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Abstract. The recent buzzword in IT world is NoSQL. Major players, such as Facebook,
Yahoo, Google, etc. are widely adopted different ”NoSQL” solutions for their needs. Horizontal
scalability, flexible data model and management of big data volumes are only a few advantages
of NoSQL. In CMS experiment we use several of them in production environment. Here, we
present CMS projects based on NoSQL solutions, their strengths and weaknesses as well as
our experience with those tools and their coexistence with standard RDBMS solutions in our
applications.

1. Introduction
Nowadays the IT infrastructure of any large organization is quite complex by default. It usually
consists of heterogeneous networks, it resides in different data centers and heavily utilizes
database technology to hold corporate data. Recently a new trend, the so-called NoSQL [1]
solutions, joins this conglomerate. More and more companies are adding them to solve raising
problems with data scalability. The range of NoSQL solutions varies from key-value stores to
graph databases. Even though their advantages are controversial, their penetration into IT
infrastructure is obvious. The High Energy Physics community is not an exception. Today
CERN attracts most of the attention. It hosts four large experiments at LHC searching for
new physics and testing our knowledge of Standard Model. One of them is Compact Muon
Solenoid (CMS) [2]. More than three thousand physicists are involved in most sophisticated
research program at CMS that yields a few PB of data each year at their disposal. To handle
this amount of data CMS experiment relies on hundreds of computing centers around the world
interconnected with each other by GRID infrastructure [3]. The CMS software has been around
ten years and still is constantly evolving along with experiment requirements. Today it has more
than 4M lines of C++ code (CMSSW release), 2M lines of python code (framework configuration,
web and data management stack), as well as various applications written in Java and perl
(mostly web and data services). Major CMS data-services, such as Tier0 [4], PhEDEx [5], Data
Bookkeeping System [6], Run Summary [7] are based on standard 3-tier architecture and rely on
ORACLE RAC. Combined, they accumulate ∼O(100GB) of meta-data every month. Although
such infrastructure served us well in first couple of years of data taking, the application growth,
big data scale and changing requirements enforced CMS developers to bring NoSQL solutions
into CMS software stack. Here we discuss reasons behind this choice and our experience with
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those tools in CMS production environment. We start with motivations in Sect. 2, followed by
overview of three CMS projects based on NoSQL in Sect. 3 and summarize our experience with
them in Sect. 4.

2. Motivations
Efficient data management at PB scale is a very challenging task. Existing CMS data-services
rely on ORACLE back-end supported by CERN IT. Although they are holding the load we start
to see limitations of the systems where a new set of use cases was hard to accommodate in terms
of existing infrastructure.

For example, CMS data management tools required off-site deployment. Some of the CMS
sites were unable to deploy ORACLE database due to license issues and therefore swap to
MySQL back-end. Although such system worked1, we faced with a problem of data replication
across distributed sites. As a result, the system was re-designed to use document-oriented
data store, the CouchDB [8]. It provided replication capabilities, map-reduce operations and
eliminated issues with schema evolution.

Another example is a data discovery challenge due to growth of meta-data in different
databases. For example, in CMS we have data transfer management system, data bookkeeping
system, run summary, conditions databases, etc., which contains valuable information for
physicists. But quite often users required to query multiple services in order to find desired
information. It became clear that new level of abstraction is required to deal with different
interfaces, data formats, naming and schema conflicts. Therefore, CMS built the Data
Aggregation System (DAS) on top of MongoDB [9], the open source document-oriented database.
The schema-less database with flexible query language, fast read/write operations and horizontal
scaling, was very suitable for DAS implementation and allows us to resolve all aforementioned
issues.

It is also common to use simple key-value store to increase a throughput of existing database
back-end [10]. But in some cases it can represent a valuable alternative to RDBMS when
complexity of the server setup and its maintenance can be avoided. One of the examples of such
successful substitute will be discussed in Sect. 3.3.

These are only a few examples where usage of NoSQL can be beneficial. From our experience
we see that usage of relational databases can be supplemented by NoSQL solutions to fulfill the
modern scale of data management. We can summarize our motivations toward usage of NoSQL
as following:

• heterogeneous environment leads to a highly complex data operations whose requirements
are not known a-priory;

• evolving data model and big data scale often conflict with underlying schema constraints
and become a real bottleneck at application layer that is resolved by de-normalization of
the schema or separation of the database into multiple services;

• the tradeoff of ACID (atomicity, consistency, isolation, durability) properties in favor of
high availability of the data is often a case in dynamic, distributed environment;

• real time features, such as analytics, aggregation, map-reduce, horizontal scalability and
distributed operations become de-facto standard in modern world;

• licensing issues, administrative and maintenance cost of RDBMS has a long term
commitment and often can be avoided.

It is worth to mention that expertise with new products does not come for free, but without
trying new technologies we will probably never reach our goals.

1 Obviously developers were facing schema compatibility issues between different back-ends.
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3. NoSQL in CMS software infrastructure
Currently there are several CMS projects that are based on NoSQL solutions. Here, we will
discuss only three of them:

• the Data Aggregation System (DAS) [11] is an intelligent cache in front of CMS data-
services; it fetches and aggregates data on demand upon user queries and represents next
generation of data discovery service for CMS experiment;

• the Data and Workflow management (WMAgent) tool [12] is a job submission and execution
engine for CMS production machinery; it dispatches and manages jobs across CMS tier
centers;

• the Ignominious Profiler (IgProf) [14] is a primary tool for performance studies of CMS
software.

The usage of NoSQL varies among these projects, but as you will see shortly it plays an
important role in their success.

3.1. DAS and MongoDB
The idea behind DAS [11] was very simple, the system should provide a search interface across
distributed relational and non-relational data-services and aggregate information from them. It
must operate as a dynamic cache in front of existing infrastructure and hides complexity of
their data access. The set of requirements imposed on developers to build such system were
the following: DAS should provide easy to use and yet powerful text-based query language; it
must accommodate different data formats, security measurements as well as naming and schema
differences of underlying data-services; it should be transparent to their API and architectural
changes; it must have fast read/write I/O and capable to store and aggregate data from them
in a real time. Initially many options were considered, including usage of RDBMS back-end
(ORACLE/MySQL), federated database (ORACLE), key-value store (Berkley DB, memcached)
and document-oriented databases (CouchDB and MongoDB). Among them the federated and
document-oriented database approaches were most appealing. They can be used to abstract
data-services, e.g. resolve naming conflicts, they provide search interfaces and they are suitable
in distributed environment. The key difference between two approaches was a requirement of
data model. As such, the federated database still required a-priory knowledge of data and should
be abstracted at user interface level to hide its schema. While the NoSQL schema-less document-
oriented databases do not impose such constraints, the data storage and retrieval can be done
as is. The aggregation of the records would be done at proper matching of key value pairs
and underlying data format can be easily manipulated at presentation layer via JavaScripts.
Moreover, the ACID properties of the back-end can be replaced with BASE (basically available,
soft state, eventually consistent) alternative, which is more suitable for this case. Even though
we had prior experience with usability studies for data discovery service [15, 16], we found that
experiment requirements are constantly changing. Such changes were often required schema
modifications as well as adaptation of SQL queries. Therefore, a static approach of federated
database via development and maintenance of new schema was ruled out in favor of NoSQL
approach, where MongoDB represented several advantages over CouchDB for DAS use case.
It stores data in binary JSON data format, it provides flexible query language and full index
support on any query-able attribute as well as map-reduce operations. In addition, it provided
replica sets and sharding for horizontal scaling. Based on published benchmarks and our own
measurements we were satisfied with high throughput of MongoDB read/write operations and
built DAS around it. Currently, it uses dozens of MongoDB collections (a la databases), including
raw and merge caches, logging and analytics collections. MongoDB is used to store data records
along with user queries, data-services mapping and presentation templates for different data-
services. Due to dynamic nature of the cache the total size of MongoDB constantly varies.
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We observed that few thousand user queries yield a million data records on average, such that
MongoDB size grows ∼30GB in a month. Our measurements2 demonstrated that MongoDB
can sustain the load of 20k and 7k docs per second in read and write operations, respectively.
At this rate DAS performs well, although in coming years we expect the load double in size.
Up to now we did not experience any issues with MongoDB, including its well criticized global
write-lock, but we pay close attention to deployment stories based on this product.

3.2. WMAgent and CouchDB
The workflow and management system, WMAgent [12], is a set of python modules written
specifically to handle Tier-1, integration and MC production jobs for various CMS workflows.
WMAgent was designed to support high load job submission and monitoring at a rate of 3K
jobs at Tier-0, 10K jobs at Tier-1s, 15K simulation jobs at Tier-2s and 15K analysis jobs at
Tier-2s. Jobs submission can be done by different teams at different geographical locations,
each handling ∼50 jobs/second at most. At the same time, it was required that job submission
should be supported in distributed environment and provides durability with respect to the
system failures.

Each WMAgent is based on WMCore framework [13] and consists of several components:
the WMBS (Workflow Management Bookkeeping System) for handling job definitions and
dependencies; JobStateMachine to keep jobs progress; JobDump and WorloadSummary
subsystems for collecting job output reports and summaries, respectively. Its initial
implementation was based on MySQL back-end. Very soon it was realized that synchronization
between distributed MySQL servers represents a real challenge for system developers and did
not scale. To resolve this issue different parts of the system (WorkQueue, JobStateMachine,
JobDump and WorkloadSummary) were migrated to CouchDB document-oriented database. It
provided several advantages over MySQL. The CouchDB is built on top of the Erlang OTP
platform [17], a functional, concurrent programming language and development platform, and
therefore has excellent support for developing highly concurrent applications. It is a peer-
based distributed database system that supports bi-directional replication between distributed
databases in reliable, incremental form. In addition, the CouchDB guarantees ACID properties
at file level and never overwrites committed data. Such database features provide high
availability of our data together with bookkeeping mechanism for WMAgent workflows. The
map-reduce operations were sufficient for generating summaries, job progress and output reports.
Finally, the back-up of CouchDB was trivial operation due to append only file format suitable
for database replication to another node or writing DB file to CASTOR tape system.

Currently we have several CouchDB databases deployed at CERN and FNAL with replication
rate of a few documents per second between different WMAgents. After six months of running,
the busiest CouchDB contains more than six million documents (300GB in size) and constantly
growing. Even though we experienced a couple of issues with CouchDB, see next chapter, the
system works very reliably.

3.3. IgProf and KyotoCabinet
The Ignominious Profiler (IgProf) tool [14] is not as big as other two systems discussed here,
but it is very well crafted and critical for debugging, analyzing and fine-tuning of CMS software.
Originally it was written as complementary tool to standard gprof, jprof, valgrind and other
profiling and instrumentation tools, but it grown beyond them in its capacity and widely used
by CMS developers to carry various tasks. For example, it is used by build system to generate a
few hundred profiles per integration build. Its output consists of SQLite database files (each of
the order of few MB) that are stored on AFS area, where they can be used by igprof-navigator

2 Benchmarks are based on usage of MongoDB python driver
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tool. The toolkit should be light-weight and portable to allow users quickly plug it into various
tasks. While SQLite files were sufficient for navigating a single profile at a time, the comparison
of multiple profiles leads to a large overhead with handling SQLite databases, especially if
someone wants to serve IgProf data into web site via CGI script. Turns out that static nature
of stored profile symbols among analyzed runs allows their compression at a very good level. As
a result IgProf developers switched to Kyoto Cabinet [18] key-value file-based store for igprof-
book application. It is capable of storing and operating millions of keys in fraction of a second
and provides superior database compressions. For example, the igprof-book database of 16K+
profiles is only ∼5 GB in size versus what would be ∼100 GB in case of SQLite equivalent.
Therefore, such choice was excellent substitution of more complex web-service infrastrcuture.

4. Production experience
Despite the novelty of discussed tools their maintenance was minimal and did not involve
IT/DBA support. The learning curve was short, due to simplicity of their APIs and underlying
data format, but the efficiency of those tools came with a gained knowledge along their usage.

In a case of MongoDB the high throughput was based on maintaining its indexes and accessed
data in RAM. Although the initial setup was easy, the growth of the data forces us to revisit
cache internals several times. For example, on average we observed 10K requests per day that
yields 1M documents going in and out of MongoDB. Such dynamics was determined by lifetime
of the records associated with user queries. The expiration timestamps were set by participating
data-services providers. The size of the stored objects was <1KB. Initially we re-index database
several times to reduce its index size, while after code re-factoring and re-arragenment of query
plans it was no longer required.

The DAS and MongoDB were deployed on a single node with 8 CPU cores, 24 GB of RAM
and 1 TB of disk space whose resources were shared with other CMS data-services. Our tests
shown that MongoDB can easily maintain 100M records and provide 20k docs/per second read
throughput for 500 parallel clients. Currently, the load on a system is not that high and our
plans for horizontal scaling are postponed. There were a few minor issues with MongoDB, e.g.
its non-standard build tool, some limitations on stored keys as well as primitive support of
aggregated functions, but we found excellent support from MongoDB team and were able to
resolve all outstanding issues.

The setup and usage of WMAgent/CouchDB was totally different. The WMAgent
deployment was done at CERN and FNAL nodes. In total, we had 8 CouchDB databases
serving Tier1, MC production and integration WMAgent’s instances. Each CouchDB node had
8 CPUs, 48 GB of RAM and suitable disk space. As we stressed earlier, the WMAgent did not
require dynamic queries and data-ops were mostly interested in summary reports for production
workflows. For that purpose simple map-reduce operations were written in JavaScripts and
deployed into CouchDB views. Most of the time the views took more space than data themselves.
It is worth to mention that index maintenance in CouchDB should be done with care. For
example, re-building the index over the large collection can be very time-consuming operation
(it can literally take hours to complete), while accumulation of existing indexes is usually
transparent operation.

A few issues with CouchDB were discovered upon running production version of WMAgents.
Even though the CouchDB works very reliably, we experienced a few database issues, e.g. the
compaction of very large database, with the size above 300GB. But all of them have been recently
addressed by CouchDB team and patches were applied to our production code base.

It is worth to mention that both MongoDB and CouchDB databases were put on a private
network due to simple security measurements they provide. We relied on apache front-end
authentication and group role authorization provided by separate security module. It required
all users to supply valid GRID certificate whose DN was verified in internal database and user
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roles were determined.
On a contrary the igprof components, SQLite and KyotoCabinet, did not require a dedicated

server and their setup was trivial.
All of the NoSQL solutions discussed here were build and packaged in custom RPMs. Their

deployment was done via standard CMS procedure along with the rest of CMS software stack.
The CERN VMs were used for testing and integration phases.

Even though our production experience with discussed NoSQL tools were limited, we are
satisfied with their performance and our confidence is partially confirmed by successful stories
of their usage in a business world3.

5. Conclusion
The LHC CERN experiments setup a new scale of data management. As we gradually move into
PB area a new set of challenges appeared. They include, but not limited to, high-availability
of the data, crossing boundaries of distributed databases and efficient management of big data
volumes. The software engineers start adopting new tools to accomplish these tasks. We see a
new trend of wrapping up the standard 3-tier architecture based on traditional RDBMS back-end
with another software layer that provides additional functionality to data management tools.

Here we discussed three NoSQL solutions: MongoDB, CouchDB and KyotoCabinet that are
successfully deployed into production environment of CMS experiment. They found a niche in
CMS software stack and nicely co-exist with traditional databases. The schema-less feature of
MongoDB and CouchDB allows to abstract existing data-services and aggregate information
from them. The map-reduce operations provide a new view over the data and used for summary
reports, while key-value store (KyotoCabinet) can efficiently substitute static database where
data compression is valuable. The choice of NoSQL was justified for each CMS project we
discussed here and our production experience with those tools was quite pleasant. They required
minimal administrative and maintenance cost, they have been deployed via standard procedure
and served our application growth quite well. Even though the size of the data handled by
NoSQL is just order of magnitude less of equivalent usage of RDBMS in CMS, their usage is
growing quickly.
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