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Abstract
The Standard Model calculation of H → γγ has the curious feature of being finite but regulator-

dependent. While dimensional regularization yields a result which respects the electromagnetic

Ward identities, additional terms which violate gauge invariance arise if the calculation is done

setting d = 4. This discrepancy between the d = 4 − ǫ and d = 4 results is recognized as a

true ambiguity which must be resolved using physics input; as dimensional regularization respects

gauge invariance, the d = 4− ǫ calculation is accepted as the correct SM result. However, here we

point out another possibility; working in analogy with the gauge chiral anomaly, we note that it

is possible that the individual diagrams do violate the electromagnetic Ward identities, but that

the gauge-invariance-violating terms cancel when all contributions to H → γγ, both from the SM

and from new physics, are included. We thus examine the consequences of the hypothesis that the

d = 4 calculation is valid, but that such a cancellation occurs. We work in general renormalizable

gauge, thus avoiding issues with momentum routing ambiguities. We point out that the gauge-

invariance-violating terms in d = 4 arise not just for the diagram containing a SM W± boson, but

also for general fermion and scalar loops, and relate these terms to a lack of shift invariance in

Higgs tadpole diagrams. We then derive the analogue of “anomaly cancellation conditions”, and

find consequences for solutions to the hierarchy problem. In particular, we find that supersymmetry

obeys these conditions, even if it is softly broken at an arbitrarily high scale.
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I. INTRODUCTION

The process H → γγ has great potential to reveal the effects of new physics. This decay is
absent at tree level but arises at one loop; in the Standard Model (SM) its main contribution
comes from a W -boson loop, with effects from the top quark also playing a significant role.
However, notably, H → γγ is also sensitive to heavy charged particles arising in physics
beyond the SM. For this reason, a precise measurement of the H → γγ branching fraction is
highly anticipated. Currently, the branching fraction of the Higgslike particle discovered at
LHC to γγ is measured to be 0.78±0.27 (CMS) [1] and 1.65±0.24(stat)+0.25

−0.18(syst) (ATLAS)
[2] times the SM prediction.

The SM prediction for H → γγ at one-loop order has been known for some time [3–7].
As noted long ago [8–13], the theoretical prediction of H → γγ contains some peculiarities
stemming from the regulator-dependence of momentum integrals which arise in intermediate
steps of the calculation. Although the final result forH → γγ is finite, this comes about after
a cancellation of logarithmically divergent momentum integrals1; depending on the regulator
used, there may or may not be leftover finite terms which affect the electromagnetic gauge
invariance of the calculation. This is an example of behavior pointed out in [14] which
showed that certain finite integrals are regulator-dependent and argued that this regulator
dependence constitutes a true ambiguity in the calculation which must be resolved using
physics input. In the SM, the use of dimensional regularization using dimension d = 4 − ǫ
yields a result that obeys the electromagnetic Ward identities, while calculations using d = 4
yield spurious terms which violate electromagnetic gauge invariance. Thus, dimensional
regularization is commonly used for this calculation; see, for example [3, 5].

In this paper, we consider the possibility that the regulator dependence in H → γγ
is more than a mathematical curiosity. Our motivations for this are as follows. First, as
H → γγ is finite and contains at most logarithmically-divergent terms, one might find
it surprising that we lose gauge invariance simply in passing from d = 4 − ǫ to d = 4
dimensions. For this reason, we wish to explore the consequences of using 4-dimensional
Lorentz invariance instead of gauge invariance as the physics input to determine the value of
the ambiguous integrals in H → γγ. In doing so, we will not abandon gauge invariance, but
will instead require that the gauge-invariance-violating terms cancel when all contributions,
from the SM and from new physics, to H → γγ are included, analogous to the cancellation
of symmetry-violating terms in the SM chiral anomaly. We will discuss the plausibility of
such a cancellation below.

Second, we wish to point out the simple but nonobvious fact that it is possible that the
d = 4 calculation of H → γγ is valid. In the scenario we outline here, the gauge-invariance-
violating terms in the d = 4 calculation are residual artifacts of not knowing the full theory
contributions to H → γγ. If such a scenario is realized in nature, calculations done in the
full theory would give the same result, whether calculated in d = 4 or d = 4− ǫ dimensions.
However, when the full theory is unknown, gauge-invariant regulators, by removing gauge-
invariance-violating terms, may discard clues about new physics. Thus, we wish to consider
the possibility that these terms contain information about physics beyond the SM. We will
try to make this second point more precise below, after we review a few technical details of
our analysis.

We note that there have been many recent papers which have noted the regulator-

1 In unitary gauge, greater-than-logarithmically-divergent integrals arise; as discussed below, we will not

use unitary gauge in this work.
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dependence of the H → γγ calculation. The authors of [15, 16] used unitary gauge and
d = 4, concluding that the previous results on the gauge boson loop contribution to H → γγ
[3–7] were in error. (For responses to their work, see [17–27].) In this work, we use renormal-
izable gauge, with general ξ, but do not consider the case of unitary gauge, ξ → ∞, which is
plagued by greater-than-logarithmic ultraviolet divergences. By choosing not to use unitary
gauge, we will encounter only logarithmically-divergent and finite integrals in our calculation
of H → γγ, and, as these integrals are invariant under a shift of the loop momentum, we do
not need to worry about the details of relative momentum routing between diagrams. Ad-
ditionally, our regulator-dependent terms will be far simpler than those in [15, 16]; they will
be limited to the finite constant term that has been Dyson-subtracted [28] in some previous
works [21, 24]. (Also, see [18] for comments questioning the use of the Dyson subtraction;
we also note that it is argued in [12] that, in this case, such a subtraction and using a
Pauli-Villars regulator are equivalent.) We note that there have been several recent works
introducing new regulators or techniques to obtain gauge-invariant results for H → γγ in
d = 4 [18, 21, 26, 27]; for a similar work using a momentum cutoff while preserving shift in-
variance, see [29]. We do not adopt such a strategy of developing new gauge-invariant d = 4
regulators here, but instead require that gauge invariance be recovered via a cancellation of
the offending terms.

Although a cancellation between SM and new physics contributions which conspires to
preserve gauge invariance in the d = 4 calculation of H → γγ may seem unlikely, we
argue here that such a cancellation is not implausible. First, we point out that the gauge-
invariance-violating terms which arise in d = 4 occur not just for the dominant W± loop,
but also for general fermion and scalar loops. Additionally, these terms are always of the
same form; the contributions to the matrix element Mµν are all ∼ gµν . Lastly, as we show
in Secs. II and III, the problematic terms in d = 4 are related to shifts of quadratically-
divergent Higgs tadpole diagrams, which are manifestations of the SM hierarchy problem.
(Here, when we refer to the hierarchy problem, we refer to the sensitivity of the Higgs mass-
squared to quadratically-divergent radiative corrections.) Thus, we have other theoretical
reasons to suspect that such a cancellation may occur in models which address the problem
of naturalness in the Higgs sector. In Sec. IV, we will make the relation between the
regulator dependence in H → γγ and the hierarchy problem more precise; we find, for
example, that the gauge-invariance-violating terms in the d = 4 calculation do, in fact,
cancel in supersymmetry, even if it is softly broken.

We briefly mention some additional motivation for suggesting a possible analogy between
triangle anomalies and the d = 4 calculation of H → γγ. First is the observation that, in
the case of the SM triangle anomalies, the quantum numbers of the SM fermions conspire
to enforce the Ward identites of the SM gauge group. This indicates that it is, in principle,
possible that one or more symmetries may be preserved by the adjustment of the particle
content of whatever constitutes the full theory of nature. Furthermore, the two cases share
a few additional similarities. In both the triangle anomaly and the d = 4 calculation of
H → γγ, application of the Ward identity to one of the external bosons results in expres-
sions containing linearly-divergent integrals; in both cases, the behavior of these integrals
under loop momentum shifts plays a significant role in the loss of gauge invariance in the am-
plitude.2 One significant difference, however, between the SM chiral anomaly and the d = 4
calculation of H → γγ is that, unlike the case of the chiral anomaly, regulators which pre-

2 It has been pointed out to us by W. Marciano that there may be a relation between H → γγ and the trace

anomaly. As the trace anomaly calculation requires handling quadratically-divergent vacuum polarization

diagrams, we do not attempt to consider this possibility in d = 4.
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serve gauge invariance in H → γγ do exist. Thus, unless we prioritize 4-dimensional Lorentz
invariance over gauge invariance when choosing a regulator, no principle tells us that gauge
invariance in H → γγ must be enforced by a cancellation between diagrams. However, if
nature does enforce gauge invariance via such a cancellation, this places constraints on the
particle content of physics beyond the SM. Thus, the question of whether gauge invariance
is enforced in H → γγ via regularization of individual diagrams or a cancellation between
diagrams can, in principle, be answered empirically. We will discuss this further when we
consider the relevance to the hierarchy problem in Sec. IV.

While we will make the connection between the regularization ambiguities in H → γγ and
the hierarchy problem more precise in Sec. IV, we briefly sketch the argument here. We first
point out that in discussing the hierarchy problem, we are only referring to the sensitivity
of the Higgs self-energy to quadratically-divergent radiative corrections; our results are not
relevant for finite contributions arising from high-scale physics. If we apply the Ward identity
to both final-state photons in H → γγ, we obtain expressions which are closely related to
momentum shifts of the loops inH → γγ with both photons removed; these resulting tadpole
diagrams are a subset of the diagrams which give quadratically-divergent contributions to
the Higgs vacuum expectation value. The difference in the momentum integral in going from
d = 4−ǫ to d = 4 then arises due to differences in shift-invariance between linearly divergent
and less-than-linearly divergent integrals. Thus, when we derive the analogue of “anomaly
cancellation conditions” for H → γγ, we are deriving the conditions under which these
shift-invariance-violating terms cancel; we are taking a feature of dimensional regularization–
invariance under momentum shifts–and, instead of enforcing it with a regulator, building it
directly into those amplitudes relevant when the Ward identities are applied to H → γγ.

The remainder of this paper is organized as follows. In Sec. II, we consider the contribu-
tions to H → γγ mediated by fermion and scalar loops; we discuss the expressions obtained
by applying the Ward identity to these processes and the differences that arise depending
on whether these expressions are evaluated in d = 4 or d = 4 − ǫ dimensions. In Sec. III,
we demonstrate that this same regulator dependence arises in the contribution to H → γγ
mediated by SM gauge boson loops. Then in Sec. IV we explore the implications for the
hierarchy problem of insisting on obtaining gauge-invariant results for H → γγ while using
a d = 4 regulator. We then consider specific solutions to the hierarchy problem and pay
particular attention to the case of supersymmetry. In Sec. V we discuss other possible
consequences of our results and conclude.

II. FERMION AND SCALAR LOOPS

We now investigate the source of the regulator dependence H → γγ. In this section, we
will consider the contributions to H → γγ mediated by fermion and scalar loops. Through-
out this paper, we will represent the photon momenta as q1 and q2, with polarization vectors
ε∗µ1 and ε∗ν2 , respectively. The momentum of the Higgs boson will be denoted pH , and internal
loop momenta will be denoted p.

We first consider the contribution to H → γγ from a fermion loop, as shown in Fig. 1. In
addition to the contribution shown explicitly in Fig. 1, there is a second diagram with the
two photons interchanged, q1 ↔ q2, µ ↔ ν. The amplitude for the sum of the two fermion

4



H

µν

↓ p

տ q1q2 ր

↓ pH

f

FIG. 1. Fermion loop contribution to H → γγ. Another diagram exists with µ ↔ ν, q1 ↔ q2.

diagrams gives

iMf
µνε

∗µ
1 ε∗ν2 = ε∗µ1 ε∗ν2

−λf√
2
e2f

∫

ddp

(2π)d
Tr

[

1

/p+ /q1 + /q2 −mf

γν
1

/p+ /q1 −mf

γµ
1

/p−mf

+
1

/p+ /q1 + /q2 −mf

γµ
1

/p+ /q2 −mf

γν
1

/p−mf

]

(1)

where the two terms in the trace correspond to the two Feynman diagrams. Here, ef
is the fermion charge, mf is the fermion mass, and λf is the Yukawa coupling, which is

λf =
√
2mf/v, where v ∼ 246 GeV is the Higgs vacuum expectation value, if the fermion

gets its mass entirely from the Higgs. For the moment, we have kept the dimension of the
momentum integral d general.

We now apply the Ward identity to this expression twice3, replacing both photon polar-
ization vectors with their respective momenta, ε∗µ1 , ε∗ν2 → qµ1 , q

ν
2 . For the first term in the

trace, we substitute /q1 = (/p+ /q1 −mf )− (/p−mf ), /q2 = (/p+ /q1 + /q2 −mf)− (/p+ /q1 −mf)
to obtain

1

/p+ /q1 + /q2 −mf
/q2

1

/p+ /q1 −mf
/q1

1

/p−mf

=

[

1

/p+ /q1 + /q2 −mf

(

(/p+ /q1 + /q2 −mf )− (/p+ /q1 −mf )
) 1

/p+ /q1 −mf

(2)

(

(/p+ /q1 −mf )− (/p−mf )
) 1

/p−mf

]

=
1

/p−mf

− 1

/p+ /q1 −mf

− 1

/p+ /q1 + /q2 −mf

(/p+ /q1 −mf )
1

/p−mf

+
1

/p+ /q1 + /q2 −mf

.

Similarly, subsituting /q1 = (/p+/q1+/q2−mf )− (/p+/q2−mf ), /q2 = (/p+/q2−mf )− (/p−mf ),

3 Although we expect that similar conclusions would be reached if we only applied the Ward identity to

a single external photon, applying the Ward identity to both photons makes the relation between gauge

invariance in H → γγ and the hierarchy problem more transparent.
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H

↓ p

f

H

↓ p+ q1

f

H

↓ p+ q2

f

H

↓ p + q1 + q2

f

− − +

FIG. 2. The diagrammatic representation, up to a factor of e2f , of the expression obtained by

applying the Ward Identity to the fermionic loop contribution to H → γγ.

the second term in the trace becomes

1

/p+ /q1 + /q2 −mf
/q1

1

/p+ /q2 −mf
/q2

1

/p−mf

=

1

/p−mf

− 1

/p+ /q2 −mf

− 1

/p + /q1 + /q2 −mf

(/p+ /q2 −mf)
1

/p−mf

+
1

/p+ /q1 + /q2 −mf

. (3)

Summing these expressions and substituting them back into iMf
µνq

µ
1 q

ν
2 , we obtain

iMf
µνq

µ
1 q

ν
2 =

−λf√
2
e2f

∫

ddp

(2π)d
Tr

[

1

/p−mf

− 1

/p+ /q1 −mf

− 1

/p+ /q2 −mf

+
1

/p+ /q1 + /q2 −mf

]

. (4)

We now compare the expression in Eq. (4) to that obtained from Higgs tadpole diagrams,
such as those shown in Fig. 2. The amplitude for a single tadpole diagram with fermion
loop momentum p is

iMf
tadpole =

−λf√
2

∫

ddp

(2π)d
Tr

[

1

/p−mf

]

. (5)

We thus notice that the result of applying the Ward identity to both external photons gives
precisely e2f times that obtained from the combination of tadpole diagrams shown in Fig. 2,
which differ from each other only in the definition of their loop momenta. We note that these
tadpole diagrams are quadratically-divergent, as the trace in Eq. (5) equals 4mf/(p

2−m2
f ).

This relation between electromagnetic gauge invariance in H → γγ and changes in Higgs
tadpole diagrams under shifts of loop momenta gives us the first indication of the cause
of the regulator-dependence in H → γγ; dimensional regularization is shift-invariant, so
the difference shown in Fig. 2 gives zero. However, this does not necessarily hold for
d = 4. To see this more explicitly, we return to Eq. (1). We note that all of the terms in
this expression are at most logarithmically divergent. (Although the integral may initially
appear to be linearly-divergent, one may note that nonzero terms in the trace must contain
an even number of gamma matrices; this implies that all terms will contain at least one factor
of mf and lowers the overall divergence to at most logarithmic order.) Also, as we are only
interested in terms which differ in going from d = 4 to d = 4− ǫ, we need not consider finite
terms. However, the divergence structure in H → γγ is independent of external momenta;
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thus, to explore the regulator dependence of Eq. (1), we will greatly simplify the calculation
of all amplitudes by setting q1, q2 = 0.

Evaluating Eq. (1) for q1, q2 = 0, we obtain

iMf
µν

∣

∣

q1,2=0
ε∗µ1 ε∗ν2 = ε∗µ1 ε∗ν2

−λf√
2
e2f

∫

ddp

(2π)d
Tr

[

1

/p−mf

γν
1

/p−mf

γµ
1

/p−mf

+ µ ↔ ν

]

. (6)

Considering just the momentum integral, we obtain
∫

ddp

(2π)d
Tr

[

1

/p−mf

γν
1

/p−mf

γµ
1

/p−mf

+ (µ ↔ ν)

]

=

∫

ddp

(2π)d
1

(p2 −m2
f)

3
Tr

[

(/p+mf )γν(/p+mf)γµ(/p+mf ) + (µ ↔ ν)
]

(7)

=

∫

ddp

(2π)d
1

(p2 −m2
f)

3
Tr

[

mf (2/pγν/pγµ + /pγνγµ/p) +m3
f(γνγµ) + (µ ↔ ν)

]

.

Evaluation of the trace is independent of d, and we obtain

(8mf )

∫

ddp

(2π)d
4pµpν − gµν(p

2 −m2
f )

(p2 −m2
f )

3
. (8)

The integral in Eq. (8) is central to this paper. If evaluated for d = 4, one can do the
substitution 4pµpν → p2gµν and obtain

∫

d4p

(2π)4
4pµpν − gµν(p

2 −m2
f )

(p2 −m2
f )

3
=

∫

d4p

(2π)4
gµνm

2
f

(p2 −m2
f )

3
=

i

(4π)2

(

−gµν
2

)

6= 0. (9)

On the other hand, if one uses d = 4− ǫ, 4pµpν → 4/(4− ǫ)p2gµν , and we get

∫

d4−ǫp

(2π)4−ǫ

4pµpν − gµν(p
2 −m2

f )

(p2 −m2
f )

3
=

∫

d4−ǫp

(2π)4−ǫ

gµν(
ǫ
4
p2 +m2

f)

(p2 −m2
f )

3
. (10)

Using
∫

d4−ǫp

(2π)4−ǫ

p2

(p2 −m2
f)

3
=

i

(4π)2

(

2

ǫ
+ finite

)

, (11)

we find
∫

d4−ǫp

(2π)4−ǫ

4pµpν − gµν(p
2 −m2

f )

(p2 −m2
f )

3
= 0. (12)

We thus see that the evaluation of the integral in Eq. (8) differs in going from d = 4 to
d = 4 − ǫ. We now relate this back to the behavior of Higgs tadpole diagrams under shifts
of loop momenta. As we show in Appendix A,

∫

ddp

(2π)d

(

1

p2 −m2
− 1

(p+ q1)2 −m2
− 1

(p+ q2)2 −m2
+

1

(p+ q1 + q2)2 −m2

)

= (2)qµ1 q
ν
2

∫

ddp

(2π)d
4pµpν − gµν(p

2 −m2)

(p2 −m2)3
. (13)
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Thus, comparing the result in Eq. (13) to to those in Eqs. (9) and (12), we see explicitly
that the combination of tadpole diagrams shown in Fig. 2 gives zero when evaluated in
dimensional regularization, but gives a nonzero result when evaluated for d = 4.

To make the source of the difference in behavior between d = 4 and d = 4 − ǫ more
transparent, let us consider just the first two terms in the difference in Eq. (13),

∫

ddp

(2π)d

(

1

p2 −m2
− 1

(p+ q)2 −m2

)

=

∫

ddp

(2π)d
2p · q + q2

(p2 −m2)((p+ q)2 −m2)
. (14)

Thus, the combination of the four tadpole terms given in Eq. (13) can be written as a
difference between two terms

∫

ddp

(2π)d

(

2p · q1 + q21
(p2 −m2)((p+ q1)2 −m2)

− 2(p+ q2) · q1 + q21
((p+ q2)2 −m2)((p+ q1 + q2)2 −m2)

)

(15)

which themselves differ from each other by only a momentum shift, p → p+ q2. (Explicitly,
the difference in Eq. (13) is obtained if we take the change in the tadpole diagram when the
loop momentum is shifted by q1 and then compute the change in the resulting expression
under a loop momentum shift of q2. We will loosely refer to this as performing successive
momentum shifts of q1 and q2.) We now consider a point shown in [30], namely that linearly-
divergent integrals are not invariant under loop momentum shifts, but that less-than-linearly-
divergent integrals are. Thus when Eq. (15) is evaluated with d = 4, it is the change
under a loop momentum shift of a linearly-divergent integral. However, when dimensional
regularization is used, setting d = 4− ǫ renders these terms less-than-linearly divergent, and
thus shift-invariant; thus, for d = 4− ǫ, the expression in Eq. (15) vanishes. And, thus, we
see why gauge-invariance is violated in going from d = 4−ǫ to d = 4: although the Feynman
diagrams for H → γγ are themselves invariant under shifts in the loop momenta, applying
the QED Ward identity to H → γγ yields an expression which is equal to the change in a
divergent integral under a shift in loop momentum. For d = 4, this integral is sufficiently
divergent that shifts of loop momenta change the result and thus spoil gauge invariance; for
d = 4− ǫ, the integral is shift-invariant, and no such loss of gauge invariance occurs.

We now repeat the above analysis for a scalar loop, showing an analogous relation between
the application of the Ward identity to H → γγ and the behavior of Higgs tadpole diagrams
under shifts of loop momenta. The diagrams contributing to H → γγ are shown in Fig.
3; like in the fermion loop case, there is also a diagram (not shown) which is identical to
that in Fig. 3 a) but with the two external photons interchanged. Writing the four-scalar
term in the Lagrangian4 as LSSHH = −2λSS

+S−φ†φ, where φ is the SM Higgs doublet, the
Feynman rule for the HS+S− vertex is −2iλSv, and the sum of the amplitudes gives

iMS
µνε

∗µ
1 ε∗ν2 =ε∗µ1 ε∗ν2 2λSve

2
S

∫

ddp

(2π)d
1

p2 −m2
S

1

(p+ q1 + q2)2 −m2
S

×
[

(2p+ q1)µ(2p+ 2q1 + q2)ν
(p+ q1)2 −m2

S

+
(2p+ q2)ν(2p+ 2q2 + q1)µ

(p+ q2)2 −m2
S

− 2gµν

]

. (16)

We first note that, like the case of the fermion loop, terms in Eq. (16) are at most loga-
rithmically divergent, and this divergence structure is independent of the external momenta.

4 We choose this normalization for λS as it gives the same Feynman rule for the triple-scalar vertex as that

for the Higgs-Goldstone-Goldstone vertex derived from L = −λφ†φφ†φ.
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ν

q2 ր

µ

տ q1

µ

տ q1

ν

q2 ր

a) b)

H

↓ p

↓ pH

S

H

↓ p

↓ pH

S

FIG. 3. Scalar loop contributions to H → γγ. Another diagram exists identical to a) but with

µ ↔ ν, q1 ↔ q2.

Thus, if we are interested in only those terms which can depend on the regulator, we can
set q1 = q2 = 0. Doing so yields

iMS
µν

∣

∣

q1,2=0
ε∗µ1 ε∗ν2 = ε∗µ1 ε∗ν2 4λSve

2
S

∫

ddp

(2π)d
4pµpν − gµν(p

2 −m2
S)

(p2 −m2
S)

3
. (17)

Thus, we see that the same regulator-dependent integral occurs as in the fermion case.
Returning now to the case of general q1, q2, we apply the Ward identity to both of

the external photons, replacing their polarization vectors in Eq. (16) with their respective
momenta.

iMS
µνq

µ
1 q

ν
2 =2λSve

2
S

∫

ddp

(2π)d
1

p2 −m2
S

1

(p+ q1 + q2)2 −m2
S

×
[

((p+ q1)
2 − p2)((p+ q1 + q2)

2 − (p+ q1)
2)

(p+ q1)2 −m2
S

+
((p+ q2)

2 − p2)((p+ q1 + q2)
2 − (p+ q2)

2)

(p+ q2)2 −m2
S

− 2q1 · q2
]

. (18)

After straightforward simplification, this becomes

iMS
µνq

µ
1 q

ν
2 = 2λSve

2
S

×
∫

ddp

(2π)d

[

1

p2 −m2
S

− 1

(p+ q1)2 −m2
S

− 1

(p+ q2)2 −m2
S

+
1

(p+ q1 + q2)2 −m2
S

]

. (19)

We can now compare this to the amplitude for the scalar loop contribution to a Higgs
tadpole, shown in Fig. 4,

iMS
tadpole = 2λSv

∫

ddp

(2π)d
1

p2 −m2
S,

(20)

and we see that applying the Ward identity to both photons in the scalar loop contribution
to H → γγ yields behavior essentially identical to that of the fermion loop contribution.
Specifically, applying the Ward identity to both photons yields a regulator-dependent expres-
sion which, up to a factor of the square of the loop particle’s charge, is equal to the change

9
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↓ p
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FIG. 4. Scalar loop contribution to the Higgs tadpole.
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H
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H
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φ

ν
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տ q1
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c

ν
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µ

տ q1

h)

φ

H

↓ pH

W

i)

W

φ

ν

q2 ր

µ

տ q1

g)

φ

H

↓ pH

φ

ν

q2 ր

µ

տ q1

f)

ց p

φ

W

H

↓ pH

φ

ց p

W

ց p

W

ց p

W

H

↓ pH

φ W
↓ p + q1

µ

տ q1

ν

q2 ր

µ

ν

ւ q1

q2 ↑

j)

H

↓ pH

↓ p

W

↓ p

W

ν

q2 ր

µ

տ q1

c)

H

↓ p

↓ pH

φ

FIG. 5. Gauge boson loop contributions to H → γγ. Diagrams also exist identical to a), c), e),

f), and i) but with µ ↔ ν, q1 ↔ q2. Diagram e) should be taken as a sum over both charged ghost

fields. Diagrams identical to g), h), and j) exist but with µ ↔ ν, q1 ↔ q2 and/or the internal lines

attached to H interchanged.

of the corresponding Higgs tadpole diagram subjected to two successive loop momentum
shifts of q1 and q2.

We will now extend this analysis to the case of the SM W± loop.

III. W LOOP

We now wish to show that the behavior observed for the fermionic and scalar contributions
to H → γγ also occurs for the contribution from the SM W± loop. We work in general
Rξ gauge, and thus must include diagrams which contain charged Goldstone bosons and
charged ghost fields. These diagrams are shown in Fig. 5; momenta are defined as in the
case of the fermion and scalar loops.
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H H

↓ p

φ

H

↓ p

c

a) b) c)

↓ p

W

FIG. 6. Higgs tadpole contributions from loops of a) the W± boson, b) chaeged Goldstone bosons,

and c) charged ghosts in renormalizeable gauge.

Because we work in Rξ gauge but do not take the unitary ξ → ∞ limit, the diagrams in
Fig. 5 contain only logarithmically divergent and finite terms. As in the fermion and scalar
loop cases, all divergent, and therefore possibly regulator-dependent terms, are independent
of the external momenta. Thus, we will forgo the complete calculation of H → γγ and
instead calculate only the amplitudes setting pH = q1 = q2 = 0; we then examine the
difference obtained in going from d = 4 − ǫ to d = 4. As the change in the amplitude
in going from d = 4 to d = 4 − ǫ is independent of the external momenta, we can then
apply this result to the physical case where all external particles are on-shell, p2H = m2

H ,
q21 = q22 = 0. We take the physical case to obey the Ward identity when evaluated with
dimensional regularization, d = 4 − ǫ; thus, any terms that violate the Ward identity in
d = 4 will be contained in the regulator-dependent terms in the amplitude. We then show
that the difference between the d = 4− ǫ and d = 4 cases is reflected in the behavior of the
tadpoles in Fig. 6 under successive momentum shifts of q1 and q2.

We present our results for Mi
µν for each of these diagrams below. A few notes are in

order about these various terms. First, additional diagrams exist which can be obtained from
those in Fig. 5 by exchange of external photons or by exchange of internal lines. Second, we
will explicitly write the momentum integrals in d = 4− ǫ dimensions; for the case of d = 4, ǫ
should be set to 0. Lastly, we note that Eqs. (21-33) are all evaluated for q1 = q2 = pH = 0,
even though, for simplicity, we have not labelled them as such.

We begin with the diagrams which contain only W bosons, diagrams a) and b). In the
case of diagram a), we must also include the contribution from the diagram with the external
photons interchanged, q1 ↔ q2, µ ↔ ν. The sum of these two contributions gives

iMa
µνε

∗µ
1 ε∗ν2 = ε∗µ1 ε∗ν2 (e2gMW )

∫

ddp

(2π)d
2

(p2 −M2
W )3

[

(

2p2gµν + (10− 4ǫ)pµpν
)

− (1− ξ)

(p2 − ξM2
W )

(3p4gµν − 3p2pµpν) +
(1− ξ)2

(p2 − ξM2
W )2

(p6gµν − p4pµpν)

]

, (21)

and

iMb
µνε

∗µ
1 ε∗ν2 = ε∗µ1 ε∗ν2 (e2gMW )

∫

ddp

(2π)d
−1

(p2 −M2
W )2

×
[

(6− 2ǫ)gµν − 2
(1− ξ)

(p2 − ξM2
W )

(2p2gµν − 2pµpν) +
(1− ξ)2

(p2 − ξM2
W )2

(2p4gµν − 2p2pµpν)

]

. (22)
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These expressions contain an explicit dependence on ǫ, which results from the contraction
of a metric tensor, gµµ = d. Note that these terms will cancel in the sum.

We now consider the diagrams which contain only Goldstone bosons on the internal lines,
c) and d). This follows exactly as the scalar case discussed in Sec. II with λS = m2

H/2v
2,

and we obtain, for the two contributions represented by c)

iMc
µνε

∗µ
1 ε∗ν2 = ε∗µ1 ε∗ν2

(

e2m2
Hg

MW

)
∫

ddp

(2π)d
4

pµpν
(p2 − ξM2

W )3
; (23)

while, for d), we obtain

iMd
µνε

∗µ
1 ε∗ν2 = ε∗µ1 ε∗ν2

(

e2m2
Hg

MW

)
∫

ddp

(2π)d

[

− gµν
(p2 − ξM2

W )2

]

. (24)

We note that these contributions sum to

iMgoldstone
µν ε∗µ1 ε∗ν2 = ε∗µ1 ε∗ν2

(

e2m2
Hg

MW

)
∫

ddp

(2π)d

[

4pµpν − gµν(p
2 − ξM2

W )

(p2 − ξM2
W )3

]

, (25)

which is in agreement with our results of Section II.
Next, we consider the ghost loops, represented by diagram e). There are actually four

diagrams, obtained by exchanging the external photon lines and summing over the postively-
and negatively-charged ghost fields, c±. For their sum, we obtain

iMe
µνε

∗µ
1 ε∗ν2 = ε∗µ1 ε∗ν2 (e2gMW )

∫

ddp

(2π)d
(−2ξ)

pµpν
(p2 − ξM2

W )3
. (26)

We now consider the remaining diagrams. Diagram f), along with a second diagram
obtained by exchanging the external photon lines, is finite, and, thus regulator-independent;
choosing to include or not include this contribution makes no difference in the final result,
and, for simplicity, we do not include it here. Diagram g) represents four contributions,
obtained by exchanging either the external photon lines or the internal lines attached to the
Higgs. They sum to

iMg
µνε

∗µ
1 ε∗ν2 =ε∗µ1 ε∗ν2 (e2gMW )

×
∫

ddp

(2π)d
4

(p2 − ξM2
W )2

1

(p2 −M2
W )

[

pµpν − (1− ξ)
p2pµpν

(p2 − ξM2
W )

]

. (27)

Diagram h) similarly represents four contributions, which sum to

iMh
µνε

∗µ
1 ε∗ν2 = ε∗µ1 ε∗ν2 (e2gMW )

∫

ddp

(2π)d
(−2ξ)

1

(p2 − ξM2
W )2

1

(p2 −M2
W )

[

p2gµν − pµpν
]

. (28)

The two contributions represented by diagram i) are finite and, thus, regulator-independent;
like the case of diagram f) above, as long as one considers the difference obtained in going
from d = 4− ǫ to d = 4, the choice to include or not include diagram i) makes no difference
in the final result. However, including this diagram simplifies the calculation, so we retain
it here; we obtain

iMi
µνε

∗µ
1 ε∗ν2 =ε∗µ1 ε∗ν2 (e2gMW )

∫

ddp

(2π)d
(−2M2

W )
1

(p2 − ξM2
W )

1

(p2 −M2
W )2

×
[

gµν − (1− ξ)
2pµpν

(p2 − ξM2
W )

+ (1− ξ)2
p2pµpν

(p2 − ξM2
W )2

]

. (29)
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Lastly, for the four diagrams represented by j) (obtained by exchanging the external photons
and/or the internal lines), we obtain

iMj
µνε

∗µ
1 ε∗ν2 =ε∗µ1 ε∗ν2 (e2gMW )

×
∫

ddp

(2π)d
−2

(p2 − ξM2
W )

1

(p2 −M2
W )

[

gµν − (1− ξ)
pµpν

(p2 − ξM2
W )

]

. (30)

We have checked that the expressions for diagrams a), b,) and e)-j), for ξ = 1, reduce to
the divergent terms listed in [3] and that the sum of the expressions for diagrams c) and
d) agrees with that given in [19]. We now examine these results more closely and compare
them to those of the tadpole diagrams shown in Fig. 6. The expressions for these three
tadpole diagrams are

iMW
tadpole = gMW

∫

ddp

(2π)d
1

p2 −M2
W

(

(4− ǫ)− p2(1− ξ)

p2 − ξM2
W

)

,

iMφ
tadpole =

(

gm2
H

MW

)
∫

ddp

(2π)d

(

1

2

)

1

(p2 − ξM2
W )

, (31)

iMc
tadpole = gMW

∫

ddp

(2π)d
−ξ

p2 − ξM2
W

.

First, we examine the diagrams containing only Goldstone particles on the internal legs,
Figs. 5 c) and d), and 6 b). From our discussion of the scalar loop case in Sec. II, we
can see immediately that the Ward Identity, applied to Figs. 5 c) and d), gives e2 times a
double-shift of 6 b). Thus, we will concentrate on the remaining diagrams below.

We note that the W and ghost tadpoles sum5 to a gauge-invariant expression,

iMW+c
tadpole = gMW

∫

ddp

(2π)d
(3− ǫ)

(p2 −M2
W )

. (32)

We show in Appendix B that the sum of diagrams a), b), e)-j) evaluated for q1 = q2 = pH = 0
is

iMa,b,e−j
µν ε∗µ1 ε∗ν2 = ε∗µ1 ε∗ν2 (e2gMW )

∫

ddp

(2π)d
(6− 2ǫ)

4pµpν − gµν(p
2 −M2

W )

(p2 −M2
W )3

+ finite, (33)

where the “finite” term is nonzero and arises from diagram f). We note that the explicit
−2ǫ term in (33) is multiplied by an finite expression, and therefore does not contribute as
ǫ → 0. We retain it here for comparison with Eq. (32), but will drop it in future expressions.

We now examine the regulator dependence of Eq. (33). First, we note that the finite
terms in Eq. (33) do not change in going from d = 4 to d = 4− ǫ. Second, although we have
evaluated this expression for q1 = q2 = pH = 0, the expression for iMa,b,e−j

µν ε∗µ1 ε∗ν2 evaluated
for on-shell external states differs from this one only by (complicated) finite terms which,

5 One may worry that this sum is not well-defined due to momentum-routing amibiguities in the

quadratically-divergent tadpole diagrams. Although these ambiguities do exist, we will be concerned

with differences in tadpole diagrams similar to those shown in Fig. 2; when these differences are taken,

the resulting expressions contain terms which are at most logarithmically divergent, and thus invariant

under momentum shifts. Therefore any momentum-routing ambiguities present in Eq. (32) do not affect

our results.
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being finite, are also regulator-independent. Therefore, if we apply the Ward identity to
both photons in this amplitude, we obtain

iMa,b,e−j
µν qµ1 q

ν
2

∣

∣

on−shell
= qµ1 q

ν
2 (e

2gMW )

∫

ddp

(2π)d
(6)

4pµpν − gµν(p
2 −M2

W )

(p2 −M2
W )3

+ finite. (34)

Comparing with Eq. (13), we see that the only regulator-dependent terms that arise when
the Ward identity is applied to both photons is equal to e2 times the difference of the
expression in Eq. (32) under successive momentum shifts of q1 and q2. Taking the on-shell
amplitude to satisfy the Ward identity when evaluated in d = 4−ǫ and again noting that the
integral in Eq. (12) is zero when evaluated using dimensional regualrization, we conclude
that the finite terms in Eq. (34) vanish. Thus, for d = 4,

iMa,b,e−j
µν qµ1 q

ν
2

∣

∣

on−shell
= qµ1 q

ν
2 (e

2gMW )

∫

d4p

(2π)4
(6)

4pµpν − gµν(p
2 −M2

W )

(p2 −M2
W )3

(d = 4), (35)

which is precisely e2 times the expression for the change in the Higgs tadpole in Eq. (32)
under successive momentum shifts for d = 4.

IV. CONSQUENCES FOR SOLUTIONS TO THE HIERARCHY PROBLEM

We now wish to explore some possible consequences that the above results have for the
hierarchy problem. In order to do this, we must clarify some assumptions that will be rel-
evant for what follows. For this work, we take the hierarchy problem to be the sensitivity,
for certain regulators, of the Higgs mass-squared to quadratically-divergent radiative correc-
tions. We take these quadratic divergences to be physical and do not use a regulator, such
as dimensional regularization, in which both these quadratic divergences and the gauge-
invariance-violating terms in H → γγ do not appear. We do not consider the sensitivity of
m2

H to finite terms arising from high-scale physics; our results are not relevant for such con-
tributions. Although the quadratic divergences in the Higgs self-energy could be cancelled
within the SM by assuming that parameters of the SM Lagrangian are extremely fine-tuned,
we assume that these quadratic divergences will instead be cancelled off by physics beyond
the SM, and that this new physics takes the form of new loops of scalar or fermionic parti-
cles.6 For simplicity, we assume that the gauge group of all new physics is that of the SM;
we do not consider new gauge boson loops.

We now investigate the possible relevance of the d = 4 calculation of H → γγ to the
cancellation of quadratic divergences in the Higgs self-energy. Here we take the hypothesis
that the d = 4 calculation is valid, but that the gauge-invariance-violating terms derived
above cancel when all contributions are included. From our results above, we see that this
can be achieved if the sum of the amplitudes of Higgs tadpole diagrams, weighted by the
square of the loop charge, equals zero,

e23gMW +
e2gm2

H

2MW

+
∑

scalars

e2s(2λSv)−
∑

fermions

e2f (2λ
2
fv) = 0, (36)

6 We note that it is possible that these assumptions are not fulfilled in nature. For example, one may argue

that these quadratic divergences are unphysical and should simply be cancelled by counterterms similarly

to the treatment of logarithmic divergences. Or, alternatively, perhaps these quadratic divergences are

physical but cancelled by more exotic physics. Another possibility is that a true cutoff exists, such as in

the case of a composite Higgs. Our analysis is not applicable to these scenarios.
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where the sum over scalars includes only those from physics beyond the SM and the sum
over fermions includes both the SM and new physics contributions7. We now compare Eq.
(36) to the relation for cancellation of quadratic divergences in all Higgs tadpoles (for the
analogous relation in the case of only SM fields, see [31]),

(

6M2
W

v
+

m2
H

v

)

+

(

3M2
Z

v
+

m2
H

2v

)

+

(

3m2
H

2v

)

+
∑

scalars

(2λSv)−
∑

fermions

(2λ2
fv) = 0, (37)

where the terms in the second and third sets of parentheses are the contributions from loops
of the Z boson (and its associated Goldstone and ghost fields) and the physical Higgs boson,
and where we have re-written the terms in the first set of parentheses using MW = gv/2.

We next note that Eq. (36) can be obtained from Eq. (37) by re-weighting each term in
Eq. (37) by the square of the charge of the particle in the loop; hence, terms corresponding
to Z and Higgs loops do not appear in Eq. (36). Next, we note that Eq. (37) is also the
relation which must be fulfilled in order for quadratic divergences in the Higgs self-energy to
cancel. This is due to the renormalizeability of the Higgs potential; as both mH and v are
determined by the parameters µ2 and λ in the Higgs potential, a cancellation of quadratic
divergences in these parameters simultaneously cancels the quadratic divergences in mH and
v.

Although Eqs. (36) and (37) are not equivalent, together they have interesting conse-
quences. Consider the case where we have a model which cancels the quadratic divergences
in the Higgs self-energy by the addition of new scalars and/or fermions. Let us assume
that it does this separately for each value of electric charge, i.e., quadratic divergences from
neutral particles cancel, quadratic divergences from loops of charge +1/3 cancel, etc. The
above results imply that in such a model, the d = 4 calculation of H → γγ will be gauge-
invariant. Alternatively, if we (for some reason) assume that the d = 4 H → γγ calculation
is physically correct, we have a constraint on the particle content of the theory, Eq. (36).

As the quadratic divergences which contribute to mH cancel in supersymmetric models,
and as supersymmetry accomplishes this by introducing, for each SM particle, a new particle
of equal charge, we expect that Eq. (36) is satisified in the MSSM. We have checked explicitly
and found this to be the case for arbitrary sfermion left-right and flavor mixing and for
arbitrary chargino mixing resulting from soft-breaking terms. Although we do not give all
the details here, we will point out one interesting feature of the calculation; here, we will
neglect left-right and flavor mixing for simplicity. The coefficient of the quadratic divergence
which would enter Eq. (36) for an H0 tadpole diagram containing an up-type squark ũ loop
is [32]

quad. div = e2u

[

gMZ

cos θW
(Iu ∓ eu sin

2 θW ) cos(α + β) +
gm2

u

MW sin β
sinα

]

, (38)

where θW is the weak mixing angle, Iu is the isospin (= 1/2 for ũL, = 0 for ũR), eu is the
squark charge, mu is the mass of the corresponding fermion, and the − sign holds for ũL while
the + holds for ũR. When we add the terms for the ũL and ũR loops, the terms proportional

7 Here, we have used mf = λfv/
√
2; this relation is true for fermions which obtain their masses solely from

their Yukawa couplings. However, the form of the relation in Eq. (36) is also valid in the case of mixing

with vectorlike fermions. We thus obtain a form for the fermionic contributions in Eq. (36) analogous

to those for scalars. We note that the new physics contributions can be written completely in terms of

couplings of the new particles to H , without reference to the new particle masses; in particular, Eq. (36)

does not depend on the scalar masses.
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to eu sin
2 θW cancel. The terms proportional to m2

u will cancel with the corresponding
fermion tadpoles. This leaves a leftover term proportional to e2uIu. We note, however, that
such terms will happen for each sfermion loop contribution; when contributions from all
sfermion loops are summed,

∑

e2fIf = 0 by the usual triangle anomaly conditions of the
SM. A similar result holds for the h0 tadpoles.

We will also make a few brief points relevant to models which have been presented as
solutions to the hierarchy problem. First, we point out that not all models which cancel the
quadratic divergences in the Higgs self-energy will satisfy Eq. (36); for example, the (now
ruled out) scenario where the contributions of SM particles to the quadratic divergences in
the Higgs self-energy cancel amongst themselves [31] does not satisfy Eq. (36). Second,
although we do not pursue this avenue here, we expect that a relation similar to Eq. (36)
would also hold for H → gg and thus place a constraint on the colored particle content of
the theory; for the case of the MSSM, this cancellation would involve the SU(3)2 × U(1)
and SU(3)2 × SU(2) anomaly cancellation conditions, similar to those utilized for H → γγ
above.

V. DISCUSSION

We have argued that assuming the validity of the d = 4 calculation in H → γγ has
surprisingly interesting consequences. Not only is it possible to arrange for the gauge-
invariance-violating terms to cancel, but also this cancellation is very closely related to the
cancellations of quadratic divergences in the Higgs tadpole and self-energy. In some sense,
it could even be loosely argued that the ambiguous integrals in H → γγ are a side-effect
of the hierarchy problem. As solving the hierarchy problem has been a prime motivation
for developing new physics models, it is not surprising that some models already on the
market give sensible, gauge-invariant results for H → γγ calculated in d = 4. Additionally,
given the close relation between gauge invariance in H → γγ and the quadratic divergences
relevant to the hierarchy problem, our results make it somewhat nonintuitive that one should
use dimensional regularization for the calculation of H → γγ and yet use a regulator that
preserves the quadratic divergences in d = 4 when considering the Higgs tadpole and self-
energy; we do not attempt to address this last issue but merely note its nonintuitive nature.

We will briefly mention a few possible extensions of this work. First, we note that our
calculation here was limited to one-loop order; it would be interesting to know if similar be-
havior holds with higher-order diagrams. Second, we have not investigated whether or not
such relations hold for final states with massive gauge bosons, such as H → ZZ, W+W−,
Zγ. Lastly, we also point out that the regulator dependence of finite integrals is not limited
to processes involving scalars; similar behavior also shows up in photon scattering [33, 34],
a pure QED process. In the case of photon scattering, however, the application of the Ward
identity to two of the external photons yields expressions in terms of the quadratically-
divergent photon self-energy; unlike the quadratic divergences in the Higgs case, those in
the photon self-energy are customarily treated with dimensional regularization, and consid-
ered to not be of physical importance. Investigating the regulator dependence in photon
scattering and possibly seeing if other processes display this behavior are left for future work.

It is interesting to speculate on the possible implications of learning that the relation
in Eq. (36) does or does not hold in nature. Although Eq. (36) is not equivalent to the
relation for cancellation of the quadratic divergences in the Higgs self-energy, Eq. (37),
their similarity may let one optimistically hope that they may be simultaneously empirically
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confirmed or refuted. As other considerations indicate that the hierarchy problem may be
solved at the weak scale, and as it is hoped that LHC will thus address this issue, it is
possible that we may have a good idea within a few years whether or not Eq. (36) does, in
fact, hold. If it does hold, however, the significance of this result is somewhat unclear. It may
indicate that regulator-dependence of finite calculations is an artifact of not knowing the full
theory of nature and should be taken as a clue to unknown physics. More conservatively,
however, it indicates that we should consider the validity of d = 4 results in other finite but
regulator-dependent calculations, such as photon scattering.
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Appendix A: Behavior of tadpole under shifts of loop momentum

Here, we derive Eq. (13). Most of this derivation closely follows a similar derivation in
[30].

We begin by writing the four quadratically-divergent terms as a difference of linearly-
divergent terms,

∫

ddp

(2π)d

(

1

p2 −m2
− 1

(p+ q1)2 −m2
− 1

(p+ q2)2 −m2
+

1

(p+ q1 + q2)2 −m2

)

=

∫

ddp

(2π)d

[(

1

p2 −m2
− 1

(p+ q1)2 −m2

)

−
(

1

(p+ q2)2 −m2
− 1

(p+ q1 + q2)2 −m2

)]

(A1)

=

∫

ddp

(2π)d

[(

2p · q1 + q21
(p2 −m2)((p+ q1)2 −m2)

)

−
(

2(p+ q2) · q1 + q21
((p+ q2)2 −m2)((p+ q1 + q2)2 −m2)

)]

=

∫

ddp

(2π)d

[(

2p · q1
(p2 −m2)((p+ q1)2 −m2)

)

−
(

2(p+ q2) · q1
((p+ q2)2 −m2)((p+ q1 + q2)2 −m2)

)]

,

where we have dropped the two terms proportional to q21; as these two terms are loga-
rithmically divergent and differ only by a redefintion p → p + q2, they cancel. Next, we
rewrite

pµ
(p2 −m2)((p+ q1)2 −m2)

=
pµ

(p2 −m2)

[

1

(p+ q1)2 −m2
− 1

p2 −m2

]

+
pµ

(p2 −m2)2

=
pµ(−2p · q1 − q21)

(p2 −m2)2((p+ q1)2 −m2)
+

pµ
(p2 −m2)2

, (A2)
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and, similarly,

(p+ q2)µ
((p+ q2)2 −m2)((p+ q1 + q2)2 −m2)

=
(p+ q2)µ

((p+ q2)2 −m2)

[

1

(p+ q1 + q2)2 −m2
− 1

(p+ q2)2 −m2

]

+
(p+ q2)µ

((p+ q2)2 −m2)2
(A3)

=
(p+ q2)µ(−2(p+ q2) · q1 − q21)

((p+ q2)2 −m2)2((p+ q1 + q2)2 −m2)
+

(p+ q2)µ
((p+ q2)2 −m2)2

.

We thus note that the expressions in Eqs. (A2) and (A3) consist of two pieces, one of which
(for d = 4) is logarithmically divergent and one of which is linearly divergent. We also note
that the expressions in Eqs. (A2) and (A3) differ by only a momentum redefinition, p →
p + q2. We now substitute these last two relations back into Eq. (A1); the logarithmically-
divergent terms cancel, and we obtain

∫

ddp

(2π)d

(

1

p2 −m2
− 1

(p+ q1)2 −m2
− 1

(p+ q2)2 −m2
+

1

(p+ q1 + q2)2 −m2

)

= 2qµ1

∫

ddp

(2π)d

[

pµ
(p2 −m2)2

− (p+ q2)µ
((p+ q2)2 −m2)2

]

. (A4)

We then combine the two terms proportional to pµ using a Feynman parameter relation,

a−2 − b−2 = 2
∫ 1

0
dz(b− a)/(az + b(1− z))3,

2qµ1

∫

ddp

(2π)d

[

pµ
(p2 −m2)2

− (p+ q2)µ
((p+ q2)2 −m2)2

]

= 2qµ1

∫

ddp

(2π)d

[

−q2µ
((p+ q2)2 −m2)2

+

∫ 1

0

dz
2pµ(2p · q2 + q22)

(p2 + (2p · q2 + q22)(1− z)−m2)3

]

. (A5)

Both integrals in Eq. (A5) are logarithmically divergent, so we can perform a momentum
shift. In the first term, we take p+ q2 → p; in the second, we take p+ (1− z)q2 → p. These
substitutions yield

2qµ1

∫

ddp

(2π)d

[

−q2µ
(p2 −m2)2

+

∫ 1

0

dz2
2p · q2pµ + (1− z)(1 − 2z)q22q2µ

(p2 + q22z(1− z)−m2)3

]

=2qµ1

∫

ddp

(2π)d

[

−q2µ
(p2 −m2)2

+

∫ 1

0

dz2
2p · q2pµ − z(1 − 2z)q22q2µ
(p2 + q22z(1 − z)−m2)3

]

, (A6)

where in the second line we have dropped a term which is odd in z ↔ (1 − z). Integrating
by parts with respect to z, this becomes

2qµ1

∫

ddp

(2π)d

[

−q2µ
(p2 −m2)2

+

∫ 1

0

dz
4p · q2pµ

(p2 + q22z(1 − z)−m2)3

+
q2µ

(p2 −m2)2
+

∫ 1

0

dz
−q2µ

(p2 + q22z(1− z)−m2)2

]

(A7)

= 2qµ1

∫

ddp

(2π)d

[
∫ 1

0

dz
4p · q2pµ − q2µ(p

2 + q22z(1− z)−m2)

(p2 + q22z(1− z)−m2)3

]

= 2qµ1 q
ν
2

∫

ddp

(2π)d

[
∫ 1

0

dz
4pνpµ − gµν(p

2 + q22z(1− z)−m2)

(p2 + q22z(1− z)−m2)3

]

.
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We now examine Eq. (A7) separately for the cases of d = 4 − ǫ and d = 4. In the case
of d = 4 − ǫ, the individual terms in Eq. (A7) are finite, and we can reverse the order of
integration,

∫

d4−ǫp

(2π)4−ǫ

(

1

p2 −m2
− 1

(p+ q1)2 −m2
− 1

(p + q2)2 −m2
+

1

(p+ q1 + q2)2 −m2

)

= 2qµ1 q
ν
2

∫ 1

0

dz

∫

d4−ǫp

(2π)4−ǫ

4pνpµ − gµν(p
2 + q22z(1 − z)−m2)

(p2 + q22z(1 − z)−m2)3
. (A8)

We now see that Eq. (A8) is of the same form as Eq. (12), which we see is independent of
m. This implies that the integral over d4−ǫp is independent of z. Thus, we can replace the
momentum integral with its expression for z = 0; the integral over z is then trivial, and we
obtain

∫

d4−ǫp

(2π)4−ǫ

(

1

p2 −m2
− 1

(p+ q1)2 −m2
− 1

(p + q2)2 −m2
+

1

(p+ q1 + q2)2 −m2

)

= 2qµ1 q
ν
2

∫

d4−ǫp

(2π)4−ǫ

4pνpµ − gµν(p
2 −m2)

(p2 −m2)3
(A9)

which is the desired result.
In the case d = 4, we perform the substitution 4pµpν → gµνp

2 on Eq. (A7). This yields
a finite integral; again, we reverse the order of integration and obtain

∫

d4p

(2π)4

(

1

p2 −m2
− 1

(p+ q1)2 −m2
− 1

(p+ q2)2 −m2
+

1

(p + q1 + q2)2 −m2

)

= 2qµ1 q
ν
2

∫ 1

0

dz

∫

d4p

(2π)4
−gµν(+q22z(1 − z)−m2)

(p2 + q22z(1− z)−m2)3
. (A10)

Similar to the d = 4 − ǫ case, we compare this integral to that in Eq. (9) and see that the
momentum integral is independent of z. Thus, we replace the momentum integral in Eq.
(A10) with its value for z = 0, which also renders the z integral trivial. Thus,

∫

d4p

(2π)4

(

1

p2 −m2
− 1

(p+ q1)2 −m2
− 1

(p+ q2)2 −m2
+

1

(p + q1 + q2)2 −m2

)

= 2qµ1 q
ν
2

∫

d4p

(2π)4
−gµν(−m2)

(p2 −m2)3
. (A11)

Then, as
∫

d4p

(2π)4
(4pµpν − p2gµν)/(p

2 −m2)3 = 0 for d = 4, we can write this as

∫

d4p

(2π)4

(

1

p2 −m2
− 1

(p+ q1)2 −m2
− 1

(p+ q2)2 −m2
+

1

(p + q1 + q2)2 −m2

)

= 2qµ1 q
ν
2

∫

d4p

(2π)4
4pµpν − gµν(p

2 −m2)

(p2 −m2)3
, (A12)

which is the desired result.
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Appendix B: Details of W loop calculation

Here, we sum the contributions from loops involving W bosons, Goldstone bosons, and
ghosts shown in Fig. 5 for q1 = q2 = pH = 0. We will not consider those terms from
diagrams containing only scalars (diagrams c) and d)), as their treatment is identical to
that covered in Sec. II. We will also neglect the contribution of diagram f), which, although
nonzero, is finite and, therefore, regulator-independent. First, we list the results for each of
these diagrams, removing, for simplicity, a common factor of ε∗µ1 ε∗ν2 (e2gMW ); we will label
each of these terms according to their designation (a-j) in Fig. 5. These terms are:

a =

∫

ddp

(2π)d
2

(p2 −M2
W )3

×
[

(

2p2gµν + (10− 4ǫ)pµpν
)

− (1− ξ)

(p2 − ξM2
W )

(3p4gµν − 3p2pµpν) +
(1− ξ)2

(p2 − ξM2
W )2

(p6gµν − p4pµpν)

]

,

b =

∫

ddp

(2π)d
−1

(p2 −M2
W )2

×
[

(6− 2ǫ)gµν − 2
(1− ξ)

(p2 − ξM2
W )

(2p2gµν − 2pµpν) +
(1− ξ)2

(p2 − ξM2
W )2

(2p4gµν − 2p2pµpν)

]

,

e =

∫

ddp

(2π)d
(−2ξ)

pµpν
(p2 − ξM2

W )3
,

g =

∫

ddp

(2π)d
4

(p2 − ξM2
W )2

1

(p2 −M2
W )

[

pµpν − (1− ξ)
p2pµpν

(p2 − ξM2
W )

]

, (B1)

h =

∫

ddp

(2π)d
(−2ξ)

1

(p2 − ξM2
W )2

1

(p2 −M2
W )

[

p2gµν − pµpν
]

,

i =

∫

ddp

(2π)d
−2M2

W

(p2 − ξM2
W )

1

(p2 −M2
W )2

[

gµν − (1− ξ)
2pµpν

(p2 − ξM2
W )

+ (1− ξ)2
p2pµpν

(p2 − ξM2
W )2

]

,

j =

∫

ddp

(2π)d
−2

(p2 − ξM2
W )

1

(p2 −M2
W )

[

gµν − (1− ξ)
pµpν

(p2 − ξM2
W )

]

.

Next, we will combine two sets of these terms,

a+ b =

∫

ddp

(2π)d
1

(p2 −M2
W )3

×
[

((2ǫ− 2)p2 + (6− 2ǫ)M2
W )gµν + (20− 8ǫ)pµpν

+
(1− ξ)

(p2 − ξM2
W )

(−2p2 − 4M2
W )(p2gµν − pµpν) (B2)

+
(1− ξ)2

(p2 − ξM2
W )2

2M2
W (p4gµν − p2pµpν)

]

,

and

e+ g =

∫

ddp

(2π)d
(2ξ)pµpν

(p2 − ξM2
W )3

. (B3)

Next, we note that i is entirely finite, and, thus, we can make the substitution pµpν →
gµνp

2/4:

i =

∫

ddp

(2π)d
−2M2

W

(p2 − ξM2
W )

1

(p2 −M2
W )2

[

1− (1− ξ)p2/2

(p2 − ξM2
W )

+
(1− ξ)2p4/4

(p2 − ξM2
W )2

]

gµν . (B4)
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We rewrite each of the above integrands such that they all contain a common denominator
and perform the substitution pµpν → gµνp

2/4 on finite terms. For the sums a+ b and e+ g
above, we obtain

a+ b =

∫

ddp

(2π)d
1

(p2 −M2
W )3(p2 − ξM2

W )3
×

[

(

gµν
(

(2ǫ− 2)p2 + (6− 2ǫ)M2
W

)

+ pµpν(20− 8ǫ)
)

×
(

p6 − 3p4ξM2
W + 3p2ξ2M4

W − ξ3M6
W

)

+ (1− ξ)(−2p2 − 4M2
W )(p2gµν − pµpν)(p

4 − 2p2ξM2
W + ξ2M4

W )

+(1− ξ)22M2
W (p4gµν − p2pµpν)(p

2 − ξM2
W )

]

,

=

∫

ddp

(2π)d
1

(p2 −M2
W )3(p2 − ξM2

W )3
× (B5)

[

gµν
(

p8(2ǫ− 2) + p6M2
W (6− 9ξ) + p4M4

W9ξ(−2 + ξ) + p2M6
W3ξ2(6− ξ)− 6ξ3M8

W

)

+ gµν(1− ξ)
3

4

(

−8

3
p8 + p6M2

W (4ξ − 4) + p4M4
W (−2ξ2 + 8ξ)− p2M6

W4ξ2
)

+ gµν(1− ξ)2
(

3M2
W

2

(

p6 − p4ξM2
W

)

)

+pµpνp
6(22− 8ǫ− 2ξ)

]

=

∫

ddp

(2π)d
1

(p2 −M2
W )3(p2 − ξM2

W )3
×

[

gµν

(

p8(2ǫ− 4 + 2ξ) + p6M2
W

(

9

2
− 6ξ − 3

2
ξ2
)

+ p4M4
W

(

−27

2
ξ +

9

2
ξ2
)

+p2M6
W (15ξ2) +M8

W (−6ξ3)

)

+ pµpνp
6(22− 8ǫ− 2ξ)

]

,

and

e+ g =

∫

ddp

(2π)d
(2ξ)

pµpν(p
6 − 3p4M2

W + 3p2M4
W −M6

W )

(p2 −M2
W )3(p2 − ξM2

W )3

=

∫

ddp

(2π)d
(2ξ)

(pµpνp
6) + gµν

1
4
(−3p6M2

W + 3p4M4
W − p2M6

W )

(p2 −M2
W )3(p2 − ξM2

W )3
. (B6)

For the remaining terms, we get

h =

∫

ddp

(2π)d
(−2ξ)

(p2gµν − pµpν)

(p2 −M2
W )3(p2 − ξM2

W )3
(

p6 − (2 + ξ)p4M2
W + (2ξ + 1)p2M4

W − ξM6
W

)

=

∫

ddp

(2π)d
(−2ξ)× (B7)

(p2gµν − pµpν)p
6 + gµν

3
4
(−(2 + ξ)p6M2

W + (2ξ + 1)p4M4
W − ξp2M6

W )

(p2 −M2
W )3(p2 − ξM2

W )3
,
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and

i =

∫

ddp

(2π)d
−2M2

W

(p2 −M2
W )3(p2 − ξM2

W )3
gµν×

[

(p6 − p4M2
W (1 + 2ξ) + p2M4

W (ξ2 + 2ξ)− ξ2M6
W )

−(1− ξ)

2
(p6 − (1 + ξ)p4M2

W + ξp2M4
W ) +

(1− ξ)2

4
(p6 − p4M2

W )

]

(B8)

=

∫

ddp

(2π)d
−2M2

W

(p2 −M2
W )3(p2 − ξM2

W )3
gµν×

[

p6
(

3 + ξ2

4

)

+ p4M2
W

(

−3− 6ξ − 3ξ2

4

)

+ p2M4
W

(

3(ξ2 + ξ)

2

)

− ξ2M6
W

]

,

and

j =

∫

ddp

(2π)d
−2

(p2 −M2
W )3(p2 − ξM2

W )3
×

[

gµν
(

p8 + p6M2
W (−2− 2ξ) + p4M4

W (1 + 4ξ + ξ2) + p2M6
W (−2ξ − 2ξ2) + ξ2M8

W

)

−(1− ξ)pµpν
(

p6 − p4M2
W (2 + ξ) + p2M4

W (1 + 2ξ)− ξM6
W

)]

=

∫

ddp

(2π)d
−2

(p2 −M2
W )3(p2 − ξM2

W )3
× (B9)

[

gµν

(

p8 + p6M2
W

(

−6− 9ξ − ξ2

4

)

+ p4M4
W

(

3 + 15ξ + 6ξ2

4

)

+p2M6
W

(

−7ξ − 9ξ2

4

)

+ ξ2M8
W

)

− pµpνp
6(1− ξ)

]

.

Summing all of these terms,

a+ b+ e+ g + h+ i+ j =

∫

ddp

(2π)d
1

(p2 −M2
W )3(p2 − ξM2

W )3
×

[

gµν
(

p8 (2ǫ− 6) + p6M2
W (6) + p4M4

W (−18ξ) + p2M6
W

(

18ξ2
)

+M8
W

(

−6ξ3
))

(B10)

+pµpνp
6 (24− 8ǫ)

]

.

We now note that

∫

ddp

(2π)d
4pµpν − gµν(p

2 −M2
W )

(p2 −M2
W )3

=

∫

ddp

(2π)d
4pµpν − gµν(p

2 −M2
W )

(p2 −M2
W )3(p2 − ξM2

W )3
(p2 − ξM2

W )3 (B11)

=

∫

ddp

(2π)d
4pµpν − gµν(p

2 −M2
W )

(p2 −M2
W )3(p2 − ξM2

W )3
(p6 − 3p4ξM2

W + 3p2ξ2M4
W − ξ3M6

W )

=

∫

ddp

(2π)d
4p6pµpν − gµνp

8 + gµνM
2
W (p6 − 3p4ξM2

W + 3p2ξ2M4
W − ξ3M6

W )

(p2 −M2
W )3(p2 − ξM2

W )3
,

22



where in the last line we have substituted 4pµpν → p2gµν . Comparing with (B10) and
dropping terms where ǫ multiplies something purely finite, we obtain

a+ b+ e+ g + h+ i+ j = (6− 2ǫ)

∫

ddp

(2π)d
4pµpν − gµν(p

2 −M2
W )

(p2 −M2
W )3

, (B12)

and, thus,

iMa,b,e,g−j
µν ε∗µ1 ε∗ν2 = ε∗µ1 ε∗ν2 e2gMW (6− 2ǫ)

∫

ddp

(2π)d
4pµpν − gµν(p

2 −M2
W )

(p2 −M2
W )3

, (B13)

which yields the relevant terms in Eq. (33).
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