We searched for a sidereal modulation in the MINOS far detector neutrino rate. Such a signal would be a consequence of Lorentz and CPT violation as described by the Standard-Model Extension framework. It also would be the first detection of a perturbative effect to conventional neutrino mass oscillations. We found no evidence for this sidereal signature and the upper limits placed on the magnitudes of the Lorentz and CPT violating coefficients describing the theory are an improvement by factors of 20 – 510 over the current best limits found using the MINOS near detector.

PACS numbers: 11.30.Cp,14.60.Pq

Neutrinos have provided many crucial insights into particle physics, including the existence of physics beyond the minimal Standard Model (SM) with the detection of neutrino oscillations [1, 2]. Because oscillations are interferometric in nature, they are sensitive to other indicators of new physics. Such indicators include potential small amplitude signals persisting to the current epoch whose origin is a fundamental theory that unifies quantum physics and gravity at the Planck scale, $m_p \approx 10^{19}$ GeV. One promising category of Planck-scale signals is the violation of the Lorentz and CPT symmetries that are central to the SM and General Relativity. The Standard Model Extension (SME) is the comprehensive effective field theory that describes Lorentz (LV) and CPT violation (CPTV) at attainable energies [3].

The SME predicts behaviors for neutrino flavor change that are different from conventional neutrino oscillation theory. The probability of flavor change in the SME depends on combinations of L, the distance traveled by the neutrino, and the product of distance and the neutrino energy, $L \times E_\nu$. For conventional oscillation theory the transition probability depends only on L/E_ν. The SME also predicts that the neutrino flavor change probability depends on the angle between the direction of the neutrino and the LV/CPTV field in the sun-centered inertial frame in which the SME is formulated [4]. Experiments like MINOS [5], whose neutrino beam is fixed on the Earth, are well-suited to search for this behavior, which would appear as a periodic variation in the detected neutrino rate as the beam swings around the field with the sidereal frequency $\omega_\oplus = 2\pi / (23536^s04.09053^s)$. MINOS has a near detector (ND) located 1 km from the neutrino beam source and a far detector (FD) located 735 km from the neutrino source. Because of their different baselines, the ND and FD are sensitive to two separate limits of the general SME formulated for the neutrino sector. The predicted SME effects for baselines less than 1 km are independent of neutrino mass [4], and both MINOS [6] and LSND [7] reported searches for these effects. Recent theoretical work has shown that SME effects are a perturbation to the dominant mass oscillations for neutrinos having the appropriate L/E_ν to experience oscillations [8]. Since the probability for transitions due to LV increases with baseline, experiments with baselines greater than ≈ 100 km are especially sensitive to LV and CPTV. The following analysis using MINOS FD data is the first search for perturbative LV and CPTV effects in admixture with neutrino oscillations.

According to the SME, the transition probability for $\nu_\mu \rightarrow \nu_\tau$ transitions over long baselines is $P_{\mu\tau} \approx P_{\mu\tau}^{(0)} + P_{\mu\tau}^{(1)}$, where $P_{\mu\tau}^{(0)}$ is the conventional mass oscillation probability for transitions between two flavors and $P_{\mu\tau}^{(1)}$ is the perturbation due to LV and CPTV, with $P_{\mu\tau}^{(1)}/P_{\mu\tau}^{(0)} < 1$. In the SME, $P_{\mu\tau}^{(1)}$ is given by [8]

$$P_{\mu\tau}^{(1)} = 2L \left\{ (P_C^{(1)})_{\mu\tau} + (P_A^{(1)})_{\mu\tau} \sin \omega_\oplus T_\oplus + (P_A^{(1)})_{\mu\tau} \cos \omega_\oplus T_\oplus \right\}$$

where $L = 735$ km is the distance from neutrino production in the NuMI beam to the MINOS FD [2], T_\oplus is the local sidereal time (LST) at neutrino detection, and the coefficients $(P_C^{(1)})_{\mu\tau}$, $(P_A^{(1)})_{\mu\tau}$, $(P_A^{(1)})_{\mu\tau}$, $(P_B^{(1)})_{\mu\tau}$, and $(P_B^{(1)})_{\mu\tau}$ contain the LV and CPTV information. These coefficients depend on the SME coefficients that explicitly describe LV and CPTV, $(a_L)^{\alpha}_{\mu\tau}$ and $(c_L)^{\alpha\beta}_{\tau\mu}$, as well as the neutrino mass-squared splitting, Δm_{32}^2 [8]. For two-flavor transitions, only the real components of the $(a_L)^{\alpha}_{\mu\tau}$ and $(c_L)^{\alpha\beta}_{\tau\mu}$ contribute to the transition probability.

The magnitudes of the functions in eq. (1) depend on the direction of the neutrino propagation in a fixed coordinate system on the rotating Earth. The direction vectors are defined by the colatitude of the NuMI beam line $\chi = (90^\circ - \text{latitude}) = 42.1793347^\circ$, the beam zenith angle $\theta = 86.7255^\circ$ defined from the z-axis which points up toward the local zenith, and the beam azimuthal angle $\phi = 203.909^\circ$ measured counterclockwise from the x-axis chosen to lie along the detector’s long axis.

This analysis selected data using standard MINOS beam quality requirements and data quality selections [2, 9]. The neutrino events used must interact in the 4.0 kiloton FD fiducial volume [9] and be charged-current (CC) in nature. The selection method described in [9] allowed the identification of the outgoing muon in a CC interaction. As in [6], we focused on these events to maximize the ν_μ disappearance signal.

The data used come from the run periods listed in Table I; also shown are the number of protons incident on the neutrino production target (POT) for each period and the total number of events observed. To avoid biases, we performed the analysis blindly with the procedures de-
We tagged each neutrino event with the time determined by the Global Positioning System (GPS) receiver located at the FD site that reads out absolute Universal Coordinated Time (UTC) and is accurate to 200 ns [10].

The GPS time of the accelerator extraction magnet signal was tested by comparing the rate for run \(i \) to the spill and event LST in standard ways [11]. The uncertainty in the GPS time stamps introduced no significant systematic error into the analysis [6]. We placed each detected CC event into a histogram that ranged from 0-1 in local sidereal phase (LSP), the LST of the event divided by the length of a sidereal day. We used the LSP for each spill to place the number of POT for that spill, whether or not there was a neutrino event associated with it, into a single data set whose rate as a function of LSP is shown in Fig. 1. The solid line at \(p = \frac{0.26}{\sqrt{2}} \) divides \(\chi^2 \) for all runs was tested by comparing the rate for run \(i \) in LSP phase bin \(j \), \(R_{ij} \), with the weighted mean rate for that bin, \(\bar{R}_j \). The distribution of \(r = \frac{(R_{ij} - \bar{R}_j)}{\sigma_{ij}} \), where \(\sigma_{ij} \) is the statistical uncertainty in \(R_{ij} \) for all \(i, j \), is Gaussian with \(\bar{r} = 0 \) and \(\sigma = 1 \), as expected for statistically consistent runs. Given this result, we combined the runs into a single data set whose rate as a function of LSP is shown in Fig. 1. The mean rate is \(2.36 \pm 0.06 \) events per \(10^{18} \) POT and the uncertainties shown in the figure are statistical.

We searched for a sidereal signal by looking for excess power in the FFT of the data in Fig. 1 at the frequency corresponding to exactly 1 sidereal day. We used two statistics in our search, \(p_1 = \sqrt{S_1^2 + C_1^2} \) and \(p_2 = \sqrt{S_2^2 + C_2^2} \), where \(S_1^2 \) is the power returned by the FFT for \(\sin \left(\omega_0 T_{\oplus} \right) \), \(C_1^2 \) is the power returned for \(\cos \left(\omega_0 T_{\oplus} \right) \), and \(S_2^2 \) and \(C_2^2 \) are the analogous powers for the second harmonics. We used the quadratic sum of powers to minimize the effect of the arbitrary choice of zero point in phase at 0° LST. Table II gives the \(p_1 \) and \(p_2 \) values returned by the FFT for the total data set.

We determined the significance of our measurements of \(p_1 \) and \(p_2 \) by simulating \(10^4 \) experiments without a sidereal signal. To construct these experiments we used the data themselves by randomizing the LSP of each CC event \(10^4 \) times and placing each instance into a different phase histogram. We next randomized the LSP of each spill \(10^4 \) times and placed the POT for each instance into another set of histograms. For the POT histograms we drew the phases randomly from the LSP histogram of the start times for all spills. Dividing an event histogram by a POT histogram produced one simulated experiment. The randomization of both the spill and event LSP removed any potential sidereal variation from the data.

We performed the FFT on the simulated experiments and computed the \(p_1 \) and \(p_2 \) statistics for each. The resulting distributions of \(p_1 \) and \(p_2 \) are nearly identical as shown in Fig. 2. The solid line at \(p(\text{FFT}) = 2.26 \) divides the \(p_2 \) histogram at the point where 99.7% of the entries have lower values of the statistic. Consequently we took \(p(\text{FFT}) = 2.26 \) as the 99.7% confidence limit that a measured \(p(\text{FFT}) \) for either harmonic indicates the distribution had no sidereal signal. That is, we adopted \(p(\text{FFT}) \geq 2.26 \) as our signal detection threshold.

Based on this threshold, the \(p_1 \) and \(p_2 \) statistics in Table II show no evidence for a sidereal signal. Thus, the normalized neutrino event rate exhibits no statistically significant variation that depends on the direction of the earth-based neutrino beam in the sun-centered inertial frame. In the context of the SME, this result is inconsistent with the detection of LV and CPTV. The third column of Table II gives the probability, \(P_F \), that the
Experiments

The adopted signal detection limit is $p(FFT) = 2.26$.

Since we found no sidereal signal, we determined upper limits on the $(a_L)^{\mu\tau}$ and $(c_L)^{\mu\tau}$ coefficients that describe LV and CPTV in the SME using the standard MINOS Monte Carlo simulation [2]. Neutrinos are simulated by modeling the NuMI beam line, including the hadron production and subsequent propagation through the focusing elements, hadron decay in the 675 m decay pipe, and the probability that any neutrinos produced will intersect the FD 735 km away. These neutrinos along with weights determined by decay kinematics, are used in the detailed simulation of the FD.

To find the limits, we chose $|\Delta m^2_{32}| = 2.43 \times 10^{-3}$ eV2 and $\sin^2(2\theta_{23}) = 1$, the values measured by MINOS [2]. Our tests show that changing these values within the allowed uncertainty does not alter the limits we found.

We determined the limits for each SME coefficient individually. We constructed a set of experiments in which one coefficient was set to be small but non-zero and the remaining coefficients were set to zero. We simulated a high statistics event histogram by picking events with a random sidereal phase drawn from the distribution of start times for the data spills and weighted these simulated events by both their survival probability and a factor to account for the different exposures between the data and the simulation. Simultaneously we simulated a spill histogram by entering the average number of POT required to produce one event in the FD, as determined from the data, at the sidereal phase of each simulated event. The division of these two histograms resulted in the LSP histogram we used to compute the p_1 and p_2 statistics. We then increased the magnitude of the non-zero SME coefficient and repeated the process until either p_1 or p_2 was greater than the 2.26 detection threshold.

We tested the sensitivity of our results to several sources of systematic uncertainty. First we confirmed through simulated experiments that the analysis was insensitive to our choice of zero point in phase, 0° LST, due to the definition of p_1 and p_2. Next we tested sources that could introduce false sidereal signals into the data and mask an LV detection. Degradation of the NuMI target caused secular drifts of ~5% in the neutrino production rate on a time scale of ~6 months. Doubling this trend introduced no detectable signal for either secular decreases or increases. The known ±1.0% uncertainty in the number of POT per spill [2] was too small to affect this analysis. Because of the non-uniformity of the data taking throughout the solar year, diurnal effects, like temperature variations on the POT counting devices, could have introduced a false signal. However, systematic differences between the day and night event rates were smaller than the statistical errors in the rates themselves and could not introduce a false signal. Atmospheric effects could also have imprinted a sidereal signal on the data if there were a solar diurnal modulation in the event rate that beats with a yearly modulation [13]. Using methods described in [14], we found that this false sidereal signal is < 0.2% of the mean event rate and well below the detection threshold.

In summary we found no evidence for sidereal variations in the neutrino rate in the MINOS FD. This result, when framed in the SME [4, 8], leads to the conclusion that we have detected no evidence for the violation of Lorentz or CPT invariance described by this framework for neutrinos traveling over the 735 km baseline from their production in the NuMI beam to the MINOS FD. The limits on the SME coefficients in Table III for the FD that come from this null result improve the limits we found for the ND by factors of order 20 - 510 [6]. This

![FIG. 2: Distributions of the p_1 and p_2 statistics from the FFT analysis of 10^4 simulated experiments without a sidereal signal. The adopted signal detection limit is $p(FFT) = 2.26$.](image-url)
TABLE III: 99.7% C.L. limits on SME coefficients for $\nu_{\mu} \rightarrow \nu_{\tau}$; $(aL)^{\mu \tau}$ have units [GeV]; $(cL)^{\mu \tau}$ are unitless. The columns labeled I show the improvement from the near detector limits.

<table>
<thead>
<tr>
<th>Coeff. Limit</th>
<th>I</th>
<th>Coeff. Limit</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(aL)^{X \mu \tau}$</td>
<td>5.9×10^{-23}</td>
<td>510</td>
<td>$(aL)^{Y \mu \tau}$</td>
</tr>
<tr>
<td>$(aL)^{Y \mu \tau}$</td>
<td>0.5×10^{-23}</td>
<td>20</td>
<td>$(aL)^{X \mu \tau}$</td>
</tr>
<tr>
<td>$(aL)^{X \mu \tau}$</td>
<td>2.5×10^{-23}</td>
<td>220</td>
<td>$(aL)^{Y \mu \tau}$</td>
</tr>
<tr>
<td>$(aL)^{X \mu \tau}$</td>
<td>1.2×10^{-23}</td>
<td>230</td>
<td>$(aL)^{Y \mu \tau}$</td>
</tr>
<tr>
<td>$(aL)^{X \mu \tau}$</td>
<td>0.7×10^{-23}</td>
<td>190</td>
<td>–</td>
</tr>
</tbody>
</table>

improvement is due to the different behavior of the oscillation probability in the short and long baseline approximations coupled with the significantly increased baseline to the FD. These improvements more than offset the significant decrease in statistics in the FD. They are the first limits to be determined for the neutrino sector in which LV and CPTV are assumed to be a perturbation on the conventional neutrino mass oscillations.

We gratefully acknowledge the many valuable conversations with Alan Kostelecký and Jorge Diaz during the course of this work. This work was supported by the US DOE, the UK STFC, the US NSF, the State and University of Minnesota, the University of Athens, Greece, and Brazil’s FAPESP and CNPq. We are grateful to the Minnesota Department of Natural Resources, the crew of the Soudan Underground Laboratory, and the staff of Fermilab for their contribution to this effort.

* Deceased.