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Abstract

I discuss a model for free-for-all passenger boarding which is employed by some discount air

carriers. The model is based on the principles of statistical mechanics where each seat in the

aircraft has an associated energy which reflects the preferences of travelers. As each passenger

enters the airplane they select their seats using Boltzmann statistics, proceed to that location,

load their luggage, sit down, and the partition function seen by remaining passengers is modified

to reflect this fact. I discuss the various model parameters and make qualitative comparisons of

this passenger boarding model with those that involve assigned seats. The model can be used to

predict the probability that certain seats will be occupied at different times during the boarding

process. These results might provide a useful description of this boarding method. The model is a

relatively unusual application of undergraduate level physics and describes a situation familiar to

many students and faculty.
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I. INTRODUCTION

The study of physics allows students to gain knowledge and acquire skills that can be

applied to a host of different fields, many of which are not obviously related to physics.

Some examples include the traveling salesman problem which can be solved via simulated

annealing1,2 and entropy considerations in image reconstruction.2 Bachmat et al.3 used the

principles of general relativity to model airplane passenger boarding. They found that

the boarding process can be described by a two-dimensional Lorentzian geometry. The

time required for passengers to sit in their assigned seats is related to the number of other

passengers that are in their future light cone.

A recent study of airplane boarding4 applied a minimization algorithm that is commonly

employed in physics (Markov chain Monte Carlo) to optimize the passenger boarding pro-

cess. This application is not the first attempt to optimize passenger boarding; computer

simulations have often been employed to study the boarding process.4–6 These studies re-

quire that the passengers have assigned seats. Although most carriers assign seats, not

all do. Some discount carriers employ a free-for-all boarding approach where passengers

can sit anywhere that they wish. Although it may appear prone to disaster this boarding

strategy, gives some of the fastest boarding times in the industry.7 This fact alone merits

understanding the underlying principles of the free-for-all boarding procedure.

A cursory attempt to model free-for-all boarding would be to assign each passenger a

random seat within the aircraft. However, such a random assignment ignores subtitles that

are fundamental to the success of this boarding method. Of particular importance is the

fact that passengers choose the seat where they will sit based on the state of the cabin at the

time that they enter. Passengers might prefer to sit in either a window seat or an aisle seat

if these seats are available. Or, they may prefer to sit near the front or rear of the airplane.

Additionally, their preference might change based on the decisions of the passengers who

are in front of them in the line. This capacity to adjust based on the state of the airplane

makes the free-for-all boarding process successful.

Statistical mechanics provides an excellent framework with which to study free-for-all

airplane boarding. In this article I present a model for free-for-all boarding where each seat

inside the cabin is assigned an “energy” which reflects the overall desirability of a particular

seat. When passengers enter the airplane they choose which seat to occupy using Boltzmann
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statistics. As the airplane fills, the partition function is updated to reflect the evolving state

of the aircraft cabin. Thus, the free-for-all boarding process can be studied as a sequence of

passenger decisions modeled by statistical mechanics considerations.

In addition to studying the boarding process we may study the outcome or final seating

arrangement of the aircraft for airplanes that are only partially filled (the seating arrange-

ments of full flights are trivial) or the seating arrangement at any time during the boarding

process. Instead of modeling the seat selection of each passenger during boarding, we deter-

mine the probability that a particular seat will be occupied by a passenger at the time of

interest by treating the passengers as a fermion gas.

The discussion proceeds as follows. I discuss in Sec. II the model of the airplane and the

statistical properties of the passengers. I then discuss the application of passenger model

to the boarding process, including how passengers move within the airplane. I discuss in

Sec. III the airplane boarding times given by the model and the effects of changes to the

model parameters (Sec. IIIA). Section III B gives a brief comparison of the results of this

model to the results of the assigned-seating model used in Ref. 4. Section IV discusses

the final states of a partially filled aircraft using Fermi-Dirac statistics to determine the

occupancy of the seats at the end of the boarding process (or at any instant during the

boarding process). Finally, I discuss the utility of this model for various classes of people

including students, educators, and airline executives.

II. DESCRIPTION OF MODEL

The airplane model and algorithm has three components: the geometry and characteris-

tics of the airplane, the movements of the passengers inside the airplane, and the decision-

making process of the passengers. The first two components are largely details and are less

important in terms of the behavior of the model. The third component is where statistical

mechanics plays its major role; the decisions of the typical passenger is modeled here.

A. Decisions, energy, and temperature

Each seat in the airplane is assigned an energy which characterizes how desirable a seat

appears to the average passenger. If a seat has a small energy or a large negative energy,
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it is more likely to be chosen. (I use negative energies here solely for the image of having

the passengers “bind” to the seats – adding a constant to the seat energies would not

affect the results.) When passengers enter the airplane, they choose a seat with probability

exp(−εi/T )/Z where εi is the energy of seat i, T is the temperature, and

Z =
∑

i

e−εi/T (1)

is the partition function; the counter i runs over all accessible (i.e. unoccipied) seats. Boltz-

mann’s constant kB is set to unity so that temperature is measured in units of energy. I use

electron volts (eV), but the choice is arbitrary. To choose a seat a random number between

0 and 1 is generated and the Boltzmann factors are summed until the total probability is

greater than the random number. The last seat to be added to the sum is the selected seat.

(The order of the summation does not matter provided that the ordering scheme does not

depend on the value of the random number.) Because the seat decisions are made by indi-

vidual passengers based on the currently available seats, they are analogous to assigning a

single particle a state from all available single particle states; thus the sum of the Boltzmann

factors in Eq. (1) is the appropriate partition function.

The temperature of the passengers is a measure of their apathy in the seat selection

process. For very high temperatures (T � |ε| where ε represents the typical magnitude of

the energies of the seats) all of the seats are essentially equal, the energies being a very small

fraction of the “thermal” energy of the passengers when they make their seat selection. For

very low temperatures the differences between seats appear large and passengers choose the

best available seat at all times. Presumably the temperature is determined by human nature

and by the environment. Although most passengers are not likely to be at precisely the

same temperature because of their different histories, using a representative temperature to

characterize the mean behavior should be appropriate, particularly if the boarding process is

reproducible across several different flights. Given the consistent performance of free-for-all

boarding,7 this assumption is likely to be justified.

B. Airplane description

Like the study described in Ref. 4 the standard airplane used for this study seats 120

passengers and has six passengers per row with 20 rows. There is no first-class cabin. The
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energies of the seats are symmetric about the aisle so that a window, middle, or aisle seat

for a given row has the same energy as its counterpart across the aisle. In addition, there

is a linear increase in the energies from the front to the back of the airplane. This increase

initially serves to make the front of the plane more desirable than the back. I investigate

changes to this assumption and in other parameters in Sec. IIIA. Having the energies of

the seats vary with higher-order polynomials may be a more accurate description, but as

with almost all parameters for this model it would need to be compared empirically with

passenger data – an exercise that is beyond the scope of this work.

The three energies for the seats in a given row are nominally assigned values of −8 eV

for aisle seats, −7 eV for window seats, and −5 eV for middle seats; the temperature is fixed

at 1 eV. The effect of these energies is that the aisle seats are chosen 70% of the time, the

window seats are chosen 26% of the time, and the middle seats are chosen roughly 4% of

the time. The energies in each successive row increases by 0.25 eV. The result of this choice

is that the probability of the first passenger sitting in the last row of the airplane is roughly

1% of the probability that he/she will sit in the first row. Figure 1 shows the energies of the

seats inside the aircraft.

C. Passenger movement

For the boarding process each passenger is assigned an amount of time that they require

to load their luggage, a random number between 0 and 100 time units. One time unit

corresponds to the time that it takes for a passenger to walk the distance between adjacent

rows in the airplane. All passengers walk at the same rate. Other distributions from which

the luggage loading times are selected, such as a Gaussian or exponential distribution, were

studied in Ref. 4 and are not pursued here. The use of different distributions does not

significantly alter the results. The values of the various model parameters are chosen to

compare our results with those in Ref. 4.

As the passengers walk down the aisle of the airplane they obey the following rules: (1)

a person will not begin to move unless there are two spaces between them and the person in

front of them – a space being equal to a row; (2) if a person is moving, then they will occupy

any empty space in front of them prior to stopping (thus, the passengers bunch-up as they

come to a halt); (3) passengers require one space either in front of or behind them to load
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their luggage; and (4) passengers only load their luggage into the bins above their assigned

row. I do not account for the time that it takes for a passenger to slide past someone in the

aisle or middle seats to get to the window seat. Such a delay would be straightforward to

incorporate, but would not serve any significant purpose here.

When a passenger sits down, the energy of their seat is changed to positive infinity

(causing the probability that that particular seat will be chosen again to vanish) and the

partition function is recalculated for subsequent passengers. Once a passenger has chosen

which seat to occupy they do not change that decision unless their selected seat becomes

occupied while they are walking down the aisle (e.g. by a different passenger who was in

front of them in the line). In this event the passenger chooses another seat based on the

partition function that results from using only the seats between their current row to the

back of the airplane. Thus, if a person’s seat is taken before they reach it, they will select

a new seat somewhere in front of them.

The exception to this rule is if an intended seat becomes occupied and there are no other

available seats to the rear of the airplane. In this case passengers will reverse their direction

and proceed toward the front of the cabin. Unlike the forward moving case, backward

moving passengers will sit in the first row that they come to which has an empty seat (again

using the partition function for that particular row to select their seat). These final rules

only affect a small fraction of the total passengers; the important idea is that each time

there is a decision to be made regarding seat selection, the seat is chosen according to the

probabilistic rules we have given. Although the passenger movement algorithm given here

may not match exactly what occurs in practice, the assumptions applied in this study are

reasonable. The overall order that the seats become filled is largely independent of these

rules; similar seat selection occurs if the passengers are instantly teleported to their seats

(though the airplane fills much faster in such a scenario).

III. RESULTS FOR FULL FLIGHTS

Here I report the results that this model gives for the time required to completely fill

an aircraft. I discuss the effects of changes to the various parameters including the mean

time required by passengers to load their luggage. Then, I discuss the effects of changing

the slope of the linear increase in the seat energies. Finally, I present some of the effects of

6



changing the different energies for the seats within a given row. I do not give a complete

exploration of the effects of changing the energies of the individual seats – instead I focus

on a few cases that identify the primary effects of changing these parameters. Also, I do

not explore changes to the airplane geometry, though some discussion of that issue can be

found.4

A. Differing parameter values

The time required for the all of the passengers to board the aircraft scales linearly with

the time that they require to load their luggage. Figure 2 shows the time required to fill the

aircraft for different values of the mean luggage loading times. Recall that the loading times

are assigned to the passengers from a uniform distribution. These data are generated from

100 realizations of the boarding process (including a reassignment of the luggage loading

times) and the bars represent the standard deviation of the resulting distribution of boarding

times.

The best fit line for these data is

Boarding time = 62.2τ + 306, (2)

where τ is the mean time required for passengers to load their luggage. The only regime

where this relation deviates from linear is when τ is much less than the amount of time

required by a passenger to walk the length of the airplane. Although this change from linear

behavior is very small, it motivates the use of uniform weights for the data when fitting

the line instead of inverse variances because there is less spread in the distribution of final

boarding times for smaller values of τ which results in an inappropriate fit for the points with

larger τ . Thus, Eq. (2) is a least-squares fit as though the points had equal uncertainties.

Another modification that affects the time to board the airplane is to change the slope of

the linear increase in the energies of the seats. The standard model has a slope of +0.25 eV

per row. Figure 3 shows the effect of changing this slope while keeping all other parameters

fixed. The resulting data are best fitted (using uniform weights) by

Boarding Time = 2960 − 14.7s + 7100s2, (3)

where s is the slope of the linear increase in the energies of the seats.
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We see from Fig. 3 that the airplane boards faster if there is no increase (or nearly

so) because, if there is some preference for one portion of the aircraft over another, the

passengers will tend to crowd in that area as they prepare to sit. This crowding causes an

inefficient use of the aisle where the passengers must stand to load their luggage. When

there is no preference for the front or back of the aircraft, passengers will more readily

spread themselves out along the length of the aisle and usually more passengers can load

their luggage simultaneously. This result is similar to what would happen if the temperature

of the passengers were increased; the preference for a particular portion of the cabin would

become less important and the passengers would spread out more along the aisle.

Altering the energies along a row of seats (the cross section) also affects the boarding

times. For example, if the sign of the energies in a row are changed, such that the middle

seats are preferred over the window and aisle seats, then the mean is very near that of the

standard model, changing from 3380 time units to 3450. In contrast, if each seat in a row

has the same energy, then the airplane boards more slowly – the mean changing to 3800

time units. This increase in boarding time is due to the fact that, coupled with the linear

trend, passengers are more likely to sit in the same portion of the aircraft. The effect of

having different energies for the different seats in a row is that the airplane will tend to fill

in phases with the aisle seats largely filling first (for the standard model), then the window

seats, and then the middle seats. This scenario is again a more efficient use of the aisle

of the aircraft because passengers stowing their luggage will be distributed along a larger

portion of the length of the aircraft. Therefore, the passengers are able to load their luggage

simultaneously rather than concentrating in a small region of the cabin and loading one at

a time.

B. Comparison with other boarding methods

If all of the seats in the aircraft have the same energy (or if the high temperature limit

is taken), the boarding is nearly equivalent to boarding passengers with assigned seats in a

random order. The mean of an ensemble of realizations of this case is 2900± 220 time units

which is very close to the mean of 2846 time units reported in Ref. 4 for this case. Most

of the difference can be accounted for by passengers who must reverse their direction and

return to the front of the aircraft to find an empty seat, which would not occur with the
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assigned seat/random order model.

The overall boarding times that are obtained with the free-for-all model are roughly the

same as the best boarding strategies with assigned seats4 such as boarding window seats

first, then middle seats, and then aisle seats. Although a direct quantitative comparison

between these models is not warranted without proper calibration, the assumptions that are

employed here give results that are in good qualitative agreement with those in Ref. 4 and in

industry practice. Thus, the model described here can be used to qualitatively compare the

benefits of different boarding procedures including free-for-all boarding and methods that

employ assigned seats.

IV. PARTIALLY FILLED AIRCRAFT

If the flight is only partially filled, the model can predict the likely seating arrangements

of the passengers after the boarding process has completed. It also can be used to predict

the distribution of seated passengers at various times during the boarding of a full flight.

In this case it is more straightforward to consider the passengers as a fermi gas (which is

true for all passengers except adults carrying infants in their lap) and use the Fermi-Dirac

distribution to determine the probability that a particular seat is occupied at a particular

time. The occupancy of a seat n with energy ε (that is, the expected number of passengers

in a seat with energy ε) is given by

n =
1

e(ε−µ)/T + 1
, (4)

where µ is the chemical potential of the system. The chemical potential characterizes the

energy of the seat that is likely to be occupied by the next passenger to board the airplane.

The chemical potential depends on both the number of passengers in the aircraft and

the temperature. At zero temperature the first unoccupied seat gives the chemical potential

and is equal to the fermi energy. As the temperature increases, the chemical potential may

be found by recognizing that the number of passengers is fixed and solving

N =
∑

i

1

e(εi−µ)/T + 1
(5)

for µ at the desired temperature. The result of this calculation is not included here but

the calculation is suitable for an undergraduate level computational problem. Figure 4
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shows how the seating distribution changes from a degenerate arrangement to a random

arrangement as the temperature increases.

Figure 5 shows the results of 100 realizations of the passenger boarding algorithm at

various temperatures and compares the results to the corresponding prediction of the Fermi-

Dirac occupancy distribution. Here there are are only 60 passengers, the mean boarding

time is 15 time units (to lessen the computational expense), and the temperature is given

by the stated values; otherwise the input parameters are those of the standard model de-

scribed earlier. Of particular interest is that the Boltzmann-type decisions of the individual

passengers coupled with the the fact that passengers don’t move once seated recovers the

Fermi-Dirac distribution; the largest discrepancy being for very low temperatures where

both distributions exhibit mathematical pathologies (i.e. division by zero) and where the

discrete nature of the allowed seat energies becomes more important (the chemical potential

is generally not equal to one of the allowed energy values so the distribution crosses a value

of 1/2 between the energy levels).

Although the chemical potential is often introduced in statistical mechanics classes by

allowing the environment to exchange particles with the system (the grand canonical ensem-

ble), particle exchange is not a necessary condition for its use. A discussion of the relation

between the chemical potential, temperature, energy, and number of particles in a system

can be found in Ref. 8. Also, when particles are exchanged with the environment it is

not necessary that the system and its environment be physically distinct (see, for example,

Ref. 9). For the system here, the chemical potential is implicitly defined by the temperature

and the number of particles. It characterizes the expected energy that the system would

gain (or lose) if an additional passenger were added (or removed) regardless of whether or

not it is physically possible to do so.

V. CONCLUSIONS

I have shown that the decisions made by the passengers in the free-for-all airplane board-

ing process may be effectively modeled using the principles of statistical mechanics. That

is, the desirability of a particular seat can be expressed as an energy, and the probability

of passenger choosing a particular seat can be estimated with Boltzmann statistics. We

can also use Fermi-Dirac statistics to identify the probability that a particular seat will be
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occupied at any time during the boarding process.

Airplane boarding is a somewhat unusual application of statistical mechanics, but it

might be a valuable example for an undergraduate course because it is novel and has been

experienced by many students and faculty. Discussing such non-standard applications of

physical theory will likely prove valuable to students because most of them will ultimately

find employment in industrial settings where “outside-the-box” thinking will be beneficial.

Some additional modifications to this model which would affect the boarding process,

such as how the energies of a particular portion of the airplane change as a passenger sits in

a given seat, how crowding in the aisle affects the local energies (or the temperature of the

waiting passengers), and the increased time required by someone sitting in a window seat

compared to an aisle seat might improve the model’s accuracy. However, these changes would

only serve to complicate the point of this paper that statistical physics is an appropriate

framework for modeling free-for-all passenger boarding.

Another modification would be to allow different passengers to enter the aircraft at dif-

ferent temperatures (indicating different arrival histories at the gate). The effect of each

passenger being at a different temperature upon entering the airplane would be to change

their individual decisions regarding their seat selection. Because this model does not allow

passengers to change seats, the seat selection process for most passengers is fixed by the

available seats at the time that they enter the airplane (the exception is when two passen-

gers select the same seat). Although some passengers may not care where they sit, others

would. It would be interesting to identifying where the uniform temperature approximation

might fail. Also, students could use this model to calculate, for example, the heat capac-

ity of a partially filled airplane or identify the temperature of the passengers based on the

distribution of the occupied seats.

In addition to passenger boarding, statistical mechanics might be the proper framework

for modeling passengers leaving the airplane. Here the passengers, who are essentially frozen

in a crystalline structure, would sublimate and escape into the environment, the terminal.

There is a “latent heat” associated with the transition which is characterized by the time

that is required for passengers to retrieve their luggage.

An appropriate model for free-for-all boarding is valuable for the airline industry because

the insights gained can be used to make decisions regarding a company’s boarding policies

and practices or where they should store the blankets and pillows (presumably above seats
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that are not likely to be occupied). Although sufficient detail is important, the basic prin-

ciples that can be extracted from the model discussed here, such as the effect of the slope

in the linear increase or the effect of more uniform energies in a particular row, can be

informative As seen in Fig. 3, the fastest boarding times occur when the boarding process

is nearly random. This fact indicates that raising the temperature (or temperament) of

the passengers would increase the speed of the boarding process. Although changing the

passenger temperature might lie outside the control of an airline, some influence might exist

to influence passengers to view all seats, or at least all the rows, equivalently, which that

could further improve this already successful boarding strategy.
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Figure Captions
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FIG. 1: Plot of the seat energies for the standard airplane model. The depth of the potential well

for each seat corresponds to the probability that it will be selected by a passenger; the deeper the

well, the more likely it will be chosen. A constant offset can be added to these energies without

affecting the results.
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FIG. 2: Plot of the time required to fill the aircraft for different values of the mean luggage

loading times. These data are generated from 100 realizations of the boarding process, including a

reassignment of the luggage loading times for each passenger. An individual point represents the

mean and the bar is the standard deviation of the resulting distribution of boarding times for the

sample.
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FIG. 3: The time required to board the airplane as a function of the slope of the linear increases

in the energies of the different rows of seats. The bars represent the standard deviation of the

distributions of the airplane boarding times. The minimum occurs near a slope of zero.
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FIG. 4: Final seating arrangement for a half-full airplane for different values of the temperature.

(a) Temperature = |ε̄|/1000 ' 0; (b) Temperature = |ε̄|/10; (c) Temperature = |ε̄|; and (d)

Temperature = 10|ε̄|, where ε̄ is the mean energy of the seats in the standard airplane model. The

dots represent seated passengers.

17



æ æ æ æ æ æ æ æ æ æ æ æ æ æ

æ

æ

æ
æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ

à à à à à à à à à à à à

à

à

à

à

à
à

à
à

à à à à à à à à à à à à

ì
ì

ììììì
ìììì

ììì
ìììììììììì

ìì
ì

ììì
ìì

ò ò
ò

ò ò ò ò ò ò
ò

ò
ò ò

ò ò ò ò ò ò ò ò ò ò ò ò ò ò
ò ò

ò
ò ò

-8 -6 -4 -2 0
0.0

0.2

0.4

0.6

0.8

1.0

Seat Energy

O
cc

up
an

cy

FIG. 5: Seat occupancies (the fraction of the time that a seat with a given energy is occupied)

as a function of energy for 100 realizations of the boarding process with various values for the

passenger temperatures. The temperature values are those of Fig. 4: |ε̄|/1000 ' 0 (circles), |ε̄|/10

(squares), |ε̄| (diamonds), and 10|ε̄| (triangles). The curves are predictions using the Fermi-Dirac

distribution.
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