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Abstract   

Each generation of high energy physics experiments is grander in scale than the previous – 

more powerful, more complex and more demanding in terms of data handling and analysis.   

The spectacular performance of the Tevatron and the beginning of operations of the Large 

Hadron Collider, have placed us at the threshold of a new era in particle physics.   The 

discovery of the Higgs boson or another agent of electroweak symmetry breaking and 

evidence of new physics may be just around the corner.  The greatest challenge in these 

pursuits is to extract the extremely rare signals, if any, from huge backgrounds arising from 

known physics processes.  The use of advanced analysis techniques is crucial in achieving 

this goal.  In this review, I discuss the concepts of optimal analysis, some important advanced 

analysis methods and a few examples.  The judicious use of these advanced methods should 

enable new discoveries and produce results with better precision, robustness and clarity. 
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1 INTRODUCTION    

The ambitious goal of understanding Nature at the most fundamental scale has led to the 

development of particle accelerators and detectors at successively grander scale.  The 

revolutionary discoveries at the beginning of the twentieth century opened up the quantum 

world.  By mid-century, the Standard Model (SM) of particle physics (1-6) was being built and 

by the turn of the century, the last quark (7, 8) and the last lepton (9) of the Standard Model had 

been found.  Despite this spectacular success, a vital part of the Standard Model, the “Higgs 

mechanism” (10-13), still awaits experimental evidence.  And there are indications that the SM 

particles and forces might be telling us only a part of the story.  Since the SM accounts for only 

4% of what makes up the universe, the rest must be explained in terms of matter and phenomena 

we have yet to uncover.  The evidence for dark matter in the universe, the evidence for an 

accelerating universe, the discovery of neutrino oscillations, and the persistent discrepancies in 

some of the precision measurements in SM processes, are some of the strong indicators of the 

existence of new physics beyond the SM.  It appears that new physics is inevitable at the TeV 

energy scale.  We might be at the threshold of what might prove to be another extraordinary 

century.    

Since the discovery of the top quark in 1995 (7, 8, 14), the pursuit of the Higgs boson and 

searches for new physics beyond the SM have taken center-stage.  The luminosity upgrades of 

the Fermilab Tevatron (15) in the past decade have produced unprecedented amounts of proton-

antiproton collision data at the center of mass energy ( s ) of 1.96 TeV.  This, in conjunction 

with the use of advanced analysis methods, has enabled the observation of the electroweak 

production of single top quarks (16,17) and sensitive searches for the Higgs boson and physics 

beyond the SM.   The Large Hadron Collider (LHC) (18), with the design energy of s = 14 

TeV, will open new energy frontiers that might help answer some of the most pressing particle 

physics questions of today.    

The investments in the accelerator facilities and experiments – intellectual and monetary – and 

the total time span of the undertakings are so great that they cannot be easily replicated.  

Therefore, it is of the utmost importance to make the best use of the output of this investment – 

the data we collect.    While the advances in computing technology have made it possible to 
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handle vast amounts of data, it is crucial that the most sophisticated techniques be brought to 

bear in the analysis of these data at all stages of the experiment.  The instrumentation has, over 

the past century, advanced from photographic detectors to those integrated with ultra-fast 

electronics that produce massive amounts of digital information each second.  The data analysis, 

likewise, has progressed from visual identification of particle production and decays to hunting 

for bumps in invariant mass spectra of exclusive final state particles to event counting in 

inclusive data streams.  The rates of interactions and the number of detector channels to be read 

out have grown by orders of magnitude over the course of the last few decades.  We can no 

longer afford to write out data to storage media based on simple interaction criteria.   But, the 

events that we seek to study are extremely rare. So, today, data analysis in high energy physics 

(HEP) experiments starts when a high energy interaction or an event occurs. The electronic data 

from the detectors need to be transformed into useful “physics” information in real-time.  The 

trigger system is expected to select interesting events for recording and discard the background 

or uninteresting events.  Information from different detector systems is used to extract event 

features such as the number of tracks, high transverse momentum objects, and object identities.  

The extracted features are then used to decide whether the event should be recorded.  At the 

LHC, the event rate will be reduced from 40 MHz collision rate to ~200 HZ for recording. This 

online processing of data is performed with a combination of hardware and software 

components.   

More detailed analysis of the recorded data is performed offline.  The common offline data 

analysis tasks are: charged particle tracking, energy/momentum measurements, particle 

identification, signal/background discrimination, fitting, the measurement of parameters, and the 

derivation of various correction and rate functions.  The most challenging of the tasks is 

identifying events that are rare, and obscured by the wide variety of processes that can mimic the 

signal.  This is a veritable case of “finding needles in a hay-stack”   for which the conventional 

approach of selecting events using cuts on individual kinematic variables can be far from 

optimal.   

The power of computers coupled with important developments in machine learning algorithms, 

particularly the back-propagation algorithm for training neural networks, brought a revolution in 

multivariate data analysis by the late 1980s.  There was much skepticism about these ideas in the 
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early 1990s when these methods were brought into HEP analyses (19-22).  However, after 

several successful applications (23-29), particle physicists have largely accepted the use of 

neural networks and other multivariate methods. It is also now evident that without these 

powerful techniques, many of the important physics results that we have today would not have 

been achievable using the available datasets.  My goal, in this paper, is to provide an introduction 

to the concepts that underlie these advanced analysis methods and describe a few popular 

methods.  I will also briefly discuss some analysis examples and prospects for future 

applications.   

2 OPTIMAL ANALYSIS CONCEPTS 

“Keep it simple, as simple as possible, not any simpler”     Albert Einstein    

The goal in data analysis is to extract the best possible results.  Here I discuss the types of 

analysis tasks we perform, why the sophistication of multivariate methods is necessary to obtain 

optimal results, introduce the concepts and the general framework that underlie the popular 

methods.  

The broad categories of analysis tasks are: (a) classification (b) parameter estimation and (c) 

function fitting.  Mathematically, in all these cases, the underlying task is that of functional 

approximation.  Classification of objects or events is, by far, the most important analysis task in 

HEP.  Common examples of classification are identification of electrons, photons, τ-leptons, b-

quark jets, etc., and discriminating signal events from those arising from background processes.  

It is necessary to identify objects with good purity and to isolate events arising from specific 

physics processes before further studies can be undertaken.  Optimal discrimination is crucial if 

one wishes to make the best use of data and provide signal-enhanced samples for precision 

physics measurements.  Parameter estimation is essentially regression or fitting a model to the 

data.  Measurements of track parameters, vertices, physical parameters such as production cross 

sections, branching ratios, masses and other properties are examples of regression.  Some 

examples of function fitting are the derivation of correction functions, tag rate functions and fake 

rate functions.  
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These categories of tasks are also referred to as pattern recognition problems.1

2.1 Multivariate Treatment of Data 

   

Data characterizing an object or an event generally involve multiple quantities referred to as 

feature variables.  These may be, for example, the four-vectors of particles, energy deposited in 

calorimeter cells, deduced kinematic quantities of objects in the event, or global event 

characteristics.  The variables, generally, are also correlated in some way.  Therefore, to extract 

results with maximum precision and minimum bias it is necessary to treat these variables in a 

fully multivariate way.  Consequently, the methods for an optimal analysis are necessarily 

multivariate.  

Each multivariate datum of an object or an event can be represented by a vector 

),...,,( 21 dxxx=x  in a d-dimensional feature space.  The objects or events of a particular type or 

class can be expected to occupy specific contiguous regions in the feature space.  When 

correlations exist between variables, the effective dimensionality of the problem is smaller than d. 

(The kinematic variables in HEP events are, generally, smooth functions and highly correlated 

across objects in the event.)   

Diligent “pre-processing” of data is the first step in an analysis.  This is also referred to as 

feature extraction or variable selection.  Having selected a set of variables, one might apply a 

transformation to the variables to yield a representation of the data that exhibits certain desirable 

properties. This could be simple scaling of the variables or a more sophisticated transformation.  

In some applications this pre-processing might be the only necessary multivariate treatment of 

the data.  In others, it serves as the starting point for more refined analysis.  Given x, the goal is 

to construct a function )(xfy = with properties that are useful for subsequent decision-making 

and inference. That is, we would like to extract a map Ndf ℜ→ℜ: , preferably with dN << . 

( mℜ : real vector space of dimension m.)  We try to approximate the desired function 

with ),(~ wxfy = , where w  are some adjustable parameters.  I will discuss the general approach 

for obtaining the functional mapping in later sections.  

                                                      
1 Pattern recognition also encompasses knowledge discovery by data exploration which deals 
with data-driven extraction of features, and deriving empirical rules via data-mining. 
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The power of multivariate analysis is illustrated by a simple two-dimensional example.  Figure 

1(a), (b) show distributions of two variables x1 and x2 arising from two bivariate Gaussian 

distributions shown in Figure 1(c).  The one-dimensional projections (Figure 1(d,e) ), i.e., 

marginalized densities ∫= 2)2,1()1( dxxxGxf   and ∫= 1)2,1()2( dxxxGxf  have considerable 

overlap and there are no obvious cuts on the variables x1 and x2 that would separate the two 

classes.  But, when we examine the data in 2-dimensions, we see that the two classes are largely 

separable.  Therefore, a cut applied to the linear function (30), 21~ bxaxy +=  (called a linear 

discriminant) plotted in Figure 1(f) can provide optimal discrimination of the two classes.  (The 

linear function shown in Figure 1(c) is a simple example of a decision boundary.)  By optimal 

discrimination we mean a procedure that minimizes the probability of mis-classification.

 

2.2 Machine Learning 

The availability of vast amounts of data, challenging 

scientific and industrial problems characterized by multiple 

variables paved the way to the development of automated 

algorithms for learning from data. The primary goal of 

learning is to be able to respond correctly to future data.  In 

conventional statistical techniques, one starts with a 

mathematical model and finds parameters of the model 

either analytically or numerically using some optimization 

criteria. This model then provides predictions for future 

data.  In machine learning, an approximating function is inferred automatically from the given 

data without requiring a priori information about the function. 

In machine learning, the most powerful approach to obtain the approximation ),( wxf ,  of the 

unknown function )(xf , is supervised learning, in which a training data set, comprising feature 

vectors (inputs)2

                                                      
2 I use feature vectors and inputs, interchangeably. 

 and the corresponding targets (or desired outputs), is used.   The training data 

Machine Learning: 

Machine Learning is the paradigm 
for automated learning from data 
using computer algorithms.  It has 
origins in the pursuit of Artificial 
Intelligence, particularly, in Frank 
Rosenblatt’s creation of the 
Perceptron around 1960 (31).  
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set { }x,y , where y are the targets (from the true function )(xf ), encodes information about the 

input-output relationship to be learnt.  In HEP, the training data set generally comes from Monte 

Carlo simulations.  The function )(xf is discrete for classification ({0,1} or {-1,1} for binary 

classification) and is continuous for regression.  (Thus the distinction between discrimination and 

regression is not fundamental.)  The goal of learning (or training) is to find w  the parameters of 

our “model” for the desired input-output map.   

In all approaches to functional approximation (or function fitting), the information loss incurred 

in the process has to be minimized.   The information loss is quantified by a loss function 

)),(,( wxfyL .  In practice, the minimization is more robust if one minimizes the loss function 

averaged over the training data set.  A learning algorithm, therefore, directly or indirectly, 

minimizes the average loss, called the risk, quantified by a risk function )(wR  that measures the 

cost of mistakes made in the predictions, and finds the best parameters w .  The empirical risk is 

defined as the average loss over all (N) predictions,    

{ } 1.                                                        . ),(,1)(
1

∑
=

=
N

i
i fyL

N
R wxw i  

A common risk function used is the mean square error, 

2.                                            ,)),((1)()(
1

2∑
=

−==
N

i
i fy

N
ER wxww i  

which represents the discrepancy between the desired function and its approximation.  If the 

optimization has to take into account any constraint )(wQ , it can be added to the risk function to 

give a cost function to be minimized, given by,  

3.                                                            ),()()( www QRC λ+=  

where λ is an adjustable parameter that determines the strength of the constraint imposed.  The 

cost function in the case of a mean square error is the well known constrained χ2 fit.  The 

function ),( wxf obtained by the procedure converges, in the limit of a large training data set, to 

the function )(xf that minimizes the true risk function.   
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The risk minimization can be done using many algorithms, each of which essentially attempt to 

find the global minimum of the cost function or error hypersurface in the parameter space.   The 

generic method is that of gradient descent.  Other popular methods include Levenberg-Marquardt 

(32), simulated annealing (33) and genetic algorithms (34).  The constraint in the cost function is 

typically used to control model complexity (or “over-fitting”), and is called regularization. The 

performance of the classifier or estimator is generally evaluated using a test data set independent 

of the training set. 

A method that is able to approximate a continuous nonlinear function to arbitrary accuracy is 

called a universal approximator.  Neural networks are examples of universal approximators. 

Two other types of learning approaches are unsupervised and reinforcement learning.  In the 

former, no targets are provided and the algorithm finds associations among the feature vectors.  

In the latter approach, correct outputs are rewarded and incorrect ones are penalized.   These 

methods will not be further discussed here. 

2.3 The Bayesian Framework 

“Today’s posterior distribution is tomorrow’s prior.” – David Lindley 

The Bayesian approach to statistical analysis is that of inductive 

inference. It allows the use of prior knowledge and new data to 

update probabilities.  Therefore, it is a natural paradigm for 

learning from data.  It is an intuitive and rigorous framework for 

handling classification and parameter estimation problems.  At 

the heart of Bayesian inference (35) is Bayes theorem,   

4.                                                         , 
)(

)()|()|(
Ap

BpBApABp =  

where the conditional probabilities )|( ABp  and )|( BAp  are 

referred to as the posterior probability and likelihood, 

respectively, )(Bp is the prior probability of B, and the 

denominator is simply the total probability of A, 

Α 

Conditional Probabilities: 
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)()|(
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Bayes theorem can be readily 
derived from these expressions. 
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∫= dBBpBApAp )()|()( .  If B is discrete, the integral is replaced by a sum.   

 

Let us consider a binary classification problem where an event has to be classified either as due 

to a signal process s , or due to a background process b .  This is achieved by placing a cut on the 

ratio of the probabilities for the two classes, 

5.                                                    , 
)()|(
)()|( 

)|(
)|()(

bpbp
spsp

bp
spr

x
x

x
xx ==  

where )|( sp x and )|( bp x are the likelihoods of the data for signal and background classes, 

respectively;  )(sp  and )(bp are the prior probabilities.  The discriminant ‘r’ is called the Bayes 

discriminant, where r(x)=constant defines a decision boundary in the feature space. The Bayes 

rule is to assign a feature vector to the signal class if )|()|( xx bpsp > .   This rule minimizes 

the probability of misclassification.  Any classifier which minimizes the misclassification rate is 

said to have reached the Bayes limit. The problem of discrimination, then, mathematically 

reduces to that of calculating the Bayes discriminant )(xr or any one-to-one function of it. 

 

The posterior probability for the desired class s, becomes, 

6.                                     . 
1)()|()()|(

)()|( )|(
r

r
bpbpspsp

spspsp
+

=
+

=
xx

xx  

 

There are parametric and non-parametric methods to estimate )|( sp x and )|( bp x that I will 

discuss in the next section.  If one minimizes the mean square error function (Equation 2) where 

the targets are {0,1}, then )( wx,f , if flexible enough, will directly approximate  the posterior 

probability, )|( xsp .  Neural networks, being universal approximators, are one such class of 

functions.  

 

When )(sp and )(bp  are not known, which is typically the case, one can calculate the 

discriminant function,  

7.                                                            , 
)()(

)( )(
xx

xx
bs

sD
+

=  
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where )|()( sps xx = and )|()( bpb xx = .   The posterior probability for the signal class is 

related to this discriminant function  by, 

8.                                                  , 
]/))(1()([

)( )|(
kDD

Dsp
xx

xx
−+

=  

where )(/)( bpspk = .  The discriminant )(xD is often referred to as the likelihood discriminant 

in HEP. The discriminating power of )(xD , which is a one-to-one function of )|( xsp , is the 

same as that of )|( xsp . 

When many classes ),...,2,1( NkCk =  are present, the Bayes posterior probability can be written 

as, 

9.                                                  . 
)()|(

)()( )|(
∑

=
kk

kk
k CpCp

CpCpCp
x
|xx  

 

The Bayes rule for classification is to assign the object to the class with highest posterior 

probability.  This is also the criterion in hypothesis testing.   

 

In problems of parameter estimation, the posterior probability for a model parameter θ is, 

10.                                                        , 
)(

)()( )|(
x

|xx
p

ppp θθθ =  

where )(θp  is the prior probability of θ.  Thus in the Bayesian approach, one has a probability 

distribution of possible values for the parameter θ , while in conventional machine learning 

methods one calculates a maximum likelihood estimate for θ .   However, the two approaches are 

closely related.  The minimization of the error or cost function in the machine learning approach 

is equivalent to maximizing the Bayesian posterior probability.    

3 POPULAR METHODS         

I discuss here several methods that are particularly relevant and popular in high energy physics – 

from the simplest to the most sophisticated multivariate methods with minimal, essential, 
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mathematics.  The interested reader can consult many excellent books for details of these 

methods and algorithms (36-40).    

3.1 Grid Searches 

The conventional approach to separating signal from background is to apply a set of cuts such as 

..., 2211 zxzx >>  where ( dzzz ..., 21 ) forms a cut-point in the d-dimensional feature space. These 

“rectangular” cuts are usually arrived at by a process of trial and error informed by common 

sense and physics insight. Unfortunately, there is no guarantee that this procedure will lead to 

optimal cuts (as illustrated by the example in section 2). One can obtain the best set of 

rectangular cuts by a systematic search over a grid in feature space. A search over a regular grid, 

however, is inefficient: a lot of time can be spent scanning regions of feature space that have few 

signal or background points. Moreover, the number of grid points grows like  M d, which 

increases rapidly with bin count M and dimensionality d, a problem known as the “curse of 

dimensionality”. A better way is to use a “Random Grid Search” (41) where a distribution of 

points, which form a random grid, is used as the set of cut-points. The cut-points could be 

obtained, for example, from signal events generated by a Monte Carlo simulation.  The results 

can be plotted as efficiency for retaining signal versus efficiency for background for each of the 

cuts. The optimal cuts are those that maximize signal efficiency for desired background 

efficiency.3

 

 

The random grid search can be used for a rapid search for the best rectangular cuts, to compare 

the efficacy of variables or to serve as a benchmark for more sophisticated multivariate analyses.        

3.2 Linear Methods 

In grid searches, the decision boundaries are lines or planes parallel to the axes of the feature 

space.  As illustrated in Figure 1, optimal separation of classes might require decision 

boundaries rotated relative to the axes of the original feature space.  

In a linear model, the mapping can be written as,  

                                                      
3 The plot is akin to the ROC (Receiver Operating Characteristic) curve, first invented in the 
1950s to study radio signals in the presence of noise and used in signal detection theory. 
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11.                                 ,....)(~ T
22110        xwxwxwwy

i ii xwx ∑ ==+++=  

where, Tw is the vector of weights4

Sir Ronald Fisher (30) pioneered the earliest successful applications of linear discriminants.   

Fisher’s approach to discrimination between classes was to find a linear combination of input 

variables that maximizes the ratio of between-group variance to within-group variance.  If we 

consider two sets of feature vectors xs, xb  from signal and background classes, with means 

.  

bs µµ , , and variances bs σσ , ,  the Fisher criterion is to maximize 

. 12                                                              , )()( 22

2

bs

bsF
σσ +

−
=

µµw  

which yields, for the parameters w , 

13.                                                                , )bs µµ −(= -1Σw  

where Σ  is the common covariance matrix for the classes.  The Fisher discriminant can also be 

derived from Bayes discriminant starting with Gaussian density for each class,  

14.                                    .)()(
2
1exp

)2(
1)( 2/12/

    f T
d 



 −−−= µµ xΣx

Σ
x 1-

π
 

Then, taking the logarithm of the Bayes discriminant (Equation 5), we obtain, 

15.     . 
)(
)(loglog

2
1)()(

2
1)()(

2
1

)|(
)|(log)(

bp
sp

bp
spD s

T
sb

T
b ++−−−−−==

1-
b

-1
s1-

s
1-

b Σ

Σ
xΣxxΣx

x
xx µµµµ

 

This is the general form of the Gaussian classifier, which after omitting non-essential terms that 

are independent of x, can be written as,  

16.                                                  ,)(
2
1)( 22

sbDF χχ −== x   

                                                      
4 Ι will use weights and parameters, interchangeably. 
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where, )()(2 µµ −−= x Σx -1Tχ .  If the covariance matrices are equal, i.e.,  ΣΣΣ bs ==  ,  then 

one obtains Fisher’s linear discriminant.  If the covariance matrices are not equal, Equation 16 

represents a quadratic function in the input variables.  However, if we consider the augmented 

feature space with variables , and ,,,, 21
2
2

2
121 xxxxxx  the quadratic discriminant function in the 

original space becomes a linear discriminant corresponding to linear decision boundaries in the 

augmented 5D space.    

The Gaussian classifier is also referred to as the H-matrix method, where -1Σ=H  and is used in 

electron identification in DØ (see Refs. 23, 42). 

So far, we discussed Gaussian densities as the relevant models.  In case of non-Gaussian 

densities, one can still use linear methods such as Support Vector Machines (38), provided that 

the data are mapped into a space of sufficiently high dimensions.   

3.3 Naïve Bayes or Likelihood Discriminant 

When the feature variables are statistically independent, the multivariate densities can be written 

as products of one dimensional densities, without loss of information.   In this case, the 

discriminant in Equation 7 becomes, 

17.                                                     , 
)()(

)()(
iiiiii

iii

xbxs
xsD
ΠΠ

Π
+

=x  

where )( ii xs  and )( ii xb are the densities of the ith variable from signal and background classes, 

respectively. When the statistical dependence is not great, this method is useful since the 

univariate densities can be readily estimated by simple parametrizations  (or by non-parametric 

methods discussed below).   To simplify, one can parametrize the likelihood ratio of the 

individual variables iii bsL /=  and calculate the discriminant as )1/()( LLxD +=  where  

∑= iLL exp  (see Ref. 24).  

3.4 Kernel-based Methods 

When the multivariate densities cannot be factorized as above, it is necessary to estimate them to 

calculate the discriminant function.  In principle, multivariate densities can be estimated simply 

by histogramming the multivariate data x in M bins in each of the d feature variables. The 
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fraction of data points that fall within each bin yields a direct estimate of the density at the value 

of the feature vector x, say at the center of the bin. The bin width (and therefore the number of 

bins M) has to be chosen such that the structure in the density is not washed out (due to too few 

bins) and the density estimation is not too spiky (due to too many bins).  Unfortunately, this 

method suffers from the curse of dimensionality as in the case of the standard grid search.  We 

would need a huge number of data points in order to fill bins with a sufficient number of points.  

 

More efficient methods for density estimation are based on sampling neighborhoods of data 

points. Let us take the simple example of a hypercube of side h as the kernel function in a d-

dimensional space.  Such a hypercube can be placed at each point xn, counting the number of 

points that fall within it and dividing that by the volume of the hypercube and the total number of 

points, i.e., 

 

18.                                                 , 11)(~
1







 −

= ∑
= h

H
hN

p n
N

n
d

xxx  

 

where N is the total number of points, and  H(u)=1 if x is in the hypercube, 0 otherwise.  

 

The method is essentially histogramming, but with overlapping bins (hypercubes) placed around 

each data point. Smoother and more robust density estimates can be obtained by using smooth 

functional forms for the kernel function H. A common choice is a multivariate Gaussian, 

19.                                               , 
2

exp
)2(

1)( 2

2

2/ 











 −
−=

hh
uH n

d

xx
π

 

where the width of the Gaussian acts as a smoothing parameter, the bandwidth, to be chosen 

appropriately for the  problem. If the kernel functions satisfy, 

 

20.                                                         ,1)(;0)( ∫ =≥ duuHuH  

then, the estimator satisfies 0)(~ ≥xp    and ∫ = 1)(~ xx dp .  
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In the standard kernel methods, the parameter h is the same for all points and consequently the 

density estimation can be over-smoothed in some regions and spiky in some others. Choosing 

appropriate width is a critical aspect of this algorithm. This problem is addressed by use of 

adaptive kernels or the K-nearest neighbor approach.  

 

Adaptive Kernels: The basic idea is to have the kernel width depend on the local density of data 

points.  So we can define the local kernel width hh ii λ= where h is the global width and iλ  is a 

scaling factor determined by the local density, a simple ansatz being that iλ  is inversely 

proportional to the square root of the density of sample points in the locality.  Even here setting 

the global width is an issue, especially for multiple dimensions.  

 

K-Nearest Neighbor Method: In this method, a kernel, say a hypersphere, is placed at each 

point x and instead of fixing the volume V of the hypersphere and counting the number of points 

that fall within it, we vary the volume (i.e., the radius of the hypersphere) until a fixed number of 

points lie within it. Then, the density is calculated as, 

 

21.                                                                 .)(~
NV
Kp =x  

 

This estimated density can be used to calculate the discriminant from Equation 7. 

  

The probability density estimation (PDE) method (see for example, Ref. 43) using kernels has 

been used in both discrimination and regression problems.  

3.5 Neural Networks 

Feed-forward neural networks, also known as Multilayer Perceptrons (MLP), are the most 

popular and widely used of the multivariate methods. A schematic of a feed-forward neural 

network (NN) is shown in Figure 2.  An MLP consists of an interconnected group of neurons or 

nodes arranged in layers; each node processes information received by it with an activation (or 

transformation) function, and passes on the result to the next layer of nodes.  The first layer, 

called the input layer, receives the feature variables, followed by one or more hidden layers of 
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nodes and the last layer outputs the final response of the network.  Each of the interconnections 

is characterized by a weight, and each of the processing nodes can also have a bias or a 

threshold.  The weights and thresholds are the network parameters, often collectively referred to 

as weights, whose values are found during the training phase.  The activation function is 

generally a non-linear function that allows for flexible modeling.  It has been shown that neural 

networks with one hidden layer are sufficient to model the posterior probability to arbitrary 

accuracy.  In the schematic shown in Figure 2 with one hidden layer of nodes and a data set with 

d input feature variables { }dxxx ,..., 21≡x , the output of the network is, 

22.                                                   ,) |()()()( xwx,x ∑ =+==
j jj sphwfO θg  

 

 where jh is the output from the hidden nodes, 

23.                                                                . )( ∑+=
i iijjj xwh θg  

The non-linear activation function g is commonly taken as a sigmoid 

24.                                                                        . 
1

1)( ae
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If aa ~)(g , the outputs jh at the hidden layer would be linear combinations of the inputs and the 

network with a single layer of adaptive weights would be a linear model.  The logistic sigmoid 

function is linear close to 0~a , nonlinear for higher values of a and saturates for large values; it 

maps the input interval ),( ∞−∞  onto (0,1).  Therefore, a network with sigmoidal activation 

function contains a linear model as a special case.   The function g is usually chosen to be a 

logistic sigmoid for classification while for regression it is taken as a linear function. The 

network parameters are determined by minimizing an empirical risk function, usually the mean 

square error between the actual output Op  and the desired (target) output yp , 
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over all the data in the training sample, where p denotes a feature vector.5

                                                      
5 Note that Equation 25 is essentially same as Equation 2. 

  As mentioned in 

section 2.3, a network trained for signal/background discrimination with yp=1 for the signal class 
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and  yp=0 for the background can directly approximate the Bayesian posterior probability.    

Figure 2 (right) shows an example, in a 2-variable feature space, of non-linear decision 

boundaries obtained with cuts placed on the discriminant (NN output). 

 

There are several heuristics that are helpful in the construction of neural networks.  Since the 

hidden nodes are critical in the modeling of the function, the number needed depends on the 

density of the underlying data. Too few nodes lead to under-fitting and too many leads to over-

fitting. To avoid over-fitting, one can employ structure stabilization (optimizing the size of the 

network) and regularization. In the former, one starts with large networks and prunes 

connections or starts with small networks and adds nodes as necessary. In regularization, one 

penalizes complexity by adding a penalty term to the risk function.  It is thought useful to scale 

the inputs appropriately.  The standard advice is to scale the magnitude of the input quantities 

such that they have mean around zero and a standard deviation of one.   Generally, it suffices to 

make sure that the inputs are not >>1.  The starting values of weights are chosen randomly.  

When using standard scaled inputs as suggested above, the starting weights can be chosen 

randomly in the range -0.7 to 0.7.  A network is trained cycling through the training data 

hundreds or thousands of times.  The performance of the network is periodically tested on a 

separate set of data. The training is stopped when the error on the test data starts increasing.   

 

3.6 Bayesian Neural Networks 

In the conventional methods for training neural networks, one attempts to find a single “best” 

network, i.e., a single “best” set of network parameters (weights).  Bayesian training provides a 

posterior density for the network weights, )|( datatrainingp w .  The idea behind Bayesian 

neural networks (BNN) is to assign a probability density to each point w in the parameter space 

of the neural network. Then, one performs a weighted average over all points, that is, over all 

possible networks.  Given the training data  T={ }x,y , the probability density assigned to point 

w, that is, to a network, is given by Bayes’ theorem 
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Then, for a given input vector, the posterior distribution of weights will give rise to a distribution 

over the outputs of the network, 

 

27.                                    . )|(),()(~ ∫= wwwxx dTpfy  

Implementation of Bayesian learning is far from trivial since the dimensionality of the parameter 

space is typically very large.  Currently, the only practical way to perform the 

high-dimensional integral in Equation 27 is to sample the density )|( Tp w , in some appropriate 

way, and to approximate the integral using the average 
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where K is the number of points w sampled. An algorithm using a Markov Chain Monte Carlo 

(MCMC) method has been developed and implemented by Neal (44).  

 

There are several advantages to Bayesian neural networks over conventional feed-forward neural 

networks (45, 46).  Each point w corresponds to a different neural network function in the class 

of possible networks and the average is an average over networks.  Therefore, one expects to 

produce an estimate of the signal class probability )|( xsp  that is less likely to be affected by 

“over-training.” Moreover, in the Bayesian approach, there is less need to severely limit the 

number of hidden nodes because a low probability density will be assigned to points w that 

correspond to unnecessarily large networks, in effect, pruning them away. The network can be as 

large as is computationally feasible so that the class of functions defined by the network 

parameter space includes a subset with good approximations to the true mapping.  

 

One of the issues in the training of a BNN is to check that the Markov chain has converged.  

There are many heuristics available.  But, in practice, one runs many chains or a single long 

chain and checks that the results are stable.   Also, every Bayesian inference requires the 

specification of a prior. The choice, in this case, is not obvious. However, a reasonable class to 



20 | P a g e                                                       P . C .  B h a t  
 

choose from is the class of Gaussian priors centered at zero that favors smaller rather than larger 

weights. Smaller weights yield smoother fits to data.   

 

3.7 Decision Trees 

Decision trees (46, 47) employ sequential cuts as in the standard grid search to perform the 

classification (or regression) task, but with a critical difference.  At each step in the sequence, the 

best cut is searched for and used to split the data and this process is continued recursively on the 

resulting partitions until a given terminal criterion is satisfied.  Geometrically the procedure 

amounts to recursively partitioning the feature space into hypercubic regions or bins with edges 

aligned with the axes of the feature space.  So, essentially, a DT creates M disjoint regions or a d-

dimensional histogram with M bins of varying bin-sizes.  A response value is assigned to each of 

these bins.  We can assign a value based on which class contributes most to the bin or assign the 

discriminant )/()( bssD +=x , where s and b are the signal and background counts in the bin.  

As the training data set becomes arbitrarily large, and the bin sizes approach zero, the predictions 

of a DT approaches that of the target function, provided the number of bins also grow arbitrarily 

large (but at a rate slower than the size of the data set).  A DT gives a piece-wise constant 

approximation to the function being modeled, say, the discriminant )(xD . 

The DT algorithm is applicable to discrimination of n-classes. But, we will keep to the binary 

decision tree used in 2-class signal/background discrimination.  An illustration of a binary 

decision tree for a problem characterized by two variables and the resulting partition of the 

feature space is shown in Figure 3. 

The DT algorithm starts at the so-called root node, with the entire training data set containing 

signal and background events.   At each iteration of the algorithm, and for each node, one finds 

the best cut for each variable and then the best cut overall. The data are split using the best cut 

thereby forming two branch nodes.  One stops splitting when no further reduction in impurity is 

possible (or the number of events is judged to be too small to proceed further).  The measure that 

is commonly used to quantify impurity is the so called the  Gini index.   The Gini index is given 

by,  
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where )/( bssP += is the signal purity (≡ D(x), in our definition).  The splitting at a branch node 

is terminated if the impurity after the split is not reduced, and the node then becomes a terminal 

node or a leaf and an output response )/()( bssD +=x ,  for example, is assigned to the leaf.  

The decision trees are very popular because of the transparency of the procedure and 

interpretation.  They also have some other advantages: (i) tolerance to missing variables in the 

training data and test data; (ii) insensitivity to irrelevant variables since the best variable on 

which to cut is chosen at each split and therefore ineffective ones do not get used; (iii) invariance 

to monotone transformation of variables and hence preprocessing of data is not necessary.  But, 

decision trees also have serious limitations: (i) instability with respect to the training  sample (a 

slightly different training sample can produce a dramatically different tree); (ii) sub-optimal 

performance due to the piece-wise constant nature of the model, i.e., the predictions are constant 

within each bin (region represented by a leaf) and discontinuous at its boundaries; (iii) poor 

global generalization because the recursive splitting results in the use of fewer and fewer training 

data per bin and only a small fraction of the feature variables might be used to model the 

predictions for individual bins or leaves.   

Most of these limitations, however, have been overcome with the use of ensemble learning 

techniques such as bagging, boosting or random forests.   

 

 

3.8 Other Methods 

Matrix Element Method:  

All of the physics information about a high energy event is contained in the matrix element 

describing the collision process.   The probability to observe data x from a given physics process 

can be written as 
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where 2
Μ∝idσ .  Here idσ  is the differential cross-section and Μ is the matrix element. The 

differential cross-section is a convolution of the cross-section for the process, the parton 

distribution functions (PDFs) and the response function of the detector, 
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The sum is over all possible configurations that contribute to the final state, )(qf are the PDFs, 

y are the partonic variables and )( xy,ξ  is the response, or transfer, function that gives the 

probability for partonic variables y to give rise to the observation x  in the detector after event 

reconstruction. The Matrix Element method is a semi-analytical calculation of the probability 

densities )|( sxp , )|( bxp  from which a discriminant can be computed using Equation 7 in the 

usual way.     

In case of parameter estimation, the event probability is built using 
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where the process could be the expected signal and each of the possible backgrounds giving rise 

to the observed event.  One then uses either a Bayesian or maximum likelihood fit to extract the 

parameters of interest.    

The method is computationally very demanding because of the need to perform a multi-

dimensional integration for each feature vector. 

Genetic Algorithms 

While neural networks are inspired by the workings of the human brain, Genetic Algorithms 

(GA) are inspired by ideas from evolutionary biology and genetics.  Genetic algorithms evolve a 

population of candidate solutions for a problem using principles that mimic those of genetic 

variation and natural selection, such as crossover, inheritance, mutation, and survival of the 
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fittest.  These algorithms can be used to determine the parameters of a model in functional 

approximation.   

The steps involved in a GA are as follows – (1) randomly generate an initial population of 

candidate solutions (or parameters w) , (2) compute and save the fitness for each individual 

solution in the current population, (3) generate n off-springs of the members of the population by 

crossover (i.e., swap some of the parameter values between candidate vectors) with some 

probability and mutate the off-springs with some probability, (4) replace the old population with 

the new one, which gives the new generation.  The procedure is repeated until a set of 

sufficiently fit candidates have emerged. 

Genetic algorithms can be applied to any optimization problem. One such algorithm is 

Neuroevolution (48), which allows both the NN structure and the NN parameters (weights and 

thresholds) to be evolved.  

3.9 Ensemble Learning 

We have discussed several methods to perform functional approximation.  The goal is to 

minimize an appropriate cost function and create approximations that provide best predictive 

performance and incorporate the correct tradeoff between bias and variance.  Bias in a predictor6

Here I briefly outline a few of these ensemble techniques (49, 50). 

 

comes from differences between the learned function and the true function, while variance is a 

measure of the sensitivity of the learned function to inputs.  Averaging over multiple predictors 

has been shown to provide the best compromise between bias and variance, while providing 

generalization error that can be much smaller than that of an individual predictor. The 

fundamental insight is that it is possible to build highly effective classifiers from predictors of 

modest quality.  

Bagging:  Bagging (Bootstrap Aggregating) is a simple average of the outputs of n predictors, 

usually classifiers, where each is trained on a different bootstrap sample (i.e., a randomly 

selected subset) drawn from a training sample of N events. 

                                                      
6 A predictor is a discriminant, a classifier or an estimator. 
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Boosting: The idea behind boosting is to make a sequence of classifiers that work progressively 

harder on increasingly “difficult” events.  Instead of seeking one high performance classifier, one 

creates an ensemble of classifiers, albeit weak, that collectively have a “boosted” performance.  

For an ensemble of M classifiers, one can write, for the predictions of the final classifier, 

33.                                                    , ),()(~
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where mw  the parameters of the mth classifier.  The weighting coefficients mα are defined and 

determined differently in each algorithm. In the case of bagging M/1=mα .  In AdaBoost,  the 

first successful high performance boosting algorithm, the underlying functions are decision trees 

(as is the case for bagging and random forests).  )(~ xy , in that case, is a boosted decision tree 

(BDT).  The coefficients are taken as  
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lnm  where mε is the (event-weighted) mis-

classification error for the mth decision tree.  The BDTs, unlike single DTs, have been found to 

be very robust.  A striking feature of AdaBoost is that the misclassification rate on the training 

set approaches zero exponentially as the number of trees increases but the error rate on an 

independent test sample remains essentially constant.  This resistance of the AdaBoost to over-

fitting is not yet fully understood. 

Random Forests:  In principle, this algorithm, like the other two described above, can be 

applied to any predictors whose construction can incorporate randomization.  In practice, 

however, random forests use decision trees.  Many classifiers are trained, each with a randomly 

chosen subset of feature variables at each split providing a random forest of decision trees.  The 

output for each event is the average output of all trees in the random forest.  Further 

randomization can be introduced through the use of bootstrap samples as in the case of bagging.  

3.10 Tools 

There are many easy-to-use packages that implement methods discussed above and others.  Some of them 

are specific neural network implementations such as Jetnet (51), MLPFit (52) and FBM (53) for Bayesian 

Networks.  There are general multivariate analysis packages such as TMVA (54) in ROOT and 

StatPatternRecognition (55) that have many methods implemented.  The TMVA software enables the user 
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to easily try out different methods and compare their efficacies directly.  An example is shown in Figure 

4. 

4 ANALYSIS EXAMPLES     

Because of their demonstrated power, advanced analysis methods are becoming common tools in 

several aspects of high energy physics analysis – most notably, in particle identification 

(electrons, photons, tau-leptons, b- jets) and signal/background discrimination.   

In this section, I have chosen to discuss briefly a few important physics analyses that illustrate 

both the potential of the methods and the challenges.  I discuss the first precision measurement of 

the top quark mass at DØ.  Then, I discuss the recent observation of the single top quark 

production which was an important milestone.  This observation is important not only because it 

provides further validation of the SM but because the single top production rate is particularly 

sensitive to new physics beyond the SM.  And, it provides an analysis test-bed for what has 

become the “holy grail” of particle physics, namely, the search for the Higgs boson.  I will make 

some comments on the Higgs boson searches and end with a brief discussion of an interesting 

application in fitting the parton distribution functions using neural networks and genetic 

algorithms.  

4.1 An Early Successful Example: The Top Quark Mass 

The top quark mass measurement was the first important physics result that benefitted from 

multivariate methods.  The DØ experiment did not have a silicon vertex detector (SVX) during 

the first Run (Run I) of the Tevatron.  Instead, b-tagging relied on the presence of soft muons 

from the decay of b-quarks, the efficiency for which was only 20% in the lepton + ≥4-jets 

channel ( bqlvbqbbWWtt →→ −+  process) compared to approximately 53% at CDF which had 

the ability to tag b-jets with its SVX.  Nonetheless, in spite of this technical disadvantage, DØ 

was able to measure the top quark mass with a precision approaching that of CDF, by using 

multivariate techniques for separating signal and background. 

 

Two multivariate methods, (1) a variant of the likelihood discriminant technique (the LB 

method) and (2) a feed forward neural network (NN method), were used to compute a 



26 | P a g e                                                       P . C .  B h a t  
 

discriminant )|( xtoppD ≡  for each event.  A likelihood fit, based on a Bayesian method (56), of 

the data to discrete sets of signal and background models in the ]),|([ fitmtopp x  plane was used 

to extract the top quark mass. ( fitm is the mass from a kinematic fit to the tt  hypothesis.) The 

distributions of variables and the discriminants are shown in Figure 5. Combining the results of 

the fits from the two methods, DØ measured 2/)(5.5)(6.53.173 cGeVsyststatmt ±±= (24), 

which was a factor of two better than the result obtained using conventional methods.  This 

example underscores that even very early in the life of an experiment, huge gains can be had 

through a judicious, but advanced, treatment of a few simple variables. 

 

Most of the measurements of the top quark mass at CDF and DØ, since this first successful 

application of a multivariate approach, have used some kind of multivariate method – neural 

networks, matrix element or likelihood, etc.  The current measured world average top quark mass 

is 2/1.31.173 cGeVmt ±=  (57).

 

4.2 Single Top Quark Production at the Tevatron 

The top quark was discovered in 1995 through the pair production process ttpp →  via the 

strong interaction. The SM predicts electroweak production of a single top quark along with a    

b-quark or a b- and a light quark with a cross section σt ~ 3 pb ( ttσ ~ 6.8 pb, assuming mt = 175 

GeV/c2). While the top quark discovery was in hand with data sets corresponding to an integrated 

luminosity of ~ 50 pb-1, the single top quark observation required  about 50 - 60 times more 

luminosity (DØ:2.3 fb-1, CDF:3.2 fb-1) and came fourteen years later (58, 59). What makes single 

top quark events so extremely difficult to extract from data is the fact that the final state contains 

fewer features than in tt  to exploit for the purpose of discriminating signal from the 

overwhelming background of W+jets and QCD multijet production (wherein a jet is 

misidentified as a lepton). The use of multivariate methods was indispensable in the analyses in 

both experiments. 

Single top quarks are produced at the Tevatron through the s-channel btqq →  (σ ~ 0.95 pb) and 

t-channel tqbgq →′  (σ ~ 2.05 pb) processes (60). The top quark decays to a W boson and a b-
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quark nearly 100% of the time (as per the SM). Final state channels involving leptonic decays of 

the W boson and at least one b-tagged jet are considered by both experiments, in order to have 

better signal to background ratio from the outset.  Both experiments use neural networks to 

enhance the b-tag efficiency and purity.  

After initial selection criteria, requiring a high pT lepton and and high pT jets, and large missing 

transverse energy, both experiments estimate a very similar overall signal to background ratio, 

s/b ~ 0.05, (CDF: 0.053, DØ: 0.048). CDF observes 4,726 events while expecting 4780±28 

background and 255 ± 21 signal events, while DØ observes 4,519 events with an expected 

background of 4651±234 and signal of 223 ± 30 events.  At this point in the analysis, the signal, 

in both cases, is smaller than the uncertainties in the background estimates. 

The single top signal is further discriminated from the backgrounds using many multivariate 

techniques. DØ performs three independent analyses using (1) Bayesian Neural Networks 

(BNN), the first such application in HEP,  (2) Boosted Decision Trees (BDT) and (3) the Matrix 

Element (ME) method, while CDF in addition to these methods also uses the likelihood 

discriminant method.  Since the results from these methods are not completely correlated, the 

discriminant outputs are further combined into a single discriminant (called the Combination 

Discriminant by DØ, and the Super Discriminant by CDF).  The final discriminant is then used 

to extract the cross section for single top quark production and the signal significance. The signal 

to background ratio in the signal region of the final discriminants, s/b >5, is about a factor of 100 

larger with respect to the s/b in the base samples.  The cross sections are measured to be 2.3±0.5 

pb by CDF (at  mt=175 GeV/c2 ) and 3.94±0.88 pb by DØ (at mt = 170 GeV/c2), using the final 

discriminants and a Bayesian technique. The significance of the signal is 5.0 standard deviations 

in both results.  

The analyses, depending on the channel, use anywhere from 14 up to 100 variables. In order to 

ensure that the background is modeled correctly, both experiments compared thousands of 

distributions of the data sample with the modeled backgrounds.  The output discriminant 

modeling was also verified at various stages with control samples from known physics processes.
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4.3 Searches for the Higgs Boson 

The Higgs boson has been the most sought after particle in the past decade and a half. The 

intense searches by the four experiments (ALEPH, DELPHI, L3 and OPAL) at the −+ee collider 

LEP at CERN (√s = 189 - 209 GeV) before it was decommissioned, resulted in 95% Confidence 

Level (C.L.) lower bound on the Higgs boson mass of 114.4 GeV/c2 (61-63).  In 2000, studies of 

the Higgs discovery reach at the Tevatron (64, 65) led to the conclusion that the use of 

multivariate methods can significantly enhance the potential for its discovery at the Tevatron 

with the planned upgrades for Run II.  The Tevatron experiments, have, with the help of several 

fb-1 of data accumulated and with the help of advanced analysis techniques, reached the 

sensitivity levels to find hints or to exclude certain masses beyond the range of LEP exclusion. 

The predicted cross sections for the production of SM Higgs at the Tevatron are more than an 

order of magnitude smaller than for single top in the mass regions of interest. The dominant 

production process at the Tevatron is Hgg → , with cross sections between 1 pb and 0.2 pb in 

the mass range of 100-200 GeV/c2. The cross sections are between 0.5 pb and 0.03 pb for 

WHqq →' or ZH and 0.1 pb – 0.02 pb for Hqqqq →  in the same mass range. The dominant 

decay channels are bbH →  for mH < 135 GeV/c2 and H → WW* for mH > 135 GeV/c2 (W* is 

off-shell if mH < 160 GeV/c2).  The bbHgg →→  channel suffers from very large QCD 

multijet background. Therefore, for mH < 135 GeV/c2, the WH and ZH production channels are 

used for the searches.  For mH > 135 GeV/c2, gg→ H → WW* is the most promising channel.   

The searches or the SM Higgs boson have been done in 90 mutually exclusive final states (36 for 

CDF and 54 for DØ).  The analysis channels are sub-divided based on lepton-type, number of 

jets and number of b-tags.   The most important aspects that can help discriminate Higgs signal 

from background are efficient b-tagging and good dijet mass resolution (in low mass Higgs 

searches).  To achieve high b-tag efficiency, both experiments use a neural network to combine 

outputs of simpler discriminants based on secondary vertex and decay track and jet information.  

CDF constructs two separate networks to discriminate b-jets from c-quarks jets and b-jets from 

light-quark jets.  DØ builds an NN b-tagger to discriminate b-jets from all other types of jets.  

The DØ NN b-tagger gives significantly higher efficiencies compared to that of the next best 

method based on the JLIP (Jet Lifetime Probability) algorithm (66).  It has been estimated that 
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the benefit of the NN tagger is equivalent to a doubling of the luminosity (67) in SM Higgs boson 

searches. CDF has also developed a multivariate approach for b-jet energy correction and 

demonstrated improved di-jet mass resolution that in turn helps Higgs search sensitivity (68).   

Both CDF and DØ use neural networks, boosted decision trees and other multivariate 

discriminants in all analyses.  CDF finds in the case of ∗→ WWH  analysis, that the multivariate 

techniques provide a gain factor of 1.7-2.5 (depending on Hm )  in effective integrated luminosity 

over an optimized cut-based selection.   Some example NN discriminants are shown in Figure 6.  

The combined results from the two experiments provide 95% C.L. upper limits on Higgs boson 

production that are a factor of 2.7 (0.94) times the SM cross-section  for 2/)165(115 cGeVmH = .  

The combination of results from the two experiments has, as of December 2009, using data sets 

of luminosities of up to 5.2 fb-1,  yielded a 95% C.L. exclusion for a SM Higgs for 163 GeV/c2 < 

mH < 166 GeV/c2 (69-71). 

 

4.4 Determination of Parton Distribution Functions  

One of the exciting applications of multivariate methods is in the parametrization of parton 

distribution functions with neural networks by the NNPDF collaboration (72).  A parton 

distribution function (PDF) is the probability density of finding a parton  (a quark, an antiquark 

or a gluon) inside a hadron with a certain fraction x of the hadron’s longitudinal momentum at 

momentum transfer 2Q .  The PDFs are essential inputs in making predictions for the SM and 

beyond the SM physics processes at hadron colliders. The PDFs are determined by fitting the 

theoretical predictions to various sets of experimental measurements, primarily from deep 

inelastic scattering of leptons on hadrons (or nuclei).  The Tevatron experiments have produced 

numerous results on a variety of hard interaction processes providing precision tests of the SM 

akin to the LEP and SLC electroweak measurements.  The tests of these results as well as 

predictions for searches beyond the SM demand very precise determination of the PDFs. The 

PDF uncertainties are sometimes the dominating uncertainties, and it is, therefore, important to 

have reliable estimates of these uncertainties.    
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The standard approach to fitting PDFs is to assume a specific parameterized functional form for 

the PDFs )()1(),( 2
0 xPxxQxf βα −=  and determine the parameters and the associated errors 

from a fit to the data by minimizing 
2χ .  The choice of a specific functional form, as we have 

discussed, results in an inflexible model that introduces unnecessary systematic errors (bias in 

the region of sparse or no data) and uncertainties that are surely underestimated.  One way to 

build more flexible models for PDFs is to rely on the fact that neural networks are universal 

approximators.  

In order to train the neural networks that model the PDFs, an ensemble of Monte Carlo (MC) 

data-sets which are “replicas” of the original experimental data points are generated.  The MC 

data sets have points that are Gaussian distributed about the experimental data points, with errors 

and covariance equal to the corresponding measured quantities.  The MC set thus gives a 

sampling of the probability distribution of the experimental data.  The NN  architecture uses two 

inputs ( x and xlog ), two hidden layers with two neurons each, and one output, ),( 2
0Qxf  at a 

reference scale 2
0Q .  Generic Algorithms are used for optimization, yielding a set of NN 

parameters for each replica.  The mean value of the parton distribution at the starting scale for a 

given x is found by averaging over all the networks and the uncertainty is given by the variance 

of the values.  The errors on the PDF s from the NNPDF  fits are larger than those from other 

global fitting methods, possibly indicating that the latter have underestimated the errors, as noted 

earlier.   

5 OPEN ISSUES    

Over the past two decades, a lot of experience has been gained in the use of advanced 

multivariate analysis methods in particle physics and spectacular results have been obtained 

because of their use.  However, there are still some important open issues which I outline below. 

• Choosing the Variables:  How do we choose the best set of feature variables so that no 

more than a prescribed amount of information is lost?  Even though ranking the efficacy 

of individual variables for a given application is straightforward, the best way to decide 

which combination of variables to use can only be done, currently, by evaluating the 

performance of different sets in the given application. 
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• Choosing a Method:  The “No free lunch theorem” states that there is no one method 

that is superior to all others for all problems, which prompts the question: is there a way 

to decide which method is best for which problem?  Here, again, one needs to try out 

different methods for a given application and compare performance.  In general, 

however, one can expect Bayesian neural networks, boosted decision trees and random 

forests to provide excellent performance over wide range of problems.  

• Optimal Learning:  How can one test convergence of training i.e., know when the 

training cannot be improved further?  The practice is to stop training when prediction 

error on an independent test data set begins to increase.  But, how can one verify that a 

discriminant is close to the Bayes limit?   

• Testing the Procedures:  For complicated analyses, with lots of input variables, and 

small signals, it is necessary to validate the procedure itself or, in fact, the whole chain of 

analysis.  But, since this is computationally demanding, are there alternative and reliable 

methods of validation?  If not, it is important that an algorithm be computationally 

efficient so that an analysis can be repeated for many scenarios to ensure the robustness 

of the results.    

• Modeling of Backgrounds: By far, the most important issue of any non-trivial analysis 

is how to ensure the correctness of modeling of backgrounds (and signal) in the training 

data.  

However good a learning method is, if the training data are faulty, the results will be 

unreliable.  When we use a large number of variables, how do we verify the modeling? 

How many arbitrary functions of the variables do we need to check?  Say, we use 100 

variables in a multivariate analysis, how can we check the modeling of the 100-

dimensional density?  The larger the number of input variables used, the higher is the 

burden of verifying the correctness of the modeling. In simple applications such as in 

particle identification, data from well-understood physics processes can be used to cross-

check results.  But, in discriminating new signals from very large backgrounds, the task 

of verifying a multivariate density in high dimensions is a daunting one.  The number of 

combinations of variables and functions thereof that one needs to check grows rapidly 

with the number of feature variables used.  In fact, only an infinitely large number of 
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arbitrary functions can guarantee that all correlations have been verified. But, the 

practical question is how many or what checks are needed to achieve a specified level of 

confidence in the validity of the results?   

6 SUMMARY & PROSPECTS  

Advanced analysis methods that match the sophistication of the instruments used in high energy 

physics research and meet the challenges that vast data sets and extremely rare signals impose 

are imperative.  The field already has several high profile results that simply would not have 

been possible without such methods.  Clearly, there is no going back! 

In this article, I have provided an overview, with a unified perspective, of the concepts and 

methods of optimal analysis.   I have discussed a range of methods: from the simple to the 

sophisticated, in particular, those that make use of multivariate universal approximators.  I have 

discussed some useful heuristics and outlined open issues.  I have presented a few examples of 

successful applications of these methods in the past decade and a half.   There are other examples 

from the Tevatron, as well as from LEP, HERA (73), the b-factories (74) and neutrino 

experiments (75).  

 

The LHC experiments (76) are planning to use advanced methods in many analyses.   But, there 

is some concern about whether their use in the early data-taking period is appropriate due to the 

expected lack of good understanding of the detectors and systematic effects.  These are valid 

concerns. Nevertheless, there are ample opportunities for using advanced methods safely:  

• Where it is possible to ascertain the correctness of modeling using well known physics 

processes such as Z boson decays, QCD bb  events, etc. 

• When one has arrived at a set, albeit small, of well understood variables.   

Moreover, the following points should be kept in mind: 

• Even two or three variables treated in a multivariate manner can provide significant gains 

over cuts applied to the variables directly. 

• Combining simple classifiers based on a few variables can help cross check the modeling 

more easily and significantly boost the final performance and precision of the results. 
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• One can make use of the available easy-to-use analysis kits to try two or more methods to 

ensure that there are no bugs in the procedure or bias due to possible incorrect use of a 

method.  For example, one could use a feed-forward neural network, Bayesian neural 

network and boosted decision trees and check the consistency of the results.  

• One can use data as the background model in channels where signal to background ratio 

is initially very small.  One advantage of this approach is that the data (necessarily) 

models both physics and instrumental backgrounds.   

 

The bar for the quality of the analyses, especially when a potential discovery is at stake, should 

be (and almost certainly will be) set very high.  The advanced methods I have described need to 

be used in every step of the data analysis chain, if possible, to reap maximum benefits. But, as is 

true of all scientific methods and tools, these methods should be used with a great deal of 

diligence and thought.  We would be well served to follow the principle of Occam’s razor, which 

in this context can be stated thus: if we have two analyses of comparable quality we should 

choose the simpler one.  I am sure Einstein would agree. 
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Figure 1 (a,b) Distributions of two hypothetical observables x1 and x2 arising from a mixture of 

two classes with bivariate Gaussian densities;   (c) bivariate densities of the two classes (d,e) 1D 

marginalized densities and (f) a linear discriminant function f(x1,x2) that reveals two distinct 

distributions.  An optimal cut placed on the discriminant results in the linear decision boundary 

shown in (c).

 

Figure 2 (Left) A schematic representation of a three-layer feed-forward neural network.  

(Right) Discrimination in two-variable space using a neural network: the contours are the 

decision boundaries corresponding to network output values indicated in the legend.  
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Figure 3   (Left) A schematic of a binary decision tree using two variables x1 and x2  and          

(Right) an illustration of the corresponding partitions of the 2D input space (see text for details).

.  

    

Figure  4.   Comparison of the performance of neural networks (MLP), boosted decision tree 

(BDT) and Likelihood discriminant using TMVA in ROOT in an example discrimination 

problem.  (Hypothetical signal: First generation scalar leptoquark pair events with mLQ=240 

GeV/c2 , and background: top-antitop events. ) 
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Figure 5  (Left) Distributions of discriminant variables x1, x2 , x3 , x4 (see Ref. 24 for definitions) 

used in the first direct precision measurement of the top quark mass at DØ and (right) the 

distributions of the final multivariate discriminants.  The filled histograms are for signal and 

unfilled ones are for background. All histogram areas are normalized to unity. 

 
Figure 6.  Neural network output distributions from H WW* analyses at the Tevatron. (Left) 

CDF results showing data compared with total and individual backgrounds.  Also shown is the 

expected distribution for the SM Higgs signal for mH = 160 GeV/c2. (Right) DØ results 

comparing data with total background in the dilepton + missing transverse energy channel.  Here, 

the Higgs signal distribution is shown for mH = 165 GeV/c2.  In both cases, the signal is scaled up 

by a factor of ten relative to the SM prediction. 
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