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Abstract. One of the main strengths of ROOT input and output (I/O) is its 
inherent support for schema evolution.  Two distinct modes are supported, 
one manual via a hand coded streamer function and one fully automatic via 
the ROOT StreamerInfo.  One draw back of the streamer functions is that 
they are not usable by TTree objects in split mode.  Until now, the user could 
not customize the automatic schema evolution mechanism and the only 
mechanism to go beyond the default rules was to revert to using the streamer 
function.  In ROOT 5.22/00, we introduced a new mechanism which allows 
user provided extensions of the automatic schema evolution that can be used 
in object-wise, member-wise and split modes.  This paper will describe the 
many possibilities ranging from the simple assignment of transient members 
to the complex reorganization of the user's object model.  

1.  Introduction 
One of the strengths of the ROOT Input/Output package is its support for schema evolution.  Two 
distinct modes have been supported so far, one manual via a hand coded streamer function and one 
fully automatic via the ROOT StreamerInfo.  The fully automated simple schema evolution lets the 
developers trivially make small changes to their data model.  For example a data member that used 
to be a float can become a double while still being able to be read from old files.  The second 
technique requires the developer to write a C++ function handling explicitly the schema evolution; 
we call this technique “hand coded schema evolution.”  This technique offers almost complete 
freedom to the developer but requires specific coding for each variant of the class layout.  It is also a 
bit awkward for very complex class layout reshuffling, for example in the case of moving the value 
of a data member to or from a sub-object. 

ROOT I/O now supports a third mechanism for schema evolution.  This paper covers in details 
this new technique: “Customizable Automatic Schema Evolution”.  This technique expands on the 
existing infrastructure developed for the fully automated simple schema evolution and opens it to 
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user provided customization.  It allows the implementation of very complex schema evolution of the 
class layouts in a simple and efficient manner. 

2.  Historical Perspective 
ROOT is a C++ framework for data processing, created at CERN, at the heart of the research on 
High-Energy and Nuclear Physics (HENP). Every day, thousands of physicists use ROOT based 
applications to analyze and visualize their data. ROOT started in 1995 [1]. It grew from a private 
project of two developers to the officially supported LHC analysis toolkit. It is currently developed 
by a small team with members from several laboratories across the world. 

One of the core functionalities of ROOT since it inception is its ability to read and write large 
amount of data.  One of the initial requirements is the ability to read back data that has been written 
several years back within impeding change in the user’s class layout.  And thus ROOT has been 
supporting schema evolution since its very first release.  

2.1.  Early days 
At first, the I/O was driven by streamer class functions that were to be written explicitly by the user 
for each class.  The purpose of the streamer functions is to iterate through each of the class members 
and to read or write their values to an I/O buffer.  When the I/O buffer has been filled, it is 
optionally compressed and it is written to the ROOT file on disk.   

Relying on the user to explicitly write these streamer functions was a very redundant, labor 
intensive and error prone practice.  As early as release version 0.9 of ROOT, we introduced the 
ability to automatically generate these streamer functions using a new utility called rootcint.  
rootcint relies on a C++ interpreter (CINT [2][3][4]) to be able to generate a dictionary file that 
describes the class layouts being used.  Using these descriptions, rootcint is also able to generate 
the streamer function (See Figure 1). 

 

 

Figure 1: Streamers in ROOT version 0.90 
 
To be able to support reading a file written with an older class layout, the streamer stores along 

side the data a class version number.  This class version number can be used to write code handling 
schema evolution.  For example, in Figure 2, the class TAxis was modified to add 2 new data 



 
 
 
 
 
 

members.  To support reading both the old and new class layout the user had to write explicit code; 
See Figure 2, in particular the code starting at “if (R__v > 3)”. 

 
Figure 2: Hand coded schema evolution 

2.2.  Automatic Schema Evolution 
With the increasing number of legacy class layouts to support, manually maintained streamer 
functions become quickly extremely complex and hence more vulnerable to the introduction of 
deficiencies.  In addition any seemingly minor changes to the class layout, like adding a new 
member or changing the type of a member from short to int, requires manual attention. 

In order to alleviate these issues, we introduced a new streaming mechanism that leverages the 
availability of the class layout dictionary.  The new mechanism relies on StreamerInfo objects that 
describe the name and type of the data member to be stored for one specific class.  These 
StreamerInfo objects are stored along side the data in the ROOT file.   

Thanks to the addition of these StreamerInfo objects in the file, the ROOT file became self-
describing and support for forward compatibility and reading without the original shared library 
became possible.  Forward compatibility is the ability to read with an older version of the software a 
file that was written with a newer version of the software.  

The self-describing capability also allows other frameworks [7] to be able to read ROOT files 
since they can interrogate the file to learn how to interpret the file’s content. 

When loading a StreamerInfo description from a file, the framework can lookup the memory 
offsets of the data members by simply matching the data member names from the StreamerInfo with 
the data member names lists in the dictionary. This is however only meaningful if the data members 
have the same name and contain the same logical information. 

When the names in the streamer information and in dictionary information match but the types 
of the data members differ between disk and memory and the type is a basic type then 
the framework will attempt to do the conversion. 

2.3.  Object-wise and member-wise streaming 
ROOT’s TTree is a collection that is optimized also for I/O. When a branch containing objects of a 
given class is split, the description of the class’ members is used to create sub-branches. This can be 



 
 
 
 
 
 

done recursively.  This storage scheme is called a member-wise or column-wise layout (CWS; 
Figure 3), as opposed to object-wise or row-wise storage (RWS) that is usually found in databases. 

   

Figure 3: Column-wise storage 

 
In CWS, just like in RWS, a collection (“table”) of similar objects (“rows”) is assumed.  

However, RWS stores all data members of the first object, then all those of the second object, and 
so on, whereas CWS stores the first data member of all objects consecutively, then the second data 
member of all objects, etc. CWS allows reducing the input operations and the amount of transferred 
data, because it makes it possible to only read the needed parts of each object. All other members of 
the object keep the values defined by the class default constructor. When iterating through the 
collection, data members that need to be read are consecutive on the storage medium in the case of 
CWS. This allows block-wise reading of the data for several entries in one go, something massively 
favored by all modern operating systems and storage media.  

2.4.  Limitation of the automatic schema evolution 
Thanks to the StreamerInfo, ROOT is able to automatically support simple class layout changes, in 
particular: 

• Changing the order of the members 
• Changing simple data type (float to int) 
• Adding or removing data members, base classes 
• Migrating a member to base class 

However it did not allow for any customization beyond these simple transformations.  In 
particular it did not support change in the type of a data member from or to a class type and did not 
support change in semantic of the member (for example change in units).  Whenever such changes 
were required the developer had to revert to using a manually maintained streamer function.  
However, those functions cannot be used during member-wise streaming. 

3.  Customizable Automatic Schema Evolution 
In order to lift these restrictions while leveraging the existing infrastructure, we introduced a 
mechanism to customize the StreamerInfo. 



 
 
 
 
 
 

3.1.  Description 
The mains goal of this new customizing framework for the automatic schema evolution is to support 
the following class layout changes: 

• Assign values to transient data members 
• Rename classes 
• Rename data members 
• Change in the hierarchy within the data structures or convert one class structure to another 
• Change the semantics of data members (for example change in units) 
• Allow accessing the TBuffer directly when needed 
• Ensure that the objects in collections are handled in the same way as the ones stored 

separately 
• Transform data before writing 

The implementation also needs to support the use of the customization even without access to 
the original user shared library (‘bare ROOT’.) 

Users can now supply a function to convert individual data members from disk to memory and a 
rule defining when to apply the transformation. 

A schema evolution rule is composed of: 
• sourceClass, version, checksum: identifier of the on disk class  
• targetClass:  name of the class in memory 
• source: list of type and name of the on disk data members needed for the rule 
• target: list of in memory data members modified by the rule 
• include: list of header files needed to compile the conversion function 
• code: function or code snippet to be executed for the rule 

 
Rules can be registered either via a LinkDef.h file, a XML selection file, direct calls to the C++ 

API or in a ROOT file.  At the time of writing, a class layout can be given an easy to use version 
number by either using the ClassDef macro with the class definition or using the RootClassVersion 
macro outside of the class definition.  When a class version number is not provided the way only to 
refer to a class layout is to use the ‘checksum’ that ROOT calculate for it based on the data member 
name and type that it contains. 

3.2.  Examples 
When using rootcint to generate the dictionary, the LinkDef.h file can be instrumented with rules 
like: 

 
#pragma read sourceClass=”oldname” version="[1-]" checksum=“[12345,23456]” \ 
      source=”type1 var; type2 var2" \ 
      targetClass=“newname” target=”var3" \ 
      include=“<cmath> <myhelper>” \ 
      code=”{ … ‘code calculating var3 from var1 and var2’ … }" 

When using genreflex to generate the dictionary, the XML selection can be instrumented with 
rules like: 

<read sourceClass=”oldname” version="[4-5,7,9,12-]” checksum="[12345,123456]”  
           source=”type1 var; type2 var2”  
           targetClass=”newname” target=”var3”  
           include=“<cmath> <myhelper>”   
<![CDATA[  
   … ‘code calculating var3 from var1 and var2’ … 
]]> </read> 



 
 
 
 
 
 

 
A similar string based interface is also available in C++.  In all 3 cases, the code to be executed 

can be passed either explicitly in the string argument or via a function name or pointer. 

3.2.1.  Setting a transient member 
One of the main weaknesses of the fully automated schema evolution is its handling of transient 
members.  When streaming the information from disk into a previously used object (most 
commonly used pattern when reading information from a TTree), the transient members were 
untouched and retained their previous values.  For example: 

 
class MyClass { 
private: 
    Type fComplexData; 
    Double_t fValue; //! Calculated from fComplexData 
    Bool_t fCached;  //! True if fValue has been calculated 
public: 
    double GetValue() { if (!fCached) { fValue = … ; }; return fValue; } 
}; 

 
In the past when re-using an object of type MyClass, the value of the data members ‘fValue’ and 

‘fCached’ would be unchanged.  Consequently a call to GetValue would return the information 
from the previous incarnation of the object rather than the newly loaded information.  Using the 
new schema evolution rules mechanism, for example with: 

 
#pragma read sourceClass="MyClass" version="[1-]” source=”” 
   targetClass=”MyClass" \  
   target=”fCached" \ 
   code="{ fCached = false; }" 

 
the value of ‘fCached’ will now be updated using the provided code every time an object of type 
MyClass is being read into memory.  In this example, sourceClass=”MyClass” indicates that this 
rule apply to objects of type MyClass.  The text version=”[1-]” indicates that this rule applies to all 
revisions of the class layout; source=”” indicates that the calculation of ‘fCached’ does not require 
any input; target=”fCached” indicates that this rule will update the value of the data member named 
‘fCached’ and thus needs to be executed whenever the data member fCached might be accessed. 

3.2.2.  Merging several data members 
A classical example of complex schema evolution is the case where two or more data members are 
merged together in order to save space in memory.  For example: 

 
class MyClass { 
private: 
   int fX; 
   int fY; // Values between 0 and 99 
   int fZ; // Values between 0 and 9 
public: 
   int GetX() { return fX; } 
   int GetY() { return fY; } 
   ClassDef(MyClass,8);  
}; 

class MyClass { 
private: 
   long fValues; // Merging of fX, fY and fZ 
public: 
   int GetX() { return fValues / 1000; } 
   int GetY() { return (fValues%1000)/10; } 
   int GetZ() { return fValues % 10; }   
   ClassDef(MyClass,9); 
}; 
 

MyClassLinkDef.h 

MyClass.h 



 
 
 
 
 
 

Without the new infrastructure, supporting this case required the implementation of a streamer 
function that would read explicitly the values of fX, fY and fZ into temporary variables and assign 
the merged value into the data member fValues.  Because the streamer function can only extract 
information from a single buffer, the streamer function cannot be used when splitting a TTree or 
during member-wise streaming.   Now, the following schema evolution rule: 

 
#pragma read sourceClass="MyClass" version="[8]" targetClass="MyClass " \ 
   source="int fX; int fY; int fZ" target=“fValues" \ 
   code="{ fValues = onfile.fX*1000 + onfile.fY*10 + onfile.fZ; }" 

 
allows for the seamless support for both the separated and the merged class layout even when the 
object has been split or streamed member-wise.  In this example, sourceClass=”MyClass” indicates 
that this rule applies to objects of type MyClass.  The text version=”[8]” indicates that this rule 
applies only when reading object written with the 8th class layout of the class MyClass.  
target=”fValues” indicates that this rule will update the value of the data member named ‘fValues’ 
and thus needs to be executed whenever the data member fValues might be accessed.   

The text source=”int fX; int fY; int fZ” indicates the types and names of the original members 
and tells the I/O system which members will need to be read from the input before executing the 
rule.  The types are necessary in order for the rule to be precompiled even though it does not have 
direct access to the exact shape of the 8th layout of the class MyClass since this information is not in 
the header file (however it is stored in the ROOT files and thus if the types are not provided the rule 
can be compiled just in time when actually reading the file). 

In the code=”…” section, the notation onfile.Varname gives direct access to the input value of 
the data member named ‘Varname’ as extracted from the TBuffer before it undergoes any 
conversion.  The variable onfile is a placeholder containing all the data members that have been 
listed in the source=”…” section and is filled before the rule is run. 

3.2.3.  Renaming a class 
One of the most requested new features for the schema evolution has been the ability to rename 
classes.  In this example we show not only how to rename a class but also how to change the class 
layout at the same time. 

 
class MyClass { 
private: 
   int fX; 
   int fY; // Values between 0 and 99 
   int fZ; // Values between 0 and 9 
public: 
   int GetX() { return fX; } 
   int GetY() { return fY; } 
   ClassDef(MyClass,8); 
}; 

class Properties { 
private: 
    long fValues; // Merging of fX, fY and fZ 
 
public: 
    int GetX() { return fValues / 1000; } 
    int GetY() { return (fValues%1000)/10; } 
    int GetZ() { return fValues % 10; } 
    ClassDef(Properties,2); 
}; 

 
#pragma read sourceClass="MyClass" version="[9]" targetClass="Properties” 
#pragma read sourceClass="MyClass" version="[8]" targetClass="Properties" \ 
      source="int fX; int fY; int fZ" target=“fValues" \ 
      code="{ fValues = onfile.fX*1000 + onfile.fY*10 + onfile.fZ; }” 

 

MyClassLinkDef.h 

MyClassLinkDef.h 



 
 
 
 
 
 

The first rule simply indicates that when attempting to read an object of type MyClass (the 
sourceClass) with the 9th layout of the class MyClass (version=”[9]”) into an object of type 
Properties, the I/O system should succeed and apply the automatic schema evolution rules. 

The second rule indicates that when reading the 8th layout of the class MyClass (version=”[8]”) 
into an object of type Properties, the I/O system should also apply the rules merging fX, fY and fZ 
into fValues (see 3.2.2). 

3.2.4.  Nested Objects 
The new infrastructure also opens up new possibilities in term of schema evolution.   A streamer 
function only has access to the version number of the class layout for the current object being read 
and can only (short of very complex coding) use sub-objects after they have been read from the 
input.   

Let’s take the example of a class named Event whose 2nd version contains an “extended Track” 
object.  Over time, the layout of the class Event did not change but the “extended Track” went 
through many changes.  Now we would like to modify the class Event (its 3rd version) where we 
replace the “extended Track” with a more compact version of the Track class, in addition, we are 
moving some of the information that was stored in the “extended Track” directly into the Event 
object. 

 
#pragma read sourceClass=“Event" version="[2]" targetClass=“Event" \  
      source=“Track fTrack" target=“fId; fCompactTrack" \ 
      code="{ if( onfile.fTrack->GetVersion() == 3 ) \ 
              { \ 
                 fId = onfile.fTrack->GetMember<double>( id_fTrack_fB) + \ 
                           onfile.fTrack->GetMember<double>( id_fTrack_fC ); \ 
                 onfile.fTrack->Load( fCompactTrack ); \ 
              } \ 
              else if ( onfile.fTrack->GetVersion() == 4 ) \ 
              { \ 
                  fId = onfile.fTrack->GetMember<double>( id_fTrack_fB); \ 
                  onfile.fTrack->Load( fCompactTrack ); \ 
              };  
      }" 

 
In the code section, the old Track object can be accessed (via onfile.fTrack) as it was when it was 

written.  This is used to extract the fB and fC data members.  Then the registered (as well as the 
automatic) schema evolution rules are used to load the “extended Track” into the more compact 
representation (onfile.fTrack->Load( fCompactTrack ) ). 

3.3.  Forward and backward compatibility of analysis code 
The new customizable schema evolution rules can enable the re-use of an old script to read new 
data.  For example, let’s take the case where our collaboration writes a class MyClass that contains 
fPx, fPy, fPz data members expressing some location in x,y,z coordinates and writes a ROOT file 
(t1.root) using this class layout. We can then develop a script (work1.C) relying on this class layout. 
Later on, our collaboration upgrades the class MyClass to use ρ,θ,ϕ coordinate (fR,fT,fP) and writes 
new file (t2.root) using this new class layout. 

If we want to be able to process this new file, using the old infrastructure we had no choice but 
to upgrade our script to be able to handle the new class layout (and rely on a streamer function  



 
 
 
 
 
 

written by the collaboration). With the new customizable schema evolution rule, we now have two 
more options: 

 
• We can write a backward compatibility rule that transforms the fPx,fPy,fPz layout into the 

fR,fT,fP layout and upgrade our script to use fR,fT,fP.  Our new script would then be able to 
read both t1.root and t2.root (even if the collaboration did not provide a streamer function or 
a schema evolution rule). 
 

• We could also write a rule that transforms the fR,fT,fP layout into the fPx,fPy,fPz layout and 
leave our script as is.  With this forward compatibility rule, our old script would still be able 
to read the old t1.root file but also be able to read the new t2.root file.  

 
This powerful feature allows for the long-term support of users’ analysis packages involving 

macros even if the experimental software and I/O schema has changed. 

4.  Conclusion 
The new customization framework significantly enhances the capabilities of the ROOT schema 
evolution infrastructure.  It increases flexibility when reading old files, since it now supports 
complex schema when using member-wise streaming.  Thanks to its dependency tracking it also 
allows for these complex rules to be run after reading only the minimal data set required.  It 
supports both forward and backward compatibility.  It even gives the possibility to perform complex 
evolution even without user classes since the rule definition can be saved in the ROOT file. 
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