

Xrootd Monitoring for the CMS Experiment

L A T Bauerdick1, K Bloom3, B Bockelman3, D C Bradley4, S Dasu4, I Sfiligoi2, A
Tadel2, M Tadel2,5, F Wuerthwein2 and A Yagil2 for the CMS collaboration

1 Fermilab, Batavia, IL 60510-5011, USA
2 UC San Diego, La Jolla, CA 92093, USA
3 University of Nebraska – Lincoln, Lincoln, NE 68588, USA
4 University of Wisconsin – Madison, Madison, WI 53706, USA

E-mail: mtadel@ucsd.edu

Abstract. During spring and summer of 2011, CMS deployed Xrootd-based access for all US
T1 and T2 sites. This allows for remote access to all experiment data on disk in the US. It is
used for user analysis, visualization, running of jobs at computing sites when data is not
available at local sites, and as a fail-over mechanism for data access in jobs. Monitoring of this
Xrootd infrastructure is implemented on three levels. Basic service and data availability checks
are performed by Nagios probes. The second level uses Xrootd’s “summary data” stream; this
data is aggregated from all sites and fed into a MonALISA service providing visualization and
storage. The third level uses Xrootd’s “detailed monitoring” stream, which includes detailed
information about users, opened files and individual data transfers. A custom application was
developed to process this information. It currently provides a real-time view of the system
usage and can store data into ROOT files for detailed analysis. Detailed monitoring allows us
to determine dataset popularity and to detect abuses of the system, including sub-optimal usage
of the Xrootd protocol and the ROOT prefetching mechanism.

1. Introduction
The CMS experiment [1] at the CERN LHC started taking data in the fall of 2009. The experiment
data in various formats is distributed among participating Tier 0, Tier 1 and Tier 2 computing sites
with the goal of optimizing the usage of available computing resources as well as to provide sufficient
processing power to all physicists that require access to the data. As part of this arrangement all data
that is required for physics analysis is available from the US Tier 1 and Tier 2 sites; a large part of it is
even replicated to two or more sites. In 2010, several US Tier 2 centers started using Xrootd system
[2] to expose their site storage to all CMS users. This provides the ability of direct, interactive access
to data. It became immediately obvious that the availability of such service provides several
possibilities to extend and improve the CMS computing model. The “Anydata, Anytime, Anywhere”
project (AAA) [3] was started in Fall 2011 with the goal of exploring these possibilities and bringing
them into production. The presented monitoring work is part of the AAA program.

One aspect of AAA is the deployment and operation of the Xrootd. This part has been completed
and USCMS is currently operating an Xrootd data federation across eight sites and with a total of
more than 750 data servers. The top-level redirector is operated at University of Nebraska-Lincoln

 	

5 To whom any correspondence should be addressed.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 042058 doi:10.1088/1742-6596/396/4/042058

Published under licence by IOP Publishing Ltd 1

(UNL) and all other participating sites operate a local redirector in front of their severs. Other than
providing users the direct data access, this infrastructure already operates two additional extended use-
cases that are in fact already accounting for a majority of all Xrootd data-access:

i. File-open fallback allows a CMSSW job which fails to open a local file to fall-over to
remote reading of the file via Xrootd, as opposed to failing the job.

ii. Job overflow from oversubscribed sites allows jobs to run on nearby sites with spare
compute resources and read data remotely via Xrootd [4].

It was recognized from the start that monitoring of Xrootd operations and user activity would play
an important role in transition from testing to production phase of operations. Extensive monitoring
also allows detailed accounting and analysis of system usage. With rapid acceptance of fallback and
overflow use-cases, its role as the guardian of production-level quality of service has become even
more important.

This paper is divided into three sections. Section 2 describes service and data availability
monitoring using Nagios. Collection of summary monitoring information from Xrootd servers and
storage of data into MonALISA [5] repository is presented in section 3. Detailed monitoring stream
processing with GLED [6] is then described in section 4.

2. Service and data availability monitoring
The monitoring of service and data availability is performed using the Nagios framework. Probes are
setup for each site in the Xrootd federation to determine whether the site’s Xrootd service is
functioning and whether it is properly accessible via the federation. These checks were designed to
use the same security protocol and client library as CMSSW jobs.

2.1. Checking of meta-manager, redirection and authentication
Users usually access the federation through the top-level redirector at UNL. We check that this top-
manager is on the network and does indeed redirect users to an end-data server by attempting to read
out a single file. This check is performed every ten minutes by Nagios probes.

2.1.1. Checking redirection to all sites. An Xrootd meta-manager will only redirect requests to sites
that have reported to possess the requested file. In order to check redirection to a specific site, one
would in principle need to know about a file that only exists on the given site. This is impractical as it
is error prone and fragile. We simulate unique files by performing the following namespace trick:

• The site’s Xrootd service additionally exports its namespace inside a unique root based on the
site name. For example, UCSD’s file /store/foo is exported to the federation as both
/store/foo and /store/test/xrootd/T2_US_UCSD/store/foo.

• Certain well-known datasets are required to be present at every CMS site.
Now, assuming /store/foo is in the required dataset, asking the meta-manager to serve
/store/test/xrootd/T2_US_UCSD/store/foo will trigger a federation-wide name-space query. By
construction, the file will only be found at UCSD. So, if the client can read data, we assume
redirection to UCSD is functional.

In addition to the well-known file, a separate test queries CMS’s data management services and
randomly selects a file that is supposed to be present at the site.

2.1.2. Checking authentication. Xrootd servers in the federation use GSI authentication [7]. As there
are components in GSI security that change daily (CRLs), monthly (CA certificates) or yearly (server
certificates) it is a common source of errors and important to keep under detailed surveillance. Two
sets of identical Nagios probes are run; the first with certificate issued by CERN certificate authority
(CA) and then with the second with DOEgrids CA. These CAs were selected because they are the
most commonly used among CMS users. For authorization, the local site authorization services are

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 042058 doi:10.1088/1742-6596/396/4/042058

2

assumed to ensure that the user belongs to the CMS experiment. We do not currently test whether
authenticated, but non-CMS users can access the infrastructure.

2.1.3. Checking file-system accessibility. For each file tested, only the first kilobyte of data is read.
This ascertains that the storage system is minimally accessible via Xrootd, takes very little time, and
does not require any bandwidth guarantees to the monitoring system.

If Nagios probe exits with an error condition or fails to complete within the one-minute interval, the
service is considered to be failing and mail alarms are sent to system operators. Figure 1 shows a
screenshot of the Nagios status page.

2.2. Checking of individual Xrootd servers
The tests described in section 2.1 test the functionality of the site, but does not reveal anything about
the individual servers: the site-level redirector will always direct the client to a functioning, least
loaded server. To test individual servers, probes must be directed at individual servers themselves.

Currently, the per-server tests are also done using Nagios. However, from the federation
perspective, this should be a site-internal matter: the sites are supposed to run server-state checks
themselves and ensure that a sufficient number of servers are functioning properly. Work is ongoing
to have the health checks distributed to the sites as a part of the grid layer’s monitoring tests.

2.3. Limitations of service availability tests
The probes only touch a very small part of namespace, use specific certificates and do not necessarily
talk to all servers, even over a long period of time. Summary monitoring, described in the next section,
provides complementary information related to server availability and performance, and also provides
statistics about failure conditions that occur on every server.

Figure 1. Top-level Nagios status page for Xrootd service monitoring at UNL.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 042058 doi:10.1088/1742-6596/396/4/042058

3

3. Xrootd summary monitoring
Each Xrootd server can be configured to send periodic reports about their operations and status to a
specific network endpoint6. To prevent monitoring outages from adversely affecting the Xrootd
service, UDP is used as a transport layer. This “summary monitoring” stream provides the data in a
terse, XML-based format. It contains various counters and state variables, e.g., network traffic, usage
of system resources, usage of daemon-internal resources (active connections, open files, used buffers),
number of received requests, performed operations and errors. The values are mostly 32 and 64-bit
integers or character strings. See [8] for a thorough description of the format.

3.1. Processing of summary monitoring packets, population of MonALISA repository
In the USCMS data federation, all redirectors and servers send their summary monitoring UDP
packets7 to a collector at UCSD. Depending on a site configuration, these are sent at a frequency of 30
to 120 seconds. The packets are received by a custom application, xrd-rep-snatcher [9], which
normalizes the input and determines the canonical server and site names. For the variables which are
cumulative counters, it calculates normalized rates of change. A subset of the values are passed from
xrd-rep-snatcher to MonALISA for storage and presentation. Currently recorded values include:

• number of connected clients;
• rates of new connections, authentications and authentication errors;
• overall incoming and outgoing network traffic from by Xrootd;
• daemon’s usage of system resources.

 	

6 In fact, two destination addresses can be specified.
7 Data comes from both the xrootd and cmsd daemons.

Figure 2. MonALISA graphs showing total number of connections and rate of new connections to
servers at UCSD over a six-month period. Data is taken from Xrootd summary monitoring stream.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 042058 doi:10.1088/1742-6596/396/4/042058

4

Figure 3. USCMS Xrootd federation dashboard.

For complete list of possible values, see [8] and [9].

Currently, we operate one instance of MonALISA service and one instance of MonALISA
repository, both of them run at UCSD. Considerable effort was used to customize the repository web
front-end [10] for this project. See Figure 3 for an example screenshot.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 042058 doi:10.1088/1742-6596/396/4/042058

5

3.2. Processing of data with custom MonALISA plugins
MonALISA provides a natural place to do further, more complex, processing of the data from xrd-
rep-snatcher. This custom user code is implemented as Java classes and is invoked at different data
processing stages. We use two kinds of plugins:

i. Data producers for calculation of per-site quantities, e.g. summing up total traffic for each site.
ii. Data filters for detecting error conditions and sending notification emails.

3.3. Data presentation options
From the MonALISA web frontend two types of visualizations are provided:

• Standard MonALISA graphs. MonALISA has a standard generated graph page that can be used
to show all data. This provides users with various filtering capabilities, such as site, nodes and
time intervals. Figure 2 shows an example of a graph produced by MonALISA.

• Overall Dashboard. As a special case, frequently viewed graphs that show status of the whole
federation at a glance has been combined into a single dashboard page (shown in Figure 3; see
also [10]).

4. Xrootd detailed monitoring
In contrast to summary monitoring, the detailed monitoring contains details about individual user
sessions, open files, data transfers. For redirectors, monitoring data is produced for each client
redirection and query. The information is sent in a highly encoded binary format and also transmitted
via UDP. Every effort is made to reduce the size of the detailed monitoring packets; otherwise the
size of the monitoring could rival the data transfers themselves. User sessions and open files are
identified by a dictionary-id assigned at resource allocation and immediately reported in a dedicated
UDP packet. Details about individual file transfers are collected independently for each session and
are sent in a large UDP packet when the server-side buffer is full8 or after a specified amount of time
elapses. Each read’s size and offset are recorded independently; vector reads are marked and reported

 	

8 Buffer sizes are between 1 and 64kB. For USCMS servers we use between 1.5 and 4kB.

Figure 4. Html table of currently opened files. This information is served from a http server
embedded in detailed monitoring processing application.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 042058 doi:10.1088/1742-6596/396/4/042058

6

as one read with read offset being replaced with the information about the number of elements
requested within the vector read9.

When using GSI authentication, the servers can be configured so that the user session mapping
records contain full details about the user certificate and VOMS extensions [11]. Almost all USCMS
servers are configured this way. Using this information, we can correlate user sessions across multiple
sites and identify the user responsible for each transfer. We maintain a detailed accounting database to
detect excessive or abusive usage of the system.

4.1. Collection of detailed monitoring packets
All the federation servers report detailed monitoring directly to UCSD. At UCSD, the UDP streams
are collected and redistributed by a custom UDP-to-TCP replicator10. This allows the single stream to
be fed to several analyzing programs (including the testing infrastructure). The implementation is
general enough to allow installation of replicators at multiple sites to convert the stream to a reliable
delivery protocol11, provide compression and, as desired, local analysis.

4.2. Description of detailed stream processing with GLED
The processing of detailed monitoring packets is implemented in the GLED framework [6] as the
XrdMon package. To re-assemble information scattered throughout the UDP monitoring packets, a
complete in-memory representation of all servers, sessions and open files is built. Lookup tables
based on the dictionary-id are maintained for each server.

At present, the following derived representations are currently implemented:
i. An HTML table showing currently open files and ongoing data transfers. The data is served

via an HTTP server embedded in the XrdMon package. Filtering based on contents of all
string columns is supported. To protect privacy of users, the page with all details is only
available to the members of CMS experiment. A public page with sensitive information
removed is also available (shown in Figure 4).

ii. When a message that a file has been closed is received (or a file closed due to an error
condition or time-out), a detailed file-read report is generated. It contains all details about the
session, connection, user, and file transfer. Information about single reads and vector reads is
represented statistically. For non-vector reads, the information contains the number of read
operations and total amount of data read. For the size of individual reads the minimum,
maximum, average and the standard deviation are reported.

Several external reporters can be fed the information from (ii). One implementation sends the data into
OSG Gratia accounting database [12]. This is used as the basis for generation of detailed daily usage
emails that contain the site-to-site matrix and breakdown of all traffic by user and by site. The second
implementation writes the data into a ROOT tree for further analysis. Example of a ROOT histogram
derived from this information is shown in Figure 5.

 	

9 Optionally, each vector read can be fully unpacked and reported with individual element offsets and read sizes
10 Also implemented using GLED; this allows users to combine packet servers or clients with stream analyzers.
11 Packet loss can be rather fatal for detailed monitoring. If a dictionary-id mapping packet for a user session is
lost, it becomes impossible to process all subsequent packets referring to this session.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 042058 doi:10.1088/1742-6596/396/4/042058

7

Figure 5. Average read size per session, separated between single reads (left) and vector reads (right).
Information was extracted from detailed monitoring file-read reports from April 26 to April 30 2012

5. Conclusion
Xrootd monitoring for the needs of USCMS Xrootd data federation is implemented on several
complementary levels. While each of them uses a fundamentally different approach, the derived
results do have enough overlap to allow for cross-checking of the results and to assure that all
monitoring components are functioning properly. Dashboard-like web-pages are available on all levels
and automatic e-mail alerts get sent when error conditions are detected. All monitoring results are
archived and can be used for detailed diagnostics of problems or for analysis of service performance
and user access patterns. As an additional benefit, the Xrootd monitoring sub-systems have been
thoroughly validated and improved during integration of monitoring infrastructure and services.

Future work will focus on extensions of Xrootd monitoring system to support fast detection of
data-transfer bottlenecks. This information will be used by the Xrootd redirectors and clients so that
the problematic servers or routes can be avoided or, if already taken, substituted with better
alternatives.

Acknowledgments
This work is partially sponsored by the US National Science Foundation under Grants No. PHY-
0612805 (CMS Maintenance & Operations), PHY-1104549, PHY-1104447, and PHY-1104664
(AAA), and the US Department of Energy under Grant No. DE-FC02-06ER41436 subcontract No.
647F290 (OSG).

References
[1] CMS Collaboration 2008 JINST 3 S08004
[2] Xrootd project page: http://www.xrootd.org/
[3] Bauerdick L et al 2012 Using Xrootd to Federate Regional Storage in these proceedings.
[4] Sfiligoi I et al 2012 Controlled overflowing of data-intensive jobs from oversubscribed sites in

these proceedings.
[5] Legrand I et al 2009 Comput. Phys. Commun. 180 2472
[6] Tadel M 2004 Gled - an Implementation of a hierarchic Server-client Model Applied Parallel

and Distributed Computing (Advances in Computation: Theory and Practice vol 16) ed Pan Y
and Yang L T (Nova Science Publishers) ISBN 1-59454-174-4

[7] GSI: http://www.globus.org/security

htemp
Entries 258550
Mean 87.11
RMS 367.3

Average single read size [kB]
0 1000 2000 3000 4000 50001

10

210

310

410

510

htemp
Entries 258550
Mean 87.11
RMS 367.3

Average single read size
htemp

Entries 258550
Mean 1.238e+04
RMS 8609

Average vector read size [kB]
0 5000 10000 15000 20000 25000 30000 35000 40000

1

10

210

310

410

htemp
Entries 258550
Mean 1.238e+04
RMS 8609

Average vector read size

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 042058 doi:10.1088/1742-6596/396/4/042058

8

[8] Xrootd system monitoring documentation:
http://xrootd.slac.stanford.edu/doc/prod/xrd_monitoring.htm

[9] xrd-rep-snatcher source code: http://svn.gled.org/var/trunk/xrd-rep-snatcher/
[10] US CMS Xrootd federation MonALISA web front-end: http://xrootd.t2.ucsd.edu/
[11] VOMS http://www.globus.org/grid_software/security/voms.php
[12] Gratia project home-page: https://twiki.grid.iu.edu/bin/view/Accounting/WebHome

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 042058 doi:10.1088/1742-6596/396/4/042058

9

