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High intensity proton storage rings are central for the development of advanced neutron sources,
drivers for the production of pions in neutrino factories or muon colliders, and transmutation of
radioactive waste. Fractional proton loss from the beam must be very small to prevent radioac-
tivation of nearby structures, but many sources of beam loss are driven by collective effects that
increase with intensity. Recent theoretical work on the use of nonlinear magnetic fields to design
storage rings with integrable transverse dynamics is extended here to include collective effects, with
numerical results showing validity in the presence of very high beam current. Among these effects
is the formation of beam halo, where particles are driven to large amplitude oscillations by coherent
space charge forces. The strong variation of particle oscillation frequency with amplitude results in
nonlinear decoherence that is observed to suppress transverse halo development in the case studied.
We also present a necessary generalization of the Kapchinskij-Vladimirskij equilibrium distribution,
which was introduced over 50 years ago for modeling linear dynamics in particle accelerators.

When a high-intensity storage ring, such as the Spalla-
tion Neutron Source (SNS), is designed, heavy emphasis
is placed upon avoiding beam loss due to space charge
driven instabilities [1-4]. GeV scale proton beams must
be stored with no more than 1 W/m loss of particles to
the beam pipe to avoid unsafe levels of activation. Thus,
finding novel ways to mitigate beam loss to space charge
driven effects is crucial for pushing the intensity frontier.

Because the forces that steer and store a beam in an
accelerator are mostly linear with some nonlinearities, a
dense set of resonances exist that must be avoided dur-
ing operation. It is well-understood that intense beams
can shift the designed betatron frequency of a beam over
one of these resonances [5—7]. Furthermore, in a linear
lattice of steering and focusing magnets, a beam that
is mismatched will undergo breathing oscillations, which
can resonantly drive particles in the beam core to a halo
surrounding the beam [8-10]. This halo can strike the
beam pipe, causing activation.

For linear dynamics there is a single frequency for the
single particle trajectories, which can lead to resonances.
A periodic forcing remains in phase with the oscillations,
thereby depositing energy into the particles and driving
them to larger amplitudes. Nonlinear systems generally
have amplitude-dependent frequencies, which can miti-
gate resonances by shifting the frequency as amplitude
increases, so particles do not stay in resonance very long.
However, nonlinear potentials can cause poorly confined
trajectories and undesirable increases in the beam size or
decrease in beam lifetime.

Despite these shortcomings, the “nonlinear decoher-
ence” that arises when amplitude-dependent frequency
shifts become large enough could mitigate many of the
instabilities and resonances that prevent pushes into in-

creasing beam intensity. A recent innovation to achieve
this strong nonlinear decoherence [11-13] shows how to
use highly nonlinear elements which lead to integrable
or chaotic bounded single particle trajectories in zero-
current. In this letter, we consider the integrable elliptic
potential described in Sec. V.A.[11], although we ob-
served similar results for the octupole potential in Sec.
IV. The use of nonlinear decoherence in a nearly inte-
grable configuration has been proposed [14] and shown
to reduce beam halo [15]. We consider a highly nonlinear
integrable lattice design in the presence of space charge
for the first time, and observe beam halo suppression. We
also show how to generalize the Kapchinskij-Vladimirskij
(KV) distribution, first described in [5] for linear lattices,
for these nonlinear lattices.

For most high intensity applications, the stored beam
will be substantially longer than it is wide. Furthermore,
the longitudinal synchrotron oscillations are much slower
than the transverse betatron oscillations. We therefore
test these nonlinear lattice concepts with a two dimen-
sional model which neglects the longitudinal motion of
the particles in the beam, as well as any longitudinal
space charge forces. These effects will be the subject of
future study.

Previous work [16] shows that a KV distribution that
is not matched to the lattice properly combined with
another low-density will drive particles in a properly
matched KV distribution (pre-halo) into the halo rapidly.
The origin of this behavior can be explained as follows —
in a linear lattice, a mismatched beam will rotate rigidly
in the x — p, and y — p, plane at the frequency of be-
tatron oscillations (the betatron tune). This leads to the
projection in the x — y plane expanding and contract-
ing at twice the betatron tune. In a KV distribution,
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the space charge forces are linear, and the pre-halo par-
ticles which are not undergoing these rotations see a res-
onantly oscillating linear force that pushes them to the
outside of the beam. Once they are outside the beam,
the space charge forces are nonlinear, and they settle into
large radius nonlinear oscillations. This is a direct result
of the core undergoing simple harmonic motion in the
transverse phase space coordinates, which manifests as
breathing modes in the x — y plane. This result for the
KV distribution is well-known [9]. To compare this result
to the nonlinear lattices properly, we develop a general-
ization of the classic KV distribution to deal with these
new lattices.

Any function of the invariants of motion form a sta-
tionary solution to the Vlasov equation [17, 18]. In 1958,
Courant and Snyder derived their eponymous invariant
[19] for the piecewise linear magnetic fields that are used
in every large accelerator today. The KV distribution is
taken to be a delta function

frv(Pn,dn) = 0 [I(pN,dn) — o] (1)
where [ is the Courant-Snyder invariant,
I =33y +2adn - Py + BN (2)

which has the form of an harmonic oscillator Hamilto-
nian. Here «, (3, and ~ are the Twiss parameters (see,
e.g., Chapter 2 of [20]) that vary at each point around
the accelerator ring, and gy and py are the normalized
transverse coordinate and momentum given by

in =q/VB Pn=pVB—Bq/(2VD) 3)

where here ¢ is either = or y, and p is either p, or p,. The
avenue to generalizing the above KV distribution would
be to find another, similar function that reduces to the
Courant-Snyder invariant for a purely linear lattice when
the nonlinear potential strengths are zero.

It was shown in [11] that for a careful choice of nonlin-
ear potential, the Hamiltonian

1 1
H = - (pin +pyn) + 5% +9%) + Ulen,yn) - (4)

2 2
is independent of time, and is therefore a conserved quan-
tity like the Courant-Snyder invariant. The above H is
an invariant of the motion and allows for a treatment
similar to the KV distribution. The generalized KV dis-
tribution given by

f=38[H(PN,qn) — o) (5)

is a stationary solution for the Vlasov equation. Here,
€ reduces to the geometric transverse emittance in the
linear limit. Like the original KV distribution, the gen-
eralized KV distribution fills a 4D shell of phase space
uniformly, defined by g, and because of its functional

form is isotropic in p. However, while the original KV
distribution uniformly fills every 2D projection of phase
space as uniform ellipses, the generalized KV distribution
fills more exotic shapes due to the additional U(zn,yn)
potential.

To test these ideas numerically, we use the PyORBIT
software [21] and consider a long, high-current proton
beam in a model periodic focusing lattice. This lattice
consists of a 2 meter drift capped by a thin lens effective
element that is focusing in both planes (see Fig.’s 1 and 2
of [12] for a discussion of this element). It is necessary to
have this to have equal beta functions in the horizontal
and vertical plane to satisfy one of the conditions in [11].
In the absence of the elliptic potential, we consider this
linear lattice with a fractional betatron tune of 0.3. In
the zero-current limit, the beta function is known. For
finite current, the focusing strength is increased, on the
order of 1%, to keep the beta function periodic and with a
constant minimum value to restrict the maximum radius
of the beam. As a consequence, this tends to keep the
betatron tune fixed.

For the integrable elliptic lattice (IEL), we fill the
drift with the properly scaled elliptic magnet element
described in [11] with a normalized strength 60% of the
strength at which linear confinement in the vertical direc-
tion is lost. All other parameters are kept the same, al-
though the quadrupole term in the elliptic element causes
the betatron tune to increase in the horizontal plane and
decrease in the vertical plane.

For the linear lattice with pre-halo, we observed the
onset of halo formation within 500 passes (see Fig. 1).
Here, since all the particles have almost the same fre-
quency of oscillation regardless of amplitude, the pre-halo
particles remain in resonant interaction with the periodic
space charge forces created by the breathing mode in the
transverse x — y plane, as described in [9]. The crite-
rion to be counted in the halo was that a particle be two
RMS outside the average momentum or position, and
these particles are depicted with blue dots.

Using the same parameters but including the elliptic
element, the IEL with matched beam saw some tran-
sient motion as the beam equilibrated with space charge
forces, but no halo developed (see Fig. 2). The reason for
this is two-fold. First, because the initially mismatched
core beam experiences nonlinear decoherence, its initial
mismatch does not lead to a coherent breathing mode
as with the linear case. This was observed numerically.
The second reason is that, whatever breathing mode pe-
riodicity might occur, the pre-halo particles are only in
resonance over a small range of amplitudes, after which
they fall out of resonance.

This interpretation is supported by the tune diagram
for the individual particle Poincaré surfaces of section.
By taking the Fourier transform of the x and y positions
as a function of time, we are able to extract the tune
information for given particles in the pre-halo. A sam-
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FIG. 1: Histogram plots of the 2D phase space projections initially (left) and after 500 passes (right) for the linear
lattice. Blue dots indicate particles outside of 2 RMS beam radius. The pre-halo indicated by the blue dots
uniformly fills the projections and accounts for 1% of the total beam current.
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FIG. 2: Histogram plots initially (left) and after 500 passes (right) for the IEL. Note the hourglass shape of the
properly matched IEL beam.

ple set of Poincaré surfaces of section for five particles is
shown in figure 3.

By appearance this would seem to indicate that space
charge has broken the integrability of the trajectories,
but they remain bounded. The exact details of this plot
are difficult to divine in real space, but in Fourier space it
is transparent. The tune diagram in figure 4 shows that
particles in the IEL, even with similar amplitudes for
their nonlinear oscillations, have different frequencies of
motion, and in many cases have relatively strong subhar-

monics. Therefore, if space charge drives a particle from
one amplitude to another in the TEL, its oscillations will
have a different tune. We observed similar effects in the
chaotic bounded octupole lattice and nearly-integrable

FODO lattice cases, and will elaborate on this in future
publications.

The recent work in [11] has developed a new paradigm
for designing highly-nonlinear particle accelerator lattices
that simultaneously demonstrate strong frequency shift
with amplitude and integrable two-dimensional single-
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FIG. 3: Poincaré surfaces of section for five test
particles after 1,000 passes.
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FIG. 4: Power spectral density for the nonlinear
oscillations of the Poincaré particles in figure 3.

particle dynamics. For this integrable lattice, we have
shown that this paradigm is applicable for long bunches
with currents a thousand times greater than the current
state-of-the-art in proton storage rings. The combina-
tion of strong amplitude-dependent frequency shift and
stable long-time dynamics provides the nonlinear deco-
herence that suppresses potentially harmful resonances.
In particular, we showed above that for a mismatched
beam that drives nearby particles out into a halo via the

4

particle-core model [9, 16] that the integrable lattice sup-
presses the core oscillations and prevents the halo from
forming. This work resulted in a nonlinear generalization
of the KV particle distribution that enables the creation
of uniformly-filled beams that are well-matched to this
new type of nonlinear lattice. This work shows a path
towards future high-intensity hadron accelerators with
order-of-magnitude lower beam loss.
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