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The discovery of a Higgs particle is possible in a variety of search channels at the LHC. However,
the true identity of any putative Higgs boson will, at first, remain ambiguous until one has exper-
imentally excluded other possible assignments of quantum numbers and couplings. We quantify
the degree to which one can discriminate a Standard Model Higgs boson from “look-alikes” at, or
close to, the moment of discovery at the LHC. We focus on the fully-reconstructible “golden” decay
mode to a pair of Z bosons and a four-lepton final state. Considering both on-shell and off-shell
Z’s, we show how to utilize the full decay information from the events, including the distributions
and correlations of the five relevant angular variables. We demonstrate how the finite phase space
acceptance of any LHC detector sculpts the decay distributions, a feature neglected in previous
studies. We use likelihood ratios to discriminate a Standard Model Higgs from look-alikes with
other spins or nonstandard parity, CP , or form factors. For a benchmark resonance mass of 200
GeV/c2, we achieve a median expected discrimination significance of 3σ with as few as 19 events,
and even better discrimination for the off-shell decays of a 145 GeV/c2 resonance.

I. INTRODUCTION

The CDF and DØ experiments [1] at the Fermilab
Tevatron are continuously improving their Higgs mass
limits, and the ATLAS and CMS detectors at the CERN
LHC are designed to discover [2, 3] the standard Higgs in
all of the unexplored mass range, up to the high masses
at which its raison d’être is lost. While an un-discovery
would be momentous, we focus here on the possibil-
ity that evidence resembling the standard expectation is
found.

Because the idea is so venerable, one may have grown
insensitive to how special a Higgs boson would be. Its
quantum numbers must be those of the vacuum, which
its field permeates. Its couplings to the electroweak gauge
bosons W± and Z are proportional to their masses, as are
its couplings to quarks and leptons. Any deviation from
the predicted quantum numbers or couplings of a puta-
tive Higgs boson would have deep ramifications for parti-
cle physics. An experimental program for Higgs physics
must be focused on the rigorous determination of these
fundamental quantities.

A Higgs boson discovery at the LHC will arise from ex-
cesses or resonances observed in one or more final states.
Since the couplings and partial widths of a SM Higgs bo-
son are predicted as a function of its mass, the size of
any excess, the width of a reconstructed resonance, or
a comparison of different channels may immediately give
clues as to whether the putative new particle is consistent
with a SM Higgs boson. Nevertheless, the true identity of
the new particle will at first remain ambiguous, until one
has experimentally excluded other possible assignments
of quantum numbers and couplings. We shall refer to
these other possibilities as Higgs look-alikes (HLLs).

The purpose of this paper is to quantify to what degree

one can discriminate a Standard Model Higgs boson from
HLLs at, or close to, the moment of discovery at the LHC.
In spite of much preparation for Higgs searches at hadron
colliders, no previous published study of this question ex-
ists. There is a vast literature about determining Higgs
properties from signals in a variety of final states (for a re-
view, see [4]), but this research mostly addresses only the
related question of whether it is possible at all to deter-
mine Higgs quantum numbers and couplings at a hadron
collider. The current situation in this respect is similar
to the LHC experimental program for supersymmetry,
where only recently are there quantitative studies of the
potential to discriminate supersymmetry look-alikes at
the moment of discovery [5]-[9].

Our study focuses on the so-called “golden channel” for
Higgs discovery, namely the Higgs decay H → ZZ∗ →
`+1 `
−
1 `

+
2 `
−
2 , where `±1,2 denotes an electron or a muon. Ob-

viously, this channel has the advantage that the kine-
matics of the Higgs and its decay products are fully
reconstructible from a completely leptonic final state.
Approximately half of the events will be µ+µ−e+e−,
where all four leptons are easily distinguishable, and
even in the 4µ and 4e final states all four leptons can
be distinguished by the requirement that one or both Z
bosons are reconstructed within an on-shell mass win-
dow. A well-measured, four-body, closed kinematic final
state provides many independent observables for deter-
mining properties of the observed resonance; thus this
channel provides more information than, e.g., the fully-
reconstructible Higgs decay into two photons, where the
photon polarizations are not measured.

A drawback of the golden mode is the small branching
fraction; example values for a SM Higgs → ZZ → 4`
are 0.0011 for mH = 200 GeV/c2, 0.0014 for mH = 350
GeV/c2, and 0.00036 for mH = 145 GeV/c2 [10]. Even
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for favorable Higgs masses, this branching fraction is 130
times smaller than that for semileptonic H →W+W− →
`νjj, a channel which, though hampered by large back-
grounds, is also fully reconstructible up to a two-fold am-
biguity in the determination of the longitudinal neutrino
momentum [11, 12]. The golden mode branching frac-
tion is also much smaller than that for the fully leptonic
SM Higgs decay H → W+W− → `+ν`−ν̄. Neverthe-
less, for a wide range of SM Higgs masses, this mode is a
promising discovery channel and would, in any event, be
populated at or around the time of a putative discovery
in a different channel.

We factorize the HLL problem into observables related
to production and observables related to decay. In this
paper we perform a systematic analysis including all of
the information from the putative Higgs decays, leav-
ing the analysis of Higgs versus HLL production to later
work. While this factorization of production and decay is
not completely clean, we show that the resulting model-
dependent uncertainty introduced into the decay analysis
is small. A full analysis will include production informa-
tion and could produce stronger results than those pre-
sented here, since large cross section differences are ex-
pected between SM Higgs production and the production
of many Higgs look-alikes. However, including Higgs pro-
duction also introduces new theoretical and measurement
uncertainties involving associated hadronic jets and the
parton distribution functions (PDFs) that describe the
initial state.

One advantage of focusing only on Higgs decay in the
four lepton final state is that we can perform a realis-
tic study without resorting to full simulation of a de-
tector. This is demonstrated in Section IV, where we
parametrize the relevant efficiencies, resolutions and ac-
ceptances for an LHC detector. Because both CMS and
ATLAS in general measure muons and electrons with
exquisite precision, we show that uncertainties about de-
tector performance have no impact on our results.

This is not to say that detector effects are not impor-
tant. We will show that the finite phase space acceptance
of any LHC detector has strong effects on the HLL anal-
ysis, causing a detector-induced sculpting of the angular
distributions used for HLL discrimination. We demon-
strate that these effects must be accounted for in order
to avoid serious errors in the characterization of a Higgs
signal.

Our analysis depends on five distinct angles that de-
scribe the H → ZZ → 4` decay process. In the case
where one of the Z bosons is strongly off-shell, the SM
Higgs versus HLL decays also differ in their dependence
on the reconstructed Z∗ invariant mass. Because we are
interested in HLL discrimination with small data sam-
ples, at or near the moment of discovery, we need to use
all of the decay information in the events, including not
just the distributions but also the correlations between
all five (or six) of the relevant observables.

In the same spirit, we disentangle the Standard Model
ZZ background from the putative Higgs signal using

the sPlots technique [13]. This produces an effectively
background-subtracted data sample where, instead of
making stringent requirements that reduce signal, we
reweight the selected events according to how likely each
event is considered to be signal by the fit, keeping the
normalization to the signal yield found in the search.

Previous analyses of the Higgs golden mode decay
properties have examined the dependence on some of the
relevant angular distributions [14]-[19] and have shown
the potential for LHC measurements to discriminate a
SM Higgs from look-alikes with different spin and par-
ity assignments or CP properties [4],[17]-[32]. However,
none of these studies utilized all of the decay information
in the events and all of them have ignored the effects of
detector phase space sculpting of distributions.

In our analysis we compare a SM Higgs signal to a va-
riety of Higgs look-alikes. We consider the most general
couplings, containing up to two derivatives, of a massive,
spinless boson to ZZ or ZZ∗; this corresponds to gauge-
invariant couplings up to dimension six. Some of the
corresponding HLLs can be considered as small modifica-
tions of the SM Higgs properties via P or CP violation or
Higgs compositeness. Another spin 0 HLL corresponds
to a new massive pseudoscalar, a particle occurring in
models with extended Higgs sectors such as supersym-
metry.

Our HLL analysis also includes the most general cou-
plings, containing up to two derivatives, of a massive neu-
tral spin 1 boson to ZZ or ZZ∗. The off-shell case has
not been presented before, to our knowledge. Of course a
spin 1 HLL is a special case of what is usually denoted as
a Z ′ vector boson. The spin 1 part of our results is thus
also part of a Z ′ look-alike analysis, which is interesting
in its own right [33].

We also include as one of our HLLs a massive spin 2
resonance with gravity-like couplings to ZZ. Although
massive gravitons from existing models are already ex-
perimentally excluded in the relevant mass range [34],
general spin 2 HLLs offer new challenges for our spin
discriminations.

In outline, Section II defines our notation for the ob-
servables of the four-lepton final state. Section III gives
the general gauge and Lorentz invariant couplings of an
HLL to ZZ or ZZ∗, with a discussion of other symmetry
properties. We describe in Section IV event generation,
detector simulation, and the construction of effectively
background-subtracted samples using sPlots; here also
we show the sculpting of the angular distributions and
correlations by the finite phase space acceptance of the
detector. In Section V we describe our statistical ap-
proach to HLL discrimination using hypothesis testing
with likelihood ratios. We demonstrate in Section VI the
consistency of our methods by applying them to the dis-
crimination of signal from SM ZZ background. In Sec-
tion VII we detail many examples quantifying our abil-
ity to discriminate a SM Higgs from a variety of HLLs,
showing in each case the expected discrimination signifi-
cance as a function of the number of signal events; we use
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benchmark Higgs masses of 145, 200, and 350 GeV/c2.
We summarize, in Section VIII, our results and outlook
for further improvements. Here we explicitly quantify
to what extent our expected discrimination significance
would be degraded by using a less complete or less rigor-
ous analysis.

II. THE GOLDEN CHANNEL

We are interested in the case of a SM Higgs boson, or
a Higgs look-alike, decaying via ZZ or ZZ∗ into a four-
lepton final state. We will denote the putative Higgs
and its mass by H and mH , regardless of whether it is a
SM Higgs or a look-alike. This notation is also used to
describe background events, where the four-lepton object
is treated as a Higgs or HLL in the sense that mH stands
for M [4`]. Since the events are fully reconstructible the
lab frame kinematics of the candidate H particles are
known: its transverse momentum pT , pseudorapidity η,
and azimuthal angle. These three variables define the
direction and boost from the lab frame to the H rest
frame. All other observables can then be defined with
respect to the H rest frame.

In the approximation that the final state leptons are
massless, 12 observables are measured per event. Since
all 12 are well-measured there is no experimental reason
not to re-express these in terms of whatever combinations
most naturally capture the underlying physics. Thus we
choose four observables to be mH and the three produc-
tion observables just described that define the H rest
frame. The remaining eight observables are taken to be
the two reconstructed masses of the Z bosons together
with six decay angles defined with respect to the H rest
frame.

In the H rest frame the reconstructed Z bosons are
back-to-back. We label these bosons as Z1, Z2 and take
the direction of Z2 as defining the positive z-axis. Be-
cause of Bose symmetry, the labeling is arbitrary; in the
case of an e+e−µ+µ− final state we will follow the liter-
ature [29] and choose Z2 to be the Z boson that decayed
to muons. We then adopt the additional convention that
the transverse direction of the µ− lies along the positive
y-axis; thus the Z2 decay leptons lie in the y-z plane.

With the above choices, the reconstructed Z boson
masses m1 and m2 also define the longitudinal boosts
from the H rest frame to the rest frames of the decaying
Z1 and Z2 bosons. The boost parameters are given by

γ1 =
mH

2m1

(
1 +

m2
1 −m2

2

m2
H

)
, (1)

γ2 =
mH

2m2

(
1− m2

1 −m2
2

m2
H

)
. (2)

We let θ1, ϕ1 denote the `−1 decay angles in the Z1 rest
frame, while θ2, ϕ2 denote the `−2 decay angles in the Z2

rest frame.

There are two additional angles Θ, Φ defining the di-
rection of the initial state partons as reconstructed in
the H rest frame. For a gluon-gluon initial state these
angles measure a rotation from the z-axis defined above
to the direction of the initial state gluon with positive
z-component of momentum. For quark-antiquark (qq̄)
initiated production of an HLL we have the problem
that we do not know event-by-event which proton con-
tributed the antiquark; this is resolved by symmetrizing
the expected angular distributions under the replacement
cos Θ→ −cos Θ.

As expected, one combination of the three azimuthal
angles Φ, ϕ1 and ϕ2 is physically redundant. We take
advantage of this fact to make the replacements ϕ1 →
Φ + φ, ϕ2 → Φ. Thus φ then represents the azimuthal
rotation between the Z2 and Z1 decay planes.

In summary, the 4-momenta of the process gg → H →
Z1Z2 → `−1 `

+
1 `
−
2 `

+
2 are explicitly parametrized in the H

rest frame as

pg2 =
mH

2
( 1, S cos Φ, S sin Φ, C)

pg1 =
mH

2
( 1,−S cos Φ,−S sin Φ, −C)

k = mH ( 1, 0, 0, 0) ,

p2 = m2 (γ2, 0, 0, β2γ2) ,

p1 = m1 (γ1, 0, 0,−β1γ1) ,

p`−2
=

m2

2
(γ2(1 + β2c2), 0, s2, γ2(β2 + c2)) , (3)

p`+2
=

m2

2
(γ2(1− β2c2), 0, −s2, γ2(β2 − c2)) ,

p`−1
=

m1

2
(γ1(1 + β1c1), −s s1, −c s1,−γ1(β1 + c1)) ,

p`+1
=

m1

2
(γ1(1− β1c1), s s1, c s1,−γ1(β1 − c1)) .

Here k denotes the 4-momentum of H, while p1,p2

are the 4-momenta of Z1,Z2. We have used the
condensed notation C, S=cos Θ,sin Θ, c, s=cosφ,sinφ,
c1, s1=cos θ1,sin θ1, and c2, s2=cos θ2,sin θ2.

Of the five relevant angles, Θ and Φ are Z-pair produc-
tion angles, while the remaining three are 4` production
angles. We will use the notation

~ω = {φ, cos θ1, cos θ2} , (4)

~Ω = {Φ, cos Θ} . (5)

For a SM Higgs, the distributions in Θ and Φ are flat if
we ignore the phase space acceptance effects. In previ-
ous studies these two angles have been either ignored or
integrated over.

Although we have tried to conform to the literature in
our parametrization of the decay angles, we note that the
literature itself is divided over the choice of which decay
plane orientation corresponds to φ = 0 rather than φ =
π. We conform to the convention of Buszello et al [29],
which is opposite to that of Djouadi [4] and Bredenstein
et al [35].

The decay amplitudes defined in the next section de-
pend on two combinations of the boost parameters γ1



4

θ2
µ−

µ+
z

y

e−

e+

q
π −Θ

Z2

θ1

Z1
ϕ

1

ϕ
2

g,

FIG. 1: The Cabibbo-Maksymowicz angles [36] in the H →
ZZ decays.

and γ2, defined by

γa = γ1γ2(1 + β1β2) , (6)

γb = γ1γ2(β1 + β2) , (7)

which are in fact just the cosh and sinh of the rapidity
difference of Z2 and Z1, such that

γ2
a − γ2

b = 1 . (8)

More explicitly, we have

γa =
1

2m1m2

(
m2
H − (m2

1 +m2
2)
)
. (9)

III. COUPLINGS AND ANGULAR
DISTRIBUTIONS

A. General couplings to ZZ∗

The vertex Feynman rules for the most general cou-
pling of a spinless particle to the polarization vectors εµ1
and εα2 of two Zs of four-momenta p1 and p2 are given
by the expression:

Lµα = X gµα−(Y +i Z)
kαkµ
M2
Z

+(P+iQ) εµα
p1p2

M2
Z

, (10)

where we have suppressed repeated indices in the con-
traction of the four-index ε tensor, k = p1 + p2 and only
Lorentz-invariance has been assumed. The dimensionless
form factors X to Q are functions of k2 and p1 ·p2 which,
with no loss of generality, can be taken to be real (but
for their absorptive parts, expected to be perturbatively
small). The rescalings by 1/M2

Z are just for definiteness,
since the true mass scale of the underlying operators is
as yet unspecified. In practice we also remove an overall
factor of igMZ/cos θW , so that X = 1 corresponds to the
tree level coupling of a SM Higgs boson.

Similarly, the most general vertex describing the cou-
pling of a spin J = 1 particle to two Z-polarizations (in-
dices µ and α, momenta p1 and p2, respectively) and to

its own polarization (index ρ) is:

Lρµα = X (gρµ pα1 + gρα pµ2 ) + (P + iQ) ερµα(p1 − p2),
(11)

again with X, P and Q real.
The most general parity-conserving vertex describing

the coupling of a J = 2+ particle of polarization tensor
ερσ to our two vector bosons is:

Lρσµα = X0m
2
H g

µρ gασ

+(X1 + i Y1) (pα1 p
ρ
2 g

σµ + pρ1 p
µ
2 g

σα)

+(X2 + i Y2) pρ1 p
σ
2 g

µα, (12)

again with all coefficients real. The special case of tree
level gravity-like couplings corresponds to

X0 = −1

2
κ , X1 = κ , X2 = −κ , (13)

with all other coefficients vanishing and κ an overall cou-
pling strength.

These general couplings, with naive mass dimensions
d = 3, 4, and 5, can arise from SU(2)L × U(1)Y invari-
ant operators of dimension 5, 6, or higher. Since, for
HLLs with non-vanishing weak charges, this parentage
introduces model dependence, we relegate it to a brief
discussion in Appendix A.

B. ‘Pure’ cases of specified JPC

We specify in this section the results for four cases
(scalar, pseudoscalar, vector and axial vector) that would
be ‘pure’ in the sense of having a single dominant term
in their HZZ couplings, which we use to define their
spin and parity. This allows one to illustrate the mass
and angular dependences of the predictions, setting the
stage for the later discussion of the impure cases for which
P and/or CP are not symmetries of the theory, and to
establish comparisons with the existing literature (but
for the ZZ∗ case for J = 1, which we have not found
elsewhere).

The general expressions for the angular correlations in
the ZZ∗ case (which includes ZZ when the two Z masses
are fixed at MZ) are given in an appendix. The notation
is as defined in the previous section; we also need to
introduce the quantity

η ≡ 2 cv va
(c2v + c2a)

≈ 0.15, (14)

arising from the SM couplings of the Z bosons to the
final state leptons.

1. The standard Higgs, JPC = 0++

The tree level SM coupling of the Higgs to two Z’s of
polarisation ε1 and ε2 is ∝ ε1·ε2, see Eq. (10). The angular
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distribution of the leptons in H → ZZ → 4 l decay, for
on or off-shell Z’s of mass m1 and m2, is:

dΓ[0+]

dc1 dc2 dφ
∝ m2

1m
2
2m

4
H

[
1 + c21c

2
2 + (γ2

b + c2)s2
1s

2
2

+2γa c s1s2 c1c2 + 2η2(c1c2 + γa c s1s2)
]
. (15)

2. A pure pseudoscalar, JPC = 0−+

The coupling of a JPC = 0−+ pseudoscalar to two Z’s
of polarisation ε1 and ε2 and four-momenta p1 and p2 is
∝ ε[ε1, ε2, p1, p2], see Eq. (10). The angular distribution
of the leptons in its ZZ → 4 l decay is:

dΓ[0−]

dc1 dc2 dφ
∝ m4

1m
4
2 γ

2
b(

1 + c21c
2
2 − c2s2

1s
2
2 + 2 η2 c1c2

)
. (16)

3. A pure vector, JPC = 1−−

The coupling of a JPC = 1−− vector particle of po-
larization εH to two Z’s of polarisation ε1 and ε2 and
four-momenta p1 and p2 is ∝ εH·ε1 ε2·p1 +εH·ε2 ε1·p2, see
Eq. (11). Unlike for the scalar cases, the fully differen-
tial decay amplitude depends nontrivially on the angles
Θ and Φ, representing correlations between the helici-
ties of the initial and final state particles. Assuming a
quark-antiquark initial state this, in principle, introduces
two new parameters: the vector and axial couplings of
the (massless) quarks to the spin 1 HLL. However, once
we symmetrize over cos Θ↔ −cos Θ, reflecting our igno-
rance of which colliding proton contributes the antiquark
of the hard scattering, the dependence on these new cou-
plings disappears except for an overall factor. After this
symmetrization, the angular distribution of the leptons
in H → ZZ∗ → 4 l decay is:

dΓ[1−]

dC dc1 dc2 dΦ dφ
∝ 4m2

1m
2
2γ

2
b

[
S2s2

1s
2
2

(
2m4

d −m2
H

[
m2

1 cos(2(Φ + φ)) +m2
2 cos(2Φ)

])
(17)

+m2
H(1 + C2)

[
2m2

2s
2
1 + 2m2

1s
2
2 − (m2

1 +m2
2)s2

1s
2
2

]
+ 4mHm

2
d C S

[
m1c1 s1s

2
2 sin(Φ + φ)−m2c2 s2s

2
1 sin Φ

]
−2m2

Hm1m2s1s2

(
(1 + C2)(c1c2 − η2)c+ S2(c1c2 + η2) cos(2Φ + φ)

)]
,

where we have introduced the notation

m2
d ≡ m2

1 −m2
2 . (18)

4. A pure axial vector, JPC = 1++

The coupling of a JPC = 1++ axial-vector particle
of polarization εH to two Z’s of polarisation ε1 and ε2
and four-momenta p1 and p2 is ∝ ε[εH , ε1, ε2, p1 − p2],

see Eq. (11). After the same symmetrization in cos Θ
described above, and introducing the notation

M2
1 ≡ m2

H − 3m2
1 −m2

2 ,

M2
2 ≡ m2

H −m2
1 − 3m2

2 , (19)

the angular distribution of the final state leptons is given
by:

dΓ[1+]

dC dc1 dc2 dΦ dφ
∝ m2

HS
2s2

1s
2
2

[
M4

2m
2
1 cos(2(Φ + φ)) +M4

1m
2
2 cos(2Φ)

]
+ 8m2

1m
2
2m

4
dS

2
[
c21 + c22 + s2

1s
2
2s

2 + 2η2c1c2
]

+m2
H(1 + C2)

[
2M4

1m
2
2s

2
1 + 2M4

2m
2
1s

2
2 − (M4

2m
2
1 +M4

1m
2
2)s2

1s
2
2

]
(20)

−8mHm
2
dm1m2C S

[
M2

2m1s2

(
c2s

2
1c sin(Φ + φ) + c1(c1c2 + η2) sin Φ

)
−M2

1m2s1

(
c1s

2
2c sin Φ + c2(c1c2 + η2) sin(Φ + φ)

)]
+2m2

HM
2
1M

2
2m1m2s1s2

[
(1 + C2)(c1c2 − η2)c− S2(c1c2 + η2) cos(2Φ + φ)

]
,

5. A pure massive graviton, JPC = 2++

Since the general analysis of spin 2 coupling to off-shell
Z’s is quite cumbersome, we will only quote results for

a simpler example: a positive parity spin 2 with gravity-
like couplings produced by gluon fusion and decaying to
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two on-shell Z’s. Defining the on-shell ratio

x ≡ mH

MZ
, (21)

and using the massive graviton formalism of [37], we ob-
tain the tree level angular distribution of the final state
leptons as:

dΓ[gg → graviton→ ZZ]

dC dc1 dc2 dΦ dφ
∝ 16x4C2 + 2(x4 + 16)S4 + s2

1s
2
2[(x4 + 16)S4 − 4x2(x2 + 4)S2 + 4x4]

+8x2S2
[
[2 + S2 + (2− 3S2)c22]s2

1 cos(Φ + φ)2 + [2 + S2 + (2− 3S2)c21]s2
2 cos2Φ

]
+S4s2

1s
2
2[x4 cos(2Φ + φ)2 + 16 c2]− (s2

1 + s2
2)[(x2 + 4)2C4 + 2(3x4 − 16)C2 + (x2 − 4)2]

+2S2c1 c2 s1 s2

[
x2 [2(x2 + 4)− (x2 + 12)S2]cos(2Φ + φ) + 4 [4x2 − (3x2 + 4)S2]c

]
. (22)

Note the cos4 Θ dependence characteristic of a spin 2
resonance.

C. Tests of symmetries

Now we discuss the behaviour of the HZZ cou-
plings under various symmetries, including CP and Bose-
Einstein statistics. The discussion attempts to clarify the
literature on these issues.

Consider the J = 0 case. The most general coupling
of a spinless particle to the polarization vectors ε1 and
ε2 of two Z’s is that of Eq. (10). In computing the en-
suing H → ZZ∗ → 4` process one finds that the XP
interference term is of the form:

dΓ[0,Todd]

dc1 dc2 dφ
∝

2m3
1m

3
2m

2
H γb s1 s2 s

[
s1 s2 c+ γa (c1c2 + η2)

]
, (23)

where the term sin θ1 sin θ2 sinφ ∝ ~pe+ · ~pµ− × ~pµ+ . By

definition, this observable is T̃ -odd: it changes sign as
all three-momentae are reversed (the tilde in “ T̃ -odd”
emphasizes that past and future are not being inter-
changed).

The Born approximation is, by definition, the result
of squaring the amplitude dictated by the Lagrangian to
lowest order in its couplings: a quadratic result, in our
case, in any pair of the quantities X to Q in Eq. (10).

To this order, a T̃ -odd observable must vanish if CP is
a symmetry, as shown in [38]. Thus, a non-vanishing T̃ -
odd observable such as that of Eq. (23) can only arise if
CP -invariance is also violated.

The XQ interference term resulting from Eq. (10) is:

dΓ[0,Codd]

dc1 dc2 dφ
∝

−2 ηm3
1m

3
2m

2
H γb [c1 + c2] (1 + c1c2 + γa s1s2 c) . (24)

This term is CP odd and T̃ -even, a combination not
addressed by the theorem quoted above. It is a C-odd

observable, in that it changes sign under the interchange
of pe+ ↔ pe− and pµ+ ↔ pµ− , tantamount to cos θi ↔
−cos θi in our chosen notation.

1. Bose-Einstein statistics

The general coupling, up to two derivatives, of a J =
1 particle to two Z’s is that of Eq. (11). This is true
whether or not the Z’s are on-shell, which seems to be
a point of confusion in the literature. Thus for example
[23] contains extra “off-shell” couplings, such as gµα(p1−
p2)ρ and ερµα(p1 + p2), that violate Bose symmetry and
vanish for two on-shell Z’s. However, Bose symmetry is
a property manifest at the Lagrangian level, and thus
independently of any on- or off-shell considerations. The
two Z’s in an H → ZZ∗ decay are described by the same
bosonic Z field, whether or not they are on-shell, and
they do not obey the laxer rules that different particles
(Z 6= Z ′) would.

D. Tests of compositeness.

If the couplings of a HLL conserve P and CP , but
the object is not point-like, there will be deviations from
the standard gµν coupling to Z’s. To lowest order in
the dimensions of the corresponding effective operators,
these will be of two types. The first is a non-vanishing
Y in Eq. (10), and the second is a nontrivial form for X.
Barring large effects –quite conceivable in a model with
multiple SM Higgs-like fields– deviations in X are much
harder to limit or measure than a non-zero Y/X which
is governed by the shapes of angular distributions.

It is useful to introduce the notation tan ξ ≡ Y/X. In
this notation, the “composite” HLL angular distribution
is of the form:

dΓC = cos2ξdΓXX +cos ξsin ξ dΓXY +sin2ξ dΓY Y , (25)

where dΓXX is the standard result of Eq. (15). The in-
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terference term is:

dΓXY
dc1 dc2 dφ

∝

−2m3
1m

3
2m

2
H γ

2
b s1 s2 (c1c2c+ γa s1s2 + η2 c) ,(26)

and the last term is:

dΓY Y
dc1 dc2 dφ

∝ m4
1m

4
2 γ

4
b s

2
1s

2
2 . (27)

Contrary to all of the other cases we study, the inter-
ference term in this instance is between two operators
whose P and C are identical: the HLL is not point-like,
but it is ‘pure’ 0++. As a consequence, the angular dis-
tribution of the interference term is not very different
from that of the XX and Y Y terms and the interference
can, for certain values of Y/X, be very destructive. This
can be seen even at the level of the H → ZZ branching
fraction, the integral of Eq. (25) over cos θ1, cos θ2, and
φ:

ΓC ∝ m2
1m

2
2 [2cos2ξ + (γacos ξ −m1m2γ

2
b sin ξ)2] . (28)

If ξ has a value close to the (mass-dependent) point of
maximal interference, the golden mode channel can be
suppressed by a large factor. For this to happen X and
Y ought to be of the same order of magnitude, signifying
a low dynamical scale for a composite Higgs.

IV. ANALYSIS

In this section we describe the modeling of the de-
tector effects and the analysis strategy to extract an ef-
fectively pure sample of signal events. We describe the
Monte Carlo (MC) event generation and the simulation
of the detector response. We use parameterized recon-
struction resolutions and efficiencies based on the pub-
lished CMS performance results [39]. A similar study
can be performed with parameterizations based on the
ATLAS detector. We focus on the four-muon (4µ) final
state, but the results can be generalized to include final
states with electrons. Since a four-lepton final state is
relatively “clean” in the LHC environment, we apply a
loose event selection and use a maximum likelihood (ML)
fit technique to separate the signal from the background.
This maximizes the statistical power and the possibil-
ity of characterizing the nature of the discovered particle
through the study of the multi-dimensional angular dis-
tribution of the four leptons in the resonance rest frame.

A. Event generation

The knowledge of the four-momenta of the leptons fully
specifies the information needed in this analysis. We gen-
erate the four-momenta of the four leptons from the five-

dimensional (six-dimensional) probability density func-
tions (pdfs) of

~X = {Φ, cos Θ, cos θ1, cos θ2, φ} forZZ , (29)

~X = {Φ, cos Θ, cos θ1, cos θ2, φ,MZ∗} forZZ∗ .

The ~X quantities are generated in the rest frame of the
decaying resonance. The muons are then boosted to the
laboratory frame and the detector effects (acceptance,
efficiency and resolution) are applied to the boosted mo-
menta. We use the azimuthal symmetry of the LHC de-
tectors to reduce the remaining kinematic degrees of free-
dom to the knowledge of the pT , η and the invariant mass
m4µ of the 4µ system. The pT , η for the signal is taken
from a two-dimensional pdf generated using MC@NLO [40].
We consider proton-proton collisions at

√
s = 10 TeV

and we model the parton probability density functions
(PDFs) using CTEQ5L [41].

In this analysis we don’t assume a specific signal pro-
duction mechanism and cross section; Rather we rely ex-
clusively on the discrimination provided by the angular
distributions of the leptons in the final state. We show
the pT vs. η pdfs for a spin-0 and a spin-1 neutral HLL
in Fig. 2. As discussed in Section I, for all the signal
generation we use the pT vs. η pdfs of the scalar. For the
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FIG. 2: 2D pT -η pdf of a 0+ HLL resonance (left) and a 1−

one (right) for
√
s = 10 TeV collisions, obtained using PYTHIA

and the CTEQL5 parton density functions and for mH =145,
200, 350 GeV/c2 (top, middle and bottom).

SM ZZ background the pT , η and m4µ are taken from
a three-dimensional pdf generated using the PYTHIA [42]
leading-order MC generator. The momenta of the four
muons in the rest frame of the ZZ(∗) system as a func-
tion of m4µ are generated according to the theoretical
distributions.
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B. Detector emulation and event selection

Muon reconstruction efficiency and resolution are pa-
rameterized as a function of the muon pT and η according
to [39], where the muon reconstruction efficiency is close
to 100% for muons with pT ≥ 10 GeV/c and |η| ≤ 2.3,
corresponding to the event selection in this analysis. The
reconstruction efficiency is applied through a hit-or-miss
technique. For muon candidates accepted by the effi-
ciency filter, the reconstructed momentum is determined
by applying Gaussian smearing functions to the true pT ,
η and φ with pT - and η-dependent resolutions. We ver-
ified the goodness of our very-fast muon simulation by
comparing the parameters of the fit of the Z invariant
mass distribution obtained in our analysis and shown in
Fig. 3 with the corresponding ones from a published full-
simulation analysis [43].

]        2 [GeV/cµµm
70 80 90 100

   
ev

en
ts

N

0

20000

40000

60000

FIG. 3: Distribution of the dimuon invariant mass for a sam-
ple of signal H → ZZ events, generated using our very-fast
muon simulation. The parameters of the superimposed fit are
extracted from [43].

A number of detector related effects can modify the
~X observables’ pdfs. The resolution of the observables
used in the analysis is shown in Fig. 4 and is found to be
small independent of the HLL resonance mass and quan-
tum numbers. The systematic bias in the reconstruction
of the same variables is shown in Fig. 5 and is found to
be also negligible. This suggests that the sculpting of the
observables’ pdfs is not a result of reconstruction resolu-
tion or bias. Rather, it depends on the simulated kine-
matics of the HLL resonance, including its mass, and on
the specific model considered (0+, 0− etc). Specifically,
the overall phase space acceptance, implemented in the
signal selection by means of the pT and η requirements
produces the largest effects on the observables. This is
shown in Fig. 6 for a resonance of mass 145 GeV/c2 gen-
erated with no explicit angular correlations. Adding
the angular correlations in the matrix element can en-
hance or reduce the overall selection efficiency depending
on the details of the multidimensional pdf. Our selec-
tion is 60% (74%) efficient for a 0+ resonance of mass
200 GeV/c2 (350 GeV/c2) as shown in Fig. 7. The same
figure demonstrates that the efficiency has a non-trivial
dependence on the nature of the spin correlations. Specif-
ically, for a 0− resonance of 200 GeV/c2 (350 GeV/c2) the
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FIG. 4: Reconstruction resolution for the angular variables of
~X shown here for a resonance with mass 145 GeV/c2. The
cos θ2 and cos θ1 distributions are very similar in this case.
Only events surviving the signal selection are included. All
distributions are normalized to unit integral.

efficiency is 60% (69%). With an absence of explicit spin
correlations the efficiency for a 350 GeV/c2 resonance is
71%.

We find that changes in the ~X distributions are
strongly correlated with the kinematics of the off-shell
Z, e.g for cos θ2, the largest inefficiencies corresponding
to the kinematic configurations where at least one of the

muons is soft. While the angles ~Ω can be neglected for
J = 0 resonances we find that this is not the case when
correlations between the variables ~ω and ~Ω appear ex-
plicitly in the differential cross-sections. For example, for
J = 1−, the φ and Φ theoretical distributions are highly
correlated. The consequences on model discrimination
are discussed in Sec. VII B

Since the shapes of the reconstructed ~ω and ~Ω distri-
butions depend on the phase space acceptance, we find
that the distributions are nearly identical when applying
the same pT and η acceptance requirements to electrons
in H → ZZ → 2e2µ or 4e final states with the pT cuts
considered in this study. This observation is illustrated
in Fig. 8, demonstrating the excellent agreement between
kinematic distributions reconstructed in muon and elec-
tron final states. As a consequence, results concerning
model discrimination, as a function of the number of ob-
served signal events, will be nearly identical when the
additional final states are included (2e2µ, 4e), especially
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FIG. 5: Distributions showing systematic biases for a subset
of the reconstructed variables ~X for a resonance with mass
145 GeV/c2. Only events that survive the signal selection are
included. All biases are negligible.

when the off-shell Z mass is not used as an observable.
This is not necessarily the case for results concerning the
discovery of a resonance in these final states with respect
to the background-only hypothesis, since different back-
grounds need to be considered for electron and muon final
states.

C. Fit definition and signal extraction

The H → ZZ signal events can be discriminated from
SM backgrounds using an extended and unbinned ML
fit. Since there is no resonant 4µ background in the SM,
the fit can use as a discriminating variable the 4µ mass
distribution. In the presence of a sizable background due
to fake Z candidates (such as top decays) the 2µ mass
distributions can be included in the likelihood. Since
this is not a conceptually different situation, we ignore
this possibility and assume for simplicity that the only
relevant background is given by events with two real Z
candidates. We write the likelihood function as:

L =
1

N !
exp

(
−
∑
j

Nj

)
(30)

N∏
i=1

(
NSPS [mi

4µ] +NBPB [mi
4µ]

)
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FIG. 6: The variables ~X used in this analysis for a 145 GeV/c2

resonance. The off-shell MZ∗ is required to lie a window be-
tween 20 and 50 GeV/c2. The shaded histograms are the 1D
distributions using a constant matrix element (i.e. no an-
gular correlations included). The overlaid histograms show
the same distributions for reconstructed events passing the
pT and η signal selection after the detector parameterization.
All distributions are normalized to unit integral.

where Nj (j = S,B) represents the yield of each com-
ponent; mi

4µ is the 4µ candidate mass for the event i;
and PS [m] (PB [m]) is the signal (background) distribu-
tion for the variable m. The pdfs for the signal and back-
ground components are described using the template dis-
tributions from the simulation, as shown in Fig. 9 for
mH = 250 GeV/c2. This fit configuration is appropriate
for the HLL characterization.
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FIG. 8: Kinematic distributions for the variables cos θ1 (left)
and φ (right) for a 0+ resonance with mass 350 GeV/c2. The
shaded histograms show the 1D projections of the variables
as described by the analytic pdfs. The overlaid histograms
(blue, red) show the same 1D projections for reconstructed
events passing the pT and η signal selection after the detector
parameterization for 4µ and 4e final states. All distributions
are normalized to unit integral.
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FIG. 9: Distribution of the 4µ invariant mass for a sample
of signal with mH = 250 (left), and background (right) ZZ
events.

D. Background subtraction

In order to establish if a newly-discovered resonance
is indeed the Higgs boson or not, a hypothesis test is
performed (see Sec. VII). In this context, a tool to
disentangle signal and background events from the se-
lected dataset is an important prerequisite. We use the

sWeight [13] technique and reweight the selected dataset
according to how likely each event is considered to be sig-
nal by the fit. The sWeight technique is statistically op-
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FIG. 10: The 4µ invariant mass distribution for a sample
of NS = 70 H → ZZ events with mH = 250 GeV/c2 and
NB = 1000 ZZ background events. The superimposed curves
represent the likelihood function returned by an ML fit, with
NS , NB , andm4µ as free parameters (top). Comparison of the
signal-only MC distribution of cos θ1, with the background-
subtracted distribution obtained with the sWeight technique
(middle). Comparison of the background-only MC distribu-
tion of cos θ1, with the signal-subtracted distribution obtained
with the sWeight technique (bottom).

timal when the discriminating variable (m4µ in our case)
in the fit is uncorrelated with the subsequently used vari-

ables ( ~X in our case). The narrowness of them4µ peak in
this example guarantees that the signal events are, to an
excellent approximation, uncorrelated with the angular
variables. On the upper plot of Fig. 10, the 4µ invari-
ant mass distribution is shown for a sample of NS = 70
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H → ZZ events (with mH = 250 GeV/c2) on top of
NB = 1000 continuum ZZ background events, corre-
sponding to a ∼ 5σ deviation from the background-only
hypothesis. The superimposed curves represent the like-
lihood function returned by an ML fit (with NS , NB ,
and m as free parameters). The middle plot shows the
signal sWeighted cos θ1 distribution. Similarly, the bot-
tom plot shows the background sWeighted cos θ1 distri-
bution. The comparison of the two sets of points shows
how the background (signal) subtraction allows one to
recover the signal (background) distribution for the con-
sidered variable in the given sample, the deviation from
the expected pdf being due to statistical fluctuations al-
ready present at the MC level.

V. STATISTICAL APPROACH

In this section we discuss the statistical formulation we
use to address comparisons between different hypotheses
as well as relevant measurements on the search and dis-
covery and characterization of an HLL resonance. We
focus on four statistical approaches:

• (1) Search analysis of a signal in the presence of
backgrounds.

• (2a) Comparisons between two “pure” spin-parity
hypotheses (such as 0+ vs. 1−).

• (2b) Comparisons between two spin-parity hy-
potheses, with at least one of the two being an
“impure” admixture of two pure HLL states (e.g.
0+ vs. a combination of 1+ and 1−). This case
is similar to (2a), except for the presence of one or
more nuisance parameters.

• (3) The measurement of mixing parameters in the
case of impure Higgs look-alikes.

In case (1) we consider two hypotheses. H1 is the “stan-
dard Higgs signal plus background”, and H0 is the null,
“background only” hypothesis.

Cases (2) and (3) establish the nature of a newly dis-
covered particle. Guided by our results on sPlots, we
contend that it is a very good approximation to confront
two different “signal” hypotheses in the absence of back-
ground – which has been statistically subtracted. This
assumes that the discovery of a new resonance has al-
ready been established.

The case (2) hypotheses refer to an mH peak with two
different JP interpretations. In the (2a) case the two
hypotheses under consideration are simple i.e. the cor-
responding likelihoods are fully specified once the values
~X are measured. In the (2b) case the unknown mixing
angles, referred to as ~α (and including e.g. the various
ξ and δ), for the impure hypothesis are treated as nui-
sance parameters. The analysis in case (3) is a traditional
parameter estimate, based on the ML fit for which we ob-
tain a confidence interval by using the Feldman-Cousins

approach [44]. We discuss the three cases starting from
the last.

A. Coupling admixtures

Consider the example of a one-parameter mixture of
two types of HZZ coupling, such as the composite case
discussed in Sec. III D. For a fixed value of the resonance
mass mH and the mixing angle α, Eq. (25) is the the-
oretical probability-distribution of the events as a func-

tion of the variables ~X for ZZ and ZZ∗ final states. The
experimental pdf is a numerical representation of the re-
sult of sieving –through a specific detector and its res-
olution, trigger and analysis requirements– a very large
number of events, generated with the theoretical pdf of
Eq. (25). This experimental pdf, referred to as P , is a

function P = PM (α, ~X) of M = mH , (which is kept

fixed through this exercise), α, and ~X. The dependence

on ~Ω ≡ {cos Θ,Φ} is, in this example, exclusively a phase
space acceptance effect.

Many experiments with a fixed number of events, NS ,
are simulated, assuming the same detector response. The
probability of each event, evaluated with the experimen-
tal pdf, is Pi. The likelihood of a given experiment is

L(α) =
∏NS

i=1 Pi. The experimentally measured value of
the α parameter, α̂ corresponds to the value that maxi-
mizes L(α). The simulation is repeated many times, as a
function of the true value of the mixing angle α. Running
many experiments one can derive the confidence interval,
i.e. the range covering the true value of α for some con-
fidence level and some measured value α̂ [44].

It is customary to estimate the error (or the number
n of standard deviations σ) in the measured α from the
expression L(αmax ± nσ) = L(αmax)− n2/2. While this
method is accurate for large samples with Gaussian er-
rors, it is not the one used to draw the σ contours in
Fig. 11 (where α = ξXQ) and in the similar figures of
Sec. VII. Instead, the CL is evaluated measuring the fre-
quency of a given result in the set of generated pseudo-
experiments.

B. Confronting a JP hypotheses

Consider two hypotheses, H0,1, for the spin-parity as-
signment of a signal candidate sample, detected via its
ZZ mass peak and background subtracted using the

sPlot method. Large numbers of events are generated
assuming each hypothesis and used to construct two un-
binned experimental pdfs: PH0,1(~=PM (~x |H0,1). For our
pure spin-parity cases, the simple nature of the hypothe-
ses considered guarantees through the Neyman-Pearson
(NePe) lemma [45] that the hypothesis test is universally
most powerful. Next, we explicitly identifying one hy-
pothesis as H0 and the other as H1. Additionally, we
specify the test statistic Λ which we define as the log-
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FIG. 11: Confidence intervals for measured values of ξXQ for
a C-violating J = 0 resonance with a mass 200 GeV/c2.

likelihood ratio log[L(H1)/L(H0)]. Finally, we must a
priori choose the acceptable probability level α, of re-
jecting H0 in favor of H1, even though H0 is true (Type I
error). We generate a series of pseudo-experiments with
a fixed number of events, NS , to construct the pdf of Λ
for the two hypotheses. A typical result is illustrated in
Fig. 12. We first generate pseudo-experiments consider-
ing H0 as true. For each experiment we construct two

likelihoods L(H0) ≡ ∏NS

i=1 PH0( ~Xi) for the correct inter-

pretation of the true theory, and L(H1) ≡∏NS

i=1 PH1
( ~Xi)

for its incorrect interpretation. With the ensemble of
experiments one constructs the distribution P (Λ | H0)
with Λ ≡ log[L(H1)/L(H0)]. The result is the leftmost
(red) curve in Fig. 12. The exercise is repeated with the
pseudo-experiments generated considering H1 as true and
the result is the rightmost (blue) curve in the figure.

An a priori chosen value of α implicitly defines a value
Λ̂(α) via

α =

∫ ∞
Λ̂(α)

P (Λ |H0) dΛ . (31)

This fixed value Λ̂(α) implies that

β(α) =

∫ Λ̂(α)

−∞
P (Λ |H1) dΛ (32)

is the probability of accepting H0 even if H1 is correct
(Type II error). The value 1 − β is called the power of
the test. When the real experiment is performed, a spe-
cific value Λexp, is obtained for Λ = L(H1)/L(H0). The
associated p-value =

∫∞
Λexp

P (Λ |H0) dΛ , is compared to

α to determine if the measurement favors one hypothesis
versus the other.

Instead of the α and β values, the σ (significance) is
commonly used. To convert to an equivalent number of
σ’s using Fig. 12 we calculate the same α-area in a Gaus-
sian distribution centered at 0 with σ =1. The number

Λ
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Λ

FIG. 12: Distribution of Λ for mH = 200 GeV/c2 and
NS = 23, constructed with ∼ 109 pseudo-experiments. The
hypothesis being confronted are H0 = 0+ and H1 = 0−.

n of α-equivalent standard deviations is obtained by in-
verting

α =
1√
2π

∫ ∞
n

dx e−x
2/2 . (33)

The a priori (subjective) choice of α (and subsequently
β and corresponding significances) is heavily discussed
in the literature. The Physical Review, for example, re-
quires a 5σ (3σ) significance to the claim of a discovery
(evidence). The caveat is, of course, that when one min-
imizes as much as possible the probability of an error of
Type I (wrongly claiming a discovery) one risks making
an error of Type II (and e.g. delaying the claim of a
discovery to the next luminosity upgrade).

The pure vs. impure Higgs look-alike hypothesis test
has an additional complication due to the dependence of
the likelihood function on the value of the ~α in at least
one of the two hypothesis. In this case, we are testing
the simple (i.e. ~α independent) hypothesis against a
class of alternative hypotheses, connected by the vari-
ation of a continuous unknown parameter(s). The test
is performed by comparing the simple hypothesis to the

impure hypothesis with values ~alpha that best fit the
data. The impure vs. impure Higgs look-alike test is
technically identical to the pure vs. impure. Here, we
try to exclude some value of the ~α parameter for one of
the two composite hypotheses in favor of the alternative
impure hypothesis, where the mixing angles are treated
as nuisance parameters. With fixed ~α, one impure look-
alike becomes a simple hypothesis (like a pure one) tested
against an impure hypothesis.
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C. Higgs searches

When searching for a new particle two hypotheses are
tested against each other: the background-only, H0, and
signal plus ackground, H1.

Assuming that the event distributions for signal and
background are fully specified (an unrealistic situation
in that the value of the Higgs mass and width are not
known a priori), one still has to determine the signal and
background yields. Hence, the likelihood function has a
parametric dependence on at least one nuisance param-
eter. There is no guarantee that the Neyman-Pearson
construction is, in this case, the optimal hypothesis test
one could perform. We are, however, not concerned with
what the optimal statistical test is, but rather on the
physics content of the likelihood function. Our aim is to
illustrate how different analyses that fully or partially
exploit a matrix-element approach compare with each
other. For this purpose it is sufficient to use a consistent
statistic among the various cases and discuss their rela-
tive merits. We still perform a hypothesis test based on
the likelihood ratio. The dependence on the nuisance pa-
rameters is removed through a maximization (profiling)
of L(H0,1) relative to the nuisance parameter(s), prior to
the construction of the likelihood ratio, as done for the
case of impure hypothesis-testing discussed in Sec. V B.

Given a specific analysis setting (i.e. a set of variables
defining the likelihood function) we evaluate its discov-
ery power by evaluating the expected significance (the
number of σ’s) as a function of the signal yield and for
different values of signal over background yields ratio.
We define an expected value for the signal to background
ratio, 〈NS/NB〉, between the signal events constituting
the M(ZZ) peak and the integral of the background dis-
tribution in the same variable in the range 190 GeV/c2

to 600 GeV/c2. To address the uncertainties, we com-
pare the two hypotheses for various pre-selected values
of 〈NS/NB〉, in a large range including and bracketing
the central current expectation. The likelihood for H0

is then that of Eq. (31), expressed as a function of the
angular variables at fixed mH , as opposed to a function
of only mH .

When adding the ~X variables to the likelihood, one
should consider the event-by-event dependence of their
pdf on the value of mH . This can done using a different
~X pdf for each bin of the template function of Fig. 9.
This step is straight-forward when performing the real
analysis, but CPU intensive when performing hundreds of
billions of pseudo-experiments. We simplify the exercise

by fixing the ~X pdf to the peak value of mH .
In our search results we compare the significance,

as given by an mH -based peak search, with the cor-
responding quantity following from the whole angular-
distribution analysis. In the case of a discovery test, the
p-value of any toy experiment is compared to the equiv-
alent of a ≥ 5σ significant p-value, in order to establish
if a discovery could be claimed for that experiment. By
repeating the exercise many times, we can associate a

probability to the discovery potential. The 5σ conven-
tion fixes the value of α for the hypothesis test, as well
as the value of β for a given likelihood function.

VI. SIGNAL SIGNIFICANCE USING THE
ANGULAR INFORMATION

As described in the two previous sections, discrimi-
nation of Higgs look-alikes first requires an event sam-
ple constituting a putative Higgs discovery. We can be
agnostic about the details of the discovery analysis, al-
though we have made the reasonable assumption that,
after all selections, the dominant residual background
component is from SM ZZ production. As noted al-
ready, the search analysis could be model independent,
relying only on the reconstruction of a resonant excess
over non-resonant backgrounds. In this case a discovery
is completely factorized from its characterization.

In order to discriminate the look-alikes based on an-
gular variables, we require the background-subtracted
event sample provided by the sPlot technique described
in Section IV D. The sPlot fit provides not only this

sWeighted dataset but also an estimate of the mass mH

of the putative Higgs, as well as the fit values of NS and
NB , the number of signal and background events in the
sample. In turn this provides an estimate of the expected
signal to background ratio < NS/NB >, with an error
that should be dominated by the Poissonian fluctuations.
Given a hypothesis of the identity of the putative Higgs,
the < NS/NB > can be independently estimated by the-
ory, with a nontrivial systematic error. A significant dis-
crepancy between these two estimates could signify either
a problem with the experimental analysis, theory uncer-
tainties from parton fluxes and radiative corrections, or
the presence of a Higgs imposter whose production cross
section differs from that of a SM Higgs.

Despite the natural factorization between discovery,
HLL discrimination based on production, and HLL dis-
crimination based on decay, it is important to check the
consistency of the entire chain of analysis. This is espe-
cially true for the small datasets considered in this work,
where we demonstrate HLL discrimination with datasets
not much larger than, or identical to, the original discov-
ery sample.

A powerful check is to fix the extracted (or assumed)
values of mH and < NS/NB >, and then compare the
signal significance of two nominal analyses:

• An “m(ZZ) only” fit, for which the discrimination
between signal and background is given only by the
ZZ invariant-mass peak. This is an example of
a model-independent discovery analysis (although
not necessarily the actual discovery analysis used
in the experiment).

• An “m(ZZ)+ ~X” fit, in which the pdf for the an-

gular variables ~X is also included. Thus here we
are using the angular information to improve the



14

discrimination of the signal from the background,
rather than discriminate SM Higgs from Higgs look-
alikes.

We compare the signal significance of the two analyses,
corresponding to different physics content for the likeli-
hood function. A common statistical framework is used,
since we are interested to compare the physics perfor-
mance rather that determining the optimal statistical
approach. The overall normalization is obtained by as-
suming

√
s = 10 TeV with a corresponding SM Higgs

production cross section [39].
The two fit configurations answer different questions.

The “m(ZZ) only” fit does not assume a priori any hy-
pothesis on the nature of the resonance (neglecting finite

width effects), whereas the “m(ZZ)+ ~X” fit requires as
input a hypothesis for the signal pdf. On the other hand,

it is natural to expect that the “m(ZZ)+ ~X” fit offers bet-
ter signal significance, since more information is added to
the fit.

A direct comparison of the two analyses in a common
framework is a way to quantify the price to pay in order
to run a completely model-independent search. At the
same time, it is a consistency check on the HLL discrim-
ination analysis, since the background events are them-
selves Higgs imposters. If, as we claim, HLL discrimi-
nation is possible with datasets not much larger than,
or identical to, the original discovery sample, then we

should also find that the “m(ZZ)+ ~X” fit offers compara-
ble improvements in signal significance over the “m(ZZ)
only” fit, for similarly small datasets.

To make the likelihood comparison meaningful, a com-
mon fit setting is used. For the ZZ invariant mass, we
consider the range 190 < mH < 600 GeV, whereas for the
signal mH is fixed at some nominal value. The fit config-
uration is specified by the nominal expected signal-over-
background yield ratio < NS/NB > and by the nominal
number of signal eventsNS . We consider different scenar-
ios by fixing different values of < NS/NB > and perform
the study as a function of NS .

For each fit configuration we perform a set of toy Monte
Carlo experiments. The actual number of background
events are generated according to a Poisson distribution
around the nominal value, and the event-by-event val-
ues of the variables used in the fit (mH and, if used,
~X) are randomly generated according to the signal and
background pdfs. The fit is then performed for each toy
sample, maximizing the likelihood as a function of the
signal and the background. The sets of fits provide a dis-
tribution for the expected statistical signal significance
obtained in a particular experiment, and in particular a
68% probability range for the spread in this significance.

This information is summarized in Figures 13- 15. The
two bands in the figures correspond to the expected
spread (at 68% confidence level) for the signal signifi-
cance achieved in a single experiment, as a function of
the signal yield NS , for the “m(ZZ) only” fit (light band)

and the “m(ZZ)+ ~X” fit (dark band). The horizontal

lines show the 3σ and 5σ thresholds (evidence and discov-
ery, in the usual convention). The intersection with each
band provides a corresponding range for the needed sig-
nal yield, the spread being due to statistical fluctuations.
For a correct interpretation of the separation between the
two bands, one should consider that the statistical fluc-
tuations in the two fits are strongly correlated since they
both depend on the invariant mass observable and back-
ground fluctuations for this mass distribution will be the
same for both.

Fig. 13 corresponds to the case of a mH = 200 GeV/c2

SM Higgs boson, while Fig. 14 provides similar results for
a mH = 350 GeV/c2 SM Higgs boson. For each mass,
different values for < NS/NB > are considered; we show
here the results for < NS/NB >=1/5, 1/10 for 200 and
< NS/NB >=1/10, 1/20 for 350. We note that bet-
ter discrimination between the signal and background in
the higher mass case (compared to the lower mass) espe-
cially in the invariant mass observable, and despite the
lower cross section, results in higher significance for the
higher mass case and for the same luminosity. Similarly,
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FIG. 13: Distribution of signal significance for a 200 GeV/c2

SM Higgs boson decaying in theH → ZZ → 4µ channel for pp
collisions with

√
s = 10 TeV. The mean signal to background

ratios used are < NS/NB > = 1/5 (top) and 1/10 (bottom).

Fig. 15 shows the corresponding results for a mH = 200
GeV/c2 and mH = 350 GeV/c2 pseudoscalar Higgs im-
postor. Here the input parameters (such as the cross
section) are assumed to be those of a SM Higgs boson;
only the shape of the pdfs defining the likelihood (and in
particular the correlations between the angles) are dif-
ferent from the SM case. The angular distributions and
correlations for a pseudoscalar resonance are similar to
the ZZ background, resulting in a much smaller improve-
ment in the signal significance over the “m(ZZ) only” fit,
and thus a smaller distance between the two bands in the
plots.
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FIG. 15: Distribution of signal significance for a 200 (top)
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√
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mean signal to background ratios used are < NS/NB > =
1/5 (top) and 1/10 (bottom), and assumes NLO SM Higgs
production cross section for the pseudoscalar.

VII. RESULTS

We present results for three HLL masses: mH = 145,
200, and 350 GeV/c2.

A. 0+ vs. 0−

We consider here two different “pure” scalar hypothe-
ses: 0+, corresponding to a SM Higgs, and 0−, a psuedo-
scalar. Neither of these possibilities have explicit depen-

dence on the angles ~Ω in their differential cross-section,
meaning that only the variables ~ω (and the off shell Z
mass, m2 = MZ∗ , in mH < 2MZ cases) are used to dis-
criminate between the two hypotheses.

In Fig. 16 we show the distributions in φ and cos θ1 at

mH = 350 GeV/c2 for JP = 0+ and 0−. These angular
variables (along with cos θ2, whose distribution is identi-
cal to that of cos θ1 except when Z2 is off-shell) provide
the discrimination between these two hypotheses at all
masses mH . For masses mH below the 2MZ threshold,
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FIG. 16: Distributions of the variables φ (left) and cos θ1
(right) for 0+ and 0− resonances with mH = 350 GeV/c2.
All distributions are normalized to a unit integral.

the kinematic factors in Eqs. 15,16 result in the differ-
ential cross section dependences on the off-shell Z mass
MZ∗ that differ for the 0+ and 0− cases. This is illus-
tated in Fig. 17(left) for mH = 145 GeV/c2. For all the
discriminating variables we consider, the ability to dis-
tinguish between two hypotheses is degraded when their
correlations are neglected. This is shown in Fig. 17(right)
where we present the results of the NePe hypothesis test
between 0+ and 0− for likelihoods built using different
subsets of variables and correlations thereof. Specifically
P (MZ∗ , ~ω) denotes the use of the full set of variables
while in P (~ω) the probability distribution of MZ∗ is ig-
nored. The product of all one-dimensional probabilities,
ignoring correlations, is

∏
i P (Xi). As expected, the like-

lihood including all discriminating variables and their
correlations is optimal. The other two definitions give
similar results. We note that, regardless of the results,
the use of

∏
i P (Xi) is an improper approximation, since

the Xi variables are far from being uncorrelated.

The expected significance for discriminating between
the 0+ and 0− hypotheses (assuming one of the other
to be correct), as a function of NS , where NS is the
number of observed signal events,is shown in Fig. 18 for
mH = 145, 200, and 350 GeV/c2. In all cases, results
correspond to the case where H1 is the true hypothesis
(see Sec. V). The model discrimination is based on
an NePe test between these simple hypotheses with test
statistic log(L[0+]/L[0−]). The variables ~ω (and MZ∗ ,
when applicable), along with their correlations, are used
in the likelihood construction. The median expected sig-
nificance for rejecting one hypothesis in favor of the other
at the time of 5σ excess (see Sec. VI) is better than 3σ
for mH = 200 and 350 GeV/c2 while a 5σ discrimination
can be achieved with double the observed signal events
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ent likelihood constructions are specified in the text.

(less than ∼40 events in both mass cases presented here).

B. 0+ vs. 1− and 1+

We consider here two different “pure” J = 1 models
specified by their HZZ couplings: “vector” (J = 1−)
and “axial vector” (J = 1+). Unlike in the 0+ case, the
differential cross sections have non-trivial dependences

on the Z-production angles ~Ω that provide additional
discrimination between 0+ and J = 1. In Fig. 19 we
show the distributions for some of these variables.

We note that when a J = 1 resonance decays in ZZ∗,
the shapes of the c1 ≡ cos θ1 and c2 ≡ cos θ2 are not any
longer qualitatively similar, as illustrated in Fig. 20 (in
striking contrast to the J = 0 cases). In the J = 1−

case, this asymmetric effect arises from the configura-
tions in which the object, in its rest system, is polarized
along the direction of motion of one of its Z-decay prod-
ucts. These helicity configurations result in an addend
proportional to m2

2s
2
1c

2
2 + m2

1s
2
2c

2
1 in the pdf, which can

be rewritten as 2M2
Z(s2

1 + s2
2− s2

1s
2
2)−m2

ds
2
1(2− s2

2), with
m2
d ≡M2

Z −m2
2. The second term is 1↔2 asymmetric at

fixed md and induces the difference between the c1 and
c2 one-dimensional distributions. In the J = 1+ case the
asymmetric pdf term is, in the notation of Appendix D,
2M4

1m
2
2s

2
1 + 2M4

2m
2
1s

2
2 − (M4

2m
2
1 + M4

1m
2
2)s2

1s
2
2 and its

origin is similar. These asymmetric effects significantly
enable the discrimination between J = 1 and J = 0 mod-
els when mH < 2MZ .

In Fig. 21 we compare the discrimination between the
0+ and 1− hypotheses for likelihood definitions that ex-
ploit different variables. The obvious qualitative conclu-
sion is that likelihoods defined in terms of pdfs containing
the most information are the most performant. The fig-
ure shows the relative discriminating power of the differ-
ent choices: P (a1, · · · , aN ) denotes N-dimensional pdfs in
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FIG. 18: Expected significance for rejecting 0− in favor of 0+,
assuming 0+ is true (left), and vice-versa, 0+↔0− (right), for
mH = 145, 200 and 350 GeV/c2 (top, middle and bottom).
The dashed central line is the median significance. The 1 and
2σ bands correspond to 68% and 95% confidence intervals,
centered on the median.

the correlated variables {a1, · · · , aN}.
∏
i P (Xi) is con-

structed from one-dimensional pdfs for all variables, ig-

noring (erroneously) their correlations. P (~ω |〈~Ω〉TH) are
pdfs including the variables ~ω and their correlations, but
with the hypothesis 1+ represented by a pdf in which de-

pendence on the variables ~Ω = {Φ, cos Θ} has been inte-
grated out of the analytic differential cross-section. The

likelihood P (~ω |〈~Ω〉TH) performs badly relative to P (~ω),
where the two differ only in that the first construction im-
plicitly assumes a uniform 4π coverage of the observed
leptons, as if the muon pT and η analysis requirements

did not depend on the ~Ω angular variables. The pri-
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(upper right), φ (lower left) and MZ∗ (lower right, mH = 145
GeV/c2) for 0+, 1− and 1+ resonances. All distributions are
normalized to a unit integral. The angular disctributions are
shown for mH = 350 GeV/c2.
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FIG. 20: Distributions in cos θ1 (left) and cos θ2 (right), for
0+, 1− and 1+ resonances with mass 145 GeV/c2, normalized
to a unit integral.

mary reason for this difference is the strong correlation
between the variables Φ and φ in the J = 1 pdfs, which
causes phase space acceptance sculpting of the Φ distri-
bution that in turn alters the φ distribution, as discussed
in detail in Sec.IV.

The expected significance for discriminating between
the 0+ and 1− (1+) hypotheses, as a function of NS , is
summarized in Fig. 22 (Fig. 23). The full correlated set
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FIG. 21: Median expected significance for rejecting 1− in
favour of 0+ (assuming 0+ is true), for different likelihood
constructions used in the likelihood ratio test statistic.

of variables ~Ω, ~ω, and MZ∗ (when applicable) is used
in the likelihood construction. The discriminations are
based on the NePe tests between simple hypotheses with
statistic log(L[0+]/L[1−]) (log(L[0+]/L[1+])). The dis-
crimination between 0+ and 1− or 1+ is similar.

C. 0+ vs. 2+

We consider one “pure” J = 2 model: a J = 2+ heavy-
graviton-like resonance. A J = 2 object has pdfs with

non-trivial dependence on the angles ~Ω up to quartic or-
der in cos Θ. In Fig. 24 we show the corresponding dis-

tributions in the ~Ω variables and for mH = 200 and 350
GeV/c2. The ability to discriminate between the 0+ and
J = 2 hypotheses improves with increasing resonance
mass. Despite the presence of quartic terms in cos Θ in
the 2+ pdf and the absence of this variable in the 0+

pdf, their corresponding one-dimensional pdfs are similar
for the 0+ and 2+ resonances for values of mH close to
2MZ , as shown in Fig. 24. Similar behavior is observed
in the distributions of cos θ1 and cos θ2, as illustrated in
Fig. 25. Nevertheless, the inclusion of all angular vari-
ables and their correlations improves the discrimination
power between the 2+ and 0+ hypothesis as shown in
Fig. 26.

The expected significance for discriminating between
0+ and 2+ as a function of NS , is summarized in Fig. 27
for mH = 200 and 350 GeV/c2. For these tests the

variables ~Ω and ~ω and their correlations were used in
the likelihood. Model discrimination is based on the
NePe test between simple hypotheses with test statistic
log(L[0+]/L[2+]) and log(L[0+]/L[2−]).

D. Other pure JPC comparisons

If a resonance discovered in the 4` final state does not
have the quantum numbers of the SM Higgs boson, it
is likely that 0+ will be rejected in favor of other pure-
JPC hypotheses. The issue of abandoning a particular
JPC in favor of others becomes a combinatoric exercise,
where the compatibility of the data is assessed against
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FIG. 22: Expected significance for rejecting 1− in favour of
0+, assuming 0+ is true (left), or vice-versa (0+↔1−, right),
for mH = 145, 200 and 350 GeV/c2 (top, middle and bottom).

each possible pair of hypotheses in a simple NePe test,
in view of selecting the optimal assumption. In this sec-
tion we present the expected results for these comparison
tests, as a function of the observed number of events NS .
Following the results of the previous section, we alawys
use the full set of angular variables, plus, when appro-
priate, MZ∗ , corresponding to the optimal statistic for
model discrimination.

The discrimination between the 0− hypothesis and the
pure J = 1 ones is very similar to the case of distin-
guishing the latter from 0+, described in Sec. VII B. The
pdf for 0− has also no explicit dependence on the an-

gles ~Ω. Differences in the pdfs of these variables provide
discrimination between 0− and J = 1 states, as Fig. 28
illustrates. The one-dimensional MZ∗ pdfs are similar for
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FIG. 23: Expected significance for rejecting 1+ in favour of
0+, assuming 0+ is true (left), or vice-versa (0+↔1+, right),
for mH = 145, 200 and 350 GeV/c2 (top, middle and bottom).

0− and 0+, as well as for 1− and 1+, while the differences
between the two J-values are maximal. The cos θ1,2 dis-
tributions for J = 1 have qualitatively different behavior
when mH < 2MZ , as discussed in Sec. VII B. This re-
sults in the J = 1 cos θ1 (cos θ2) distribution being more
“0−-like” (“0+-like”), resulting in similar levels of dis-
crimination between J = 0 and J = 1.

The expected significance to distinguish the 0− and 1−

(1+) hypotheses, as functions of NS , is shown in Fig. 29
(30). The mH = 145 GeV/c2 results and the ones for 0+

vs. J = 1 (Figs. 22 and 23) are nearly identical. A similar
comparison of 0− vs. J = 1 (Figs. 29 and 30) with 0+ vs.
J = 1 (Figs. 22 and 23) for mH = 200 GeV/c2 reveals
that it is more difficult to discriminate between 0+ and
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FIG. 24: Distributions of the variables cos Θ (left) and Φ
(right) for 0+, 2+ resonances with masses of 200 and 350
GeV/c2 (top, bottom). All distributions are normalized to a
unit integral.

J = 1 at this mass. This is predominantly due to the
pdfs for the angles cos θ1,2 (which are similar between 0+

and J = 1 for mH > 2MZ).

The distributions for the variables ~Ω and ~ω for all
the pure JPC hypotheses considered in our analysis are

shown in Fig. 31, for mH = 200 GeV/c2. The ~Ω distri-
butions are nearly identical for the two J = 0 cases, since
they are only induced by detector limitations.

The potential to distinguish between 0− and 2+ reso-
nances is shown in Fig. 32 for mH = 200 and 350 GeV/c2.
If both of the J = 0 cases are excluded in favour of J = 1

or J = 2, one needs to discriminate between the latter.
Relative to J = 0 case, the two pure J = 1 resonances
have the most similar pdfs, as we saw in Sec. VII B while
comparing them to the 0+ case. The comparison to the
J = 2 reflects the same limitation, as shown in Fig. 34
(35) for 1− vs. 2+ (1+ vs. 2+).

The hardest differentiation is between 1− and 1+. Fig-
ures 28, 31 and 33, show that the one-dimensional cos Θ,
cos θ1, cos θ2 and MZ∗ pdfs are similar. While the Φ and
φ pdfs provide some discrimination, the phase space ac-
ceptance tends to sculpt the Φ distributions (and φ dis-
tribution through correlations) in ways that render the
two cases very similar. The expected significance for dis-
tinguishing between the two J = 1 cases is shown in
Fig. 36. We conclude that the discriminating potential
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FIG. 25: Distributions of the variables cos θ1 (left) and φ
(right) for 0+, 2+ resonances with masses of 200 and 350
GeV/c2 (top, bottom). All distributions are normalized a
unit integral.
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constructions discussed in the text.
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FIG. 27: Expected significance for rejecting 2+ in favour of
0+, assuming 0+ is true (left) or vice-versa (0+↔2+, right),
for mH = 200 and 350 GeV/c2 (top, bottom).

is weakest for 1+ vs. 1−, for all mH . We revisit this
result in Sec. VII G in the context of measuring mixing
parameters in a general J = 1 Lagrangian.

E. 0+ vs. mixed scalar states

Consider the “vertex Feynman rules” of Eq.10 for
the most general Lorentz-covariant coupling Lµα of a
spinless object to a Z pair. Rather than studying the
general case, for which any of the quantities X to Q can
be nonzero, we investigate three cases, each with only
two non-vanishing types of coupling, resulting in one
free mixing “angle” and an overall normalization (which
we ignore):

• X 6= 0, P 6= 0: A scalar whose ZZ coupling has a
CP -violating phase, ξXP :

Lµα ∝ cos(ξXP ) gµα + sin(ξXP ) εµαp1p2/M
2
Z (34)

• X 6= 0, Q 6= 0: A scalar whose ZZ coupling vio-
lates C, described in terms of an angle as:

Lµα ∝ cos(ξXQ) gµα + isin(ξXQ) εµαp1p2/M
2
Z (35)

• X 6= 0, Y 6= 0: A composite 0+, parameterized in
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FIG. 28: Distributions, normalized to a unit integral, of the
variables cos θ1 (top left), cos θ2 (top right), φ (bottom left)
and MZ∗ (bottom right) for 0+, 0−, 1+ and 1− resonances
with mH = 145 GeV/c2.

terms of an angle as:

Lµα ∝ cos(ξXY ) gµα − sin(ξXY ) kαkµ/M
2
Z (36)

For each of the above three cases we attempt to an-
swer two different questions, both depending on NS , the
number of signal events (and the resulting significance):

• (a) If the resonance is SM-like (0+, with all mixing
angles vanishing), which values of the angles can be
excluded in favour of a pure 0+?

• (b) If the resonance corresponds to one of the three
mixed cases discussed above, can a pure 0+ be ex-
cluded in favour of a non-trivial mixture?

We first explain how tests to answer these two ques-
tions are constructed in the example of a CP -violating
HZZ coupling with mH = 350 GeV/c2.

Question (a) corresponds to a series of simple hypothe-
sis tests of the type we considered earlier for distinguish-
ing between pure JPC states. Specifically, for a given
number of observed signal events at a fixed value of mH ,
we perform a NePe test between two simple hypothe-
ses: that the resonance is 0+ (denoted hypothesis H1)
or that the resonance is J = 0 with ξXP fixed to a spe-
cific nonzero value (denoted hypothesis H0). The test
statistic we use is log[LXP (ξXP )/L(0+)], where L(0+)
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FIG. 29: Expected significance for rejecting 0− in favour of
1−, assuming 1− is true (left) or vice-versa (0−↔ 1−, right)
for mH = 145, 200 and 350 GeV/c2 (top, middle and bottom).

and LXP (ξXP ) denote the likelihoods for a set of events
agreeing with the hypotheses H1 and H0, respectively.
Obviously, the test cannot be performed for ξXP = 0,
since in this case the H1 CP -violating hypothesis we want
to test reduces to the alternative H0 hypothesis (the CP-
conserving SM Higgs).

The result of this test is the significance with which
hypothesis H0 can be rejected in favor of the hypothesis
H1, or similarly, the significance with which a particular
value of ξXP can be excluded in favour of the 0+ hypoth-
esis. This test is then repeated with different fixed values
of ξXP , i.e. different NePe tests with different hypothe-
ses H0. The results for a large ensemble of such tests are
shown in Fig. 37. Here, H0 = 0XP denotes the simple
J = 0 CP -violating hypothesis with ξXP fixed at values
chosen on the x-axis.

In this example we see that, for NS = 50, the median
expected significance for excluding a CP -violating cou-
pling exceeds 3σ for |ξXP | > 0.5 and 5σ for |ξXP | > 0.9.
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FIG. 30: Expected significance for rejecting 0− in favour of
1+, assuming 1+ is true (left) or vice-versa (0−↔ 1+, right)
for mH = 145, 200 and 350 GeV/c2 (top, middle and bottom).

Question (b) is complementary to (a). Here, nature
has chosen a value of ξXP 6= 0 and we would like to know
the confidence with which one can exclude the ξXP = 0
hypothesis. This time, extra care needs to be taken in
choosing the test statistic, since we do not know ξXP a
priori . Consequently, we cannot construct a simple NePe
test between 0+ and a fixed-ξXP hypothesis. Instead, we
treat ξXP as a nuisance parameter and choose a value,

ξ̂XP , that maximizes the CP -violating likelihood for the
given set of observed events. Specifically, we fix ξXP at
a particular value (the “true” value) to generate events
and perform NePe tests comparing ξXP = 0 (denoted
hypothesis H0) and ξXP 6= 0 (H1). This test is repeated
for many different values of the fixed “input” ξXP .

An example of results from an ensemble of these tests
is shown in Fig. 38. Because of the addition of a nui-
sance parameter, the figure’s interpretation is not simply
related to the interpretation of Fig. 37, which answered
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FIG. 31: Distributions of cos Θ (top left), Φ (top right), cos θ1
(bottom left) and φ (bottom right) for all the pure JPC

choices we study, for mH = 200 GeV/c2. All distributions
are normalized to a unit integral.

question (a). What Fig. 38 shows is the expected sig-
nificance with which one can exclude the SM hypothesis
in favour of the CP -violating hypothesis with ξXP 6= 0,
as a function of the true value of ξXP (given on the x-
axis). No a priori knowledge of the actual value of ξXP
is required to perform this test.

From Figs. 37 and 38 we observe that the expected
significances are symmetric around ξXP = 0. This is due
to the pdfs of the “pure 0+” and “pure 0−” terms being
even under ξXP → −ξXP , while the T̃ -odd interference
term vanishes under the integration of cos θ1, cos θ2 or
φ. We shall see that there are exceptions to this trivial
statement. Comparing these two figures we observe a
remarkable similarity of the significances of the two tests.
Since two different statistics are used, this is somewhat
of a coincidence. To explain it, consider the example
with ξXP = π/5, which corresponds to vertical slices
of Figs. 37 and 38. We denote the two different test
statistics Λfix = log[LXP (ξXP )/L(0+)], with ξXP fixed at
its true value, corresponding to a simple hypothesis test

and Λmax = log[maxLXP (ξ̂XP )/L(0+)], marginalized to

the value ξ̂XP at which it peaks. The distributions of
Λfix and Λmax are shown in Fig. 39.

In the top figure the bell-shaped curves P (Λfix|0+)
and P (Λfix|0XP ) are characteristic of a simple hypoth-
esis test. The distributions of Λmax have a sharp cut-off
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FIG. 32: Expected significance for rejecting 0− in favour of
2+, assuming 0− is true (left) or vice-versa (0−↔ 2+, right)
for mH = 200 and 350 GeV/c2 (top, bottom).
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FIG. 34: Expected significance for rejecting 1− in favour of
2+, assuming 2+ is true (left) or vice-versa (1−↔ 2+, right)
for mH = 200 and 350 GeV/c2 (top, bottom).
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FIG. 35: Expected significance for rejecting 1+ in favour of
2+, assumed to be correct (left) or vice-versa (1+↔2+, right)
for mH = 200 and 350 GeV/c2 (top, bottom).
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FIG. 36: Expected significance for rejecting 1− in favour of
1+, assuming 1+ is true (left) or vice-versa (1−↔ 1+, right)
for mH = 145, 200 and 350 GeV/c2 (top, middle and bottom).

at Λmax = 0, since the 0+ model is a member of the 0XP

family with ξXP = 0, and maxLXP (ξ̂XP )/L(0+) ≥ 1,
which are also features characteristic of this type of test.

The reason for two very different hypothesis tests to
end up in the similar-looking results of Figs. 37 and 38 is
that the statistically-significant features of the different-
looking P (Λ) distributions shown in Fig. 39 are actually
very similar. P (Λfix|0XP ) and P (Λmax|0XP ) differ, but
the distributions of ξXP close to the maxima are localized
around the true input value, their median values and
68% and 95% confidence intervals are nearly identical
(try to tell apart the two vertical dotted lines in the lower
half of Fig. 39, at Λ ∼ 7). Also, the tails of one-minus-
cumulative distributions for P (Λfix|0+) and P (Λmax|0+)
coalesce for p-values exceeding 2σ significance, despite
large differences in the distributions themselves.

In Fig. 40 we show the results for the distinction be-
tween pure 0+ and CP -violating J = 0 hypotheses for
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FIG. 37: Expected significance for excluding values of ξXP in
the CP -violating J = 0 hypothesis in favour of the 0+ one,
assumed to be correct, for mH = 350 GeV/c2 and NS = 50.
The dashed line corresponds to the median expected signif-
icance. The 1 and 2σ bands correspond to 68% and 95%
confidence intervals centered on the median value.
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FIG. 38: The expected significance for excluding a pure 0+ in
favour of a CP -violating HZZ coupling (ξXP 6= 0), assuming
the latter to be correct, with ξXP given by its x-axis values.
Example for NS = 50, mH = 350 GeV/c2. Dashed line and
bands as in Fig. 37.
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FIG. 39: Distributions of the two statistics Λ, defined in the
text, for mH = 350 GeV/c2 and NS = 50. The hypotheses
are H0 = 0+, and H1 = 0XP with the CP -phase ξXP fixed at
π/5. (Top) Probability distributions P(Λ|H). (Bottom) The
same with the 0+ results traded for 1 minus their cumulative
values. The two nearly indistinguishable vertical dotted lines
correspond to the median values of the P(Λ|H1) distributions.

mH = 145 and 200 GeV/c2.For mH = 145 GeV/c2, the
“flat” behavior around ξXP = 0 is due to the coupling
strength of the 0+ part relative to 0−, an order of mag-
nitude larger for mH = 145 GeV/c 2 and closer to unity
for the higher mH values. The corresponding results at
mH = 350 GeV/c2 are those of Figs. 37 and 38.

The next mixed J = 0 case that we consider is that of a
C-violating scalar, with mixing angle ξXQ. This scenario
is very similar to that of the CP -violating scalar: only
the interference term between the 0+ and 0− amplitudes
is different (C-odd, instead of T -odd).

The expected results of hypothesis tests distinguishing
between a C-violating scalar and a 0+ state are shown
in Fig. 41. Comparing this figure with Figs. 37, 38 and
40, we observe identical behavior in all the results. This
shows that the relative strength between the 0+ and 0−

parts of the matrix element squared, rather than the na-
ture of the interference term, is the most relevant factor
in resolving the values of ξXP and ξXQ.

If a pure 0+ hypothesis is rejected in favour of both
ξXP 6= 0 and ξXQ 6= 0, the next question would be
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FIG. 40: Left: Expected significance for the exclusion of val-
ues of a CP -violating ξXP 6= 0 in favour of 0+ (ξXP = 0),
assumed to be correct. Right: Expected significance for ex-
cluding a pure 0+ in favour of ξXP 6= 0, assumed correct with
ξXP given by its x-axis values. Results for mH = 145, 200
GeV/c2 (top, bottom) and NS = 50.

whether it is possible to distinguish between these two
cases. To address this question, we perform a series of
hypothesis tests similar to the one described to answer
type (b) questions. Specifically, we first assume a given
CP -violating ξXP 6= 0 as “true”. We then assess the ex-
pected significance with which particular values of ξXQ
can be excluded in favour of the true hypothesis. Hence,
for each fixed value of ξXP we perform a test against the
C-violating case using a fixed ξXQ. The test statistic

is Λ = log[maxLXP (ξ̂XP )/L(ξXQ)], where the 0XQ hy-
pothesis is simple (fixed ξXQ) and L(ξXP ) is marginalized
“experiment-by-experiment”. The test is repeated over
a matrix of values for ξXP and ξXQ. Next, we switch
the roles of the hypotheses to assess the significance for
excluding given values of ξXP in favour of ξXQ 6= 0. The
results are shown in Fig. 42. The color-coded z-“axis” is
the median expected significance for ruling out the hy-
pothesis H0 with the value of ξH0 given on the y-axis in
favour of the H1 hypothesis with ξH1 6= 0, assumed to be
correct for ξH1 -values chosen on the x-axis.

The similarities between the C- and CP - mixed scalars
are reflected in the y↔x symmetries of Figs. 42. More-
over, switching the roles of the two hypotheses (compar-
ing the figures on the left with those on the right) one

XQ
ξ

-1.5 -1 -0.5 0 0.5 1 1.5

Si
gn

ifi
ca

nc
e

0

1

2

3

4

5

XQ
ξ

-1.5 -1 -0.5 0 0.5 1 1.5

Si
gn

ifi
ca

nc
e

0

1

2

3

4

5
σ5 

σ3 

 bandσ1 
 bandσ2 

2 = 145 GeV/cHm
+ = 01   HXQ = 00H

50 Observed
Signal Events

XQ
ξ

-1.5 -1 -0.5 0 0.5 1 1.5

Si
gn

ifi
ca

nc
e

0

1

2

3

4

5

XQ
ξ

-1.5 -1 -0.5 0 0.5 1 1.5

Si
gn

ifi
ca

nc
e

0

1

2

3

4

5
σ5 

σ3 

 bandσ1 
 bandσ2 

2 = 145 GeV/cHm
XQ = 01   H+ = 00H

50 Observed
Signal Events

XQ
ξ

-1.5 -1 -0.5 0 0.5 1 1.5
Si

gn
ifi

ca
nc

e
0

1

2

3

4

5

XQ
ξ

-1.5 -1 -0.5 0 0.5 1 1.5
Si

gn
ifi

ca
nc

e
0

1

2

3

4

5
σ5 

σ3 

 bandσ1 
 bandσ2 

2 = 200 GeV/cHm
+ = 01   HXQ = 00H

50 Observed
Signal Events

XQ
ξ

-1.5 -1 -0.5 0 0.5 1 1.5

Si
gn

ifi
ca

nc
e

0

1

2

3

4

5

XQ
ξ

-1.5 -1 -0.5 0 0.5 1 1.5

Si
gn

ifi
ca

nc
e

0

1

2

3

4

5
σ5 

σ3 

 bandσ1 
 bandσ2 

2 = 200 GeV/cHm
XQ = 01   H+ = 00H

50 Observed
Signal Events

XQ
ξ

-1.5 -1 -0.5 0 0.5 1 1.5

Si
gn

ifi
ca

nc
e

0

1

2

3

4

5

XQ
ξ

-1.5 -1 -0.5 0 0.5 1 1.5

Si
gn

ifi
ca

nc
e

0

1

2

3

4

5
σ5 

σ3 

 bandσ1 
 bandσ2 

2 = 350 GeV/cHm
+ = 01   HXQ = 00H

50 Observed
Signal Events

XQ
ξ

-1.5 -1 -0.5 0 0.5 1 1.5

Si
gn

ifi
ca

nc
e
0

1

2

3

4

5

XQ
ξ

-1.5 -1 -0.5 0 0.5 1 1.5

Si
gn

ifi
ca

nc
e
0

1

2

3

4

5
σ5 

σ3 

 bandσ1 
 bandσ2 

2 = 350 GeV/cHm
XQ = 01   H+ = 00H

50 Observed
Signal Events

FIG. 41: Left: Expected significance for excluding values of
a C-violating ξXQ 6= 0 in favour of 0+ (ξXQ = 0), assumed to
be correct. Right: Expected significance for excluding a pure
0+ in favour of ξXQ 6= 0, assumed correct for the ξXQ-values
on the x-axis. Hypothesis tests are for mH = 145, 200 and
350 GeV/c2 (top, middle and bottom), for NS = 50.

only sees small changes. Still, the fact that the diagonals
(|ξXP | = |ξXQ|) are not all at the same significance shows
that the tests are sensitive to the differences between the
T̃ - and C-odd interference terms, but it would require an
order of magnitude larger NS to draw 5σ-level conclu-
sions over most of the (ξXP , ξXQ) plane. For example,
we show in Fig. 43 the expected significance with which
one can distinguish between the two cases, as a func-
tion of the number of observed events, for ξXY,XQ = π/4
and mH = 200 GeV/c2. The ambiguity between ξmeasXP ,
−ξmeasXP , ξXQ = ξmeasXP and ξXQ = −ξmeasXP would be very
hard to lift.
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FIG. 42: The median expected significance (coloured z-
“axis”) for excluding values of ξH0 (y-axis) in favour of the
ξH1 6= 0 hypothesis assuming as correct the values ξH1 of the
x-axis. The tests are performed for H1 = 0XP , H0 = 0XQ

(left) and H1 = 0XQ, H0 = 0XP (right); mH = 145, 200 and
350 GeV/c2 (top, middle and bottom), for NS = 50.
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FIG. 43: The expected significance for excluding the C-
violating J = 0 hypothesis in favour of a CP -violating case,
assuming the latter to be correct, with ξXP,XQ = π/4. Ex-
ample for mH = 200 GeV/c2.

The last J = 0 mixed case that we consider has unique
features; this is the “composite Higgs” in which a term
∝ kµkν is present in the HZZ coupling. This case is dif-
ferent from the previous ones in that a composite scalar
has well defined JPC = 0++, regardless of the value of the
angle ξXY characterizing the mixing between its pointlike
and derivative couplings. As a consequence, the angular
integrals of their interference term do not vanish, and
there is no symmetry around ξXY = 0. All the terms in
the pdf having the same discrete symmetries and similar
angular dependences, there happen to be large cancel-
lations in the pdf for a ’critical’ mH -dependent value of
ξXY , as in the example shown in Fig. 44 for the fully
angular-integrated result.

!!"# !!"$ !$"# $"$ $"# !"$ !"#

$"!

!

!$

|M(ξ)|2
|M(0)|2

mH = 350 GeV/c
2

ξ = ξ
XY

FIG. 44: The fully angularly-integrated matrix element
squared for a “composite” 0+, showing a strong destruc-
tive interference at a given ξXY . The result, shown here for
mH = 350 GeV/c2, is normalized to ξXY = 0.

The appearance of an order of magnitude enhancement
of the squared matrix element in Fig. 44 for O(1) values
of ξXY can be regarded as an artifact of our choosing a
rather low mass scale (MZ) in the definition of the di-
mensionless coupling Y in Eq. 10; thus if e.g. we instead
chose the compositeness scale = mH = 350 GeV/c2, this
enhancement would be much smaller. Nevertheless the
possible enhancement from a nonzero Y coupling, and
the possible suppression from XY interference, flags a
dramatic scenario: it is possible to discover an HLL that
is in fact a 0++ resonance, and is produced by exactly
the same pp production processes as a SM Higgs, but for
which the cross section times branching fraction to ZZ is
several times higher or several times lower than Standard
Model expectation.

We evaluate the expected significance with which one
can distinguish between a pointlike and a composite 0+

using the same hypothesis-test approach described ear-
lier for the CP -violating scalar case. The results are
shown in Fig. 45. We observe a non-trivial behavior of
the significance values at and around the critical ξXY . In-
terestingly, the qualitative nature of these cancellations
also changes with mass. For mH = 145 GeV/c2 and
mH = 200 GeV/c2, the composite scalar with ξXY near
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the critical point is 0+-like, relative to nearby values of
ξXY . For mH = 350 GeV/c2, it is very difficult to distin-
guish between the composite and elementary hypotheses,
except if ξXY is close to critical. Near this critical value
the significance is greatly improved, because after the
large cancellations the angular distributions of the pure
0+ and the mixed case no longer resemble each other.
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FIG. 45: Left: Expected significance for excluding values of
ξXY in favour of a pointlike 0+ (ξXY = 0), assumed to be
correct. Right: Expected significance for excluding a pointlike
0+ in favour of a “composite” one (ξXY 6= 0), assumed correct
for the ξXY values on the x-axis, for mH = 145, 200 and 350
GeV/c2 (top, middle and bottom) and NS = 50.

As we discussed for the C- and CP - violating cases,
an additional question is whether one can distinguish a
composite scalar from other mixed scalars. We find that,
compared to the composite case, the two other mixed
cases are nearly identical. The results for the distiction

between the CP -violating and composite cases are shown
in Fig. 46. For large values of ξXY and ξXP , it is possible
to distinguish between the two hypotheses at a large sig-
nificance with a mere NS = 50. For mH = 350 GeV/c2,
the composite scalar is very similar to the pointlike 0+

–and cannot be distinguished from it– except if ξXY is
near its critical point.

Replacing the CP -violating scalar with the C-violating
one yields results nearly identical to the ones in Fig. 46.
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FIG. 46: The median expected significance (colored-labeled
z-“axis”) for excluding values of ξXP (y-axis) in favour of
the composite scalar assuming it to be correct with the ξXY
values of the x-axis, for mH = 145, 200 and 350 GeV/c2 (top,
middle and bottom) and NS = 50.

F. 0+ vs. general J = 1

In Sec. VII B we discussed the prospects for distin-
guishing a 0+ from the two pure JPC spin-one objects,
vector and axial-vector. Here, we address a more general
question: how well can one distinguish between 0+ and
the general family of J = 1 states?
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The most general vertex describing the coupling of a
J = 1 particle a Z pair, see Eq. D can be parametrized,
for non-vanishing X, P and Q, as:

Lρµα ∝ cos ξ (gρµpα1 + gραpµ2 ) + eiδsin ξ ερµα(p1 − p2),
(37)

in terms of two mixing angles ξ and δ.
The mixing between the pure vector and axial cou-

plings is described by ξ, while δ parametrizes the mixing
between the CP - and C-violating parts of the interfer-
ence term in the matrix element squared. In order to
quantify the significance at which one can distinguish be-
tween the 0+ hypothesis and the general J = 1 case, we
consider two different types of tests, which answer two
similar questions.

The first question is assuming a 0+ resonance to be
the correct choice, at what significance can we exclude
values of ξ and δ for a J = 1 hypothesis? To answer, we
perform a series of simple hypothesis tests, for each set
of fixed values ξ and δ, between the two hypotheses: the
test statistic is Λ = log[L(0+)/L(ξ, δ)]. The results, as
a function of ξ for δ = π/2 and mH = 350 GeV/c2, are
shown in Fig. 47. The points ξ = 0 and |ξ| = π/2 cor-
respond to the pure vector and pure axial-vector limits,
respectively, and are consistent with Figs. 22 and 23 on
these pure cases.
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FIG. 47: Expected significance for excluding values of ξ, for
δ = π/2, in the general J = 1 hypothesis [dubbed 1PC(ξδ)]
in favour of the 0+ one, assumed to be correct. Results for
mH = 350 GeV/c2 and NS = 50. The dashed line is the
median significance. The 1 and 2 σ bands correspond to 68%
and 95% median-centered confidence intervals.

The second question is if a J = 1 resonance with given
ξ and δ is the correct choice, at what significance can
we exclude the 0+ case in favour of J = 1? Again, we
have to treat ξ and δ as nuisance parameters, since we

are considering the general J = 1 case. The statistic is

log[maxL(ξ̂, δ̂)/L(0+)]. The results, as functions of ξ for
δ = π/4 and mH = 200 GeV/c2, are given in Fig. 48,
which shows that one can potentially exclude the 0+

hypothesis without knowing the actual values of ξ and
δ. Prospects for measuring these angles are discussed in
Sec. VII G.
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FIG. 48: Expected significance for excluding the 0+ hypoth-
esis in favour of the general J = 1 case [dubbed 1PC(ξδ)],
assumed correct for ξ as in the x-axis and δ = π/4. Results
for mH = 200 GeV/c2 and NS = 50. The dashed line and
bands are as in Fig. 47.

In Fig 49 we show the expected significance for the
distinction between the 0+ and the general J = 1 cases,
as a function of ξ and δ, for mH = 145, 200, and 350
GeV/c2. Notice that the significance levels colour-coded
as a z-“axis” range over a small interval. This means that
the entire J = 1 family is almost “equally dissimilar” to
0+. In general, one’s ability to exclude J = 1 relative
to 0+ is greater than its opposite, due to the required
treatment of ξ and δ as nuisance parameters, although
the differences are relatively small in magnitude and in
ξ- and δ-dependence.

The fact that the significance plane as a function of
ξ and δ is relatively flat means that, with some mH -
dependent amount of observed events, one shall be able
to unambiguously exclude the general J = 1 hypothesis
in favour of the 0+ case (assuming it to be correct) or
vice-versa, regardless of the values of ξ and δ. Using
the pure JPC hypothesis test as a guide, we conclude
that the median expectation for differentiating between
0+ and J = 1 should exceed 5σ with NS ∼ (60, 200, 85)
events for mH = (145, 200, 350) GeV/c2, respectively.

Additionally, based on our results concerning the dis-
tinction between 0− and the two pure J = 1 states, and
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FIG. 49: Left: Median expected significance (coloured z-
“axis”) for excluding values of ξ and δ corresponding to a

J = 1 hypothesis [dubbed 1PC(ξδ)] in favour of 0+, if the
latter is correct. Right: vice-versa, with values of ξ and δ
indicated on the axes. Results for mH = 145, 200 and 350
GeV/c2 (top, middle and bottom), for NS = 50.

the results on the mixed J = 0 hypotheses, we conclude
that it is equally easy, or even easier, to distinguish be-
tween J = 1 and a J = 0 state other than 0+. Hence,
with the numbers of events listed above, it is likely that
one will be able to unambiguously exclude the J = 1 fam-
ily of hypotheses in favour of a general J = 0 hypothesis,
or vice-versa, if the resonance is either one or the other.

G. Parameter estimation in mixed J = 0 and J = 1
cases

Were one to find out from real data and the hypothesis
tests discussed in the previous section that a mixed J = 0
or J = 1 state is the preferred description, the next item
in the context of this analysis would be the measurement
of its mixing parameters (in a larger context one would
include at this stage the measurement of decay branching
ratios).

We have seen in Secs. VII E and VII F that our hy-
pothesis tests can demonstrate –if correct– and with com-
putable significance, that a standard 0+ particle is dis-
favoured relative to a mixed scalar or vector with un-

specified HZZ coupling ratios (or mixing angles). In
these tests, the angles were treated as nuisance param-
eters. Their measurement proceeds along the same line
–the preferred value is simply that which maximizes the
likelihood– but the treatment of confidence intervals need
be different.

More specifically, each mixed hypothesis family is char-
acterized by mixing angles ~ρ. For each “experiment”, N
events are simulated, each one characterized by a vec-

tor ~xe = {~ω, ~Ω,MZ∗}|e. The likelihood for a particular

family of hypotheses is L(~ρ) =
∏N
e=1 Pe(~xe, ~ρ). The mea-

sured values of the mixing angles, ~ρmeas, are chosen to be
those that maximize the likelihood.

To assign confidence intervals to these measurements
we use a fully frequentist approach. An ensemble of
“experiments” is performed with fixed input values ~ρ =
~ρinput. For each experiment, the measured values of ~ρ
are taken from the maximization of the likelihood. This
procedure is repeated for a fine matrix of input values,
covering the allowed parameter space. From the prob-
ability distribution functions P (~ρmeas|~ρinput), estimated
using this ensemble of experiments, the Feldman-Cousins
unified approach [44] is used to choose which elements of
probability are included in confidence intervals.

As an example, consider the CP -violating scalar case,
discussed in Sec. VII E. The confidence intervals for mea-
sured values of ξXP (the mixing parameter that charac-
terizes this hypothesis) are shown in Fig. 50 for different
values of mH . The way to interpret these figures is as
follows: For a particular set of data –one experiment,
which in this case includes NS = 50 observed events–
an input value of ξXP (to be read on the x-axis) results
in a measured value to be read (with its error bands)
on the y axis. The confidence intervals are obtained by
drawing a horizontal line passing through the measured
ξXP . The overlap of this line with the nσ bands dic-
tates which values of “input ξXP ” should be included in
the nσ confidence intervals. For example, for mH = 200
GeV/c2 (middle of Fig. 50) we see that, if ξmeas

XP = 0, the
3σ confidence interval is approximately ξXP ∈ [−1, 1].

The 1σ bands in Fig. 50 are centered on the diagonal
ξmeas
XP = ξinput

XP , implying that there is no significant bias
in the measurement. In addition to this, the 2σ and 3σ
bands also cover most of the diagonal ξmeas

XP = −ξinput
XP .

This confirms our observation from Sec. VII F that our
ability to pin down this parameter comes predominantly
from measuring the relative strengths of the 0+ and 0−

parts of the pdf rather than the nature (T̃ -odd) of its in-
terference term. An increased number of observed events
is needed to fully resolve this sign ambiguity.

In Fig. 50 we see that for mH = 145 GeV/c2 (but not
formH = 200 GeV/c2) the size of the confidence intervals
for ξXP decreases with increasing |ξXP |. This is due to
the effective coupling strengths of the 0+ and 0− parts of
the pdf differing by a factor of ∼ 10 at mH = 145 GeV/c2

but not at the other masses. Hence, at the lowest mass,
only at tan2(ξXP ) ∼ 10 does the pdf exhibit 0+- and
0−-like behaviours of similar magnitude.
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FIG. 50: Confidence intervals for measured values of ξXP for
a CP -violating J = 0 resonance, for mH = 145, 200 and
350 GeV/c2 (top, middle and bottom), all for NS = 50. For
measured values of ξXP on the y-axis, confidence intervals
should be read horizontally, see text.

Confidence intervals for measurements of the parame-
ter ξXQ for a scalar with C-violating HLL couplings are
shown in Fig. 51, very similar to Fig. 50. Both hypothe-
ses involve mixtures of 0+ and 0− couplings, only their
interference is different, and we already learned that its
effects are small. For the C-odd case, the sign ambiguity
of ξmeas

XQ is slightly worse than for the T̃ -odd one, see the

1σ confidence bands appearing on the ξmeas
XQ = −ξinput

XQ

diagonal for mH = 350 GeV/c2. This is also expected,
since the C-odd interference term is proportional to the
relatively small number η ≈ 0.15, see Eq. 24.

One’s ability to distinguish between J = 0 C- and T̃ -
odd admixtures relies on the resolution of the interference
terms. With a factor of 10 more statistics (NS ∼ 500),
one would be able to resolve the sign ambiguity in ξXP
and ξXQ and to distinguish between the two cases.
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FIG. 51: Confidence intervals for measured values of ξXQ for
a C-violating J = 0 resonance for mH = 145, 200 and 350
GeV/c2 (top, middle and bottom), all for NS = 50. For
measured values of ξXP on the y-axis, confidence intervals
should be read horizontally, see text.

The confidence intervals associated with measurements
of ξXY for a composite scalar are shown in Fig. 52. We
observe that, for mH = 145 and 200 GeV/c2, the 1σ

intervals are centered on the diagonal ξmeasXY = ξinputXY .

There are no bands along ξmeasXY = −ξinputXY , since the
interference term is of a different nature than that of the
discrete-symmetry violating cases. The extensions of the
2 and 3σ bands along almost horizontal and vertical lines
around ξXY ∼ 1.3 result from large cancellations in the
pdf, discussed in Sec. VII E.

The figure for mH = 350 GeV/c2 is hard to decipher.
With a magnifier one sees that at the critical value of
ξXY the confidence intervals are tiny. Everywhere else,
the intervals essentially include all possible values except
the critical one. This is tantamount to saying that at this
mass we cannot tell, on the basis of our analysis, a com-
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FIG. 52: Confidence intervals for measured values of ξXY
for a “composite” J = 0 resonance, for mH = 145, 200 and
350 GeV/c2 (top, middle and bottom), all for NS = 50. For
measured values of ξXY on the y-axis, confidence intervals
should be read horizontally.

posite from a pointlike scalar unless is has a particular
value of ξXY , a fact made clearer by Fig. 45.

The other mixed case we study is that of a general
J = 1 resonance, parameterized by angles ξ and δ as
described in Sec. VII F. We saw in Sec. VII D, that most
difficult distinction is the one between the two pure JPC

spin-one resonances, indicating that these two cases are
very similar. This is what we find again when exploring
the potential for measuring ξ and δ.

In Figs. 53 we show as an example the confidence in-
tervals for measurements of ξ and δ at mH = 145 GeV/c2

The ability to resolve the value of the P -mixing angle ξ
is modest. The measurement of the CP -mixing angle δ
is still harder. Specifically, we see a large sign ambiguity
in the measured δ, indicating that, with NS ∼ 50, it is
difficult to resolve the nature of the interference term, as

was the case for J = 0.
Overall, we find that a precise measurement of ξ and δ

for a J = 1 resonance is very difficult. The conclusion of
this section and Sec. VII F is that, if a new J = 1 boson is
found, a modest number of events will suffice to exclude
J = 0, 2 alternatives with high significance. Before many
more events are gathered, and with only the tools we have
studied, it is hard to make precise statements about the
nature of a J = 1 resonance, other than its spin.
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FIG. 53: Confidence intervals for measured values of ξ and δ
for a J = 1 resonance with a mass 145 GeV/c2 and NS = 50
events. The input values, indicated by diamonds, are reported
alongside the figures.

VIII. CONCLUSIONS, CAVEATS, AND
OUTLOOK

It is no surprise that using all of the decay informa-
tion in a data sample provides better discrimination of
the identity of a new heavy resonance than examining a
single angular distribution or asymmetry. Nevertheless,
one might be tempted, given a small data set constituting
an initial discovery, to settle for a stripped-down analy-
sis. Our study quantifies the cost, in units of integrated
LHC luminosity, of pursuing such sub-optimal analysis
strategies, as illustrated in Fig. 54 for the benchmark
mH = 200 GeV/c2.

In this figure we compare the discrimination between
the 0+ and 1− hypotheses for likelihood definitions that
exploit different sets of variables, with the notation that
P (a1, · · · , aN ) denotes N-dimensional pdfs in the cor-
related variables {a1, · · · , aN}. Here

∏
i P (Xi) is con-

structed from one-dimensional pdfs for all variables, ig-

noring (erroneously) their correlations. P (~ω |〈~Ω〉TH) are
pdfs including the variables ~ω and their correlations, but
with the hypothesis 1− represented by a pdf in which the

variables ~Ω = {Φ, cos Θ} have been integrated out.

The likelihood P (~ω |〈~Ω〉TH) performs badly even rel-
ative to P (~ω), which uses fewer angular variables. The
two differ only in that the first construction implicitly as-
sumes a uniform 4π coverage of the observed leptons (an
assumption customary in the literature) as if the muon
pT and η analysis requirements did not depend on the
~Ω angular variables. The differing results arise from the
strong correlation between the variables Φ and φ in the
J = 1 pdfs, which causes phase space acceptance sculpt-
ing of the Φ distribution that, in turn, alters the φ dis-
tribution, as discussed in Sec.IV and VII B.

Additionally we find that treating the correlated angu-
lar variables as uncorrelated, as in the

∏
i P (Xi) example

of Figure 54, not only degrades the discrimination signif-
icance but also produces a real chance of falsely labeling
the quantum numbers of the new resonance.

Overall, we have demonstrated that small signal sam-
ples in the ZZ → 4` or ZZ∗ → 4` decay channels, as
might be available at the moment of discovery, could be
sufficient to characterize a putative Higgs particle. Below
we summarize these results in more detail.

A. Summary of pure case discrimination

Amongst the many comparisons considered in our
analysis, the ones between simple hypotheses are the
most readily summarized. This we do in Tables I,II for
mH = 145 GeV/c2 for all pure-case comparisons between
J = 0, 1 parent particles, and in Tables III,IV (V,VI) for
mH = 200 (350) GeV/c2, for all pure-case comparisons
between J = 0, 1, 2 parent particles.

Overall, the discrimination power of the hypothesis
tests is very impressive. The mH = 200 GeV/c2 bench-
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FIG. 54: Median expected significance for rejecting 1− in
favour of 0+, for different likelihood constructions used in the
likelihood ratio test statistic. H0 is always the considered true
hypothesis.

H0 ⇓ H1 ⇒ 0+ 0− 1− 1+

0+ – 17 12 16

0− 14 – 11 17

1− 11 11 – 35

1+ 17 18 34 –

TABLE I: Minimum number of observed events such that the
median significance for rejecting H0 in favour of the hypoth-
esis H1 (assuming H1 is right) exceed 3σ with mH = 145
GeV/c2

H0 ⇓ H1 ⇒ 0+ 0− 1− 1+

0+ – 52 37 50

0− 44 – 34 54

1− 33 32 – 112

1+ 54 55 109 –

TABLE II: Same as Table I, but requiring that the median
significance exceed 5σ.

mark example is the one requiring the largest statistics
to reach a given discrimination at a given level of confi-
dence. Compared with the mH = 350 GeV/c2 case, this
is because various coefficients of the angular dependences
vanish at the mH = 2MZ threshold. The mH = 145
GeV/c2 example fares better than the 200 GeV/c2 one
for the same reason, amplified by the extra lever-arm
supplied by a non-trivial MZ∗ distribution.

The Tables also show that the discrimination power
between two given hypotheses is approximately symmet-
ric under the interchange of ‘right’ and ‘wrong’. Telling
1+ from 1− is always difficult but not impossible, a fact

H0 ⇓ H1 ⇒ 0+ 0− 1− 1+ 2+

0+ – 24 45 62 86

0− 19 – 19 19 38

1− 40 18 – 90 48

1+ 56 19 85 – 66

2+ 86 45 54 70 –

TABLE III: Minimum number of observed events such that
the median significance for rejecting H0 in favour of the hy-
pothesis H1 (assuming H1 is right) exceed 3σ with mH = 200
GeV/c2

H0 ⇓ H1 ⇒ 0+ 0− 1− 1+ 2+

0+ – 76 146 203 287

0− 59 – 60 61 123

1− 130 57 – 297 156

1+ 182 58 278 – 217

2+ 287 146 178 230 –

TABLE IV: Same as Table III, but requiring that the median
significance exceed 5σ.

H0 ⇓ H1 ⇒ 0+ 0− 1− 1+ 2+

0+ – 8 21 24 11

0− 9 – 22 22 36

1− 24 22 – 81 46

1+ 26 22 80 – 56

2+ 15 39 55 73 –

TABLE V: Minimum number of observed events such that
the median significance for rejecting H0 in favour of the hy-
pothesis H1 (assuming H1 is right) exceed 3σ with mH = 350
GeV/c2

of relevance for a Z ′ look-alike analysis. The level of
significance does not obey a näıve N(σ) ∝ √NS law.
However we find by inspection that an approximation of
the form N(σ) = a + b

√
NS works well, allowing one to

extrapolate to larger numbers of events than presented
here.

Other lessons from the Tables are case-by-case specific,
reflecting the mass-dependent quantum-mechanical en-
tanglement between the decay variables. Some examples
are: distinguishing the ‘natural-parity’ J = 0+ and 1−

H0 ⇓ H1 ⇒ 0+ 0− 1− 1+ 2+

0+ – 25 67 77 35

0− 26 – 68 68 118

1− 76 68 – 268 149

1+ 83 68 263 – 184

2+ 46 127 181 240 –

TABLE VI: Same as Table V, but requiring that the median
significance exceed 5σ.
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hypotheses for mH = 145 GeV/c2 requires only a dozen
signal events for 3σ discrimination. For 200 GeV/c2,
discriminating 0+ from 0− is relatively easy, but distin-
guishing 0+ from 2+ is difficult. For 350 GeV/c2, con-
trariwise, 2+ is relatively easy to disentangle from 0+,
but not from 0−.

B. Summary of mixed cases, CP and
compositeness discrimination

We find that direct sensitivity to CP odd, parity odd
XP interference effects, or to CP odd, parity even XQ
interference effects, will require signal samples about an
order of magnitude larger than considered here. We have
also observed that with much smaller statistics it may be
possible to conclude that a mix of X and P (or X and Q)
couplings is favored over just the pure X (i.e. 0+) or pure
P (i.e. 0−) couplings alone. Such a conclusion would be
tantamount to demonstrating CP violation in the Higgs
sector. However this scenario relies on large CP viola-
tion, and even in this favorable case one cannot tell an X
and P mixture from an X and Q mixture without more
data than what is required to establish discovery.

In the case of a composite Higgs, it may be conceiv-
able that the Higgs is as ‘soft’ as a pion, in the sense of
having an inverse radius and a mass of comparable mag-
nitude. In this scenario we have seen that the angular
distributions associated to the X and Y couplings are
similar after integrating over the decay angles. As a re-
sult there can be strong destructive interference between
these contributions. For our lighter mass benchmarks
we find good discrimination of pure 0+ from the mixed
composites. For the heavier mH = 350 GeV/c2 exam-
ple, discrimination based on decay angles is poor unless
the strong interference effects are present; here we also
observed that substantial enhancement or suppression of
the HLL→ ZZ branching fraction can provide another
important discriminator.

For mixed cases, one could worry that certain combi-
nations of exotic couplings might let an HLL successfully
masquerade as a 0+ Higgs, even when all the pure case
exotics are excluded. For of spin 1 HLLs we have shown
that this does not happen. In fact we find that when we
have an SM Higgs, the entire family of mixed coupling
spin 1 HLLs can be excluded at approximately the same
expected level of significance as for the pure 1− or 1+

cases. An even stronger result is that the general spin
0 hypothesis can be conclusively discriminated from the
general spin 1 hypothesis, at or close to the moment of
discovery.

C. Limitations of our analysis

As mentioned before, our analysis used an approxi-
mate factorization between observables related to Higgs
(or HLL) production and observables related to decay.

We have here focused only on decay information, though
it would be straightforward to include at least rudimen-
tary production information about cross sections and the
relative weighting of different partonic initial states.

A more complicated issue is how to account for higher
order electroweak radiative corrections, which modify the
angular distributions expected for the SM Higgs, as well
as some of the otherwise pure case look-alikes. On a first
pass, ignoring these corrections is not unreasonable for
small signal samples, where the HLL discrimination is
statistics limited. To include these corrections, we imag-
ine three viable strategies:

• Compute the relevant radiative corrections and in-
clude them in the signal pdfs.

• Parametrize the corrections as extra nuisance pa-
rameters in the hypothesis tests, or use the hypoth-
esis testing to extract them from the data.

• Treat the signal radiative corrections as part of
the background, parametrized in the sPlots fits.
This approach is motivated by the observation that
the electroweak corrections to the SM Higgs golden
channel, in addition to being small in magnitude,
also seem to have less angular variation [35].

There are also large QCD radiative corrections which af-
fect both the total cross section and the pT and η distri-
butions of the Higgs. To first approximation the decay
distributions in the Higgs rest frame are unaltered, how-
ever since the lab frame pT and η distributions of the final
state leptons are modified, we expect also corrections to
the phase space acceptance effects on the angular distri-
butions. This uncertainty is side-stepped by taking the
pT and η distributions from data rather than theory.

It would also be useful to include a more comprehensive
treatment of the SM backgrounds to the golden model
channel. Here we only considered the dominant ZZ back-
ground, and only at leading order.

Our treatment of couplings and HLLs was not exhaus-
tive, since we have ignored gauge invariant operators with
dimension > 6, have only examined special cases of spin
2 HLLs, and have not even mentioned the possibility of
HLLs with spins > 2. At some point Occam’s razor ob-
viates the need for such comparisons: “Raffiniert ist der
Herr Gott, aber boshaft ist Er nicht”, to quote a known
author [46].

The likelihood analyses pursued here are very com-
puting intensive, since 5σ discrimination implies simu-
lating enough pseudo-experiments to fill out the what
amounts to the 5σ tails in multidimensional likelihood
distributions, where typically the likelihood distributions
are highly non-Gaussian. The analysis presented here
utilized more than 1014 pseudo-experiments in total.
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D. Outlook

We have seen that by exploiting the full decay infor-
mation in the golden channel we should be able to say
a lot about the identity of a putative Higgs resonance
around the moment of discovery. Our results also show
that asymptotically, utilizing the full physics run of the
LHC, it should be possible to explore very detailed prop-
erties of such a resonance.

It has not escaped our attention that there are many
processes other than the ZZ decays of a heavy resonance
whose characterization may benefit from an analysis of
the kind that we have performed here.

Note added:

While this manuscript was in preparation we received
the preprint [47], reporting on an analysis similar to what
we have presented here. At first look the two studies
appear to be both compatible and complementary.
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Appendix A: SU(2)L ×U(1)Y gauge-invariant
couplings

To write Lagrangians generating the couplings of §III A
and respecting the electroweak gauge symmetry one
must specify the electroweak charges of the Higgs look-
alikes. Consider the example of HLLs that are “neutral”,
i.e. are weak singlets and have zero hypercharge. For
the scalar case, in a conventional notation for isovector
and isoscalar gauge fields, the lowest-dimensionality La-
grangian density is:

L =
1

Λ
H (A1

~Wµα
~Wµα +A2BµαB

µα)

+
1

Λ
H i εµαστ (A3

~Wµα
~Wστ +A4BµαBστ ) , (A1)

with Ai arbitrary constants and Λ a mass parameter.
This object generates, amongst others, the couplings of
Eq. (10). The “true” dimensionality of the operators in

Eq. (10) is that of the ones appearing in Eq. (A1), i.e.
d = 5.

The form of Eq. (A1) results in a coupling
HZµα Z

µα → 2 p1 · p2 gµα − 2 kµkα, establishing a re-
lation between X and Y + i Z in Eq. (10). We do not
impose it, for it is not general even at tree level. Consider,
for instance, a model with a conventionally-charged but
otherwise non-standard HLL, dubbed Φ before the spon-
taneous symmetry breaking. Call Vµν any of the field
tensors in Eq. (A1). The operators in this Lagrangian
could be “descendants” of dimension 6 operators of the
form Φ†ΦV 2, with Φ → H + v, see. e.g. [22]. In such a
case there would be a standard-like gµν coupling plus the
one induced by the higher-dimensional operators.

For the case of a spin-1 “neutral” HLL, Hρ, the
lowest-dimension gauge-invariant Lagrangian generating
the couplings of Eq. (11) is built of operators of dimen-
sion 6:

Λ2L = (∂µHα + ∂αHµ) (A1
~Wλ
µ
~Wαλ +A2B

λ
µBαλ)

+εµναρ[A3( ~Wλ
µDα

~Wνλ)Hρ +A4(Bλµ∂αBνλ)Hρ], (A2)

where Dα is the covariant derivative and (MDαN) ≡
MDαN − (DαM)N .

For a canonical-dimension spin-2 “neutral” HLL, Hµν ,
the lowest-dimension gauge-invariant Lagrangian has
couplings of dimension 5:

L =
1

Λ
Hµν (A1

~Wµ
α
~W να +A2B

µ
αB

να)

+
1

Λ
Hνρ i εµναβ(A3

~Wµα ~W ρβ +A4B
µαBρβ) . (A3)

The consideration of gauge-invariant constructions for
HLLs with non-trivial electroweak charges would take us
well beyond the scope of this paper.

Appendix B: Phase space for ZZ∗

In the case in which one of the two Z bosons is off-shell,
the dependence on its mass (MZ∗ , either m1 or m2) is
an extra handle in determining the shapes of signal and
backgrounds. Let pcms ≡ |~p [Z]| = m1 γ1 β1 = m2 γ2 β2

be the momentum of one or the other Z in the H center-
of-mass system:

pcms =
1

2mH
Θ[mH − (MZ +MZ∗)]×√

m2
H − (MZ −MZ∗)2

√
m2
H − (MZ +MZ∗)2 (B1)

LetM be the matrix element for the process. The ex-
pectation for the rate of events, including the dependence
on MZ∗ , is:

dN

dcos θ1 dcos θ2 dφ dcos Θ dΦ dMZ∗

∝ |M|2 MZ∗ pcms

(M2
Z∗ −M2

Z)
2

+M2
Z∗ Γ2

Z

, (B2)
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with |M|2 an explicit function of c1, c2, φ, Θ, Φ and MZ∗

for each specific case to be discussed.

Appendix C: General results for spin 0 coupled to
ZZ∗

In Section III we have already written the angular dis-
tributions dΓ[0+] and dΓ[0−] for the pure scalar and pseu-
doscalar cases, see Eqs. 15, 16. We also discussed the T -
odd and C-odd interferences between the standard cou-
pling –proportional to X in Eq. (10)– and the P and Q
terms of the same equation. Thus we defined dΓ[0,Todd]
and dΓ[0,Codd] in Eqs. 23, 24. Similarly we discussed
the complete result for the ‘composite’ case with X 6= 0
and Y 6= 0, defining dΓXY and dΓY Y in Eqs. 26, 27. This
allows us to gather the results corresponding to the most
general deviations from the SM HIggs couplings:

dΓ[0] = X2 dΓ[0+] + (P 2 +Q2) dΓ[0−]

+X P dΓ[0, Todd] +X QdΓ[0, Codd]

+X Y dΓXY + (Y 2 + Z2) dΓY Y . (C1)

To obtain the complete spin 0 result one must add
to Eq. (C1) the interferences between the non-standard
terms themselves:

∆dΓ[0] = XZ dΓXZ + Y P dΓY P

+ Y QdΓY Q + ZP dΓZP + ZQdΓZQ ,(C2)

where

dΓXZ = 2 ηm3
1m

3
2m

2
H γ

2
b (c1 + c2) s s1 s2 , (C3)

dΓY P = dΓZQ = −2m4
1m

4
2γ

3
b s s1s2(c1c2 + η2) , (C4)

dΓY Q = −dΓZP = 2 ηm4
1m

4
2 γ

3
b c (c1 + c2)s1s2 . (C5)

Appendix D: General results for spin 1 coupled to
ZZ∗

We produce a spin 1 HLL from annihilation of qq̄ with
quark helicity τ/2, τ = ±1. To an excellent approxima-
tion the coupling of the HLL to light quarks must con-
serve helicity, so the antiquark has helicity −τ/2. Then
the HLL decays to ZZ (or ZZ∗), with Z2 → µ−µ+ with
muon helicity σ2/2 and Z1 → e−e+ with electron helicity
σ1/2.

The fully differential cross section is a sum over τ , σ1,
σ2 of the squared absolute values of the helicity ampli-
tudes. In addition the (unmeasured) helicities λ1, λ2 of
Z1, Z2 are summed over 0, ±1, before squaring.

We use the following notation to denote the helicity
conserving coupling of a Z boson to a massless fermion
of helicity σ/2, σ = ±1:

gσ =
1

2
(cv − σca) . (D1)

Similarly, we denote the helicity conserving coupling of a
vector boson HLL to a massless fermion of helicity τ/2,
τ = ±1:

gτ =
1

2
(gv − τga) . (D2)

In the full matrix element squared, the dependence on
these vector-fermion-fermion couplings is

1
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[(
c2v + c2a

)2 (
g2
v + g2

a

)
−2cvca

(
c2v + c2a

) (
g2
v + g2

a

)
(σ1 + σ2)

−2
(
c2v + c2a

)2
gvga τ + 4c2vc

2
a

(
g2
v + g2

a

)
σ1σ2

+4cvca
(
c2v + c2a

)
gvga (σ1τ + σ2τ)

−8c2vc
2
agvga σ1σ2τ

]
, (D3)

from which we derive the shorthand notation

g1 ≡
(
c2v + c2a

)2 (
g2
v + g2

a

)
gσ ≡ −4cvca

(
c2v + c2a

) (
g2
v + g2

a

)
gτ ≡ −2

(
c2v + c2a

)2
gvga

gσσ ≡ 4c2vc
2
a

(
g2
v + g2

a

)
gστ ≡ 8cvca

(
c2v + c2a

)
gvga

gσστ ≡ −8c2vc
2
agvga . (D4)

We allow both Z bosons to be off-shell, with invariant
masses m1 and m2. Some useful mass combinations are

m2
d ≡ m2

1 −m2
2 , (D5)

M2
1 ≡ m2

H − 3m2
1 −m2

2 , M2
2 ≡ m2

H −m2
1 − 3m2

2 ,

M2
3 ≡ m2

H − 2(m2
1 +m2

2) , M2
4 ≡ m2

H − (m2
1 +m2

2) .

One of the advantages of using helicity amplitudes is
that we can keep track of which contributions come from
the longitudinal polarization of the HLL rather than
the transverse polarizations. We use the notation `2,
`20 to flag the parts of the squared matrix element that
come from the transverse, longitudinal polarizations of
the HLL, and ``0 to flag contributions from the interfer-
ence.

We define Θ to be the polar angle of the incoming
quark with respect to the z-axis defined by Z2 in the
HLL rest frame. This raises a problem since at a pp col-
lider we cannot distinguish the quark direction from the
anitquark direction in a qq̄-initiated process. A solution
is to symmetrize the cross section between the case where
Θ is the polar angle of the quark direction and the case
where Θ is the polar angle of the antiquark. In the cou-
pling notation defined in (D4), this symmetrization has
the the same effect as setting gτ , gστ , and gσστ to zero.

The standard convention in the literature has the co-
ordinate axes chosen such that the outgoing muon moves
along the y-axis in the rest frame of the HLL (or equiv-
alently of Z2). Thus the azimuthal angle of the muon is
π/2, while the azimuthal angle of the outgoing electron
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is denoted φ−π/2. We denote the azimuthal angle of the
incoming quark by Φ. This choice of conventions leads
to rather awkward expressions for the angular distribu-
tions. A better choice is to align the axes such that the
quark azimuthal angle Φ = 0. The remaining azimuthal
dependence is then denoted by ϕ1 and ϕ2, such that the
substitutions ϕ1 → Φ + φ, ϕ2 → Φ regain the previous

convention. We will employ this improved notation in
this appendix, which makes the formulae more symmet-
rical.

After the quark-antiquark symmetrization described
above, the XX and PP parts of the full matrix element
squared is given by:

4m2
1m

2
2X

2γ2
b

[
g1S

2s2
1s

2
2

(
2`20m

4
d − `2m2

H

[
m2

1 cos(2ϕ1) +m2
2 cos(2ϕ2)

])
(D6)

+g1`
2m2

H(1 + C2)
[
2m2

2s
2
1 + 2m2

1s
2
2 − (m2

1 +m2
2)s2

1s
2
2

]
+ 4``0g1mHm

2
d C S

[
m1c1s1s

2
2 sinϕ1 −m2c2s2s

2
1 sinϕ2

]
−2`2m2

Hm1m2s1s2

(
(1 + C2)(g1c1c2 − gσσ) cos(ϕ1 − ϕ2) + S2(g1c1c2 + gσσ) cos(ϕ1 + ϕ2)

)]
,

P 2
[
`2g1m

2
HS

2s2
1s

2
2

[
M4

2m
2
1 cos(2ϕ1) +M4

1m
2
2 cos(2ϕ2)

]
(D7)

+8`20m
2
1m

2
2m

4
dS

2
[
g1 (c21 + c22 + s2

1s
2
2 sin(ϕ1 − ϕ2)2) + 2gσσc1c2

]
+(1 + C2)`2g1m

2
H

[
2M4

1m
2
2s

2
1 + 2M4

2m
2
1s

2
2 − (M4

2m
2
1 +M4

1m
2
2)s2

1s
2
2

]
−8``0mHm

2
dm1m2C S

[
M2

2m1s2

(
g1c2s

2
1 sinϕ1 cos(ϕ1 − ϕ2) + c1(g1c1c2 + gσσ) sinϕ2

)
−M2

1m2s1

(
g1c1s

2
2 sinϕ2 cos(ϕ1 − ϕ2) + c2(g1c1c2 + gσσ) sinϕ1

)]
+2`2m2

HM
2
1M

2
2m1m2s1s2

[
(1 + C2)(g1c1c2 − gσσ) cos(ϕ1 − ϕ2)− S2(g1c1c2 + gσσ) cos(ϕ1 + ϕ2)

]]
.

The XP interference part is given by

4m1m2XP γb

[
`2g1m

2
HS

2s2
1s

2
2(M2

1m
2
2 sin(2ϕ2)−M2

2m
2
1 sin(2ϕ1)) (D8)

+2``0g1mHm
2
dC S

[
m2s

2
1c2s2(2m2

1 sinϕ1 sin(ϕ1 − ϕ2)−M2
1 cosϕ2)

−m1s
2
2c1s1(2m2

2 sinϕ2 sin(ϕ1 − ϕ2) +M2
2 cosϕ1)

]
−2m1m2s1s2

[
(1 + C2)`2m2

HM
2
3 (g1c1c2 − gσσ) sin(ϕ1 − ϕ2)

+m2
ds

2(g1c1c2 + gσσ)(`2m2
H sin(ϕ1 + ϕ2) + 2`20m

2
d sin(ϕ1 − ϕ2))

]
−4``0mHm1m2m

2
d C S

[
m2s1 (g1c1 + gσσc2) cosϕ1 +m1s2 (g1c2 + gσσc1) cosϕ2

]]
.

The XQ interference part is given by

4m1m2XQγb

[
``0gσmHm

2
dC S

(
m2s

2
1s2 (2m2

1 cos(ϕ1 − ϕ2) sinϕ1 −M2
1 sinϕ2) (D9)

−m1s
2
2s1 (2m2

2 cos(ϕ1 − ϕ2) sinϕ2 −M2
2 sinϕ1)

)
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+`2gσm
2
H(1 + c2)(M2

1m
2
2s

2
1c2 +M2

2m
2
1s

2
2c1) +m1m2s1s2

[
(1 + C2)`2gσm

2
Hm

2
d(c1 − c2) cos(ϕ1 − ϕ2)

−gσs2(c1 + c2)(`2m2
HM

2
3 cos(ϕ1 + ϕ2) + 2`20m

4
d cos(ϕ1 − ϕ2))

]
+2``0gσmHm

2
dm1m2C S

(
1 + c1c2)(m2s1 sinϕ1 −m1s2 sinϕ2

)]
.

Without the quark-antiquark symmetrization, one adds:

8mHm
2
1m

2
2X

2γ2
b gστ

[
`2mHC (m2

2c2s
2
1 −m2

1c1s
2
2 −m1m2(c1 − c2)s1s2 cos(ϕ1 − ϕ2)) (D10)

−``0m2
dS (m2s

2
1s2 sinϕ2 +m1s

2
2s1 sinϕ1)

]
+2mHP

2gστ

[
`2mHC

(
M4

1m
2
2c2s

2
1 −M4

2m
2
1c1s

2
2 +M2

1M
2
2m1m2(c1 − c2)s1s2 cos(ϕ1 − ϕ2)

)
+2``0m1m2m

2
dS ((1 + c1c2)(M2

1m2s1 sinϕ1 +M2
2m1s2 sinϕ2)

− cos(ϕ1 − ϕ2)(M2
2m1s

2
1s2 sinϕ1 +M2

1m2s
2
2s1 sinϕ2))

]
−4mHm1m2XP γbgστ

[
2`2mHM

2
3m1m2C (c1 − c2)s1s2 sin(ϕ1 − ϕ2)

+``0m
2
dS
[
m2s

2
1s2(M2

4 cosϕ2 − 2m2
1 sinϕ1 sin(ϕ1 − ϕ2))−m1s

2
2s1(M2

4 cosϕ1 + 2m2
2 sinϕ2 sin(ϕ1 − ϕ2)

]
+2m1m2(1 + c1c2)(m2s1 cosϕ1 −m1s2 cosϕ2))

]
4mHm1m2XQγb

[
2`2gτmHC (2M2

1m
2
2s

2
1 − 2M2

2m
2
1s

2
2 +M2

4m
2
ds

2
1s

2
2)

−4`2mHm
2
dm1m2c(gσστ − gτ c1c2)s1s2 cos(ϕ1 − ϕ2)

+2``0gτm
2
dS
[
m2c2s

2
1s2(2m2

1 cos(ϕ1 − ϕ2) sinϕ1 −M2
4 sinϕ2) +m1c1s

2
2s1(2m2

2 cos(ϕ1 − ϕ2) sin(ϕ2)−M2
4 sinϕ1)

]
+4``0m1m2m

2
dS (m2s1(gσστ c2 + gτ c1) sinϕ1 +m1s2(gσστ c1 + gτ c2) sinϕ2)

]
.

In the limit that both Z’s are on-shell, m1=m2=MZ ,
we introduce the notation of Buszello et al: x = mH/MZ ,
y2 = (x2 − 4)/4. Then we can simplify using md →

0, M1=M2=M3 → 4m2
Hy

2/x2, M4 → m2
H(x2 − 2)/x2,

and γb → xy. For the full symmetrized matrix element
squared the result is:

4

x6
`2m8

Hy
2
[
2(x2X2 + (x2 − 4)P 2)

[
g1(1 + C2)(1− c21c22)− S2(gσσ + g1c1c2)s1s2 cos(ϕ1 + ϕ2)

]
−(x2X2 − (x2 − 4)P 2)

[
g1S

2s2
1s

2
2( cos(2ϕ1) + cos(2ϕ2))− 2(1 + C2)(gσσ − g1c1c2)s1s2 cos(ϕ1 − ϕ2)

]
−4XP xy s1s2

[
g1S

2s1s2( sin(2ϕ1)− sin(2ϕ2))− 2(1 + C2)(gσσ − g1c1c2) sin(ϕ1 − ϕ2)
]

+4XP xy gσ
[
(1 + C2)(c2s

2
1 + c1s

2
2)− S2(c1 + c2)s1s2 cos(ϕ1 + ϕ2)

]]
. (D11)

If we simply ignore the polar angle Θ, i.e. set Θ = 0, the above simplifies to:

16

x6
`2m8

Hy
2
[
g1(x2X2 + (x2 − 4)P 2)(1− c21c22) + (x2X2 − (x2 − 4)P 2)(gσσ − g1c1c2)s1s2 cos(ϕ1 − ϕ2)

+4XP xy s1s2(gσσ − g1c1c2) sin(ϕ1 − ϕ2) + 2XP xy gσ(c2s
2
1 + c1s

2
2)
]
. (D12)
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This agrees with the result of Buszello et al [29].
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