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The GammeV experiment has constrained the couplings of chameleon scalar fields to matter and
photons. Here we present a detailed calculation of the chameleon afterglow rate underlying these
constraints. The dependence of GammeV constraints on various assumptions in the calculation
is studied. We discuss GammeV–CHASE, a second-generation GammeV experiment, which will
improve upon GammeV in several major ways. Using our calculation of the chameleon afterglow
rate, we forecast model-independent constraints achievable by GammeV–CHASE. We then apply
these constraints to a variety of chameleon models, including quartic chameleons and chameleon
dark energy models. The new experiment will be able to probe a large region of parameter space
that is beyond the reach of current tests, such as fifth force searches, constraints on the dimming of
distant astrophysical objects, and bounds on the variation of the fine structure constant.

I. INTRODUCTION

Increasingly strong evidence has emerged over the past
decade that the expansion of the universe is accelerating,
a phenomenon which can be explained by a scalar field
“dark energy” with negative pressure [1, 2, 3, 4, 5, 6, 7].
Couplings between such a scalar and Standard Model
particles could lead to fifth forces observable at labo-
ratory or solar system scales, that must be hidden in
order for the dark energy to satisfy constraints on the
non-observation of such forces. There are three known
ways to hide dark energy-mediated fifth forces: weak cou-
plings between dark energy and matter [8, 9, 10]; effec-
tively weak couplings locally, as in the Dvali-Gabadadze-
Porrati (DGP) brane world model and its generaliza-
tions [11, 12, 13]; and an effectively large mass locally, as
in chameleon theories [14, 15, 16].

The chameleon mechanism makes the effective mass
of a scalar field grow substantially as the density of
the surrounding matter is increased. Chameleon theo-
ries are a particularly well-studied class of dark energy
models [17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. Since
fifth forces at least as strong as gravity are already ruled
out from solar system scales to submillimeter scales, the
chameleon mechanism must raise the effective field mass
above about (0.1 mm)−1 ∼ 10−3 eV locally. In addi-
tion to chameleon dark energies, the “scalaron” field,
resulting from the transformation to Einstein frame of
an f(R) gravity theory, is able to satisfy local and stel-
lar tests of gravity only through the chameleon mecha-
nism [27, 28, 29, 30].

It was shown in [31, 32] that chameleons which couple
strongly to matter have correspondingly large chameleon
effects, allowing them to evade laboratory fifth force con-
straints such as [33] on matter couplings βm ∼ 1. If these
chameleons also couple strongly to photons, then they
are ideally suited to probes of the afterglow phenomenon,
the first of which was the GammeV experiment at Fermi-
lab [17]. Consider a closed, evacuated cylindrical cham-

ber, with glass windows at the ends and a magnetic field
in the interior. Photons streamed through the windows
will occasionally oscillate into chameleon particles in the
background magnetic field. If the mass of one of these
chameleons in the walls of the chamber is greater than its
total energy inside the chamber, then it will reflect from
the wall; such a chameleon will be trapped in the cham-
ber. After the photon source has been turned off, any
remaining chameleons will oscillate back into photons in
the magnetic field, producing an observable “afterglow”
of photons.

Here, we study the oscillation between photons and
chameleon particles in the cylindrical vacuum chambers
used in afterglow experiments such as GammeV. We com-
pute the afterglow and decay rates per chameleon particle
as a function of the dimensionless chameleon-photon cou-
pling constant βγ . Our calculation allows for absorptivity
in the chamber walls, chameleon-photon phase shifts due
to a nonzero chameleon mass meff(chamber), and addi-
tional phase shifts ξref due to reflections from chamber
walls, as found in [18]. For a particle in a superposition
of chameleon and photon states, the glass windows at
the ends of the chamber act as quantum measurement
devices; photons are transmitted, while chameleons are
reflected. The chameleon decay and afterglow rates can
be computed by keeping track of the decline in chameleon
amplitude between successive quantum measurements by
the windows.

Armed with these rates, we proceed to compute the ex-
pected afterglow flux as a function of time in GammeV,
as well as the resulting constraints on the chameleon-
photon coupling as a function of the chameleon mass, a
result that was discussed in ref. [17]. We then forecast
the constraints that will be attained by an upcoming
experiment, GammeV–CHASE, expected to take data
in the winter of 2009-2010. GammeV–CHASE was de-
signed to improve in several ways upon the first GammeV
chameleon experiment, hereafter referred to as GammeV.
We show that GammeV–CHASE will improve constraints
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on large photon couplings βγ by several orders of mag-
nitude, bridging the gap between GammeV constraints
and the collider constraints of ref. [19]. Furthermore, it
will reach chameleon masses several times greater than
those excluded by GammeV, allowing us to probe masses

at the dark energy scale ρ1/4
de = 2.4 × 10−3 eV.

Finally, we use our afterglow computation to fore-
cast GammeV–CHASE constraints on specific chameleon
models. We begin with power law potentials, de-
voting most of our attention to φ4 potentials, which
are well-understood and ubiquitous in particle physics.
GammeV–CHASE constraints on φ4 chameleons will
complement the fifth force experiments of Eöt-Wash [33]
by probing strong matter couplings. Next, we study
two different models of chameleon dark energy, with in-
verse power law potentials and exponential potentials.
GammeV–CHASE will probe large areas of the βm, βγ

parameter space of each of these dark energy models.
These parameter regions are largely unexplored by the
current data, including constraints on the dark energy
equation of state, variations in the electromagnetic fine
structure constant, and the dimming of distant objects
through photon-scalar oscillation in the Galactic mag-
netic field. Thus, the GammeV–CHASE laboratory
search for afterglow will complement current cosmolog-
ical probes of dark energy, vastly extending our con-
straints on dark energy couplings to matter and photons.

The paper is organized as follows. After a brief
discussion of chameleon physics in Sec. II, we study
chameleon-photon conversion in afterglow experiments
in Sec. III, and compute the decay and afterglow rates
for GammeV and GammeV–CHASE in Sec. IV. We
constrain chameleons using GammeV and forecast con-
straints for GammeV–CHASE in Sec. V, before conclud-
ing in Sec. VI.

II. CHAMELEON FIELD THEORIES

A. Equations of motion

We consider chameleons with action

S =

∫

d4x
√
−g

(1

2
M2

PlR − 1

2
∂µφ∂

µφ− V (φ)

−1

4
eβγφ/MPlFµνFµν + Lm(e2βmφ/MPlgµν , ψi

m)
)

(1)

where βγ and βm are, respectively, the dimensionless
chameleon couplings to photons and matter. We note
that elsewhere in the literature, these couplings are ex-
pessed in dimensional form as gγ ≡ βγ/MPl and gm ≡
βm/MPl; for a typical value βγ = 1012 probed by Gam-
meV [17], we have gγ = 4.1 × 10−7 GeV−1. Lm is the
matter Lagrangian; the matter coupling βm is assumed
to be universal to all species of matter. Varying with
respect to φ and the electromagnetic field, we find the
equations of motion in the presence of a constant matter

density ρm,

!φ = −∂Veff

∂φ
(2)

Veff('x, φ) = V (φ) + e
βmφ
MPl ρm +

1

4
e

βγφ

MPl FµνFµν (3)

∂µ(e
βγφ

MPl Fµν) = 0 (4)

with the other two of Maxwell’s equations unchanged.
That is, the field couples to the matter density ρm
and the electromagnetic field Lagrangian density ργ =

(FµνFµν)/4 = (| 'B|2 − | 'E|2)/2. Perturbing about a con-

stant background scalar φ and magnetic field 'B, we see
that oscillations from chameleon to photon are described
by

! 'δB +
βγ

MPl

'∇× ( 'B × '∇)δφ = 0 (5)

to first order in the perturbations [34].

B. Chameleon effects

The field value φmin at the minimum of the effec-
tive potential, and, hence, the effective mass m2

eff =
Veff,φφ(φmin), can vary with the background matter den-
sity and electromagnetic fields. If meff increases signifi-
cantly with ρm or ργ , then the field is called a chameleon
field. By acquiring a large mass at laboratory and so-
lar system densities, the chameleon can “hide” from
fifth force constraints on ordinary matter-coupled scalars.
As a simple example, consider a power law chameleon,
V (φ) = gφN , in a background with negligible 'E and 'B.
Assuming that βmφmin/MPl ' 1, which is required by
current constraints, the mass scales as meff ∝ ρη

m with
η = (N − 2)/(2N − 2). If N = 2, that is, the potential
is just a mass term, then η = 0; meff does not scale with
density, and the field is not a chameleon. For N = 4,
on the other hand, η = 1/3, and references [31, 32] show
that, for sufficiently large βm, chameleon effects allow this
theory to evade fifth force constraints from torsion pen-
dulum experiments such as Eöt-Wash [33]. Chameleon
fields strongly coupled to matter acquire large masses
inside the layer of foil used to keep the source and test
masses electrostatically isolated. If the chameleon Comp-
ton wavelength m−1

eff is much less than the thickness of
the foil, then chameleon effects in the foil will screen the
fifth force of the source mass on the test mass, rendering
the chameleon field undetectable.

III. CHAMELEON-PHOTON CONVERSION IN
AFTERGLOW EXPERIMENTS

A. Photon production

Let the chameleon and photon amplitudes be Ψφ = δφ

and 'Ψγ = 'δB/k, respectively. We consider the oscillation
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into photons of chameleons that are already trapped in-
side the GammeV chamber for the case of a small mixing
angle. Thus we assume that |'Ψγ | = 0 initially, and that

|'Ψγ | ' |Ψφ| ≈ 1 throughout the calculation. In the
presence of a constant magnetic field in the x̂ direction,
'B = Bx̂, (5) becomes

(

− ∂
2

∂t2
− 'k2

)

'Ψγ =
kβγB

MPl
k̂ × (x̂ × k̂)Ψφ. (6)

In the relativistic limit, (−∂2/∂t2 − |'k|2) = (i∂/∂t −
k)(i∂/∂t + k) ≈ 2k(i∂/∂t− k), this has the solution

'Ψγ(t) = −ie−ikt βγB

2MPl

∫ t

0
'a(k̂) exp

(

− im2
efft′

2k

)

dt′ (7)

= −ie−ikt−
im2

eff t

4k
2kβγB

m2
effMPl

sin

(

m2
efft

4k

)

'a(k̂), (8)

where meff is the effective mass of the chameleon,
'k = kk̂ = k(sin(θ) cos(ϕ)x̂ + sin(θ) sin(ϕ)ŷ + cos(θ)ẑ)
is the particle momentum, and 'a(k̂) ≡ k̂ × (x̂ ×
k̂) = (1 − sin2(θ) cos2(ϕ))x̂ − sin2(θ) sin(ϕ) cos(ϕ)ŷ −
sin(θ) cos(θ) cos(ϕ)ẑ. Using |'a|2 = sin2(ϕ) +
cos2(θ) cos2(ϕ), and setting θ = 0, we recover the fa-
miliar formula for the oscillation probability for a path
perpendicular to 'B,

Pφ↔γ = |'Ψγ |2 = C2 sin2

(

m2
efft

4k

)

, (9)

where we have defined C = 2kβγB/(MPlm2
eff).

Next, assume that the chameleon particle is inci-
dent upon a wall, with normal vector n̂. We consider
chameleon models for which the effective mass inside
the wall is much greater than the chameleon energy
ω =

√

k2 + m2
eff inside the chamber. Thus the chameleon

cannot penetrate the wall, and tunneling is negligible; the
particle must bounce. The bounce has three effects:

1. the direction changes, k̂ → k̂ − 2(k̂ · n̂)n̂, with a
corresponding change in 'a;

2. the photon component has a probability fabs = 1−
fref of being absorbed in the walls;

3. the photon is phase shifted by an angle ξref relative
to the chameleon [18].

These last two imply that 'Ψγ → Aref
'Ψγ due to a bounce,

where Aref ≡ f1/2
ref eiξref .

B. Afterglow experiments

A simple afterglow experiment will trap chameleon
particles in a cylindrical chamber, of radius R, with glass
windows at the entrance and exit. A magnetic field re-
gion of length L inside the cylinder will be offset from the
entrance by a length -1, and from the exit by a length -2,

M
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FIG. 1: Particle in an afterglow experiment. The magnetic
field region is shaded. Inside this region, where chameleon-
photon oscillation takes place, the particle trajectory is drawn
as a dashed path. Next to each dashed segment is shown the
contribution of that segment to the total photon amplitude
for the case where fref = 1, ξref = 0, and meff ! 4πk/L.

for a total chamber length of -tot = -1 + -2 + L. Photons
stream into the chamber through the entrance window,
and out through the exit, oscillating into chameleon par-
ticles with a probability given by (9). For a particle in
a superposition of chameleon and photon states, a glass
window serves as a quantum measurement device; a pho-
ton will pass through, while a chameleon will bounce.
Thus we can assume that any particle bouncing from ei-
ther window is in a pure chameleon state. After the pho-
ton source is turned off, a photomultiplier tube (PMT)
in a dark box outside the exit window will begin to look
for afterglow photons produced by chameleons trapped
in the chamber.

Let the origin of the coordinate system be at the center
of the entrance window, with the cylinder extending in
the positive z direction, and the magnetic field in the x
direction. Assume that the particle begins at the origin;
we will test the effects of this assumption later. Let θ
and ϕ be defined in the usual way; θ is the angle between
k̂ and the z axis, and ϕ is the angle between k̂ − (k̂ ·
ẑ)ẑ and the x axis, where k̂ is the initial direction of
the particle. For small θ, the particle will not bounce
inside the field region, and (9) suffices to compute the
probability of photon production.

At larger θ, the particle will bounce inside the magnetic
field region. This case is sufficiently complicated that we
begin with a simple example in which the chamber walls
are perfectly reflective, the phase shift associated with
wall reflection is zero, and the chameleon mass is small
enough that phase differences between the chameleon and
photon as they propagate through the chamber may be
neglected. Figure 1 shows a sample particle trajectory.
The particle begins in a pure chameleon state at the en-
trance window, shown at the left end of the chamber,
and heads to the right, towards the magnetic field. Let
z1, z2, . . . , zN be the sequence of z values at which the
particle bounces from a wall. For a particle beginning
at the origin, zn = (n − 1/2)∆z, with ∆z = 2R cot(θ).
Let the leftmost and rightmost bounces inside the mag-
netic field be nL and nR, respectively; the total number
of bounces in the B field region is then nB = nR−nL +1.

The sample trajectory shown in Fig. 1 has six bounces,
four of which are in the B field region, and is made up of
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seven segments, five of which have some overlap with the
B field region. In the figure, a dashed line denotes that
portion of a trajectory which is in the B field region, and,
hence, contributes to the photon amplitude. The contri-
bution of each segment is given by (8). In our approxi-
mation that meff is small, the chameleon and photon are
in phase; Ψφ, 'Ψγ ∝ exp(−ikt). Thus we can neglect the

phase factor in front of 'Ψγ , and write the contribution
of the nth segment as C sin(m2

efft/(4k))'an, where t is the

time spent inside the B field region, 'an ≡ 'a(k̂n), and k̂n

is the direction of the particle before the bounce at zn.
Furthermore, C sin(m2

efft/(4k)) ≈ βγBt/(2MPl) at low
meff , so the contribution of each segment is proportional
to its length inside the magnetic field region.

The leftmost segment in the B field region, the seg-
ment between bounces nL − 1 and nL (in Fig. 1, bounces
1 and 2) is only partially inside the magnetic field, so tL =
(znL − -1) sec(θ) for that segment. Similarly, the right-
most segment in the magnetic field, between bounces nR

and nR+1 (here, 5 and 6), has tR = (-1+L−znR) sec(θ).
Meanwhile, all of the segments in the middle, nL < n ≤
nR, spend an equal amount of time in the magnetic field,
tM = ∆z sec(θ). Defining

sL = sin

(

m2
eff(znL − -1)
4k cos(θ)

)

(10)

sM = sin

(

m2
eff∆z

4k cos(θ)

)

= sin

(

m2
effR

2k sin(θ)

)

(11)

sR = sin

(

m2
eff(-1 + L − znR)

4k cos(θ)

)

(12)

we see that each of the the leftmost, middle, and
rightmost segments contributes CsL'anL , CsM'an, and
CsR'anR+1, respectively, where nL < n ≤ nR. The
photon amplitude at the exit z = -B = -1 + L of the
B field region is simply the sum of these contributions,
'Ψγ(-B) = CsL'anL+

∑

n CsM'an+CsR'anR+1, up to a com-

plex phase factor which disappears when 'Ψγ is squared.
At this point, our choice of initial conditions simpli-

fies the problem. Recall that we have assumed the initial
particle position to be the center of the entrance win-
dow. The trajectory of such a particle will remain in
the plane spanned by the z axis and the initial direc-
tion k̂, even after the particle bounces from the chamber
walls. This is because the particle momentum has only
a radial component ∝ xx̂ + yŷ and a component propor-
tional to ẑ. Each bounce reverses the sign of the radial
component while leaving the ẑ component unchanged.
Furthermore, each bounce reverses the sign of the ẑ com-
ponent of 'a while leaving the x̂ and ŷ components un-
changed; for all odd n, 'an = 'a1, and for all even n,
'an = 'a2, with 'a2 = 'a1 − 2('a1 · ẑ)ẑ. The summation
over segments inside the B field is considerably simpli-
fied,

∑

n CsM'an = CsM
∑

n(a1,xx̂ + a1,yŷ + (−1)na1,z ẑ).
Next, we consider two complications to the problem:

the possibility of photon absorption in the chamber walls,
and the phase shift between chameleons and photons due

to a bounce from the walls. Even a polished metal sur-
face will not be perfectly reflective; the fraction of in-
cident photons reflected back into the chamber will be
around fref ∼ 0.9. Furthermore, since chameleons and
photons bounce at slightly different distances from the
wall, the bounce can introduce a nonzero phase shift
ξref [18]. We model absorption in the walls by mul-

tiplying the photon amplitude by Aref = f1/2
ref eiξref at

each bounce. Thus the photon amplitude just before the
nLth bounce is 'Ψγ(z−nL

) = CsL'anL , and the amplitude

just after that bounce is 'Ψγ(z+
nL

) = ArefCsL'anL . Be-

fore and after the next bounce, we have 'Ψγ(z−nL+1) =

ArefCsL'anL +CsM'anL+1 and 'Ψγ(z+
nL+1) = A2

refCsL'anL +
ArefCsM'anL+1, respectively, where we have assumed that
nL + 1 ≤ nR. Summing over all of the bounces, we find
the photon amplitude at the exit of the B region,

'Ψ(low mass)
γ (-B) = AnB

ref CsL'anL + CsM

∑

n

AnR+1−n
ref 'an

+CsRanR+1, (13)

where nB = nR − nL + 1 is the total number of bounces
in the B region.

The final effect which we have neglected thus far is the
phase shift associated with the chameleon-photon mass
difference. Eq. (8) implies that contributions to 'Ψγ from
different segments of the path, which occur at different
times, will have relative phases. As before, the leftmost
and rightmost segments in the B region contribute dif-
ferent amounts to the phase shift, since they are only
partially inside the B region, while the middle segments
all contribute the same phase shift. Defining

ξM =
m2

eff∆z

2k cos(θ)
=

m2
effR

k sin(θ)
(14)

A = Arefe
iξM (15)

ξL =
m2

eff

4k cos(θ)

((

nL − 3

2

)

∆z − -1
)

(16)

ξR =
m2

eff

4k cos(θ)

((

nR +
1

2

)

∆z − -B
)

. (17)

we have our final expression for the photon amplitude at
the exit of the B region,

'Ψγ(-B) = −iC exp

(

− ik-B
cos(θ)

− inRξM

)

[

AnBeiξLsL'anL

+
nB−1
∑

j=1

AnB−jsM'anL+j + eiξRsR'anR+1

]

, (18)

where we have simplified our notation by combining Aref

and exp(iξM) into A.

As above, our choice of initial conditions allows us to
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compute explicitly the sum in (18),

nB−1
∑

j=1

AnB−j'anL+j = (a1,xx̂ + a1,y ŷ)
A − AnB

1 − A

+a1,z ẑ(−1)nR
(−A) − (−A)nB

1 + A
. (19)

After the particle leaves the magnetic field region, the
photon and chameleon states decouple, and no further
oscillation occurs. Thus, the probablity that the particle
will be a photon, when a quantum measurement is made
by the exit window, is |'Ψγ(-B)|2fN−nR

ref , where N − nR

is the number of times that the particle bounces after
leaving the field region.

Since we also want to compute the decay rate of the
chameleon, we must keep track of the photons lost to ab-
sorption in the chamber walls, inside the magnetic field
region. At each bounce, 'Ψγ → Aref

'Ψγ , the absorption

probability is incremented by (1−fref)|'Ψγ |2 = fabs|'Ψγ |2;
since the tunneling rate is negligible, the sum of the re-
flection and absorption probabilities must be equal. We
find the total absorption probability Pabs by summing
fabs|'Ψγ |2 over all of the bounces in the field region.

Pabs = fabsC
2

[

s2
L

nB−1
∑

j=0

f j
ref |'anL |2

+s2
M

nB−1
∑

j=1

∣

∣

∣

∣

∣

j
∑

'=1

Aj−''anL+'

∣

∣

∣

∣

∣

2

+sLsM

nB−1
∑

j=1

j
∑

'=1

'anL · 'anL+'

×
(

eiξLAj(A∗)j−' + e−iξL(A∗)jAj−'
)

]

(20)

Once again, all of the summations can be carried out
explicitly for particles originating at the center of the
entrance window:

nB−1
∑

j=0

f j
ref |'anL |2 = |'a1|2

1 − fnB

ref

1 − fref
(21)

nB−1
∑

j=1

∣

∣

∣

∣

∣

j
∑

'=1

Aj−''anL+'

∣

∣

∣

∣

∣

2

=
a2
1,x + a2

1,y

(1 − A)(1 − A∗)

[

nB − 1 +
fref − fnB

ref

1 − fref

−
(

A − AnB

1 − A
+

A∗ − (A∗)nB

1 − A∗

)

]

+
a2
1,z

(1 + A)(1 + A∗)

[

nB − 1 +
fref − fnB

ref

1 − fref

−
(

−A − (−A)nB

1 + A
+

−A∗ − (−A∗)nB

1 + A∗

)

]

(22)

nB−1
∑

j=1

j
∑

'=1

'anL · 'anL+'

=
a2
1,x − a2

1,y

1 − A

(

A∗ − (A∗)nB

1 − A∗
− fref − fnB

ref

1 − fref

)

e−iξL

+
a2
1,z

1 + A

(

−A∗ − (−A∗)nB

1 + A∗
− fref − fnB

ref

1 − fref

)

e−iξL

+ complex conjugate. (23)

A chameleon particle with initial direction specified by
θ and ϕ traverses the chamber in a time -tot sec(θ). It has
a probability Pabs+|'Ψγ(-B)|2 of producing a photon, and

a probability |'Ψγ(-B)|2fN−nR

ref of producing a photon that
escapes through the exit window. Thus the contribution
of this θ and ϕ to the decay rate is the photon production
probability per unit time, (Pabs+|'Ψγ(-B)|2)/(-tot sec(θ)),
and similarly for the afterglow rate. We find the total
decay and afterglow rates per particle by integrating over
angles.

Γdec,γ =
1

2π

∫ π/2

0
sin(θ)dθ

∫ 2π

0
dϕ

(

Pabs(θ, ϕ) +
∣

∣

∣

'Ψγ(-B, θ, ϕ)
∣

∣

∣

2
)

cos(θ)

-tot
(24)

Γaft =
1

4π

∫ π/2

0
sin(θ)dθ

∫ 2π

0
dϕ

fN(θ)−nR(θ)
ref

∣

∣

∣

'Ψγ(-B, θ, ϕ)
∣

∣

∣

2 cos(θ)

-tot
(25)

The extra factor of two in the decay rate accounts for
chameleons which begin at the exit window and travel
toward the entrance window. Note that all of the depen-
dence on ϕ is due to dot products of the 'a vectors. Since
these differ only in the sign of the z component, they can
all be rewritten in terms of squares of the components
of 'a1, as in (19, 21, 22, 23), and the ϕ integral can be
computed explicitly using

1

2π

∫ 2π

0
a2
1,xdϕ = cos2(θ) +

3

8
sin4(θ) (26)

1

2π

∫ 2π

0
a2
1,ydϕ =

1

8
sin4(θ) (27)

1

2π

∫ 2π

0
a2
1,zdϕ =

1

2
sin2(θ) cos2(θ). (28)

We need only integrate numerically over one variable, θ,
in order to compute the decay and afterglow rates per
particle.

We note that the magnetic field strength B and
the photon coupling βγ only appear in Γdec,γ and Γaft

through factors of C2 in |'Ψγ |2 and Pabs. This C2 can be
brought outside the integrals in (24) and (25). Thus the
decay and afterglow rates scale as Γdec,γ ,Γaft ∝ B2β2

γ ,
for any meff , ξref , and chamber geometry. We need only
compute the decay and afterglow rates for one value of
each of B and βγ .
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FIG. 2: Diagram (side view) of the apparatus used by Gam-
meV and GammeV–CHASE to search for a chameleon after-
glow. Diagram is not to scale. Actual values of these lengths
for each experiment are given in Table I.

Next, we compute the expected flux of afterglow pho-
tons through the exit window for this simple afterglow
experiment. We assume that chameleon-photon oscilla-
tion is the dominant contributor to the total chameleon
decay rate, and that all other decays are negligible. The
experiment proceeds in two stages: production and af-
terglow. During the production stage, photons stream
through the chamber at a rate of Fγ . Each photon
has a probability Pφ↔γ = C2 sin2(m2

effL/(4k)) of pro-
ducing a chameleon particle, for a total production rate
of FγPφ↔γ . Meanwhile, if Nφ chameleons are present
in the chamber, then the total decay rate is NφΓdec,γ .
Thus the number of chameleons is given by dNφ(t)/dt =
FγPφ↔γ − Nφ(t)Γdec,γ . Assuming that chameleon pro-
duction occurs over a time interval −τpr < t < 0, we
have

N (prod)
φ (t) =

FγPφ↔γ

Γdec,γ

(

1 − e−Γdec,γ(t+τpr)
)

(29)

in the production stage. In the afterglow stage, t > 0,
the photon rate is reduced to zero, and the number of
chameleons is

N (aft)
φ (t) =

FγPφ↔γ

Γdec,γ

(

1 − e−Γdec,γτpr
)

e−Γdec,γt. (30)

The expected signal during the afterglow stage of the
experiment is found by multiplying Nφ by Γaft,

Faft(t) =
FγPφ↔γΓaft

Γdec,γ

(

1 − e−Γdec,γτpr
)

e−Γdec,γt. (31)

IV. GAMMEV AND GAMMEV–CHASE
EXPERIMENTS

A. GammeV geometry

The actual apparatus used by GammeV to search for
chameleons differs in a few ways from the simple experi-
ment described above [17]:

1. the GammeV chamber has a second section, with
a smaller radius, extending from z = -1 + -2 + L to
z = -1 + -2 + L + -3, with the exit window at the
end of the second section;

quantity GammeV GammeV–CHASE
#1 2.36 m 2.0 m
L 6.0 m 6.0 m
#2 1.16 m 1.16 m
#3 2.51 m 0.30 m
#4 2.03 m 0.20 m
#5 0.10 m 0.10 m
R1 2.38 cm 3.175 cm
R2 1.75 cm 3.175 cm
rlens 2.54 cm 2.54 cm
rPMT 2.5 mm 2.5 mm

t0 1006 sec 1 sec
∆t 3616 sec ∼ 1000 sec
fref 0.53 0.53

k ≈ ω 2.33 eV 2.33 eV
B 5.0 Tesla 5.0 Tesla

Vpump 0.026 m3 not available

TABLE I: Properties of the GammeV and GammeV–CHASE
experiments, including the dimensions shown in Fig. 2.

2. outside of the exit window is a lens that focuses the
afterglow emerging from the chamber;

3. afterglow photons must enter the aperture of the
PMT, with radius rPMT, in order to be detected;

4. the PMT is uncovered a time t0 after the laser has
been turned off, and data are collected for a total
time ∆t;

5. the vacuum inside the chamber is maintained by
a turbomolecular pump connected to a roughing
pump, which increases the total volume accessible
to chameleons by Vpump;

6. chameleons light enough to enter the roughing
pump will be removed from the chamber, so the
range of masses which can be constrained is lim-
ited.

Figure 2 is a diagram of the GammeV apparatus, showing
the lengths and radii defined above; the numerical values
of these quantities are listed in Table I. We define -tot,1 =
-1 + -2 + L to be the length of the first section, and
-tot,2 = -tot,1 + -3 to be the total length of the chamber.

Limitations imposed on GammeV by the pumping sys-
tem were discussed in [17]. A chameleon particle will be
pumped out of the vacuum chamber if its effective mass
meff(rough) at the intake of the roughing pump, where
the air pressure is Prough = 1.9 × 10−3 torr, is less than
its energy ω ≈ k inside the chamber. This pumping oc-
curs on time scales much smaller than t0, so a chameleon
model whose particles can be pumped out of the chamber
is inaccessible to GammeV. In particular, we shall see in
Sec. V that GammeV can only constrain a small subset
of chameleon dark energy models. For the remainder of
this section we assume that meff(rough) > k. We proceed
to calculate the decay and afterglow rates as functions of
meff(chamber), βγ , and ξref , noting that any resulting
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FIG. 3: Γdec,γ (thick lines) and Γaft (thin lines) vs. meff , for
several values of ξref , assuming a magnetic field of B = 5 Tesla
and a photon coupling of βγ = 1012.

constraints on chameleon models will only be applicable
when the above mass condition is met.

When calculating the afterglow rate, we must check
whether the particle enters the second section, reaches
the lens, and enters the aperture of the PMT. It is ap-
parent that a particle beginning at the center of the en-
trance window, our chosen initial condition, will have a
higher probability of being near the central axis of the
chamber, and therefore a higher probability of reach-
ing the second section, the lens, and the PMT. Com-
puting these probabilities for the GammeV geometry
is straightforward; a particle beginning at an arbitrary
position on the entrance window has a probability of
pavg = 2.04× 10−5 of reaching the PMT, while a particle
beginning at the center of the window has a probability
of pctr = 3.35×10−5. Thus we must normalize our after-
glow results by fgeom = pavg/pctr, which takes the value
0.610 in this case. Henceforth, we assume that Γaft has
been normalized appropriately.

The final results of the computation detailed above are
the afterglow rate Γaft per chameleon particle, and the
rate Γdec,γ of the decay of a chameleon particle to a pho-
ton, both of which are functions of the background mag-
netic field 'B = Bx̂, the chameleon mass meff(chamber),
the chameleon-photon coupling βγ , and the phase shift
ξref at each wall reflection. As noted earlier, Γdec,γ

and Γaft both scale as the square of the magnetic field
strength and the photon coupling. The variations of these
rates with meff(chamber) and ξref are more complicated.

Figure 3 shows Γdec,γ and Γaft as functions of mass
for several values of ξref . Consider first the thin, solid
line, which shows Γaft for ξref = 0. The afterglow rate
is dominated by chameleons on trajectories with small θ,
which bounce no more than a few times from the cham-
ber walls, since these are the most likely to produce pho-
tons which reach the detector. For a trajectory with no
bounces, (9) implies that the afterglow rate is propor-
tional to sin2(m2

effL/(4k)). Thus we expect Γaft to be

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

-3 -2 -1  0  1  2  3

ra
te

s 
[H

z]

ξref

decay

afterglow

meff [eV]
10-4

10-3

2×10-3

4×10-3

FIG. 4: Γdec,γ (thick lines) and Γaft (thin lines) vs. ξref ,
for several values of meff , assuming a magnetic field of B =
5 Tesla and a photon coupling of βγ = 1012.

small when meff =
√

4πjk/L = 9.81 × 10−4j1/2 eV for
any positive integer j; at these masses, destructive in-
terference in the chameleon-photon oscillation suppresses
photon production. As expected, Fig. 3 shows the first
local minimum of the afterglow rate at meff ≈ 0.001 eV
and the fourth around 0.002 eV. Furthermore, these local
minima are very sharp, since paths with slightly larger θ
differ only slightly in phase at the end of the magnetic
field region. In contrast, the other two afterglow rate
plots have much shallower minima at different masses.
This is because a nonzero ξref implies that paths with
different numbers of bounces can exit the magnetic field
region with very different phases. Meanwhile, the decay
rates, plotted as thick lines in Fig. 3, have fewer features,
since they average paths over a much larger range of an-
gles.
Γdec,γ and Γaft are shown as functions of ξref , for a few

fixed masses, in Fig. 4. In the low-mass limit, the only
phase shift between the chameleon and the photon is due
to reflection from the walls. A total phase difference of
zero implies maximal constructive interference between
the chameleon and photon wavefunctions, and, hence,
maximal chameleon-photon oscillation. Thus the decay
and afterglow rates will peak at ξref = 0. This is consis-
tent with the plots of Γdec,γ and Γaft for meff = 10−4 eV,
shown as thick and thin solid lines, respectively. At larger
masses, this maximum in the decay rate shifts to nega-
tive ξref , in order to compensate for the positive phases
ξL, ξM, and ξR caused by a nonzero chameleon-photon
mass difference. Meanwhile, at meff = 0.001 eV, ξref ≈ 0
corresponds to maximal destructive interference, as dis-
cussed above. Thus a nonzero ξref increases Γaft by mak-
ing the interference in chameleon-photon oscillation more
constructive, leading to a minimum around ξref = 0, as
shown in Fig. 4.

Next, we will show that the effects of the initial con-
ditions on the dynamics of chameleon-photon oscillation
are negligible; the normalization fgeom is the only correc-
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#0 [m] Γdec,γ [Hz] Γaft [Hz]
0 4.905 × 10−5 6.643 × 10−9

1 4.899 × 10−5 6.865 × 10−9

10 4.903 × 10−5 6.845 × 10−9

100 4.897 × 10−5 6.876 × 10−9

TABLE II: Decay and afterglow rate vs. #0. These have been
computed for the GammeV geometry, assuming a reflectivity
of fref = 0.53, a magnetic field of B = 5 Tesla, a chameleon
mass in the chamber of meff = 10−4 eV, and a chameleon-
photon coupling of βγ = 1012.

FIG. 5: Projection into the xy plane of a 2-point path (solid
green line), a 3-point path (dashed red line) and a 4-point
path (dash-dotted blue line).

tion that we need to make to the afterglow rate. Since
z = 0 and |'k| are fixed, the full set of possible initial
conditions on the entrance window is described by four
parameters: x, y, θ, and ϕ. Until now, we have restricted
ourselves to a two-parameter subset, x = y = 0. Our
subset consists of paths that remain in the same plane as
they bounce around, a plane which contains the z axis.
This condition will remain true if we allow nonzero initial
x and y, subject to the constraint y/x = tan(ϕ). Thus
we can study a third parameter out of the four. This can
be done through a simple modification of our previous
calculation. Assume that the chamber were extended by
a length -0 in the negative z direction, with the entrance
window now at z = −-0. A particle beginning at the cen-
ter of this new entrance window would, when it reached
z = 0, satisfy y/x = tan(ϕ), with x and y not necessarily
zero. If we compute Pabs and |'Ψγ(-B)| using these new
paths, while using the chamber length without -0 to find
the time taken by each path, then we obtain decay and
afterglow rates that can be compared with our previous
calculations. Table II shows that varying -0, from zero
to much larger than the length of the entire chamber,
leaves the decay rate essentially unchanged, and changes
the afterglow rate by no more than a few percent.

Each path in the three-parameter subset considered
above was confined to a single plane. Other paths do not
remain in a plane, but travel through the chamber in a
corkscrew fashion. It is useful to consider the projection
of these paths onto the xy plane, as shown in Fig. 5. Let
us also assume for this discussion that θ is not small,
so that each path bounces multiple times. The paths
confined to a plane would, in this projection, appear
to bounce back and forth between the same two points,
passing through the center between any two bounces, as
shown by the solid line in Fig. 5. We call such paths 2-
point paths. If the condition y/x = tan(ϕ) were violated
by a small amount, then the points between which the
path bounced would appear to move slightly as the parti-
cle progressed down the chamber; the solid line in Fig. 5
would appear to precess. For larger deviations, the xy
projection of the path would close on itself, forming an
equilateral triangle, as shown by the dashed line in Fig. 5;
we call this a 3-point path. We can have n-point paths,
for any n ≥ 2, which trace out equilateral polygons of n
vertices. Such paths are interesting because they allow
us to carry out explicitly the sums in (18) and (20); for
an n-point path, each of the 'a vectors is equal to one of
the first n vectors.

n-point paths for n ≥ 3 are different from 2-point paths
in that they avoid the center; 3-point paths remain at
a distance of at least R1/2 from the central axis, and
n-point paths for n > 3 remain even farther from the
center. Another difference is that paths with higher n
bounce more frequently for the same θ, since they travel
a shorter distance between bounces.

In order to test the effects of these differences on our
rate calculations, we compute 3-point decay and after-
glow rates by summing (18) and (20) for 3-point paths.
Our assumption that the particle begins at the center
of the entrance window gives a valid approximation to
the decay and afterglow rates only if Γdec,γ(2-point) ≈
Γdec,γ(3-point) and Γaft(2-point) ≈ Γaft(3-point). Our
assumption will be conservative if Γdec,γ(2-point) >
Γdec,γ(3-point) and Γaft(2-point) < Γaft(3-point).

We find that neither the avoidance of the center nor the
shorter distance between bounces affects the afterglow
rate very much. The fact that n-point paths for n > 2
avoid the center is accounted for in the normalization
factor fgeom for these paths. Also, Γaft is dominated by
paths with small θ, which are more likely to reach the
PMT. Such paths bounce only a small number of times,
and the computed Γaft does not change appreciably. The
3-point afterglow rate is Γaft(3-point) = 7.005× 10−9 Hz
for the parameters used in Table II. This is within a few
percent of Γaft(2-point) = 6.643 × 10−9 Hz.

We also find that the decay rate is somewhat lower
for 3-point paths, assuming low chameleon masses. For
the GammeV geometry and the parameters fref = 0.53,
B = 5 Tesla, meff(chamber) = 10−4 eV, and βγ = 1012,
we find Γdec,γ(3-point) = 3.800 × 10−5 Hz, compared
to Γdec,γ(2-point) = 4.905 × 10−5 Hz. This is due to
the fact that 3-point paths bounce more frequently, sup-
pressing the coherent buildup of photon amplitude over
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multiple bounces. In our constraints, we use the 2-point
computation of the decay rate. Since an overestimate of
Γdec,γ leads to an underestimate of the expected signal
Nφ(t)Γaft, this approximation is slightly conservative.

At higher masses, the 3-point paths make a greater
contribution to the decay rate. As meff is increased be-
yond

√

4πk/L ≈ 10−3 eV, destructive interference sup-
presses oscillation in small-θ paths. Large-θ paths, which
travel shorter distances between bounces, become more
important to the computation of Γdec,γ . The shortest
possible distance between bounces for a 2-point path
is 2R1, which occurs when θ = π/2. For meff ∼
√

4πk/(2R1) ≈ 10−2 eV, oscillation is suppressed by
destructive interference even for these paths. For a
3-point path, however, the shortest distance between
bounces is only R1

√
3. Thus Γdec,γ(3-point) will ex-

ceed Γdec,γ(2-point) at some mass meff " 10−2 eV. Be-
yond this mass, our approximation of the decay rate by
Γdec,γ(2-point) is no longer conservative.

GammeV, which probed masses up to 10−3 eV, re-
mained well within the realm of validity of this approx-
imation; Γdec,γ ≤ Γdec,γ(2-point) for meff < 10−3 eV.
Thus Γdec,γ(2-point) was used to approximate Γdec,γ in
the analysis of ref. [17] in order to provide conservative
bounds on the chameleon parameter space. We will re-
visit the issue in Sec. IVB, where we shall see that this
approximation breaks down at the largest masses probed
by GammeV–CHASE.

B. GammeV–CHASE

As discussed in [17, 35], the original GammeV
chameleon search was constrained by four different tech-
nical limitations:

1. destructive interference in the L = 6 m mag-
netic field length suppressed the production of
chameleons with masses greater than

√

4πω/L ≈
10−3 eV;

2. systematic uncertainties in the PMT dominated the
total error, weakening constraints at low βγ ;

3. the transition between filling the cavity and collect-
ing afterglow data required t0 = 1006 sec after the
laser was turned off, diminishing sensitivity to high
βγ (rapidly decaying chameleons);

4. the roughing pump in the vacuum system ex-
hausted to the room, which meant that the lowest-
density “wall” of the chamber was the P = 1.9 ×
10−3 torr intake of the roughing pump.

GammeV–CHASE improves considerably upon Gam-
meV by addressing each one of these limitations.

First, glass windows will divide the magnetic field re-
gion into partitions of different lengths, 0.3 m, 1.0 m,
and 4.7 m. These three partitions remove regions of in-
sensitivity since the chameleon-photon oscillation lengths

for each partition are not commensurate with each other
for many multiples. Also, since the partitions are some-
what shorter than the original 6m cavity, they provide
some sensitivity to larger mass chameleons, up to a few
meV. This improvement is especially significant because
chameleon masses at the dark energy scale 2.4×10−3 eV,
were inaccessible to the previous experiment.

Improvements to the optical system will allow
GammeV–CHASE to push to both lower and higher βγ .
Modulating the PMT signal using a mechanical shutter
allows the detector noise to be monitored. Since system-
atic uncertainty in the PMT dark rate was the dominant
source of noise in GammeV, the sensitivity to low after-
glow rates will improve by roughly an order of magnitude
in GammeV–CHASE. Meanwhile, sensitivity to high βγ

will improve by three orders of magnitude with the incor-
poration of two changes. First, a more rapid transition
will be made between filling the cavity and collecting
data, shortening the dead time by a factor of more than
100 and improving sensitivity to larger βγ by almost two
orders of magnitude. Second, data will be collected at
lower magnetic fields of 1 and 0.2 Tesla, in addition to the
original field of 5 Tesla. The low magnetic field provides
an additional order of magnitude in sensitivity because it
slows conversion of chameleon particles to photons; this
maintains a detectable population of chameleons while
the transition to data acquisition occurs.

Finally, improvements to the pumping system will take
two forms. First, the vacuum pressure will be reduced by
approximately three orders of magnitude from ∼ 10−7

torr to ∼ 10−10 torr. Second, the vacuum system will
not exhaust to the room as it did in the original experi-
ment. These improvements come through the use of ion
pumps placed at strategic locations on the apparatus, as
well as cryogenic pumping within the magnetic field re-
gion; residual gases will freeze to the bore of the magnet.
The fact that this system does not exhaust to the room
will mean that chameleons need only bounce from the
chamber walls, with densities ρ ∼ 1 g/cm3, rather than
the much stronger condition that they bounce before the
intake of the roughing pump, with ρ ∼ 10−9 g/cm3. Im-
provements to the pumping system will allow GammeV–
CHASE to probe chameleons whose masses scale much
more slowly with density. For chameleons with meff ∝ ρη,
GammeV–CHASE will probe η # 0.2. Moreover, the
improvement in constraints will be qualitative as well
as quantitative. The large range of masses probed will
mean that constraints on the photon coupling will be
only weakly dependent on the matter coupling, and vice
versa, as we shall see.

To summarize, there are essentially four important di-
rections in which the sensitivity of GammeV–CHASE im-
proves upon GammeV: smaller βγ , larger βγ , smaller η,
and larger meff(chamber). Figure 6 is a ”radar chart” of
the improvements in these parameters between the two
experiments.

We showed in Sec. IVA that our choice of initial con-
ditions, chameleon particles which begin at the center
of the entrance window, resulted in approximations to
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FIG. 6: Improvements in sensitivity to βγ , η, and meff with
GammeV–CHASE. Low βγ improves by roughly an order of
magnitude. High βγ improves by more than three orders of
magnitude. The parameter η improves from 0.8 to nearly 0.2.
The mass sensitivity improves by a factor of nearly four.

Γdec,γ , Γaft, and the total afterglow flux that were accu-
rate, and slightly conservative, for GammeV. However,
at larger chameleon masses, we expect these approxima-
tions to break down as trajectories with smaller distances
between bounces contribute more to the decay rate. This
is because destructive interference suppresses chameleon-
photon oscillation on segments of the particle trajectory
that are longer than 4πk/m2

eff . For example, in GammeV
and GammeV–CHASE, this length corresponds to 23 cm
when meff = 5 × 10−3 eV.

The n-point trajectories discussed earlier, for n ≥ 3,
travel smaller distances between bounces. For example,
3-point trajectories have a minimum distance between
bounces of R1

√
3, compared to 2R1 for the 2-point tra-

jectories resulting from our initial conditions. At greater
meff , n-point trajectories with greater n will become im-
portant. By comparing the 2-point and 3-point calcula-
tions of the decay rate, we estimate the mass at which the
2-point decay rate is no longer a conservative approxima-
tion to the total decay rate. Beyond this mass, at which,
Γdec,γ(3-point) = Γdec,γ(2-point), our computation of the
decay rate becomes increasingly inaccurate.

Figure 7 shows 2-point and 3-point computations of
the decay and afterglow rates, for an afterglow exper-
iment with a single 6 meter partition in the magnetic
field region. At low mass, it is clear from the figure
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FIG. 7: Γdec,γ (thick lines) and Γaft (thin lines) vs. meff , for
2-point and 3-point paths with two different values of ξref .
We assume B = 5 Tesla and βγ = 1012. For simplicity, we
use a geometry similar to that of GammeV–CHASE but with
only one L = 6 m partition in the magnetic field region.

that our approximations Γdec,γ ≈ Γdec,γ(2-point) and
Γaft ≈ Γaft(2-point) are excellent. Where the 2-point and
3-point computations differ, our approximations are con-
servative; we slightly underestimate the afterglow rate
and overestimate the decay rate. At larger masses,
the 2-point decay rates begin to drop, and the 3-point
rates catch up. Γdec,γ(3-point) exceeds Γdec,γ(2-point) at
meff ≈ 4×10−3 eV for ξref = 0, and at meff ≈ 3×10−3 eV
for ξref = π; we find similar masses for other values of ξref .

At larger masses, we must compute the decay and
afterglow rates by averaging (24) and (25) over all ini-
tial positions (x, y) on the entrance window. The sym-
metries that allowed us to sum explicitly the series in
(18) and (20) will no longer be present, making the in-
tegration more computationally intensive. In this work,
for the purposes of forecasting GammeV–CHASE con-
straints, we simply cut off our constraints at the mass
where Γdec,γ(3-point) first exceeds Γdec,γ(2-point).

V. CHAMELEON MODELS: CONSTRAINTS
AND FORECASTS

A. Model-independent constraints

The decay rate (24) and the afterglow rate (25) depend
on three properties of the chameleon particle: its photon
coupling βγ , its phase shift ξref at each wall reflection,
and its effective mass meff(chamber) inside the vacuum
chamber. Constraints on these parameters are model-
independent in the sense that they do not depend on a
knowledge of the chameleon potential V (φ).

Also important is the requirement that chameleon par-
ticles be contained inside the vacuum chamber, which im-
plies that the effective mass meff(wall) inside the chamber
walls is greater than the chameleon energy ω = 2.33 eV.
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FIG. 8: Model-independent 3σ constraints from GammeV.
The shaded region shows the phase-independent constraints
from [17], which computed the afterglow rate using only non-
bouncing trajectories. The solid (red), long dashed (green),
and short dashed (blue) lines correspond to ξref = 0, π/3,
and π, respectively. Note that these constraints apply only to
chameleons which can be contained in the vacuum chamber,
meff(rough) > k, as discussed in Sec. IV.

If we assume that the scaling of effective mass with den-
sity can be approximated by a power law meff(ρ) ∝ ρη

over the densities of interest, then the smallest value of
η that can be constrained is

ηmin =
log

[

m(min)
eff (wall)

]

− log
[

m(max)
eff (chamber)

]

log [ρ(wall)] − log [ρ(chamber)]
.

(32)
For η > ηmin, a larger range of chameleon masses can be
excluded.

1. GammeV

GammeV [17] constrained the afterglow signal (31) av-
eraged over the observation window, which began at a
time t0 = 1006 sec after the laser was turned off, and
had a duration ∆t = 3616 sec. A systematic uncertainty
of σΓ = 12.0 Hz in the PMT dark rate Γdark = 115 Hz
meant that GammeV could rule out to 3σ any chameleon
model with an average afterglow greater than 36 Hz in
the time window.

Figure 8 shows our model-independent constraints
for GammeV. The shaded region shows GammeV con-
straints from [17]. These are not only model-independent
but also phase-independent; we considered only non-
bouncing trajectories when evaluating Γaft, in order to
remove the effects of phase shifts, and assumed ξref = 0
when calculating Γdec,γ in order to overestimate the de-
cay rate. Since a larger decay rate suppresses the ex-
pected signal Faft found in (31), this set of assumptions
is conservative, and applies to all ξref .

Meanwhile, the solid and dashed lines in Fig. 8 show
the regions of parameter space excluded when we con-
sider bouncing trajectories in the calculation of Γaft and

assume a specific value for ξref . Since the decay rate
Γdec,γ is dominated by paths which bounce hundreds
times, while paths contributing to the afterglow rate
Γaft bounce only ∼ 1 times, Γdec,γ depends much more
strongly on ξref than does Γaft. Thus, at high βγ , where
our constraints are limited by rapid chameleon decays,
the suppression of Γdec,γ due to nonzero ξref extends our
constraints to stronger photon couplings. On the other
hand, at low βγ , the decay time 1/Γdec,γ is much longer
than the duration of the experiment, making decays ir-
relevant. In this regime, the slight suppression of Γaft at
nonzero ξref means that the ξref = 0 constraints are the
strongest.

The constrained regions contain several “islands” at
meff # 10−3 eV. These are caused by the zeros of
the chameleon production probability, given by (9) with
t = L. Photons of energy k = 2.33 eV passing through
a magnetic field region of length L = 6 m cannot pro-
duce chameleons with masses meff =

√

4πjk/L, for any
positive integer j, due to total destructive interference in
photon-chameleon oscillation.

The range of η values in GammeV was severely limited
by the pumping system used to maintain the vacuum in-
side the chamber. The lowest-density “wall” was the in-
take of the roughing pump, with ρwall = 3.0×10−9 g/cm3;
chameleons too light to reflect from this intake would
be pumped out of the chamber. For a reflection phase
of ξref = 0, the largest mass probed by GammeV was

m(max)
eff (chamber) = 1.27 × 10−3 eV, giving ηmin = 0.76.

2. GammeV–CHASE

GammeV–CHASE will monitor the PMT dark rate in
real time by modulating the afterglow signal from the
chamber. Furthermore, rapid switching of the PMT will
allow the experiment to begin data collection at t0 ≈
1 sec, so that GammeV–CHASE will probe chameleon
theories with much higher decay rates than those ex-
cluded by GammeV. Here, we estimate the constraints
that will be obtained by GammeV–CHASE by averaging
the signal over a time window of ∆t = 20 sec, assum-
ing that the PMT is modulated with a duty cycle of 0.5.
The uncertainty in the dark rate Γdark ≈ 100 Hz over
this interval will be σΓ ≈ 3.16 Hz.

Forecast constraints from GammeV–CHASE are
shown in Figure 9, for ξref = 0, π/3, and π. The shaded
regions show current constraints from GammeV [17] and
particle accelerators [19]. GammeV–CHASE is expected
to bridge the gap between GammeV constraints and ac-
celerator constraints for masses around the dark energy
scale, meff ∼ 10−3 eV.

The constraints shown are limited at low βγ by the sen-
sitivity to low, nearly constant chameleon fluxes. Con-
sider, for example, ξref = 0. From Fig. 3 and the propor-
tionality Γdec,γ , Γaft ∝ β2

γ , we see that Γdec,γ ∼ 10−6 Hz
and Γaft ∼ 10−10 Hz when βγ = 1011 and meff is small.
The corresponding decay time Γ−1

dec,γ is much larger
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FIG. 9: Forecast model-independent 3σ constraints from
GammeV–CHASE. The shaded regions show current con-
straints from GammeV [17] as well as the accelerator con-
straints of [19]. The solid (red), long dashed (green), and
short dashed (blue) lines correspond to ξref = 0, π/3, and π,
respectively.

than any time scale associated with the experiment,
meaning that the number of chameleons in the cham-

ber, given by (30), remains nearly constant at N (aft)
φ ≈

FγPφ↔γτpr ∼ 1011(βγ/1011)2 for the duration of the ex-
periment. At low βγ and meff , the total afterglow flux

reaching the detector is N (aft)
φ Γaft ∼ 10(βγ/1011)4 Hz,

which drops below our sensitivity 3σΓ ≈ 9.5 Hz around
βγ = 1011. Meanwhile, at high βγ , the constraints are
limited by rapid decays, Γ−1

dec,γ ' t0 = 1 sec, which re-
duce the chameleon population before our detector can
be switched on. Again assuming ξref = 0 and low meff , we
see from Fig. 3 that Γdec,γ ∼ 10−4(B/5T)2(βγ/1012)2 Hz.
At the lowest magnetic field used, B = 0.2 Tesla, the
corresponding decay time Γ−1

dec,γ drops below t0 for βγ ∼
1016, the upper limit of our constrained region. Finally,
as with GammeV, we see that the ξref = 0 constraints
are strongest at low βγ , while constraints at larger phase
shifts extend to higher βγ .

At high meff , our constraints are cut off by uncer-
tainties in the calculation of the decay rate. Our ap-
proximation that Γdec,γ < Γdec,γ(2-pt) breaks down
around meff ≈ 4 × 10−3 eV, where Γdec,γ(3-pt) exceeds
Γdec,γ(2-pt). Had we instead approximated Γdec,γ ≈
max(Γdec,γ(2-pt),Γdec,γ(3-pt)), our constraints would
have extended to 6 × 10−3 eV.

Compared with the GammeV constraint plot in Fig. 8,
the GammeV–CHASE forecast constraints in Fig. 9 have
few sharp features such as islands. This is due to the use
of partitions in the magnetic field region, as well as data
runs at multiple magnetic field values. The partitions en-
sure that there are no zeros in the total chameleon pro-
duction probability (9) in the range of masses probed. A
chameleon whose mass prevents it from being produced
in the 4.7 m partition, for example, may still be pro-
duced in the 1.0 m partition or the 30 cm partition.
Multiple magnetic field values ensure overlap between
constraints from the different runs. For example, the

greatest βγ probed by the B = 5 Tesla run will be larger
than the smallest βγ probed by the B = 1 Tesla run,
ensuring a continuous constrained region. Overlaps be-
tween multiple magnetic fields and multiple partitions al-
low GammeV–CHASE to smooth over the features that
are present in the decay rate, and especially in the after-
glow rate, as in Fig. 3.

Modifications to the vacuum system, discussed earlier
in Sec. IVB, will drastically improve the range of η values
probed. The lowest-density wall will now consist of the
glass windows, with ρwall ≈ 1 g/cm3. Inside the magnetic
field region, the operating temperature of 4 K and pres-
sure of 10−10 torr will reduce the matter density inside
the chamber to ρvac = 8× 10−16 g/cm3. For chameleons
with βγ ' βm, we can neglect the energy density associ-
ated with the magnetic field, and approximate meff ∝ ρη

m.
In that limit, ηmin = 0.18. For βγ ∼ βm, the magnetic
field becomes important, since ργ = 1.11 × 10−13 g/cm3

is greater than the matter density. In this case, a mass
scaling meff ∝ (ρm + ργ)η is more appropriate, and we
find ηmin = 0.21.

B. Power law chameleons

Consider a chameleon theory with potential V (φ) =
gφN , for g > 0 and N > 2. Since βγφ/MPl, βmφ/MPl '
1, in order for the theory to be consistent with fifth force
constraints, the effective potential is given by

Veff(φ) = gφN − φ

MPl
(βmρm + βγργ). (33)

In a bulk medium of constant ρm and ργ , the chameleon
mass is evaluated at the minimum of this potential,

φmin =

(

βmρm + βγργ

N gMPl

)
1

N−1

(34)

meff =
√

gN (N − 1)

(

βmρm + βγργ

N gMPl

)

N−2
2N−2

. (35)

Note that the mass scales with density as meff ∝ (βmρm+
βγργ)η with η = N−2

2N−2 . For φ4 theory we have η = 1/3.
Although η grows with N , it asymptotically approaches
1/2 at large N . Thus, the original GammeV experi-
ment could not exclude any of these power law models.
GammeV–CHASE, on the other hand, will impose strong
constraints on power law chameleons, as we will show for
the φ4 model.

Ref. [18] finds that the phase shift for power law
chameleon models, for any real N , is given by

ξref =
π

2

(
∣

∣

∣

∣

3N − 2

N − 2

∣

∣

∣

∣

− 1

)

. (36)

In particular, for φ4 theory we find ξref = 2π, equiva-
lent to zero. The inverse power law potential V ∝ 1/φ
has a phase of ξref = π/3. In the limit of large |N |,
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ξref → π. We also find that the exponential potential
V ∝ exp(φ/M) has ξref = π.

Finally, for a power law chameleon with N ≥ 3
a real number, we must consider the possibility of
chameleon fragmentation, in which two chameleon parti-
cles can interact to produce more than two chameleon
particles. The PMT is sensitive to photons with en-
ergy ω ≈ 2.33 eV, the energy of our laser. Repeated
chameleon fragmentation results in a population of low
energy chameleons, whose afterglow photons are too low
in energy to be observed by the PMT. Assuming a frag-
mentation cross section σfrag, the fragmentation rate is
Γfrag = Nφσfrag/V , where V = 0.030 m3 is the vol-
ume of the chamber. Here, Nφ represents the number
of chameleons energetic enough that their afterglow pho-
tons will be observable by the PMT; although fragmen-
tation increases the total number of chameleon particles,
it decreases Nφ.

If fragmentation occurs, then the number Nφ of de-
tectable chameleons is given in the production phase
−τpr < t ≤ 0 of the experiment by

dNφ

dt
= FγPpr − Γdec,γNφ − σfragN

2
φ/V (37)

Nφ(t) =
(a2 − b2) sinh

(

aσfrag(t+τpr)
V

)

a cosh
(

aσfrag(t+τpr)
V

)

+ b sinh
(

aσfrag(t+τpr)
V

) (38)

where we have defined

a =

√

(

Γdec,γV

2σfrag

)2

+
V FγPpr

σfrag
(39)

b = Γdec,γV/(2σfrag). (40)

In the afterglow phase t > 0, the number Nφ(t) of
chameleons and the time average of the afterglow sig-
nal Faft(t) = ΓaftNφ(t) over the interval t0 < t < t0 +∆t
are given by

Nφ(t) =
2bNφ(0)e−Γdec,γt

2b + Nφ(0)(1 − e−Γdec,γt)
(41)

〈Faft〉 = ΓaftNφ(0)/(Γ(max)
frag ∆t)

× log

[

1 +
Γ(max)

frag (1 − e−Γdec,γ∆t)

Γdec,γ + Γ(max)
frag (1 − e−Γdec,γt0)

]

(42)

where the maximum fragmentation rate is Γ(max)
frag =

Nφ(0)σfrag/V .
Given values of g, N , βm, and βγ , we can determine

ξref from (36), and meff as a function of the couplings
from (35). We can compute the afterglow rate and the
rate of decay to photons for these values of meff , βγ , and
ξref using (25) and (24). The resulting signal (42) can be
compared to our detection threshold, 3σΓ = 9.5 Hz. In
this way, constraints on any power law chameleon may
be obtained.

Figure 10 shows the forecast GammeV–CHASE con-
straints on the φ4 chameleon, with V (φ) = λφ4/4!. The
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FIG. 10: Forecast constraints on the φ4 chameleon. Solid
(red), long dashed (green), medium dashed (blue), and short
dashed (violet) correspond to λ = 10−1, 10−2, 10−4, and
10−6, respectively; the shaded region shows the accelerator
constraints of [19].

fragmentation interaction φφ → φφφφ has a cross sec-
tion σfrag = αfragλ4/ω2, where αfrag ∼ 1 is a numerical
factor that cannot be written down in closed form for
the four-body phase space of outgoing particles; we have
approximated αfrag = 1. We find that fragmentation pre-
vents us from constraining the model with λ = 1 at any
value of βγ , and the models with λ = 0.1, 0.01 at low
values of βγ , while our constraints for smaller λ are not
limited by fragmentation.

The plots for λ = 10−2, 10−4, and 10−6, shown as
dashed lines in Fig. 10, have a few distinctive features.
The upper and lower bounds in βγ are due to rapid
chameleon decays and our detector sensitivity, respec-
tively, as discussed earlier. At low βm, we are limited
by the requirement that chameleon particles be con-
tained in our vacuum chamber, meff(wall) > 2.33 eV.
Eq. (35) with ρwall = 1g/cm3 implies that meff = 1.6 ×
10−3λ1/6β1/3

m eV. For example, for λ = 10−2, contain-
ment requires that βm > 3.4 × 1010. Meanwhile, in the
lower right corners of these three plots, corresponding to
large βm and small βγ , the mass is essentially indepen-
dent of βγ because βmρm / βγργ . Thus the constraints
in this region resemble the constraints in the lower right
corner of Fig. 9, where at larger masses we need larger βγ

in order to make up for the decline in the afterglow rate.
When both βm and βγ are large, the chameleon mass also
becomes large, pushing us into the regime where 3-point
decay rates become important and our decay rate com-
putation becomes unreliable. Thus we have imposed a
cutoff in the constraints at these masses, as discussed in
Sec. V A2.

The gaps and islands in the constraint plot for λ = 0.1
demand further explanation. We noted earlier that over-
lapping the constraints from multiple magnetic fields and
multiple partitions in the magnetic field region helped
to smooth out the sharp features seen in the afterglow
and decay rates, Fig. 3. For example, a sudden dip in
the afterglow due to one partition, if it occurred at a
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mass where the afterglow due to another partition was
smooth and sufficiently large, would not show up as a
feature in our constraint plot. However, rapid fragmen-
tation at λ = 0.1 reduces the afterglow signal from all
three partitions, at all three B values, so that they no
longer overlap. We obtain no constraints on the λ = 0.1
models with the B = 5 Tesla run, since that run probes
low βγ , where the afterglow rate is too small to produce
an observable signal. The gap in the constrained region
at βγ = 1.6 × 1014 is due to poor overlap between the
B = 1 Tesla and B = 0.2 Tesla runs. The islands around
βm = 1016 and βγ = 1015 are due to bumps in Γaft as a
function of meff in the B = 0.2 Tesla run, in a region of
βγ that is well beyond the reach of the B = 1 Tesla run
due to rapid fragmentation.

We note that GammeV–CHASE constraints on the φ4

chameleon will be at very different couplings from the
constraints of laboratory fifth force searches [33, 36].
Furthermore, a φ4 chameleon massive enough to be
contained in the vacuum chamber, meff(ρwall) > ω =
2.33 eV, will have a mass in the Galaxy of meff(Galaxy) >
10−8 eV. Since this is much larger than the plasma
frequency ωP ≈ 10−11 eV of gas in the galaxy, the
chameleon-photon mixing angle will be strongly sup-
pressed. Thus, GammeV–CHASE will also probe φ4

chameleon models different from those ruled out by as-
trophysical dimming constraints.

C. Chameleon dark energy

1. Inverse power law potentials

First, we consider an inverse power law potential with
a constant term,

V (φ) = M4
Λ

[

1 + κ

(

MΛ

φ

)n]

, (43)

where n > 0, κ > 0, and MΛ = ρ1/4
de = 2.4×10−3 eV. The

model with κ = 1 is the most economical, in the sense
that the constant and power law terms both see the same
mass scale, MΛ; however, we allow for the possibility that
κ 0= 1. Eq. (36) for N = −n implies that the phase shift
at a wall reflection is

ξref(n) =
nπ

n + 2
. (44)

The bulk field value φmin, where ∂Veff(φmin)/∂φ = 0, and
the effective mass m2

eff = ∂2Veff(φmin)/∂φ2 are given by

φmin = MΛ

(

κnM3
ΛMPl

βmρm + βγργ

)

(45)

m2
eff = κn(n + 1)M2

Λ

(

βmρm + βγργ

κnM3
ΛMPl

)

n+2
n+1

. (46)

The mass scaling with density is given by η = (n +
2)/(2n + 2), which is 3/4 for n = 1 and 2/3 for n = 2.
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FIG. 11: Forecast GammeV–CHASE constraints on
chameleon dark energy with an inverse power law potential
(43). Thick and thin lines refer to κ = 1 and 0.1, respectively.
Solid (red) and dashed (green) lines refer to n = 1 and n = 2,
respectively.

Only models with n somewhat less than 1 were accessible
to GammeV, whereas all n will be probed by GammeV–
CHASE.

At the cosmological matter density ρcos ≈ 2.5 ×
10−30 g/cm3, the background field value for the n = 1
model is φmin = 1.7 × 10−15(κ/βm)1/2MPl, and the
chameleon Compton wavelength is m−1

eff ∼ 100 pc ×
(κ/βm)(2n+2)/(n+2). The Compton wavelength is tiny on
cosmological scales, so the field remains close to the min-
imum of its potential. Most of the chameleon energy
density will come from the constant term M4

Λ in the po-
tential. For example, for κ = 1, βm = 1015, and n = 1,
the field-dependent term κ(MΛ/φmin)n ∼ 10−8 ' 1, and
this term is even smaller for larger n and lower βm. The
field dependent term does not exceed the constant term
until the matter density becomes of order 10−16 g/cm3,
or about fourteen orders of magnitude greater than the
current cosmological background density. For all cosmo-
logical purposes, such a chameleon model behaves like a
cosmological constant. Evolution in its equation of state
will be undetectable.

Since φ approaches zero at large densities, the total
fractional change in the fine structure constant, between
large densities and the cosmological background density
ρcos, is given by ∆αEM/αEM = βγφmin(ρcos)/MPl. This
is ∆αEM/αEM = 2.4 × 10−15βγ(κ/βm)1/2 for n = 1,
and even smaller for larger n. Inverse power law mod-
els where βγ is sufficiently greater than βm can be con-
strained by cosmological bounds on the variation in
αEM [37, 38]. However, we note that chameleon mod-
els predict a density-dependence of αEM, rather than
a time-dependence. Since astrophysical measurements
of αEM are made in overdense regions of the universe,
ρm > ρcos, the actual variation in αEM expected from
chameleon theories will be smaller than the value given
above. Similarly, laboratory searches [39] for αEM vari-
ations carried out under conditions of constant density
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will not be sensitive to chameleons, though it may be
possible to derive a constraint by comparing several αEM

measurements such as [40] conducted at slightly different
densities. Laboratory and astrophysical constraints on
chameleons from variations in αEM will require further
analysis that is beyond the scope of this paper.

Photons from extragalactic sources, passing through
the galactic magnetic field, could potentially oscillate
into chameleon particles, causing the sources to appear
dimmed, and possibly polarized [20, 21]. Constraints
on astrophysical dimming have ruled out a wide range
of photon couplings. However, these constraints only
apply to chameleons with masses much less than the
Galactic plasma frequency ωP ≈ 10−11 eV; larger masses
strongly suppress chameleon-photon mixing in the low
(B ∼ 10−10 Tesla) magnetic fields found in the Galaxy.
Assuming a Galactic matter density of ∼ 107ρcos, the
chameleon mass becomes greater than ωP for βm > 1012

for n = 1 and κ = 1. Larger values of n and smaller
values of κ cause meff to exceed ωP for even lower values
of βm; for n = 2 and κ = 0.1, we find that βm = 1010

is sufficient. Furthermore, astrophysical dimming con-
straints can be evaded altogether if the chameleon has
a bare mass greater than ωP, in addition to the mass it
acquires from its matter coupling.

GammeV–CHASE will complement current con-
straints on inverse power law chameleons. Figure 11
shows forecast GammeV–CHASE constraints for n = 1,
2, and κ = 1, 0.1. The constraints are limited at low
βγ by low afterglow rates, and at high βγ by rapid
chameleon decays. At low matter couplings, βm " 104,
the chameleon mass in the walls of the vacuum cham-
ber drops below their energy ω, preventing the cham-
ber from trapping the chameleon particles. At large
matter couplings, βm > 1015, the constraints are lim-
ited by destructive interference due to large chameleon
masses, and by the breakdown of our approximation
Γdec,γ(2-point) ≈ Γdec,γ .

2. Exponential potentials

Next, we study chameleon dark energy with an expo-
nential potential,

V (φ) = M4
Λ

[

1 + exp

(

− κφ
MΛ

)]

, (47)

where, once again, MΛ = 2.4 × 10−3 eV, and κ > 0.
The constant term M4

Λ ensures that φ behaves as a dark
energy; without it, the energy density of the field would
scale with the background matter density, and acceler-
ated expansion would not take place. For this potential,
we find, using the techniques of [18], that the phase shift
at a wall reflection is ξref = π.

The bulk field value and the corresponding effective
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FIG. 12: Forecast GammeV–CHASE constraints on
chameleon dark energy with an exponential potential. Solid
(red), long dashed (green), medium dashed (blue), and short
dashed (violet) lines refer to κ = 1, 10−1, 10−2, and 10−3,
respectively.

mass are given by

φmin =
MΛ

κ
log

(

κM3
ΛMPl

βmρm + βγργ

)

(48)

m2
eff =

κ (βmρm + βγργ)

MΛMPl
. (49)

The mass scales as the square root of the density, making
exponential potentials inaccessible to GammeV, but well
within the abilities of GammeV–CHASE.

The field value changes very little over a large range
of densities. The total variation in the log term in φmin,
over a range of densities from ρcos to laboratory densities
∼ 1g/cm3, is less than 100. Thus the total change in φmin

between these densities is of the order of 10−28κ−1MPl.
Such a small change in φmin means that cosmological
variations in αEM will not be observable for βγ " 1023,
assuming that κ is of order unity [37, 38].

At the cosmological density, the chameleon Compton
wavelength is m−1

eff = 4.7 × 10−6 pc × (κβm)−1/2, so the
field remains close to φmin(ρcos) on cosmological scales.
As with inverse power law chameleons in the previous
section, the field-dependent term in the potential is small
compared to the constant term, exp(−κφ/MΛ) = 3.2 ×
10−31βm/κ ' 1, so the field behaves as a cosmological
constant.

For the exponential chameleon, constraints from astro-
physical dimming do not overlap with constraints from
GammeV–CHASE. Any chameleon massive enough to
be trapped in the GammeV chamber will have a mass
greater than 10−11 eV at galactic densities, and dimming
will be suppressed.

Figure 12 shows forecast GammeV–CHASE con-
straints on chameleon dark energy with an exponential
potential. As in the inverse power law case, our con-
straints are limited at low βγ by a low afterglow rate,
at high βγ by rapid chameleon decays, at low βm by
chameleons too light to be trapped in our chamber,
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and at high βγ by destructive interference in chameleon-
photon oscillation and the breakdown of our approxima-
tion that Γdec,γ(2-point) ≈ Γdec,γ .

VI. CONCLUSION

GammeV and GammeV–CHASE are chameleon after-
glow experiments which probe the coupling between pho-
tons and chameleon particles that are trapped inside a
vacuum chamber. Using the physics of chameleon-photon
oscillation, we have computed the rate Γdec,γ at which a
chameleon converts to a photon inside the vacuum cham-
ber of such an experiment, and the rate Γaft of pro-
duction of photons which escape the chamber to reach
an external detector. We have computed these rates as
functions of the chameleon-photon coupling βγ , the ef-
fective chameleon mass meff(chamber) inside the vacuum
chamber, and the phase ξref that is introduced between
chameleons and photons as they reflect from the walls of
the vacuum chamber. The decay and afterglow rates for
the GammeV geometry are plotted as functions of meff

in Fig. 3 and ξref in Fig. 4. With these rates, we have
computed the number of chameleons in the chamber and
the expected afterglow flux in our detector, as a function
of βγ , meff(chamber), and ξref .

In a previous result, GammeV [17] used the decay
rate computed above, as well as the afterglow rate due
to non-bouncing trajectories, to exclude a region of the
chameleon parameter space. Here, we have included
bouncing trajectories in our afterglow calculation, result-
ing in constraints that are less conservative and that de-
pend on the phase shift ξref . These model-independent
constraints are shown in Fig. 8. For ξref = 0 and small
masses, the new constraints extend from half of the mini-
mum photon coupling excluded by [17] to twice the max-
imum coupling excluded by that reference. For nonzero
phases, additional suppression of the chameleon decay
rate to photons allows us to push to even higher βγ ,
excluding photon couplings ten times as high as those
ruled out by [17]. However, since GammeV was only able
to probe chameleon models whose masses scaled rapidly
with density, even this new analysis does not allow us to
constrain the most common types of chameleon poten-
tials.

GammeV–CHASE is an improved version of GammeV
that is expected to take data in the winter of 2009-2010.
In Fig. 9 we forecast the model-independent chameleon
constraints that will be achieved by GammeV–CHASE.
These constraints span many orders of magnitude in βγ ,
bridging the gap between the constraints from Gam-
meV and from particle accelerators. We show that
the improved control of PMT systematics will allow
GammeV–CHASE to probe smaller couplings than Gam-
meV. Rapid PMT switching and multiple runs at lower
magnetic fields will allow us to constrain βγ as high as
1016. Our forecasts show that GammeV–CHASE will be
able to probe a large range of couplings even at masses as
high as the dark energy mass scale, 2.4 × 10−3 eV. Fur-

thermore, improvements to the pumping system allow
GammeV–CHASE to probe many commonly used and
well understood chameleon potentials, including quartic
potentials, as well as inverse power law and exponential
potentials that could explain the observed cosmic accel-
eration.

Quartic chameleons have been discussed extensively in
the literature [31, 32, 36, 41]. Torsion pendulum experi-
ments such as [33] have ruled out matter couplings up to
βm = 1, but are insensitive to chameleons with stronger
matter couplings. It is precisely these chameleons which
will be trapped in the GammeV–CHASE chamber. We
have shown that GammeV–CHASE will complement
laboratory searches for quartic chameleons by probing
strongly coupled chameleons, as shown in Fig. 10. For
self-couplings a few orders of magnitude smaller than
unity, constraints on quartic chameleons will span seven
orders of magnitude in βm and five orders of magnitude in
βγ , extending from the upper bound βγ ∼ 1016 provided
by particle accelerators down to βγ ∼ 1011. GammeV–
CHASE is also complementary to searches for a vary-
ing fine structure constant. If we extend a simple model
of αEM variation such as [42] to a chameleon theory, by
adding a φ4 potential and a Yukawa matter coupling with
coupling constant proportional to mass, then constraints
from GammeV–CHASE will be more powerful than those
from laboratory or cosmological tests in a large portion
of the parameter space.

Chameleon dark energy, with runaway potentials of
the form V (φ) = M4

Λf(φ/MΛ) and MΛ = 2.4× 10−3 eV,
have also been studied in the literature [14]. In such
potentials, f(φ/MΛ) → 1 as φ runs off to large values,
corresponding to low matter densities such as the cur-
rent cosmological background density. We have applied
our forecast GammeV–CHASE constraints to chameleon
dark energy models with inverse power law potentials
V (φ) = M4

Λ[1 + (MΛ/φ)n] as well as exponential poten-
tials V (φ) = M4

Λ[1 + exp(−φ/MΛ)]. Figure 11 shows the
constraints that GammeV–CHASE will be able to place
on inverse power law chameleon dark energy. For the
simplest model, n = 1, we will be able to probe matter
couplings ranging from βm " 105 to βm " 1016 and from
βγ # 1011 all the way up to the accelerator constraints,
βγ ∼ 1016. At the largest matter ouplings, βm > 1012,
we will probe parameters inaccessible to astrophysical
dimming constraints and bounds on variations in the
fine structure constant. GammeV–CHASE constraints
on dark energy with an exponential potential, shown in
Fig. 12, will be similarly powerful, covering matter cou-
plings in the range 106 < βm < 1016. Furthermore,
this range of matter couplings is completely inaccessi-
ble to astrophysical dimming constraints, which apply to
chameleons with low masses in the galaxy, and bounds
from αEM variation, applicable to models with large vari-
ations in φ. Thus we have shown that GammeV–CHASE
will probe large ranges of previously unexplored param-
eter space for the simplest models of chameleon dark en-
ergy.
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