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K∗ mesons and in particular the K∗(892) were frequently addressed in lattice simulations, but
always ignoring that the K∗(892) decays strongly. We present an exploratory extraction of the
masses and widths for the K∗ resonances by simulating Kπ scattering in p-wave with I = 1/2 on
the lattice. The Kπ system with total momenta P = 2π

L
ez , 2π

L
(ex + ey) and 0, that allows the

extraction of phase shifts at several values of Kπ relative momenta, is studied. A Breit-Wigner fit of
the phase renders a K∗(892) resonance mass mlat = 891±14 MeV and the K∗(892) → Kπ coupling
glat = 5.7 ± 1.6 compared to the experimental values mexp ≈ 892 MeV and gexp = 5.72 ± 0.06,
where g parametrizes the K∗ → Kπ width. When extracting the phase shift around the K∗(1410)
and K∗

2 (1430) resonances we take into account the mixing of p-wave with d-wave and assume that
the scattering is elastic in our simulation. This gives us an estimate of the K∗(1410) resonance
mass mlat = 1.33 ± 0.02 GeV compared to mexp = 1.414 ± 0.0015 GeV assuming the experimental
K∗(1410) → Kπ coupling. We contrast the resonant I = 1/2 channel with the repulsive non-
resonant I = 3/2 channel, where the phase is found to be negative and small, in agreement with
experiment.

PACS numbers: 11.15.Ha, 12.38.Gc

I. INTRODUCTION

The K∗(892) meson was addressed in numerous lat-
tice simulations ranging from spectroscopy to weak ma-
trix elements, where K∗ appears in the final state. Yet
all previous simulations assumed the so-called narrow
width approximation, where K∗ is assumed to be sta-
ble against strong decay and the lattice energy level E
is simply identified with the K∗ energy

√

~p 2 +m2
K∗. In

nature, however, the K∗(892) strongly decays exclusively
toKπ with a rather narrow decay width Γ ≃ 50 MeV due
to the small phase space related to the near-by thresh-
old. So the asymptotic state in a lattice simulation is not
K∗(892) but rather a scattering state K(pK)π(pπ).
The lowest scattering level with total momentum P =

0 allowed by angular conservation K(1)π(−1)1 has rela-

tively high energy Esc ≃
√

m2
π + (2πL )2 +

√

m2
K + (2πL )2

and has a rather insignificant effect for typical mπ >
mphy

π and L < 3 fm used in most of previous simula-
tions. As state-of-the-art simulations aim at physical mπ

and consequently large L, the K∗ → Kπ strong decay
is even more influential and is limiting the precision for
extraction of phenomenologically important quantities at
present (for example B → K∗ and D → K∗ form factors
[1, 2]).
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The aim of our paper is to make the first exploratory
lattice investigation to address the unstable nature of the
ground state resonanceK∗(892) as well as the excited res-
onance K∗(1410) in their Kπ decay mode. We study the
strong decay K∗ → Kπ by employing a non-zero total
momentum P , where the K∗(892) decay is kinematically
facilitated on the lattice. For this purpose we simulate
Kπ scattering in p-wave with P = 2π

L ez , 2π
L (ex + ey)

and extract energy levels En. Each of the En leads to
the value of δl=1(s) at s = E2

n − P 2 via the general-
ized Lüscher relations derived for the scattering of non-
degenerate particles with nonzero P in [3]. The resulting
phases are combined with those obtained from our pre-
vious simulation at P = 0 [4]. Finally we determine
the resonance mass and width of K∗(892), as well as the
resonance mass of K∗(1410) using a Breit-Wigner type
formula.

A challenging technical problem for simulating scat-
tering of non-degenerate particles (mK 6= mπ) at P 6= 0
is that even and odd partial waves can in principle mix
within one irreducible representation of the discrete lat-
tice group [3, 5–7]. In the present simulation we use only
the irreducible representations (E, B2 and B3) where the
p-wave does not mix with the s-wave [3]; this is extremely
important for a reliable extraction of the p-wave since the
s-wave is non-negligible in the whole energy region. In
fact the p-wave can mix with the d-wave for the irre-
ducible representations we consider [3, 5]. The d-wave
phase shift is experimentally known to be negligible up
to the d-wave resonance K∗

2 (1430) [8, 9], where it quickly
jumps by π. In the present simulation we indeed observe
p-wave resonances K∗ as well as the d-wave resonance
K∗

2 (1430) in the same irreducible representations. This
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forces us to attempt a preliminary analysis of the energy
region around K∗(1410) and K∗

2 (1430) using the gener-
alized Lüscher-type relation [3] that takes into account
the mixing of both waves.
The resonant I = 1/2 channel with K∗ resonances is

expected to have a behavior significantly different to the
non-resonant I = 3/2 channel, and we will verify this by
simulating explicitly both isospin channels.
The phase shift for Kπ scattering was reliably ex-

tracted from experiment long time ago by Estabrooks
et al. [8] and Aston et al. [9], briefly reviewed in [4].
The p-wave phase shift for Kπ scattering has been ex-

tracted from the lattice only in our previous simulation
[4], where the phase shifts for all four channels (p and
s-wave with I = 1/2, 3/2 ) show qualitative agreement
with experiment. That simulation was for P = 0 and
led only to one phase shift point near the K∗ resonance,
which did not allow a determination of the K∗ width.
There was another recent simulation aimed at K∗ [10],
but it extracted the p-wave phase shift at P = 2π/L
from the irreducible representation A1, which mixes s
and p waves. Since the s-wave phase shift is sizable in
the region of the K∗(892) resonance, we believe the ex-
tracted p-wave phase shift in [10] to be affected by siz-
able and unknown systematic uncertainties. All other
previous lattice simulations of Kπ scattering studied the
s-wave with I = 1/2, 3/2 near threshold [11–13] and the
resulting scattering lengths are compared in [4].
The K∗(892) → Kπ coupling was already extracted

once on the lattice using the so-called amplitude method,
which is based on the 〈Kπ|K∗〉 correlator [14]. This
method assumes that the K∗ and Kπ energies are equal,
which is difficult to achieve in practice.
A review on the lattice studies of resonances is given

in [15]. The only resonance addressed by several lattice
groups up to now is ππ → ρ→ ππ [16–21]. Recently also
the first simulation of charmed resonances [22], as well as
N− [23] and ∆ [24] resonances was performed.
In phenomenological studies the K∗ resonance-pole

emerged for example within the Roy-equation approach
[25, 26] and a unitarized version of the Chiral Perturba-
tion Theory [27–31]. The latter approach has also been
used to study the mπ,K dependence [32] and the finite-
volume effects [6, 33, 34] in lattice simulations.
Following the Introduction, we present our lattice

setup in Section II and the interpolating fields in Section
III, which are further detailed in the Appendix. Section
IV provides the energy levels for both isospin channels.
Resulting I = 1/2 phase shifts and K∗ resonances pa-
rameters are collected in Section V, while I = 3/2 is
considered in Section VI.

II. LATTICE SETUP

Our simulation is based on one ensemble of gauge con-
figurations with clover Wilson dynamical u, d quarks and
u, d, s valence quarks (ms > mu = md), where the

N3
L ×NT β a[fm] L[fm] #cfgs mπ[MeV] mK [MeV]

163 × 32 7.1 0.1239(13) 1.98 276 266(4) 552(6)

TABLE I. Parameters of the Nf = 2 gauge configurations
[4, 18].

(a)

(b)

(c)

(e)(d)

FIG. 1. Contractions for our correlators with s̄u and Kπ
interpolators (1), given in Appendix A. For I = 3/2 only (a)
appears, while all are needed for I = 1/2. The contractions
(c,d) need an all-to-all method like distillation.

valence and the dynamical u/d quarks have the same
mass. The corresponding pion mass ismπ = 266(4) MeV,
while the strange quark mass is fixed by mφ leading to
mK = 552(6) MeV. The parameters of the ensemble are
shown in Table I, while more details are given in [4, 18].
Due to the limited data on just a single ensemble, our
determination of the lattice spacing a reported in [18] re-
sults from taking a typical value of the Sommer parame-
ter r0. We note that the uncertainty associated with this
choice might lead to small shift of all dimensionful quan-
tities. This ensemble has been generated by the authors
of [35, 36] to study re-weighting techniques.

We have a rather small volume V = 163 × 32 (L ≃
2 fm), which enables us to use the powerful but costly full
distillation method [37]. This allows for the computation
of all contractions for the correlation matrix of s̄u andKπ
interpolators. The sea and valence quarks obey periodic
boundary conditions in space. The periodic and anti-
periodic valence propagators in time are combined into
so-called ”P +A” propagators, which effectively extends
the time direction to 2NT = 64 [4, 18].

III. INTERPOLATING FIELDS

The Kπ physical system with momentum P and I =
1/2 or I = 3/2 is created or annihilated with the inter-
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polating fields listed in Appendix A, having the form

Oq̄q
I=1/2 =

∑

x

eiPxs̄(x)Γ̂u(x) , (1)

OKπ
I=1/2 =

∑

j

fj [
√

1
3K

+(pKj)π
0(pπj) ,

+
√

2
3K

0(pKj)π
+(pπj)] ,

OKπ
I=3/2 =

∑

j

fj K+(pKj)π
+(pπj), pKj + pπj = P .

They are constructed to transform according to irre-
ducible representations as explained below and detailed
in [3]. We employ five Oq̄q in each representation. In
OKπ the momenta are projected separately for K and
π. For each representation given below we use specific
linear combinations of momenta pK,π so that OπK trans-
forms according to this irrep: we use all possibilities with
pK ≤

√
32π

L and pπ ≤
√
32π

L according to [3].

In order to facilitate the K∗ → Kπ decay kinemat-
ically and to access further values of s = E2

n − P 2, we
implement interpolators (1) with non-zero total momenta
P (we considered also all permutations of P and all pos-
sible directions of polarizations at given P ):

P = 2π
L ez : C4v , irreps E(ex,y), E(ex±ey), l = 1, 2

P = 2π
L (ex+ey) : C2v , irreps B2, B3, l = 1, 2

P =0 : Oh , irrep T−
1 , l = 1 .

(2)

The zero-momentum case, studied in [4], is listed for com-
pleteness since we will combine all these results. The
analytic framework for p-wave scattering using the first
two momenta is described in detail in [3], together with
the symmetry considerations, appropriate interpolating
fields and extraction of the phase shifts, so we only briefly
review the main steps here.

The symmetry group of the mesh viewed from the
center-of-momentum (CMF) frame of the Kπ system is
C4v for P = 2π

L ez and C2v for P = 2π
L (ex + ey). These

groups do not contain the inversion as an element, which
in turn implies that even and odd partial waves can in
principle mix within the same irreducible representation.
For extraction of δl=1 a particularly disturbing mixing
is the one with δl=0, since δ0(s) is known to be non-
negligible in the whole energy region of interest. Fortu-
nately δ1 does not mix with δ0 in the irreducible repre-
sentations E, B2, B3 (see equation (2)), so we can use
these. In fact we employ two distinct representations of
the two-dimensional E: E(ex,y) with basis vectors along
axis (ex, ey) and E(ex ± ey) with basis vectors along the
diagonal (ex + ey, ex − ey).

Each of the five representations B2, B3, E(ex,y),
E(ex ± ey), and T−

1 will lead to energy levels En, val-
ues of s = E2

n − P 2 and scattering phases δ(s).

The quarks in (1) are smeared with Laplacian Heavi-

side smearing [37]

qs(n) ≡
Nv
∑

k=1

v(k)(n)v(k)†(n′) q(n′) , (3)

where v(k) are the eigenvectors of the 3D lattice Laplacian

∇2 v(k) = λ
(k)
∇2 v(k) and n and n′ are brief for the space

and color indices. We choose Nv = 96 for Oq̄q and Nv =
64 for the more costlyOKπ . This allows the calculation of
all contractions in Fig. 1 according to the full distillation
method [37].

IV. ENERGY LEVELS FOR I = 1/2, 3/2

The energy spectrum En is extracted from the corre-
lation matrix

Cij(t) =
1

NT

∑

tn

〈O†
i (tn + t)|Oj(tn)〉 , (4)

averaged over all initial times tn. All needed Wick
contractions, shown in Fig. 1, are evaluated. We
apply the generalized eigenvalue problem C(t)un(t) =
λn(t)C(t0)un(t) [38–41]. The resulting eigenvalues
λn(t) → e−En(t−t0) give the effective energies Eeff

n (t) ≡
log[λn(t)/λn(t + 1)] → En and the eigenvectors are the
fingerprints of the energy-eigenstates.
A few lowest effective energies Eeff

n (t) for the I =
1/2, 3/2 states are shown in Fig. 2. The energies for
the levels with reliable plateaus (marked by horizontal
fits) are provided in Tables III and IV. All error bars are
determined by single elimination jackknife.
The energy spectrum of Kπ scattering is discrete on

a finite lattice. In absence of interaction, the scatter-
ing levels K(nK)π(nπ) are just sums of energies of the
individual particles with

En.i.(K(nK)π(nπ)) =
√

m2
K + p2K +

√

m2
π + p2π ,

pπ = 2π
L |nπ| , pK = 2π

L |nK| , nπ,K ∈ N3 , (5)

which are given by the dashed lines in Fig. 2. In Fig. 3
we show the corresponding values of

√
s =

√

E2
n.i. − P 2.

This plot demonstrates the difficulty to achieve energy
values for a scattering level in the region of the K∗(892)
resonance for a typical lattice size. Note that the lowest√
s is reached for K(ex)π(ey) which appears in the B2

representation.
In the interacting case the lattice energies En get

shifted with respect to En.i.. A small shift ∆E =
En − En.i. corresponds to a small phase shift δ(s) at
s = E2

n − P 2 (modulo multiples of π). The I = 3/2
scattering in Fig. 2 is a typical example: all levels are
near En.i. and a small positive ∆E is related to a small
and negative δ1 in this repulsive channel. The scatter-
ing levels K(ex)π(ey) in B2 and K(ez)π(−ez) in T−

1 are
also clearly visible in the I = 1/2 channel; we also ob-
serve higher I = 1/2 scattering levels but some are not
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FIG. 2. Effective energies Eeff
n (t)a of the Kπ system with I = 1/2, 3/2 at total momentum P 6= 0 and P = 0 (in lattice

units a−1 ≃ 1.59 GeV). The dashed lines indicate energiy vales En.i. for the non-interacting scattering levels in the notation
K(n2

K)π(n2
π) (see equation (5)).
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FIG. 3. Values of
√
s =

√

E2
n.i. − P 2 for non-interacting Kπ scattering states (5) on our lattice (mπ and mK are given in Table

I). The values correspond to the dashed lines in Fig. 2, now shown in GeV units.

included in the analysis and the plots due to less reliable
plateaus2.
Narrow resonances lead to levels in addition to the

scattering levels K(nK)π(nπ). Such extra levels are in-
deed observed in Fig. 2 for the resonant I = 1/2 scat-
tering. The K∗(892) is narrow in experiment and even
narrower on our lattice (due to smaller phase space at
mπ = 266 MeV), and is responsible for the lowest level
with I = 1/2 in all irreps. We find that for all irreps
except B2, the lowest level energy is insensitive as to
whether OKπ is included in the correlation matrix or
not; this is expected since the scattering levels Kπ have
high energy En.i. (5) and

√
s (Fig. 3) in these irreps, so

they influence the ground state only weakly. In the case
of irrep B2, which has the Kπ scattering state at lowest√
s in Fig. 3, the ground state is slightly (but still within

the error on Eeff ) shifted down when OKπ is included
in the basis.
There is one additional level in irreps B2, B3, E near√
s ≃ 1.4 GeV which we attribute to the K∗(1410) res-

onance. In fact, we find it puzzling that there is no ad-
ditional level3 near

√
s ≃ mK∗(1410) in T−

1 [4] and we
prompt future lattice simulations with Kπ interpolators
to shed light on this point.
Note that there is another extra level near

√
s ≃

2 Higher I = 1/2 scattering levels have less reliable plateaus than
I = 3/2 ones due to the contraction (c) in Fig. 1. They also
constitute already the 4th level or higher for I = 1/2.

3 In T−
1 , the level 2 at E2 ≃ 1.5 GeV corresponds to K(1)π(−1),

while the next level comes only at E3 ≃ 1.7 GeV rendering δ ≃
90◦ [4].

4 5 6 7 8 9 10 11
t

0.8

0.9

1

1.1

1.2

1.3

E
ef

f a
K

2
(1430)   P = 0    T

2

+

FIG. 4. Effective energy from quark-antiquark interpola-
tors in the T+

2 irrep of Oh. The level is related to K∗
2 (1430)

resonance in d-wave scattering of Kπ. We obtain E a =
0.9515(77).

1.4 GeV for irreps B2,B3, E with P 6= 0 and we attribute
this to the resonance K∗

2 (1430). As we mentioned, the
p-wave scattering mixes with d-wave scattering in irreps
B2,B3, E and it is interesting that we indeed observe
this mixing [3, 5]. Our interpretation of this level is sup-
ported by the fact that we find K∗

2 (1430) for P = 0 at
similar

√
s in Fig. 4. In this case we employ T+

2 of Oh

which does not mix l = 1 with l = 0, 2. We use a 2 × 2
correlation matrix with interpolators

s̄|ǫijk|γj∇ku , s̄|ǫijk|γtγj∇ku ,

for T+
2 .
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FIG. 5. The p-wave scattering phase shift δl=1 as a function of
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results from different irreducible representations (2), while the δ1 point obtained by taking into account δ1,2 mixing is indicated
by black dot. Note that three points (circle, triangle and diamond) near

√
s ≃ 0.91 GeV are overlapping. The line represents

a fit over a pair of Breit-Wigner resonances (see equation (11)).

V. PHASE SHIFTS AND K∗ RESONANCES IN

I = 1/2 CHANNEL

Each energy level En from the previous section renders

a specific momentum p∗ = |pcmf
K | = |pcmf

π | of π and K in
center-of-momentum frame via

√
s =

√

E2
n − P 2 =

√

m2
π + p∗2 +

√

m2
K + p∗2 ,

q ≡ L
2πp

∗ , (6)

where q is dimensionless. Unlike in experiment, where p∗

is continuous due to L =∞, in our simulation we obtain
only discrete values of p∗.

1. Phase shift δ1 for
√
s < 1.3 GeV and the K∗(892)

resonance

Kπ scattering in p-wave is known to be elastic for√
s < 1.3 GeV experimentally [8, 9]. In this region the

elastic phase shift δl=1(s) at s = E2
n − P 2 is reliably

extracted for each value of q = p∗L/2π (or En). The
relation δ1(s) = atan[π3/2q/Z00(1; q

2)] for P = 0 was
originally derived by Lüscher in [42, 43]. For the case of
P 6= 0 the relevant Lüscher-type relations were derived
in [3], where they are explicitely given by the equations
(41), (42) and (56) for the irreducible representations
B3, B2 and E, respectively. These three relations ne-
glect δl=2(s): this is a good approximation for the region√
s < 1.3 GeV since it is below K∗

2 (1430) [8, 9]. The
resulting δ1 is plotted in Fig. 5 and listed in Table 2.
The main uncertainty in the resulting phases is the ne-

glect of the exponential finite-volume corrections, which
may not be completely negligible on our small volume
and will have to be addressed in future simulations with
larger L.

The Lüscher-like relations provide only tan(δ1), so the
resulting phase is determined up to ±N · 180◦ and we
choose N such that the phase is rising with increasing√
s (as expected in a elastic resonant channel where δ

increases by 180◦ for each resonance).
There are four phase shift points in the vicinity of

K∗(892) and a fast rise of the phase in a narrow region
around

√
s ≃ 0.89 GeV ≃ mK∗ is apparent. These four

points will be used for the exploratory extraction of the
K∗(892). Note that phase shift points from B3, E and
T−
1 , that almost overlap in

√
s, overlap also in δ1; this

is a non-trivial check of the approach since Lüscher’s re-
lations for these three irreducible representations have a
different form [3, 4].
The four phase shift points with

√
s near the narrow

K∗(892) are expected to be well described by the Breit-
Wigner form

Tl(s) =

√
sΓ(s)

m2
K∗ − s− i

√
sΓ(s)

=
e2iδl(s) − 1

2i
=

1

cot δl(s)− i
,

Γ(s) = Γ[K∗ → Kπ] =
g2

6π

p∗3

s
. (7)

where the K∗ → Kπ width Γ is parametrized in terms
of the phase space and the K∗(892) → Kπ coupling g.
The phase space is smaller for mπ = 266 MeV than for
mphy

π , while the coupling g is expected to be only mildly
dependent on mπ, as explicitely verified within unita-
rized ChPT in [32]. So our main result will not be the
width but rather the coupling g, that will be compared
to the experiment. The Breit-Wigner relation (7) can be
rewritten in the form

p∗3√
s
cot δ1(s) =

6π

g2
(m2

K∗ − s) (8)
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and the values of the left-hand side are provided in
Fig. 6 and Table III. The linear fit in s over the four
phase shift points leads to g and mK∗ in Table II and
these agree well with mK∗ and g derived from the ex-
periment. Our results apply for mπ,K on our lattice,
but mπ dependence of g was shown to be very mild
g(mπ = 266 MeV)/g(mphy

π ) ≃ 1.03 within unitarized
ChPT, while its mK dependence is completely negligi-
ble [32].

This result can also be compared to g =
√
6π ḡ =√

6π 1.44 = 6.25 as obtained in the simulation [14] using
the amplitude method and assuming that the K∗ and
Kπ lattice energies are equal.

mK∗(892) gK∗(892) mK∗(1410) gK∗(1410)

[MeV] [no unit] [GeV] [no unit]

lat 891± 14 5.7± 1.6 1.33 ± 0.02 input

exp 891.66 ± 0.26 5.72± 0.06 1.414 ± 0.0015 1.59± 0.03

TABLE II. The resulting resonance masses and K∗
i → Kπ

couplings g, which parametrize the width Γ[K∗
i → Kπ] =

(g2i p
∗3)/(6πs). The lattice results apply for our mπ ≃

266 MeV and mK ≃ 552 MeV, while the experimental
couplings are derived from the observed Γ[K∗

i → Kπ] =
Br[K∗

i → Kπ]ΓK∗

i
and the values of p∗ and s in experiment.

0.31 0.32 0.33 0.34
s

-0.015

-0.012

-0.009

-0.006

-0.003

0

p*3
co

t δ
1/√

s

FIG. 6. The combination (p∗a)3√
sa2

cot δ1(s) as a function of

sa2 in the vicinity of a narrow K∗(892) resonance. The de-
pendence is expected to be linear (8) for a Breit-Wigner res-
onance and the linear fit leads to mK∗ and the coupling g or
Γ[K∗ → Kπ] (7).

2. The phase shift δ1 for 1.3 <
√
s < 1.6 GeV and

K∗(1410), K∗
2 (1430)

Unlike in the region
√
s < 1.3 GeV, our exploratory

extraction of the physics information from the energy
levels in the region

√
s > 1.3 GeV will inevitably be less

reliable and based on certain approximations.

First of all, we will assume that the Kπ scatter-
ing in our simulation is elastic (|1 + 2iTl| = 1) up to√
s < 1.6 GeV, which is a strong approximation but in-

dispensable for using Lüscher’s relations to extract the
phase shift at present. In reality the Kπ channel is cou-
pled in this region to K∗π and Kρ channels, and ex-
perimentally Br[K∗(1410) → Kπ] = 6.6 ± 1.3% while
Br[K∗(1680) → Kπ] = 38.7 ± 2.5%. The treatment
of such an inelastic problem is unfortunately beyond the
ability of current lattice simulations, although some prac-
tically very challenging approaches have been proposed
analytically [34, 44–47]. In fact, we expect that the in-
fluence of K∗π and Kρ channels in our simulation is not
significant, since we did not explicitly incorporate K∗π
and Kρ interpolators4.
The second complication stems from the fact that d-

wave phase shift δ2 cannot be neglected around
√
s ≃

mK∗

2
(1430) in Lüscher’s relations. Therefore we derived

the Lüscher relations that contain δ1 as well as δ2 for ir-
reps considered here: they are obtained from the so-called
determinant condition5 Eq. (28) in [3] by keeping non-
zero δ2. For each irrep B3, B2, E we get one (lengthy)
phase shift equation (analog to Eqs. (41), (42), (56) in
[3]), which depends on q (see 6), δ1(s) and δ2(s).
For a given level En in a given irrep, we know q (6)

and s = E2
n−P 2, but one phase shift equation alone can-

not provide the values for two unknowns δ1(s) and δ2(s).
Another level in another irrep unfortunately leads to two
different unknowns δ1(s̃) and δ2(s̃), since this level in gen-
eral corresponds to a different s̃ (see discussion in Section
3.1.3 of [3]). We overcome this serious difficulty by not-
ing that the four levels with ”ID” K∗(1410) all come in
a very narrow range of

√
s = 1.34± 0.01 GeV (see Table

III). By making a reasonable approximation that s is the
same for all four levels, we extract the unknown δ1 and
δ2 by solving simultaneously two phase shift equations,
namely for6

level 3 in irrep B2 & level 2 in irrep E :
√
s = 1.34± 0.01 GeV→

δ1 = 329.9◦ ± 4.4◦ δ2 = 89.6◦ ± 7.1◦ . (9)

Then we extract δ1,2 from another pair of phase shift
equations, corresponding to

level 3 in irrep B2 & level 2 in irrep B3 :
√
s = 1.34± 0.01 GeV→

δ1 = 329.8◦ ± 4.9◦ δ2 = 91.4◦ ± 6.2◦ (10)

4 Similarly, most of previous simulations of meson resonances with
q̄q interpolators assume that the scattering levels are not seen
when they are not explicitly incorporated.

5 For the original derivation of determinant condition see [42, 48,
49].

6 The levels n = 3 in irreps E(ex,y) and E(ex ± ey) occur at very
similar

√
s, so they both lead to consistent δ1,2 via the same

Lüscher relation (56) in [3]. The errors on the resulting δ1,2 in
(9,10) are determined from the minimal and maximal values of√
s in the range

√
s = 1.34± 0.01 GeV.
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arriving at consistent results for the phases when com-
pared to (9), which indicates that our approximations are
sensible. For the third pair of irreps, B3 and E, we did
not find a solution in the range of real δ1,2. The average
δ1 from (9) and (10) is provided for the corresponding
levels in Table III and by the black dot in Fig. 5.
Finally we attempt an exploratory extraction of

K∗(1410) resonance parameters by fitting the resulting δ1
using a Breit-Wigner parametrization for two resonances
in the elastic region (see equations (7,8))

p∗3√
s
cot δ1(s) =

[

∑

K∗

i

g2K∗

i

6π

1

m2
K∗

i

− s

]−1

, (11)

K∗
i = K∗(892), K∗(1410) .

This satisfies cot δ1 = 0 or δ = 90◦±N ·180◦ at the posi-
tion of each resonance s = m2

K∗

i

, while the relation of the

phase (11) to the amplitude Tl (7) ensures the elasticity
condition |1+2iTl(s)| = 1. We fix mK∗(892) and gK∗(892)

in (11) to the values in Table II extracted in this paper.
The fit with two free parameters gK∗(1410) and mK∗(1410)

is unfortunately not stable since there are only two phase
shift points in the vicinity of K∗(1410). Therefore we
perform the Breit-Wigner7 fit (11) over the few avail-
able points in Fig. 5 by fixing gK∗(1410) to the value
gexpK∗(1410) = 1.59 ± 0.03 derived from Γexp[K∗(1410) →
Kπ]. The resulting resonance mass mK∗(1410) in Table

II8 is lower than in the experiment.
Let us point out again that our results for K∗(1410)

resonance rely on (i) the elasticity in the simulation, (ii)
closeness of s for certain levels (9,10) and a Breit-Wigner
fit (11) over only a few values of the phase shift. Given
these caveats, the reasonable agreement with experiment
is satisfactory.

VI. PHASE SHIFTS IN I = 3/2 CHANNEL

The p-wave scattering with I = 3/2 was found to be
elastic up to

√
s < 1.8 GeV in experiment [8], while the

d-wave with I = 3/2 was found to be negligible [8]. So
we extract δ1 assuming elasticity and δ2 = 0, employing
the same phase shift relations as for I = 1/2 in Section
V 1. The resulting δ1 in Fig. 2 and Table IV is small and

7 The resulting fit in Fig. 5 indicates the weakness of the sim-
ple Breit-Wigner parametrization (see equations (8,11)), where
δ1 approaches N ·180◦ to slowly at high

√
s. An improved fit

that incorporated damping of p∗3 in Γ(s) at high energies was
performed in the simulation of ρ [16]. Since such a fit contains
additional free parameters, it is beyond our present analysis with
only few phase shift points.

8 This is the only fit where the errors are not determined using the
single-elimination jack-knife procedure due to the special treat-
ment of the level near

√
s ≃ 1.34 GeV. The errors on mK∗(1410)

follow from the variation of δ(s) and gexp
K∗(1410)

in 1σ ranges.

negative (or else consistent with zero9) up to high
√
s, as

expected in this repulsive channel with exotic isospin.

VII. CONCLUSIONS

We presented an exploratory study aimed to extract
the masses and widths of K∗(892) and K∗(1410) reso-
nances. For that purpose we simulated the Kπ scatter-
ing in p-wave and extracted the I = 1/2, 3/2 phase shifts
δl=1 shown in Fig. 5. The Kπ system can have only dis-
crete values of the invariant mass s =

√
E2 − P 2 due to

the discretized momentum on the finite lattice. The val-
ues in Fig. 5 were obtained by combining results from
scattering with total momentum P 6= 0 and P = 0.
The resonant I = 1/2 and non-resonant I = 3/2 chan-

nels show the expected differences in lattice spectrum
and phase shift. All energy levels in the I = 3/2 chan-
nel are near the expected Kπ scattering states. In the
I = 1/2 channel we find the Kπ scattering states as well
as additional energy levels near the resonances K∗(892)
and K∗(1410). The I = 3/2 phase shift is negative and
small up to high energies, while the I = 1/2 phase shows
steep jumps at the K∗(892) and K∗(1410) resonances.
The Breit-Wigner fit over the four phase shift points

near
√
s ≃ mK∗(892) leads to the K∗(892) → Kπ cou-

pling (that parametrizes ΓK∗) and the K∗(892) reso-
nance mass in Table II. They agree with the experimen-
tal values within error. Our treatment of K∗(892) is
rigorous, since this region is elastic and the p-wave com-
pletely dominates the considered irreducible representa-
tions. The remaining uncertainty is due to the finite
volume and the lattice spacing, which would have to be
systematically addressed in future lattice simulations.
The K∗(1410) resonance mass is extracted by fitting

δ1 in Fig. 5 for
√
s < 1.6 GeV with two Breit-Wigner

resonances (11). In this fit the K∗(1410)→ Kπ coupling
is fixed to the experimental value and the K∗(892) values
are fixed to our lattice results. The extracted K∗(1410)
resonance mass in Table II is slightly lower than in ex-
periment. We note that our analysis of the region near
the K∗(1410) resonance is inevitably less rigorous, as it
neglects the possible presence of K∗π and Kρ channels,
which might be a good approximation in our simulation
without explicit K∗π and Kρ interpolators. An addi-
tional challenge in the region near K∗(1410) comes from
the mixing of p-wave and d-wave for P 6= 0, which we
take into account near the K∗(1410) and K∗

2 (1430) res-
onances.
This exploratory simulation of the K∗(892) → Kπ

strong decay is a first step toward treating the weak form
factors B → K∗ and D → K∗ while taking into account

9 The phase is consistent with zero if E is consistent with En.i.

(5). This is true for some of our higher lying levels, where it
is challenging to accurately determine the energy shift ∆E =
E − En.i..
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L
2π

P irrep level Ea
√
s [GeV] p∗a δ1 [◦] − cot(δ)(p∗a)3√

sa2
t0 interp. fit “ID”

ex + ey B2 1 0.7887(59) 0.892(13) 0.105(10) 126.7(8.6) 0.001557(64) 2 Oq̄q
1,3,4,5 OKπ

6,7 1expu: 7-11 K∗(892)

ex + ey B2 2 0.9743(42) 1.2749(83) 0.2991(34) 168.1(2.1) 0.159(25) 4 Oq̄q
1,2,5 OKπ

6,7 1expu: 6-11 K(1)π(1)

ex + ey B2 3 1.006(16) 1.336(31) 0.324(13) 149.9(4.7)[∗] 0.0328(14)[∗] 4 Oq̄q
1,2,5 OKπ

6,7 1expu: 6-9 K∗(1410)

ex + ey B2 4 1.112(11) 1.533(20) 0.4000(74) 4 Oq̄q
1,2,5 OKπ

6,7 1expu: 6-9 K∗
2 (1430)

ex + ey B3 1 0.7994(16) 0.9158(35) 0.1226(24) 162.8(0.7) 0.010337(90) 2 Oq̄q
2,3,4,5 OKπ

6,7,8 2expc: 3-13 K∗(892)

ex + ey B3 2 1.0164(81) 1.356(15) 0.3317(61) 149.9(4.7)[∗] 0.0328(14)[∗] 4 Oq̄q
2,3,4,5 OKπ

6,7,8 1expu: 5-8 K∗(1410)

ex + ey B3 3 1.073(15) 1.462(28) 0.373(11) 4 Oq̄q
2,3,4,5 OKπ

6,7,8 1expu: 6-10 K∗
2 (1430)

ez E(ex,y) 1 0.6906(28) 0.9048(53) 0.1149(38) 164.3(1.2) 0.00951(14) 2 Oq̄q
1,2,3,4,5 OKπ

6,7 2expc: 4-15 K∗(892)

ez E(ex,y) 2 0.9236(82) 1.331(14) 0.3220(58) 149.9(4.7)[∗] 0.0328(14)[∗] 4 Oq̄q
1,2,3,4,5 OKπ

6,7 1expu: 5-9 K∗(1410)

ez E(ex,y) 3 0.975(12) 1.422(20) 0.3575(78) 4 Oq̄q
1,2,3,4,5 OKπ

6,7 1expu: 6-9 K∗
2 (1430)

ez E(ex±y) 1 0.6937(20) 0.9107(39) 0.1190(27) 163.0(0.9) 0.00966(10) 2 Oq̄q
1,2,3,4 OKπ

7 2expc: 3-14 K∗(892)

ez E(ex±y) 2 0.9268(84) 1.337(15) 0.3242(59) 149.9(4.7)[∗] 0.0328(14)[∗] 4 Oq̄q
1,2,3,4,5 OKπ

6,7 1expu: 5-8 K∗(1410)

ez E(ex±y) 3 0.9977(92) 1.461(16) 0.3725(61) 4 Oq̄q
1,2,3,4,5 OKπ

6,7 1expu: 5-9 K∗
2 (1430)

0 T−
1 1 0.5749(19) 0.9156(30) 0.1225(21) 160.6(0.7) 0.00908(11) 4 Oq̄q

1,2,3 OKπ
6 1expc:8-16 K∗(892)

0 T−
1 2 0.9558(44) 1.5223(70) 0.3958(26) 177.0(2.6) 1.2(1.0) 4 Oq̄q

1,2,3 OKπ
6 1expc:8-12 K(1)π(−1)

TABLE III. Results for Kπ scattering in p-wave with I = 1/2. Total momenta P 6= 0 in different irreducible representations
(2) were considered in this work, while P = 0 was simulated in [4]. Here E is energy in the lattice frame, inverse lattice spacing
is a−1 ≃ 1.592 GeV,

√
s = mKπ =

√
E2 − P 2 is the Kπ invariant mass and p∗ are the kaon/pion momenta in CMF (6). The

δ1 for levels near
√
s ≃ mK∗

2
is indicated by [∗]: it is an average of (9) and (10), where the analysis takes into account the

mixing of p-wave and d wave at P 6= 0. The phases extracted from Lüscher-type relations are undetermined up to ±N ·180◦
and we choose N such that absolute value of δ1 is rising with increasing

√
s. Superscripts c and u in the fit indicate correlated

and uncorrelated fits, respectively. For easier identification “ID” indicates the dominant Fock-component according to our
interpretation.

L
2π

P irrep level Ea
√
s [GeV] p∗a δ [◦] − cot(δ)(p∗a)3√

sa2
t0 interp. fit “ID”

ex + ey B2 1 0.9674(39) 1.2615(77) 0.2935(32) −8.4(2.0) 0.215(44) 4 OKπ
6,7 1expu: 6-14 K(1)π(1)

ex + ey B2 2 1.2484(66) 1.781(12) 0.4900(42) −22(11) 0.26(13) 4 OKπ
6,7 1expu: 6-9 K(2)π(2)

ex + ey B3 1 1.1959(61) 1.687(11) 0.4564(40) −11(20) 0.49(88) 4 OKπ
6,7,8 1expu: 7-9 K(3)π(1)

ex + ey B3 2 1.238(20) 1.762(35) 0.483(13) −2(15) 3(41) 4 OKπ
6,7,8 1expu: 8-11 K(1)π(3)

ez E(ex,y) 1 1.0852(62) 1.611(11) 0.4288(39) −3.9(8.6) 1.2(2.7) 4 OKπ
6,7 1expu: 7-11 K(2)π(1)

ez E(ex,y) 2 1.1204(74) 1.671(13) 0.4507(46) −11.7(4.3) 0.42(15) 4 OKπ
6,7 1expu: 7-10 K(1)π(2)

0 T−
1 1 0.9653(31) 1.5374(49) 0.4015(18) −8.6(1.8) 0.443(91) / OKπ

6 1expu:8-14 K(1)π(−1)

TABLE IV. Same as Table III but for the I = 3/2 channel.

the K∗ → Kπ decay. Some analytic ideas along these
lines have already been proposed in [50]. This would be
a challenging, but an important endeavor, since the reso-
nant nature of K∗ is limiting the precision at which phe-
nomenologically important quantities are extracted from
the lattice at present [1, 2].
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Appendix A: Interpolators for Kπ scattering in

p-wave with I = 1/2, 3/2

Here we provide the I = 1/2 and I = 3/2 interpola-
torsOq̄q andOKπ with total momentum P for irreducible
representations B2, B3, E(ex,y), E(ex+ ey), which con-
tain Kπ scattering with l = 1 in continuum (see Section
III). These interpolators were proposed in [3], where the
correct transformation properties of these were demon-
strated. The interpolators for irrep T−

1 at P = 0 were
presented and simulated in [4].

1. I = 1/2

In each irrep we use five Oq̄q
op (op = 1, .., 5), which are

all constructed from vector currents V op
i (P ) with polar-

ization i

V op=1
i =

∑

x s̄(x) γie
iPx u(x) , (A1)

V op=2
i =

∑

x s̄(x) γtγie
iPx u(x) ,

V op=3
i =

∑

x,j s̄(x)
←−∇j γi

−→∇j e
iPxu(x) ,

V op=4
i =

∑

x s̄(x)
1
2

[−→∇i −
←−∇i

]

eiPxu(x) ,

V op=5
i =

∑

x,j,k ǫijk s̄(x)γjγ5
1
2

[−→∇k −
←−∇k

]

eiPxu(x) .

The OKπ interpolators are linear combinations of
K(pK)π(pπ) where momenta for K and π are separately
projected

K+(pK) =
∑

x

eipKxs̄(x)γ5u(x) , (A2)

π+(pπ) =
∑

x

eipπxd̄(x)γ5u(x) ,

and analogously for K0 and π0.
In practice we simulated three permutations of direc-

tion P = 2π
L ez, and three of direction P = 2π

L (ex + ey),
but present only interpolators for one choice.

a. Interpolators for irrep B2 (C2v) with P = 2π
L
(ex + ey)

Oq̄q
op=1,..,5 =V op

x (ex + ey)− V op
y (ex + ey) , (A3)

OKπ
6 =

√

1
3

[

π0(ex)K
+(ey)− π0(ey)K

+(ex)
]

+
√

2
3

[

..
]

,

OKπ
7 =

√

1
3

[

π0(ex + ez)K
+(ey − ez)

−π0(ey + ez)K
+(ex − ez) + {ez ↔ −ez}

]

+
√

2
3

[

..
]

,

where [..] indicates another term with replacement π0 →
π+ and K+ → K0. Momenta K and π in OKπ are given
in units of 2π/L.

b. Interpolators for irrep B3 (C2v) with P = 2π
L
(ex + ey)

Oq̄q
op=1,..,5 =V op

z (ex + ey) , (A4)

OKπ
6 =

√

1
3

[

π0(ex + ey + ez)K
+(−ez)

−π0(ex + ey − ez)K
+(ez)

]

+
√

2
3

[

..
]

,

OKπ
7 =

√

1
3

[

K+(ex + ey + ez)π
0(−ez)

−K+(ex + ey − ez)π
0(ez)

]

+
√

2
3

[

..
]

,

OKπ
8 =

√

1
3

[

π0(ex + ez)K
+(ey − ez)

+π0(ey + ez)K
+(ex − ez)− {ez ↔ −ez}

]

+
√

2
3

[

..
]

.

c. Interpolators for irrep E (ex,y) (C4v) with P = 2π
L
ez

The two-dimensional basis is (ex, ey) and we list inter-
polators for ex (but simulate also ey):

Oq̄q
op=1,..,5 =V op

x (ez) , (A5)

OKπ
6 =

√

1
3

[

π0(ez + ex)K
+(−ex)

−π0(ez − ex)K
+(ex)

]

+
√

2
3

[

..
]

,

OKπ
7 =

√

1
3

[

K+(ez + ex)π
0(−ex)

−K+(ez − ex)π
0(ex)

]

+
√

2
3

[

..
]

.

d. Interpolators for irrep E (ex ± ey) (C4v) with P = 2π
L
ez

The two-dimensional basis is (ex + ey, ex − ey) and we
list interpolators for ex − ey:

Oq̄q
op=1,..,5 =V op

x (ez)− V op
y (ez) , (A6)

OKπ
6 =

√

1
3

[

π0(ez + ex − ey)K
+(−ex + ey)

−π0(ez − ex + ey)K
+(ex − ey)

]

+
√

2
3

[

..
]

,

OKπ
7 =

√

1
3

[

K+(ez + ex − ey)π
0(−ex + ey)

−K+(ez − ex + ey)π
0(ex − ey)

]

+
√

2
3

[

..
]

.

2. I = 3/2

There are no quark-antiquark interpolators with I =
3/2, so we incorporated only K+π+ interpolators. We
employ all OKπ listed for I = 1/2 with the obvious re-

placement
√

1/3 π0K+ +
√

2/3 π+K0 −→ K+π+.



11

[1] Z. Liu et al., [arXiv:1101.2726].
[2] D. Becirevic, V. Lubicz and F. Mescia, Nucl.Phys. B769,

31 (2007), [arXiv:hep-ph/0611295].
[3] L. Leskovec and S. Prelovsek, Phys. Rev. D 85, 114507

(2012), [arXiv:1202.2145].
[4] C. B. Lang, L. Leskovec, D. Mohler and S. Prelovsek,

Phys.Rev. D86, 054508 (2012), [arXiv:1207.3204].
[5] Z. Fu, Phys. Rev.D85, 014506 (2012), [arXiv:1110.0319].
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