technical reason for that. The 
m1.medium instances use the same network card as other 
instances do and don’t have any advantage on system 
configuration over other instance types. We assume the 
reason for that is the administrative decision on hypervi-
sor level due to their popularity among different instance 
types. 

Another odd result is for m1.medium instance. The 
bandwidth in medium instance exceeds 1 Gb/Sec, which 
is the specified network bandwidth of these. m1.medium 
instance bandwidth achieves up to 1.09 Gb/sec. That is 
theoretically not possible for a connection between two 
physical nodes with 1 Gb/s network cards. We believe the 
reason is that both of the VMs reside in the same physical 
node or the same cluster. In case of residing on the same 
node, the packets stay in the memory. Therefore the con-
nection bandwidth is not limited to the network band-
width. We can also assume that not necessarily the in-
stances have 1 Gb/s network cards. In fact the nodes that 
run medium instances may have more powerful network 
cards in order to provide better network performance for 
these popular instances. 

The HPC instances have the best network bandwidth among 
the instances. They use 10 Gb/sec network switches. The results 
show that the network virtualization overhead in these instanc-
es is very low. The performance gets as high as 95% of ideal 
performance.  

We also measure the network connection latency and 
the hop distance between instances inside the Oregon 
datacenter of Amazon EC2. We run this experiment to 
find out about the correlation of connection latency and 
the hop distance. We also want to find the connection 
latency range inside a datacenter. We measure the latency 
and the hop distance on 1225 combinations of m1.small 
instances. Fig. 4 shows the network latency distribution of 
EC2 m1.small instances. It also plots the hop distance of 
two instances. The network latency in this experiment 
varies between 0.006 ms and 394 ms, an arguably very 
large variation.  

We can observe from the results that: (1) 99% of the in-
stances which have the transmission latency of 0.24 to 
0.99 ms are 4 or 6 hops far from each other. So we can 
claim that if the latency is between 0.24 to 0.99 ms the 
distance between the instances is 4 to 6 hops with the 
probability of 99%. (2) More than 94% of the allocated 
instances to a user are 4-6 percent far from each other. In 
other words the hop distance is 4-6 instances with the 
probability of more than 94%. 

We can predict the connection latency based on the 
hop distance of instances. We have run the latency test for 
other instance types. The results do not seem to be de-
pendent on instance type for the instances with the same 
network interconnect. The latency variance of Amazon in-
stances is much higher than the variance in a HPC system. The 
high latency variance is not desirable for scientific applications. 
In case of HPC instances which have the 10 Gigabit Ethernet 

cards, the latency ranges from 0.19ms to 0.255ms which shows 
a smaller variance and more stable network performance. 

 
Fig. 4. Cumulative Distribution Function and Hop distance of 

connection latency between instances inside a datacenter. 

 

Other researches have compared the latency of EC2 
HPC instances with HPC systems. The latency of the EC2 
HPC instance is reported to be 3 to 40 times higher than a 
HPC system with 23 Gb/s network cards  [10]. The latency 
variance is also much higher.  

2.4.3 Compute Performance 

In this section we evaluate the compute performance of 
EC2 instances.  Fig. 5 shows the compute performance of 
each instance using HPL as well as the ideal performance 
claimed by Amazon. It also shows the performance vari-
ance of instances. 

 
Fig. 5. HPL benchmark results: compute performance of single 

instances comparing with their ideal performance. 

Among the Amazon instances, the cc2.8xlarge has the 
best compute performance. The t1.micro instance shows 
the lowest performance. The figure also shows the per-
formance variance for each instance. The performance 
variance of the instances is low in most of the instance 
types. Providing a consistent performance is an ad-
vantage for cloud instances. 

Among all of the instances and local nodes, the best ef-
ficiency belongs to the non-virtualized system. Overall we 
can observe that the efficiency of the instances is relative-
ly low. Other papers have suggested the low performance 
of HPL application while running on virtualized envi-
ronments  [11] [14]. Although the cc2.8xlarge instance has 
the largest compute capacity among the instances, it is the 
most inefficient instance. The reason for that lies behind 
the number of the cores in this instance. cc2.8xlarge has 16 
cores. The expected performance is the aggregate perfor-
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mance of all of the cores of the instance. But the real per-
formance is lower because of the communication over-
head of 16 cores which is caused by the MPI application. 
Other papers have also reported the poor MPI perfor-
mance on EC2 cloud  [15] [16]. Other papers have also re-
ported the poor MPI performance on EC2 cloud  [15] [16].  

2.4.4 I/O Performance 

In this section we evaluate the I/O performance of the EBS 
volume and local storage of each instance. The following 
charts show the results obtained after running IOR on the 
local storage and EBS volume storage of each of the in-
stances with different transfer sizes and storage devices. 
Fig. 6 shows the performance of POSIX read operation on 
different instances. Except for the hi1.4xlarge, which is 
equipped with SSDs, the throughput among other in-
stances does not vary greatly from one another. For most 
of the instances the throughput is close to a non-
virtualized system with a normal spinning HDD. 

Fig. 7 shows the maximum write and read throughput 
on each instance on both EBS volumes and local storage 
devices. Comparing with local storage, EBS volumes 
show a very poor performance, which is the result of the 
remote access delay over the network. 

Finally, to complete these micro-benchmarks, we set 
up a software RAID-0 with EBS volumes, varying the 
number of volumes from 1 to 8. We ran the same 
benchmark on a c1.medium instance. Fig. 8 shows the 
write performance on RAID0 on different number of EBS 
volumes.  

 
Fig. 6. Local POSIX read benchmark results on all instances 

 
Fig. 7. Maximum write/read throughput on different instances 

Looking at the write throughput, we can observe that 
the throughput does not vary a lot and is almost constant 
as the transfer size increases. That shows a stable write 
throughput on EBS drives. The write throughput on the 
RAID 0 increases with the number of drives. The reason 

for that is that the data will be spread among the drives 
and is written in parallel to all of the drives. That 
increases the write throughput because of having parallel 
write instead of serial write. Oddly, the performance does 
not improve as the number of drives increases from 1 to 2 
drives. The reason for that is moving from the local writes 
to network. Therefore the throughput stays the same. For 
4 EBS volumes, we can observe a 4x increase on the  
throughput. In case of 8 EBS volumes we expect a 2x 
speed up comparing with the 4 EBS experiment. However 
the write throughput can not scale better because of the 
limitation of the network bandwith. The maximum 
achievable throughput is around 120MB/s, which is 
bound to the network bandwidth of the instances that is 1 
Gb/s. so we can conclude that the RAID throughput will 
not exceed 120 MB/s if we add more EBS volumes. 

 
Fig. 8. RAID0 Setup benchmark for different transfer sizes – write 

 

2.4.5 S3 and PVFS Performance 

In this section we evaluate and compare the performance 
of  S3 and PVFS. S3 is a highly scalable storage service 
from Amazon that could be used on multinode 
applications. Also, a very important requirement for most 
of the scientific applications is a parallel file system 
shared among all of the computing nodes. We have also 
included the NFS as a centralized file system to show 
how it performs on smaller scales. 

 
Fig. 9. S3 performance, maximum read and write throughput 

First we evaluate the s3 performance on read and write 
operations. Fig. 9 shows the maximum read and write 
throughput on S3 accessed by different instance types. 
Leaving aside the small instances, there is not much 
difference between the maximum read/write throughput 
across instances. The reason is that these values are 
implictily limited by either the network capabilities or S3 
itself.  

Next, We compare the performance of the S3 and PVFS 
as two possible options to use for scientific applications. 
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PVFS is commonly used in scientific applications on HPC 
environments. On the other hand, S3 is commonly used 
on the multinode applications that run on cloud 
environment. We have only included the read 
performance in this paper. The experiment runs on 
m1.medium instances. Fig. 10 shows that the read 
throughput of the S3 is much lower compared to PVFS on 
small scales. This results from the fact that the S3 is a 
remote network storage while PVFS is installed and is 
spread over each instance. As The number of the 
instances increase, PVFS cannot scale as well as the S3 
and the performance of the two systems get closer to each 
other up to a scale that S3 slightly performs better than 
the PVFS. Therefore it is better to choose S3 if we are 
using more than 96 instances for the application.  

Next, we evaluate the performance of PVFS2 for the 
scales of 1 to 64 as we found out that it performs better 
than S3 in smaller scales. To benchmark PVFS2 for the 
following experiments we use the MPIIO interface in-
stead of POSIX. In the configuration that we used, every 
node in the cluster serves both as an I/O and metadata 
server.  

Fig. 11 shows the read operation tihroughput of PVFS2 
on local storage with different number of instances and 
variable transfer size. The effect of having a small transfer 
size is significant, where we see that the throughput 
inceases as we make the transfer size bigger. Again, this 
fact is due to the overhead added by the I/O transaction. 

 
Fig. 10. Comparing the read throughput of S3 and PVFS on different 

scales 

 
Fig. 11. PVFS read with different transfer sizes over on instance 

storage 

Finally, Fig. 12, shows the performance of  PVFS2 and 
NFS on memory through the POSIX interface. The results 
show that the NFS cluster does not scale very well and 
the throughput does not increase as we increase the 
number of nodes. It basically bottlenecks at the 1Gb/s 
which is the network bandwidth of a single instance. 
PVFS2 performs better as it can scale very well on 64 
nodes on memory. But as we have shown above, it will 
not scale on larger scales.  

 
Fig. 12. Scalability of PVFS2 and NFS in read/write throughput 

using memory as storage 

 

2.4.6 DynamoDB performance 

In this section we are evaluating the performance of Am-
azon DynamoDB. DynamoDB is a commonly used NoSql 
database used by commercial and scientific applica-
tions  0 0. We conduct micro benchmarks to measure the 
throughput and latency of insert and look up calls scaling 
from 1 to 96 instances with total number of calls scaling 
from 10000 to 960000 calls. We conduct the benchmarks 
on both m1.medium and cc2.8xlarge instances. The provi-
sion capacity for the benchmarks is 10K operations/s 
which is the maximum deault capacity available. There is 
no information released about how many nodes are used 
to offer a specific throughput. We have observed that the 
latency of DynamoDB doesn’t change much with scales, 
and the value is around 10ms. This shows that Dyna-
moDB is highly scalable. Fig. 13 shows the latency of look 
up and insert calls made from 96 cc2.8xxlarge instances. 
The average latency for insert and look up are respective-
ly 10 ms and 8.7 ms. %90 of the calls had a latency of less 
than 12 ms for insert and 10.5 ms for look up.  

 
Fig. 13. CDF plot for insert and look up latency on 96 8xxl instances 

We compare the throughput of DynamoDB with 
ZHT ‎0 on EC2. ZHT is an open source consistent NoSql 
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database providing a service which is comparable to Dy-
namoDB in functionality. We conduct this experiment to 
better understand the available options for having a scal-
able key-value store. We use both m1.medium and 
cc2.8xlarge instances to run ZHT. On 96 nodes scale with 
2cc.8xlarge instance type, ZHT offers 1215.0 K ops/s while 
DynamoDB failed the test since it saturated the capacity. 
The maximum measured throughput of DynamoDB was 
11.5K ops/s which is found at 64 cc2.8xlarge instance 
scale. For a fair comparison, both DynamoDB and ZHT 
have 8 clients per node. 

Fig. 14 shows that the throughput of ZHT on 
m1.medium and cc2.8xlarge instances are respectively 
59x and 559x higher than DynamoDB on 1 instance scale. 
On the 96 instance scale they are 20x and 134x higher than 
the DynamoDB. We can conclude that the ZHT has a sig-
nificantly higher throughput than DynamoDB up to 96 
instance scale and is a better option than DynamoDB for 
normal AWS users. In the Cost Analysis section we will 
compare the costs of running workloads over DynamoDB 
and ZHT.  

 
Fig. 14. Throughput comparison of DynamoDB with ZHT running on 

m1.medium and cc2.8xlarge instances on different scales.  

2.4.7 Workflow Application Performance  

In this section we analyze the performance of a complex 
scientific computing application on the Amazon EC2 
cloud. The application investigated is Power Locational 
Marginal Price Simulation (LMPS), and it is coordinated 
and run through the Swift parallel programming sys-
tem ‎[12]. Optimal power flow studies are crucial in un-
derstanding the flow and price patterns in electricity un-
der different demand and network conditions. A big 
computational challenge arising in power grid analysis is 
that simulations need to be run at high time resolutions in 
order to capture effect occurring at multiple time scales. 
For instance, power flows tend to be more constrained at 
certain times of the day and of the year, and these need to 
be identified. 

The power flow simulation application under study 
analyzes historical conditions in the Illinois grid to simu-
late instant power prices on an hourly basis. The applica-
tion runs linear programming solvers invoked via an 
AMPL (A Mathematical Programming Language) ‎0 mod-
el representation andcollects flow, generation, and price 
data with attached geographical coordinates. A typical 
application consists of running the model in 8760 inde 

pendent executions corresponding to each hour of the 
year. Each application task execution spans in the range 
between 25 and 80 seconds as shown in the application 
tasks time distribution graph in Fig. 15. 

A snapshot of one such result prices plotted over the 
map of Illinois is shown in Fig. 16. The prices are in US 
dollars per megaWatt-hour shown as interpolated con-
tour plots across the areas connected by transmission 
lines and generation stations shown as lines and circles 
respectively. A series of such plots could be post pro-
cessed to give an animated visualization for further anal-
ysis in trends etc.  

 
Fig. 15. The LMPS application tasks time distributions. 

 

 
Fig. 16. A contour plot snapshot of the power prices in $/MWh 

across the state of Illinois for an instance in July 2000 

The execution of the application was performed on an 
increasing number of m1.large instances (see Fig. 17). For 
data storage, we use S3. Given that the application scales 
well to 80 instances, but not beyond that. The perfor-
mance saturation is a salient point that comes out of Fig. 
17. With S3 object store being remote, at 100 VMs it takes 
long enough to fetch the data that its dominating execu-
tion time. More scalable distributed storage subsystem 
should be investigated that is geared towards scientific 
computing, such as PVFS, Lustre, or GPFS.  
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Fig. 17. The runtime of LMPS on m1.large instances in different scales.  

2.5 Performance Comparison of EC2 vs. 
FermiCloud 

In this section we want to compare the performance of the 
EC2 as a public cloud with FermiCloud as a private cloud 
on HPL benchmark which is a real HPC application. Be-
fore comparing the performance of Amazon on real Ap-
plications, we need to compare the raw performance of 
the two resources.  

2.5.1 Raw performance comparison 

Before comparing the performance of the two infrastruc-
tures on real applications like HPL, we need to compare 
their raw performance on the essential metrics in order to 
find the root causes of their performance difference. The 
most effective factors on HPL performance are compute 
power and Network. We need to compare these factors 
on the instances with similar functionalities. 

On both of the Clouds, we chose the instances that can 
achieve the highest performance on HPL applications. On 
EC2, we use cc1.4xlarge instances that are enabled with 
an 8 core 2.6 GHz Intel processors and a 10 Gigabit net-
work adapter. On FermiCloud, each server machine is 
enabled with with 2 quad core 2.66 GHz Intel processors, 
and 8 port RAID Controller. 

The CPU efficiency is defined as the performance of 
the VM running HPL on a single VM with no network 
connectivity, divided by the the theoritical peak perfor-
mance of the CPU. 

Fig. 18 compares the raw performance of the Amazon 
EC2 with FermiCloud on CPU and network performance.  

The results show that the virtualization overhead on 
FermiCloud instances are significantly lower than the 
EC2 instances. This would be an effective factor while 
running applications on simultaneously on multiple 
nodes. 

The FermiCloud instances are enabled with infiniband 
network adapters and are able to provide hogher perfor-
mance compared to the EC2 instances that have 10 Giga-
bit network cards. The efficiency of both of the systems on 
network throughput is high. The network throughput 
efficiency is defined as the VM network performance 
divded by the theoritical peak of the device. FermiCloud 
and EC2 network adapters respectively achieve %97.9 
and %97.4 efficiency.  

 
Fig. 18. Raw performance comparison overview of EC2 vs. Fer-

miCloud 

There is a huge gap between the network latency of the 
two clouds. The latency of the FermiCloud instance is 2.2 
us as compared to the latency of EC2 instance which is 
222 us. Another important factor is the latency variance. 
The latency variance on both systems is within %20 which 
is stable. HPL application uses MPI for communication 
among the nodes. The network latency can decrease the 
performance of the application by affecting the MPI per-
formance. 

2.5.2 HPL performance comparison 

In this section we evaluate the performance of HPL appli-
cation on both on a virtual cluster on both FermiCloud 
and EC2. The main difference on the two infrastructures 
is on their virtualization layer and the network perfor-
mance. FermiCloud uses KVM and is enabled with infini-
band network adapters. EC2 uses its own type of virtual-
ization which is based on Xen hypervisor and has 10 Gi-
gabit network adapters.  

The best way to measure the efficiency of a virtual 
cluster on a cloud environment is defining it as the per-
formance of the VM which include the virtualization 
overhead divided by the host performance that doesn’t 
include virtualization overhead. We can measure the eff-
ciency as defined for FermiCloud since we have access to 
the host machines. But that is not possible for EC2 since 
we don’t have access to the host machines. Therefore we 
compare the scalability efficiency of the two clouds which 
is defined as the overhead of the application performance 
as we scale up the number of cloud instances. 

Fig. 19 compares the efficiency of EC2 and FermiCloud 
running HPL application on a virtual cluster. Due to 
budget limitations we run the experiment up to 32 in-
stances scale.  

The results show that the efficiency is majorly depend-
ent on the network performance. On the 2 instances scale, 
both cloud show good efficiency and only lose %10 eff-
ciency that is due to the MPI communications latency 
added between the instances. Since both of the clouds 
have powerful network adapters, the communication 
overhead is still not a bottleneck on 2 instances scale. As 
the number of instances increase, the applications pro-
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cesses make more MPI calls to each other and start satu-
rating the network bandwidth. Having infiniband net-
work, the FermiCloud loses less efficiency than the EC2. 
The efficiency of EC2 drops to %78 as the FermiCloud 
effiency drops to %87. We can notice that the efficiency of 
the EC2 decreases significantly on 8 instances scles. The 
reason for that is that the network gets saturated due to 
too many MPI communications. 

 
Fig. 19. Efficiency comparison of EC2 and FermiCloud running 

HPL application on a virtual cluster.  

3 COST ANALYSIS 

In this section we analyze the cost of the Amazon EC2 
cloud from different aspects. We analyze the cost of in-
stances for compute intensive applications as well as for 
data intensive applications. Our analysis provides sug-
gestions to different cloud users to find the instance type 
that fits best for certain application with specific require-
ments. Next section compares the instances based on their 
memory capacity and performance. 

3.1 Memory Cost 

This section compares the cost of the memory on Amazon 
EC2 instances. Fig. 20 compares the cost of instances 
based on their memory capacity and bandwidth.  

The GB/Dollar metric on the left hand side shows the 
capacity cost effectiveness of the instances. The most cost 
effective instances for memory capacity are the high 
memory (m2.2xlarge & m2.4xlarge) instances. But looking 
at the cost of the memory bandwidth, we can observe that 
these instances don’t have the best memory bandwidth 
efficiency. The most cost effective instances based on the 
memory bandwidth efficiency are the m1.small and 
m1.medium instances. 

 
Fig. 20. Memory capacity and memory bandwidth cost. 

3.2 CPU Cost 

In this section we analyze the cost-effectiveness of in-
stances based on the performance of the instances while 
running compute intensive applications. The metric for 
our analysis is GFLOPS/Dollar.  

Fig. 21 compares the ideal performance cost of the in-
stances based on Amazon claims with their actual per-
formance while running HPL benchmark. The results 
show that although the cc2.8xlarge is expected to be the 
most cost-effective instance, the best compute type is 
c1.medium. This instance is listed as a High CPU in-
stance. 

 
Fig. 21. CPU performance cost of instances 

3.3 Cluster Cost 

We analyze the cost of the virtual clusters set up by 
m1.medium and cc1.4xlarge instances in different sizes. 
Fig. 22 compares the cost of the virtual clusters based on 
their compute performance. 
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Fig. 22. Cost of virtual cluster of m1.medium and cc1.4xlarge. 

3.4 DynamoDB Cost 

Finally in this section we evaluate the cost of DynamoDB. 
In order to better understand the value of offered service, 
we compare the cost with the cost of running ZHT on EC2 
on different instance types. 

Fig. 23 shows the hourly cost of 1000 ops/s capacity of-
fered by DynamoDB compared to the equal capacity pro-
vided by ZHT from the user point of view.  

 
Fig. 23 Cost Comparison of DynamoDB with ZHT 

We are comparing the two different scenarios of cost of 
using a free application on rented EC2 instances versus 
getting the service from DynamoDB. In case of Dyna-
moDB, since the users pays for the capacity that they get, 
the number of instances doesn’t affect the cost. That’s 
why the cost of DynamoDB is always constant. For ZHT, 
the system efficiency and performance varies on different 
scales hence the variation in costs for ZHT at different 
scales. Since the cc2.8xlarge instances provide much bet-
ter performance per money spent, the cost per operation 
is as good as 65X lower than DynamoDB. However, the 
better costs come at the complexity of managing a virtual 
cluster of machines to operate ZHT. It is likely that for 
low loads including sporadic requirements for Dyna-
moDB, it makes financial sense to run on Amazon AWS 
services, but for higher performance requirements it is 
much more beneficial to simply operate a dedicated ZHT 
system over EC2 resources.  

3.5 Performance and Cost Summary 

This section summarizes the performance and the cost 
efficiency of Amazon EC2 and other services of AWS. 
Table 1 shows the performance overview of the different 
instance types on EC2. The performance results of the 
instances mostly match with the prediction based on the 
claims of Amazon. There have been anomalies in some of 
the specific instance types. Instances like m1.xlarge have 

average performance while m1.medium instance has 
shown a performance that was higher than expected. 

TABLE 1: Performance summary of EC2 instances 

 
CPU 

bw 

Mem. 

bw 

Net. 

bw 

Disk 

I/O 

m1.small Low Low Low Low 

m1.med Low Avg Avg Low 

m1.lrg Avg Avg Avg Avg 

m1.xlrg Avg Avg Avg Avg 

c1.med Avg Avg Avg Low 

c1.xlrg Avg High Avg Avg 

m2.2xlrg High High Avg Avg 

cc1.4xlrg High High High Avg 

cc2.8xlrg High High High Avg 

hi1.lrg High Avg High High 
 
Table 2 summarizes the cost-efficiency of instance 

types of EC2. As it is noticeable from the table, the cost 
efficiency of the high end instances that are better fits for 
HPC and scientific applications is lower than the small 
instances. Finally table 3 summarizes the performance of 
S3 and DynamoDB. 

 
TABLE 2: Cost-efficiency summary of EC2 instances 

 
CPU 
bw 

Mem. 
Cap. 

Mem. 
bw 

Net. 
bw 

m1.small Avg Avg High High 

m1.med Avg Avg High High 

m1.lrg Avg Avg Avg Avg 

m1.xlrg Avg Avg Low Low 

c1.med High Low High Low 

c1.xlrg High Low Low Low 

m2.2xlrg Low High Low Low 

cc1.4xlrg Avg Low Low Low 

cc2.8xlrg Low Low Low Low 

hi1.lrg Low Low Low Low 
 

TABLE 3: Performance and Cost-efficiency summary of 

AWS services 

 Scalability 
Cost-

efficiency 
Data Granularity 

S3 High High Large data 

DynamoDB High Low Small data 
 

4 RELATED WORK 

There have been many efforts to investigate the useful-
ness of cloud computing and virtualization for scientific 
applications. Researchers have tried to evaluate the per-
formance of clouds in order to understand the weakness-
es and benefits of them when used for scientific applica-
tions.  

There have been many researches that have tried to 
evaluate the performance of Amazon EC2 
cloud  [14] [16] [17]. However the experiments were mostly 
run on limited types and number of instances.  Therefore 
they lack the generality in their results and conclusions, 
as they have not covered all instance types. Unlike these 
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previous works, we cover all instance types in order to 
give a general view of the instances and enable users to 
choose the best instances for different use case scenarios. 

Ostermann et al. have evaluated Amazon EC2 using 
micro-benchmarks in different performance metrics. 
However their experiments do not include the more high-
end instances that are more competitive to HPC systems. 
Moreover, the Amazon performance has improved since 
then and more features have been added to make it useful 
for HPC applications  [14]. In addition to the experiments 
scope of that paper, our work provides the evaluations of 
the raw performance of a variety of the instances includ-
ing the high-end instances, as well as the performance of 
the real applications. 

He et al. have deployed a NASA climate prediction 
application into major public clouds, and compared the 
results with dedicated HPC systems results. They have 
run micro-benchmarks and real applications  [15]. How-
ever they only run their experiments on small number of 
VMs. We have evaluated the performance of EC2 on larg-
er scales. 

Jackson has deployed a full application that performs 
massive file operations and data transfer on Amazon 
EC2  [18]. The research mostly focuses on different storage 
options on Amazon. Our work covers the storage services 
performance both on micro-benchmarks as well as the 
performance while being used by data-intensive applica-
tions. 

Only a few of the researches that measure the applica-
bility of clouds for scientific applications have used the 
new Amazon EC2 cluster instances that we have test-
ed  [10] [20] 0. Mehrotra compares the performances of 
Amazon EC2 HPC instances to that of NASA’s Pleiades 
supercomputer  [10]. However the performance metrics in 
that paper is very limited. They have not evaluated dif-
ferent performance metrics of the HPC instances. Rama-
krishnan have measured the performance of the HPCC 
benchmarks  [20]. They have also applied two real appli-
cations of PARATEC and MILC. They have compared the 
performance of Amazon EC2 with Magellan cloud while 
running the same applications. 

Juve investigates different options of data manage-
ment of the workflows on EC2  0. The paper evaluates the 
runtime of different workflows with different underlying 
storage options. It uses a limited number of instance 
types. It also evaluates the cost of running workflow ap-
plications. The aforementioned works have not provided 
a comprehensive evaluation of the HPC instances. Their 
experiments are limited to a few metrics. Among the 
works that have looked at the new HPC instances, our 
work is the only one that has evaluated all of the critical 
performance metrics such as memory, compute, and net-
work performance. Our paper has evaluated the perfor-
mance of the new HPC instances and also has shown the 
compute performance of a virtual cluster that is using 
MPI and is made of such instances. This experiment is 
very useful in that it shows the performance of EC2 while 
running scientific applications using MPI. 

Many works have covered the performance of public 
clouds without having an idea about the host perfor-

mance of the nodes without virtualization 
head  [14] [15] [16]. Younge has evaluated the performance 
of different virtualization techniques on FutureGrid pri-
vate cloud  [11]. The focus of that work is on the virtual-
ization layer rather than the cloud infrastructure. Our 
work compares the performance of the public cloud and a 
private cloud on different aspects running both micro-
benchmarks and real scientific applications. Being able to 
measure the virtualization overhead on the FermiCloud 
private cloud, we could provide a better comparison of 
the two cloud environments. 

Many papers have analyzed the cost of the cloud as an 
alternative resource to dedicated HPC resources  [18] [19] 0. 
However this paper is the only work that compares the 
cost of different instances based on major performance 
factors in order to find the best use case for different in-
stances of Amazon EC2. 

5 CONCLUSION 

In this paper, we present a quantitative study to evaluate 
the performance of the Amazon EC2 for the goal of run-
ning scientific applications. We evaluate the performance 
of various instance types by running micro benchmarks 
on memory, compute, network and storage. In most of 
the cases, the actual performance of the instances is lower 
than the expected performance or what Amazon claims. 
Most of the instances have stable memory bandwidth, 
which is comparable with non-virtualized systems. The 
compute performance of the instances is affected by vir-
tualization overhead on the larger instances. We also run 
different types of network benchmarking. The results 
show stable internal network performance of single cli-
ent-server connections. However we notice the poor per-
formance and scalability in wide area connections be-
tween datacenters. The network latency is higher and less 
stable than what is available on the supercomputers. 

We also compare the performance of EC2 as a com-
monly used public cloud with FermiCloud, which is a 
higher end private cloud that is tailored for scientific for 
scientific computing. We compare the raw performance 
as well as the performance of the real applications on vir-
tual clusters with multiple HPC instances.  The results 
show that the performance of the MPI applications is 
highly dependent on network performance of the infra-
structure. In this case, FermiCloud is able to achieve 
higher performance and efficiency due to having infini-
band network cards. We can conclude that the cloud in-
frastructures with more powerful network capacity are 
more suitable to run scientific applications.  

We evaluated the I/O performance of Amazon instanc-
es and storage services like EBS and S3. The I/O perfor-
mance of the instances is lower than performance of dedi-
cated resources. The only instance type that shows prom-
ising results is the high-IO instances that have SSD drives 
on them. The performance of different parallel file sys-
tems is lower than performance of them on dedicated 
clusters. The read and write throughput of S3 is lower 
than a local storage. Therefore it could not be a suitable 
option for scientific applications. However it shows 
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promising scalability that makes it a better option on 
larger scale computations. The performance of PVFS2 
over EC2 is convincible for using in scientific applications 
that require a parallel file system. 

Amazon EC2 provides powerful instances that are ca-
pable of running HPC applications. However, the per-
formance a major portion of the HPC applications are 
heavily dependent on network bandwidth, and the net-
work performance of Amazon EC2 instances cannot keep 
up with their compute performance while running HPC 
applications and become a major bottleneck. Moreover, 
having the TCP network protocol as the main network 
protocol, all of the MPI calls on HPC applications are 
made on top of TCP protocol. That would add a signifi-
cant overhead to the network performance. Although the 
new HPC instances have higher network bandwidth, they 
are still not on par with the non-virtualized HPC systems 
with high-end network topologies. The cloud instances 
have shown to be performing very well, while running 
embarrassingly parallel programs that have minimal in-
teraction between the nodes  [10]. The performance of em-
barrassingly parallel application with minimal communi-
cation on Amazon EC2 instances is reported to be compa-
rable with non-virtualized environments  [21] [22]. 

Armed with both detailed benchmarks to gauge ex-
pected performance and a detailed price/cost analysis, we 
expect that this paper will be a recipe cookbook for scien-
tists to help them decide between dedicated resources, 
cloud resources, or some combination, for their particular 
scientific computing workload.    
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