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Search for events with leptonic jets and missing transverse energy in pp collisions at
Vs =1.96 TeV
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We present the first search for pair production of isolated jets of charged leptons in association
with a large imbalance in transverse energy in pp collisions using 5.8 fb~! of integrated luminosity
collected by the D0 detector at the Fermilab Tevatron Collider. No excess is observed above Standard
Model background, and the result is used to set upper limits on the production cross section of pairs
of supersymmetric chargino and neutralino particles as a function of “dark-photon” mass, where
the dark photon is produced in the decay of the lightest supersymmetric particle.

PACS numbers: 12.60.Jv, 14.80.Ly

Hidden-valley models [1] contain a hidden sector that
is very weakly coupled to standard-model (SM) particles.
By introducing new low-mass particles in the hidden sec-
tor, these models have been shown to provide cogent in-
terpretation [2, 3] of possible astrophysical anomalies [4—
6], and accommodate discrepancies in direct searches for
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dark matter [7, 8]. The impact of the hidden valley parti-
cles should be observable in high-energy collisions [9-12].
Although details of the hidden sector can affect the phe-
nomenology, the force carrier in the hidden sector, the
dark-photon (yp), must have a mass < 2 GeV, and gen-
erally decays into SM charged-fermion (or pion) pairs. In
many models, vp has a short lifetime, and does not travel
an observable distance (S 1 um) before decaying. If su-
persymmetry (SUSY) is realized in Nature, there will be
partners for both the SM and the hidden sector particles.
If the lightest SUSY particle (LSP) of the hidden sector
(X) is lighter than the lightest SM SUSY partner (SM-
LSP), the SM-LSP can decay promptly into particles of



FIG. 1: A diagram for associated production of SUSY
charginos and neutralinos that decay into SM vector bosons
and SM-LSPs (X?), each decaying into the LSP of the hidden-

sector (X) and a dark-photon (yp).

the hidden sector, and always will do so if R-parity is con-
served. The DO collaboration has reported [13] a search
for such a decay, with one SM-LSP decaying to a SM pho-
ton and X, and the other to vp and X. However, the
SM-LSP might decay predominantly into hidden sector
particles, thereby yielding two or more vp in each event,
as indicated in Fig. 1. Pair-produced dark photons could
also arise from rare decays of Z bosons [9, 14] and Higgs
bosons [12]. Single dark photons should also be produced
directly in association with a jet, as in SM prompt-photon
production. This process is difficult to detect at a hadron
collider, while high-luminosity low-energy ete™ colliders
could be more effective in observing such events [15, 16].

Since hidden-sector particles have small mass and they
are produced with high velocities, their decays through
the hidden sector can produce jets of tightly collimated
particles from decays of yp. If M(yp) < 2m(w), the
jets will consist only of charged leptons. Even for larger
M(vp), the lepton content of these jets will be high, and
we therefore refer to them as leptonic jets (I-jets). For
the proposed scenario, every SUSY event will have at
least two [-jets and a large imbalance in transverse energy
(Er) from the escaping X and possibly also from other
escaping dark particles. Radiation of additional vp in
the hidden sector [9] can dilute the I-jet signatures, by
producing final-state particles in [-jets that are softer,
less tightly collimated, and less isolated.

In this Letter, we present a search for events with two
l-jets and large 1 in data collected using the DO [17] de-
tector during Run II of the Fermilab Tevatron Collider,
corresponding to an integrated luminosity of 5.8 fb~1.
Depending on whether the vp decays to muons or elec-
trons, the [-jet can appear either as a “muon I-jet” or
an “electron l-jet” in the detector. To reconstruct muon
[-jets, we demand a muon-track candidate with hits in all
three layers of the outer DO muon system and a matching
track with pp > 10 GeV in the central tracker. An elec-

tron [-jet must contain a central track with pp > 10 GeV
that matches an electromagnetic (EM) calorimeter clus-
ter with transverse energy EXM >15 GeV within a cone
of radius R = /(An)? + (A¢)? < 0.2 [18]. EM clusters
are formed using a simple cone algorithm of R = 0.4
and require > 95% of the energy to be deposited in the
EM section of the calorimeter. The calorimeter isolation
variable Z, = [EL*(0.4) — EEM(0.2)]/EFM(0.2) must be
Z. < 0.2, where E*(0.4) is the total transverse energy
in a cone of radius R = 0.4, corrected for contributions
from the underlying event, and EEM(0.2) is the trans-
verse EM energy in a cone of radius R = 0.2. The cen-
tral “seed” track matched to the muon or EM cluster is
required to have at least one hit in the silicon detector.
When the seed track is matched to both a muon and an
EM cluster, the [-jet is defined as a muon [-jet. Next,
a companion track of opposite electric charge from the
seed track, and within z = 1 cm of the seed track at its
distance of closest approach to the beamline, is required
to have pr > 4 GeV and be within R < 0.2 of the seed
track. If more than one such companion track is found,
we use the one with smallest R. No explicit requirements
are made on the distances of closest approach of tracks to
the collision point, thus the I-jet reconstruction efficiency
remains high for vp decay radii up to =~ 1 cm. We then
choose the pair of [-jet candidates with seed tracks sepa-
rated by R > 0.8 that have the largest invariant mass of
any pair of seed tracks in the event.

The MADGRAPH [19] MC event generator, with
PYTHIA [20] for showering and hadronization, is used to
simulate the signal, and these Monte Carlo (MC) events
are then processed through the full GEANT3-based [21]
DO-detector simulation and event reconstruction soft-
ware. SUSY events generated using SPS8 [22] parameters
of the gauge-mediated-SUSY-breaking (GMSB) model
are used as a benchmark. The efficiency to reconstruct
many tightly-collimated tracks is difficult to determine
from data, and we therefore assume that all neutrali-
nos decay directly into a single vp and the dark gaugino
LSP X, giving just two leptons per l-jet. The X would,
most naturally, have a similar mass as vp, so we assume
m(X) =1 GeV. More complicated hidden-sector options
are studied using MC simulation and are discussed below.

The analysis requires two [-jet candidates (either muon
or electron) in each event. The three classes of uu, ey,
and ee [-jets are analyzed separately, and contain 7344,
19014, and 30642 candidate events, respectively. Each
event is assigned to just one class, with preference of
choice given to pu, then ey, and then ee, since muon I-jets
have less background. All collected events are used in the
analysis, but most pass single or di-lepton triggers [17].
Following offline selections, the trigger efficiency for sig-
nal is > 90%.

The main background to [-jets is from multijet pro-
duction, but electron [-jets also have a contribution
from photon production with subsequent conversion to



TABLE I: The ratio R, of events with two l-jets and Fr >
30 GeV divided by the number with K, < 15 GeV in the
non-isolated data sample (see text); events observed and pre-
dicted from background in each channel; the acceptance of
the chosen SPS8 [22] SUSY MC point, and the reconstruction
efficiency, given in %; branching ratios (B) for each channel,
calculated from Be and B, in Table II. Finally, limits on cross
sections times B from the inclusive [-jet search.

x B, fb
Chan. R; Nobs Npwea A(%) (%) B [Z29%22
obs.| pred.
pp 033 3 86+45 50 12 BE | 20 | 35738
ep 037 11 175442 53 15 2B.B,| 19 | 30112
ee 004 7 10241.7 45 20 B2 | 13| 1973
+

eTe”. Such backgrounds cannot be calculated reliably
using simulation, and are therefore determined from
data. We exploit the tight collimation of Il-jets to dis-
tinguish them from multijet background, through track
and calorimeter-isolation criteria. The “track isolation”
is defined by a scalar sum over pr of tracks with ppr >
0.5 GeV, z < 1 cm from the seed track at its distance
of closest approach to the beamline, and within an an-
nulus 0.2 < R < 0.4 relative to the seed track. Muon
l-jet calorimeter isolation (Z,,), defined in Ref. [23], relies
on the transverse energies of all calorimeter cells within
R < 0.4, excluding cells within R < 0.1 of either the seed
muon or its companion track. For electron [-jet isolation,
we employ the EM cluster-isolation Z. defined above. A
reliable estimate of background requires that the [-jet
isolation requirements not bias the kinematics, such as
distributions in 7 or pp of l-jets. Both types of I-jets re-
quire the track isolation to be Z; < 2 GeV, which does not
significantly bias the background. Calorimeter-isolation
criteria are chosen as linear functions of py values of the I-
jet, such that the fraction of rejected background is large,
but weakly dependent on K, as discussed below. For
EM clusters, we choose Z, < 0.085 x pp — 0.53 (in GeV
units), which rejects 90% of the background. For muon
[-jets we use the scalar sum of p values of the muon and
companion tracks as a measure of I-jet pr, and require
Z,, < 0.066 x pr+2.35 (in GeV units), which rejects 94%
of the background. We compare the K distribution in
data with just one isolated [-jet to those containing two
(not necessarily isolated) I-jets. The two distributions
are observed to be very similar, which indicates that the
kinematic bias on ET from Z, and Z,, requirements is
indeed small. We therefore use the Ep distribution in
data without isolation requirements as background for
the data with two isolated [-jets, since both samples are
dominated by similar multijet processes.

Finally, we require £ > 30 GeV for the search sample,
where Fr is calculated using only calorimetric informa-
tion, and not corrected for any detected muons, as muon
reconstruction is unreliable in [-jets because of the pres-
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FIG. 2: (color online) The ¥ distribution for events with (a)
two isolated muon [-jets, (b) one muon and one electron I-jet,
and (c) two electron l-jets. The data are presented by the
black points, and the shaded bands represent the expected
background, with red showing the correlated part of the sys-
tematic uncertainty from normalization and blue the full un-
certainty. The SPS8 MC contribution for signal (see text) is
scaled to an integrated content of 10 events. The highest bin
contains all events with £;> 90 GeV.

ence of nearby tracks. We scale the F distribution in
the data sample without isolation criteria so that the to-
tal number of events with ¥ < 15 GeV matches that in
the isolated data sample, see Fig. 2. The ratio R, de-
fined as the number of events in each search channel with
Er > 30 GeV divided by the scaled number of events
with F < 15 GeV in each respective background is given
in Table I. The value of R is important since if a signal
has a [ spectrum similar to that of the background,



TABLE II: Branching ratio (B) into electrons and muons of
vp as a function of its mass. Mass windows for a search for
~vp, and the efficiency for a reconstructed, isolated I-jet to be
found in each mass window, for electron and muon [-jets.

M(yp) (GeV) B./B, AM(I-jet)(GeV) Eff. ee/uu(%)
0.15 1.00/0.00 0.0-0.3 81/—
0.3 0.53/0.47 0.1-0.4 82/88
0.5 0.40/0.40 0.3-0.6 81/89
0.7 0.15/0.15 0.4-0.8 85/89
0.9 0.27/0.27 0.6-1.1 82/91
1.3 0.31/0.31 0.9-14 72/79
1.7 0.22/0.22 1.0-1.8 73/76
2.0 0.24/0.24 1.3-2.2 73/83

this analysis would be largely insensitive, regardless of
the size of the signal. The total background for a signal
having f; events with < 15 GeV and f, events with
Ep> 30 GeV is a factor of (f1/f2) x R larger than for
the case of no signal. For the benchmark signals consid-
ered, (fi/f2) x Ry < 1, and the correction is therefore
ignored.

We separate the detection efficiency into three compo-
nents (Table I): (i) the branching ratio (B) for an event
to have at least two [-jets in the pu, ep, or ee channel,
obtained from the expected vp branching fractions [13],
(ii) the acceptance (A) for both Il-jets to have the seed
and companion tracks within |n| < 1.1 for electrons and
< 1.6 for muons, with pr >10 and 4 GeV, respectively,
and Fr (calculated in MC as the vector sum of transverse
momenta of all stable particles in the hidden sector, neu-
trinos, and muons) > 30 GeV, and (iii) the efficiency
(e) to reconstruct both I-jets in the acceptance, to pass
the isolation criteria for both [-jets, and to have recon-
structed B in excess of 30 GeV. The acceptance and
reconstruction efficiency do not vary significantly with
M(vp).

With no excess observed above the expected back-
ground at large B (see Fig. 2), we set limits on [-jet pro-
duction cross sections, using a likelihood fitter [24] that
incorporates a log-likelihood ratio statistic [25]. Limits
at the 95% CL on cross section times B, calculated sepa-
rately for the pu, ey, and ee channels, using the observed
numbers of events, predicted backgrounds, and detection
efficiencies and acceptances, are given in Table I. Sys-
tematic uncertainties are included for signal efficiency
(20%), background normalization (20-50%), and lumi-
nosity (6.1%). The uncertainty on the signal efficiency is
dominated by the uncertainty in the tracking efficiency
for neighboring tracks in data. The background uncer-
tainty is dominated by the small remaining kinematic
bias on the K arising from the isolation criteria.

When the track multiplicity in any [-jet is small, the
leading track and its companion track are likely to orig-
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FIG. 3: (color online) Invariant mass of dark photon candi-
dates with two isolated l-jets and 1 > 30 GeV, for (a) elec-
tron Il-jets (in the ee and e channels) and (b) muon I-jets (in
the ey and pp channels). Each candidate event contributes
two entries, one for each [-jet. The red band shows the mass
distribution for events with ¥, < 20 GeV, normalized to the
number of entries with 7 > 30 GeV. The shaded blue his-
tograms show the shapes of MC signals added to backgrounds,
arbitrarily scaled to an integrated content of 8 signal events,
for M(yp) = 0.3, 0.9, and 1.3 GeV.

inate from the decay of the same dark photon, so we
also examine the invariant mass of the seed and its com-
panion track (M (vp)) in events with two isolated I-jets
and > 30 GeV (Fig. 3). The backgrounds are normal-
ized by scaling the events passing all selections but with
Er < 20 GeV to data with B > 30 GeV outside of the
mass windows defined in Tab. I, thus R is irrelevant for
this second analysis. The selection of background events
is loosened to Ky < 20 GeV for this resonance search
to increase the statistics of the sample. Limits on cross
sections are calculated in various ranges of [-jet mass,
AM(I-jet), as shown in Tab. IT and Fig. 4.

The dependence of the efficiency for reconstructing and
identifying [-jets on parameters of the hidden sector is
studied using MC simulation. Additional MC samples
are used for examining the neutralino decay into a dark
Higgs boson that decays into two dark photons, leading
to more, but softer, leptons in [l-jets. Efficiency for these
states decreases by ~50% at large M (vp), for both elec-
tron and muon [-jets. The point M (vyp) = 0.7 GeV also
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FIG. 4: (color online) Limit on the observed cross section
(blue, solid curve) for the three channels combined, corrected
for SPS8 acceptance, as a function of M(yp). Also shown
are the observed (blue, circles) and expected (red, squares)
combined limit determined using the measured masses of the
seed and companion tracks in both [-jets, for each mass win-
dow studied (from Table IT). Limits are weaker when the dark
photon branching ratio to hadrons is larger, particularly near
the p and ¢ resonances.

has a =50% lower efficiency, due to the large branching
fraction of vp to hadrons. MC events are also generated
with additional radiation in the hidden sector. Raising
the dark coupling (ap) from 0 to 0.3 reduces the effi-
ciency by up to 20%, independent of M (vp). According
to MC simulation, the [-jet identification criteria main-
tain good efficiency even for more complicated behavior
in the hidden sector.

In summary, we have performed a search for events
with two tightly collimated jets consisting mainly of
charged leptons and large F, in 5.8 fb~! of integrated
luminosity. The invariant mass of the [-jets, formed by a
seed track and a companion track was also examined for
a resonant signal. No evidence was observed for such sig-
nals, and upper limits were set, as a function of M (yp),
on the production cross section for SUSY particles de-
caying to two [-jets and large .
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