

Fermilab-Conf-09-645-APC December 2009

SIMULATION AND VERIFICATION OF DPA IN MATERIALS* †

N.V. MOKHOV, I.L. RAKHNO, S.I. STRIGANOV Fermilab,MS 220, P.O. Box 500 Batavia, IL 60510, U.S.A.

Abstract

A recent implementation and verification of consistent modeling of displacements per atom (DPA) in the MARS15 code are described for high-energy particles and heavy ions.

 *Work supported by Fermi Research Alliance, LLC under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.
*Presented paper at Workshop on Applications of High Intensity Proton Accelerators, October 19-21, 2009, Batavia, Illinois

SIMULATION AND VERIFICATION OF DPA IN MATERIALS

N.V. MOKHOV[†], I.L. RAKHNO, S.I. STRIGANOV

Fermilab, MS 220, P.O. Box 500 Batavia, IL 60510, U.S.A.

A recent implementation and verification of consistent modeling of displacements per atom (DPA) in the MARS15 code are described for high-energy particles and heavy ions.

1. Introduction

Radiation damage is displacement of atoms from their equilibrium position in a crystalline lattice due to irradiation with formation of interstitial atoms and vacancies in the lattice. Resulting deterioration of material (critical) properties is measured – in the most universal way – as a function of displacements per target atom (DPA). DPA is a strong function of projectile type, energy and charge as well as material properties including its temperature. The phenomenon becomes very serious for high-intensity beams especially for high-charge heavy ions (~ z^2), being identified, for example at FRIB and FAIR, as one of the critical issues, limiting lifetime of targets to as low as a few weeks. A recent implementation of consistent DPA modeling into the MARS15 code [1] and its verification are described in this paper.

2. DPA Modeling in MARS15 Code

A model used in the MARS15 code for DPA calculations in electromagnetic processes [2] has been extended to an arbitrary projectile of energy ranging from 1 keV to 10 TeV. A primary knock-on atom (PKA) created in nuclear collisions can generate a cascade of atomic displacements. This is taken into account via damage function v(T). DPA is expressed in terms of damage cross section σ_d :

$$\sigma_d(E) = \int_{T_d}^{T_{max}} \frac{d\sigma(E,T)}{dT} v(T) dT,$$

[†] E-mail: mokhov@fnal.gov

where E is kinetic energy of the projectile, T is kinetic energy transferred to the recoil atom, T_d is the displacement energy, and T_{max} is the highest recoil energy according to kinematics. In a modified Kinchin-Pease model [3], v(T) is zero at $T < T_d$, unity at $T_d < T < 2.5T_d$, and $k(T)E_d/2T_d$ at $2.5T_d < T$, where E_d is "damage" energy available to generate atomic displacements by elastic collisions (Fig. 1). T_d is an irregular function of atomic number (~40 eV). The displacement efficiency, k(T), introduced as a result of simulation studies on evolution of atomic displacement cascades [4], drops from 1.4 to 0.3 once the PKA energy is increased from 0.1 to 100 keV, and exhibits a weak dependence on target material and temperature.

Figure 1. Damage energy Ed versus PKA energy.

For electromagnetic elastic (Coulomb) scattering, the Rutherford crosssection with Mott corrections and nuclear form-factors (a factor of two effect) are used in our model. Resulting displacement cross-sections due to Coulomb scattering are shown in Fig. 2 for various projectiles on silicon and carbon targets. For elementary particles, energy dependence of σ_d disappears above 2-3 GeV, while it continues to higher energies for heavy ions. For projectiles heavier than a proton, σ_d grows with a projectile charge z as z^2/β^2 at $\gamma\beta > 0.01$, where β is a projectile velocity. All products of elastic and inelastic nuclear interactions as well as Coulomb elastic scattering of transported charged particles (hadrons, electrons, muons and heavy ions) from 1 keV to 10 TeV contribute to DPA in the MARS15 model.

Figure 2. Displacement cross-section in silicon and carbon for various projectiles.

3. DPA Calculation Comparison

4

In this section, results on DPA calculated with the new MARS15 model for three cases are compared with those obtained with other DPA-capable codes, SRIM/TRIM, PHITS and MCNPX. The first case is a 1-GeV proton beam of 1-cm² area on a 3-mm thick iron target. SRIM, PHITS and MCNPX results are courtesy of Susana Reyes. As one can see in Table 1, there is a quite substantial difference between the predictions, with SRIM giving a very small value and the MARS15 result being a factor of 2.6 to 2.9 above those by PHITS and MCNPX. Calculated with MARS15 contributions to DPA of physics processes are as follows: 75.5% nuclear inelastic, 16% nuclear elastic, 2.75% electromagnetic elastic, 5.5% low-energy neutrons, and 0.25% electrons. The dominance of nuclear interactions in this case explains the above differences.

Table 1. DPA for 1-GeV protons on 3-mm iron.

		1		
Code	SRIM	PHITS	MCNPX	MARS15
DPA/pot	1.18e-22	2.96e-21	3.35e-21	8.73e-21

The second case is a 0.32-GeV/u Uranium beam of 9-cm² area on a 1-mm thick beryllium target. SRIM and PHITS results are again a courtesy of Susana Reyes. Table 2 shows that SRIM and MARS15 results are now very close to each other, while those calculated with PHITS are a factor of 70 lower. Calculated with MARS15 contributions to DPA of physics processes are as

follows: 0.3% nuclear inelastic, 99.06% electromagnetic elastic, 0.02% lowenergy neutrons, and 0.62% electrons. The dominant role of Coulomb scattering in this case explains the similarity of the SRIM and MARS15 predictions.

Table 2. DPA for 0.32-GeV/u Uranium on 1-mm beryllium target.				
Code	SRIM	PHITS	MARS15	
DPA/pot	2.97e-20	5.02e-22	2.13e-20	

The third case is a 0.13-GeV/u Germanium beam of 0.004-cm² area on a 1.2mm thick tungsten target. TRIM and PHITS results are a courtesy of Yosuke Iwamoto. Table 3 gives calculated DPA values in the first hundred microns of the target. The difference between TRIM and MARS15 needs to be understood.

Table 3. Entrance DPA for 0.13-GeV/u Germanium on 1.2-mm tungsten target.

tungsten tu	1500.		
Code	TRIM	PHITS	MARS15
DPA/pot	8.04e-16	1.25e-17	1.43e-16

4. BLIP Beam Tests for 0.7-MW NuMI/LBNE Target

A majority of data on radiation damage is available for reactor neutrons. Studies with hundred MeV protons [5] have revealed that a threshold of about 0.2 DPA exists for carbon composites and graphite. MARS15 studies helped realize that the BLIP beam tests with 0.165-GeV protons can emulate the NuMI neutrino target situation for a 120-GeV proton beam (Table 4). It turns out that despite a substantial difference in the beam energies in these cases, nuclear interactions and Coulomb scattering contribute about the same way (45-50% each) to the peak DPA in thick graphite targets irradiated at these two facilities.

Target	E _p (GeV)	Beam σ (mm)	$N_p (1/yr)$	DPA (1/yr)
NuMI	120	1.1	4.0e20	0.45
BLIP	0.165	4.23	1.12e22	1.5

Table 4. Peak DPA in POCO graphite targets at BLIP and NuMI.

References

1. N.V. Mokhov, Fermilab-FN-628 (1995); http://www-ap.fnal.gov/MARS/.

- 2. I.L. Rakhno, N.V. Mokhov, S.I. Striganov, Fermilab-FN-0817-APC (2008).
- 3. G.H. Kinchin, R.S. Pease, Rep. Prog. Phys., 18, 1 (1955).

4. R. E. Stoller, J. Nucl. Mat., 276, 22 (2000).

5. N. Simos et al., MOPC093, in Proc. of EPAC08, Genoa, Italy, June 2008.