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Abstract— Fermilab has finished the first phase of Nb3Sn 
technology scale up by testing 2-m and 4-m long shell-type dipole 

coils in a ‘magnetic mirror’ configuration. The 2-m long coil, 

made of Powder-in-Tube (PIT) Nb3Sn strand, reached its short 

sample limit at a field level of 10 T. The 4-m long coil, made of 

advanced Nb3Sn strand based on the Restack Rod Process (RRP) 

of 108/127 design, has been recently fabricated and tested.  Coil 

test results at 4.5 K and 2.2 K are reported and discussed. 

 
Index Terms— accelerator magnets, Nb3Sn strand, cable, coil, 

dipole mirror, superconducting magnet, quench, stability. 

 

 

I. INTRODUCTION 

ERMILAB is developing a new generation of accelerator 

magnets based on Nb3Sn superconductor and wind-and-

react technology. After testing of several 1-m long dipole 

coils, a Nb3Sn technology scale-up program has been launched 

with the goal to expand the developed Nb3Sn coil technology 

to long coils and to prepare fabrication and test infrastructure 

[1]. The first phase of this program has been accomplished by 

fabricating and testing 2-m and 4-m long shell-type Nb3Sn 

dipole coils. This phase has addressed some key scale up 

issues including the long Nb3Sn coil winding, curing, reaction, 

impregnation, and handling, as well as long Nb3Sn magnet 

assembly and long coil performance.  

The 2-m long coil was made of PIT Nb3Sn strand which has 

demonstrated good stability and reproducible performance [2]. 

The 4-m long coil was made of advanced RRP Nb3Sn strand. 

Prior to making the long Nb3Sn coils, one practice coil of each 

length was made using copper cable to test the tooling and 

verify key steps in the process. Both long Nb3Sn coils were 

tested in a magnetic ‘mirror’ configuration based on the dipole 

mechanical structure [3].  The mirror model with a 2-m long 

PIT coil reached its conductor limit and reproduced the 

quench performance of the 1-m long reference coil [4],[5]. 

This paper summarizes the fabrication and test results of the 

first 4-m long Nb3Sn shell-type coil based on the RRP strand.  
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II. COIL DESIGN AND FABRICATION 

A. Coil and Cable Parameters 

The coil has 2-layer shell-type cross-section, with 16 turns 

and two spacers per quadrant in the inner layer, 21 turns and 

two spacers per quadrant in the outer layer, and pole blocks in 

each layer. Coil layers are separated by 0.4 mm thick inter-

layer insulation. The end current blocks, separated by end 

spacers, match the coil straight section. The pole blocks and 

spacers are made of aluminum bronze. 

The coil design is based on Rutherford cable with 27 1-mm 

diameter strands. RRP strand of a 108/127 stack cross-section 

was produced by Oxford Superconductor Technologies, Inc. 

[6]. The 1-mm RRP strand of this design has a sub-element 

size of ~70 µm, a copper fraction of 49% and a twist pitch of 

12 mm, providing a nominal Jc of ~2400 A/mm
2
 at 4.2 K and 

12 T with a Cu-matrix residual resistivity ratio above 200 [7].  

B. Coil Fabrication and Mirror Assembly 

The details of the long Nb3Sn coil fabrication procedure are 

described in [5]. The 4-m long coil was wound from a single 

~180-m long piece of cable without an inter-layer splice. The 

cable insulation consisted of two layers: the first layer was 

made of 75 µm thick E-glass tape with a 50% overlap and the 

second layer was made with a butt lap of 75 µm thick S2-glass 

tape.  

The coil was reacted in a 3-step cycle with the last step at 

646
o
C for 51 hours and then impregnated with CTD 101K 

epoxy. A picture of the coil after reaction is shown in Fig. 1. 

The coil dimensions were measured in the free state after 

impregnation to select appropriate pre-stress shims. Flexible 

NbTi leads were soldered to each of the inner and outer Nb3Sn 

leads. Voltage taps were placed across each coil block to 

detect and localize quenches. 

 
Fig. 1. 4-m long Nb3Sn RRP coil. 
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Fig. 2. Mirror LM02 (HFDM08) with 4-m long Nb3Sn RRP coil. 

 

The coil was tested in dipole ‘mirror’ configuration [3]. The 

mirror mechanical structure is similar to the normal dipole 

structure except that one of the two coils is replaced by half-

cylinder blocks made of solid iron. Mirror magnet LM02 

(HFDM08) with a 4-m long Nb3Sn RRP coil is shown in 

Fig.2. Transverse preload to the coil was applied by a 

combination of the aluminum yoke clamps and the 8-mm thick 

welded stainless steel skin. Axial support was provided 

through end bolts attached to the end plates. The coil 

azimuthal stress was determined from capacitive and resistive 

strain gauge measurements. The axial coil preload was set 

using measurements from resistive strain gauges on the bolts.   

The target coil pre-stress at room temperature was 

determined based on ANSYS analysis with elasto-plastic coil 

properties [8]. The nominal maximum coil pre-stress was ~80 

MPa. The strain gauge data confirmed that the target coil pre-

stress during assembly has been achieved. 

III. TEST RESULTS 

LM02 (HFDM08) was tested in boiling liquid helium at 4.5 

K and at lower temperatures in two thermal cycles.  

A. Initial Quench Performance 

The first 65 quenches are presented in Fig. 3. At 4.5 K, the 

magnet training started with quenches in low field region of 

the outer layer (mid-plane block). The magnet performance 

was rather erratic with quench currents varying from ~15 kA 

to ~17 kA without any training. 
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Fig. 3. Detailed quench locations for the first 65 quenches.  

At ramp rates of 150 A/s and higher, the magnet quenched 

at 3-4 kA with quenches originating in the mid-plane blocks of 

both the inner and outer coil layers. It was found empirically 

that much higher quench currents were reached at the same 

high ramp rates if “conditioning” ramps were used prior to the 

ramp to quench. During “conditioning”, the current was 

ramped up to ~10 kA and then down to 0 A, both at the rate of 

100 A/s. Subsequently it was found that the quenches in the 3-

4 kA region are avoided if the magnet is first ramped to 5 kA 

at a low ramp rate and then ramped to quench at high ramp 

rates. Conditioning ramps nevertheless did not improve the 

quench performance at low ramp rates and the magnet still 

quenched at the same current in the outer layer.   

 Following the ramp rate study at 4.5 K, the magnet was 

cooled to 2.2 K. However, the magnet performance did not 

change. In fact, no temperature dependence was observed at 

low or high ramp rates. 

Erratic quench performance at currents far from the 

expected conductor limit (23.7 kA at 4.5 K and 26.0 kA at 2.2 

K based on the short sample data), without any sign of training 

or temperature dependence, is consistent with the magnetic 

instability previously observed in short dipole and mirror 

models [9]. In the reference short coil made of the same cable 

the flux jumps were also observed but at the higher current 

level of ~21 kA [10]. 

B. Flux Jump Suppression Using Quench Heater  

To suppress the flux-jump instabilities in the coil, a quench 

protection strip heater conveniently located on the outer coil 

surface next to the mid-plane block was used to “warm” the 

coil.  

An extensive thermal analysis was performed using the 

COMSOL Multiphysics code in order to estimate the 

temperature in different coil segments, as well as the total 

power dissipation as a function of the heater power. A typical 

temperature distribution in the coil cross-section produced by 

the strip heater on the mid-plane block is shown in Fig. 4. 

With the heater on, the peak coil temperature occurs in the 

outer mid-plane block. At a certain level of the heater power 

the inner mid-plane block has the lowest quench margin due to 

the higher field in the inner layer. 

During the test the heater current varied within 2-3 A range 

corresponding to the total dissipated power from 40 to 100 W. 
 

 
 

Fig. 4. Temperature distribution in the coil cross-section with the mid-plane 

heater on. The locations of the two strip heaters are indicated.  
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The maximum heat flux was 220 W/m
2
 for the middle turn of 

the inner-layer mid-plane block, which is at least an order of 

magnitude lower than the helium film-boiling threshold. 

Consequently, no heat-related problems were observed in the 

cryogenic system during the test. 

C. Quench Performance with Suppressed Instabilities 

 Testing with the heater began after quench #66 when the 

magnet was warmed up to 4.5 K. The first three quenches at a 

2.02 A heater current still occurred in the outer layer, but now 

the magnet did not exhibit the erratic behavior and started 

quenching at almost the same current. The first training 

quench occurred in the pole blocks of the inner layer at a 

heater current of 2.55 A. Later on it was shown that instability 

in the outer layer is quite sensitive to the heater power and to 

the amount of heat transferred from the heater to the coil, i.e. 

to the coil temperature.  

At the end of first thermal cycle (TC-1) it was demonstrated 

that much higher quench currents were reached with the heater 

current on (i.e. with a “warmed” mid-plane block in the outer 

layer). In quench #102, the heater was switched off and the 

magnet quenched again in the outer-layer mid-plane block at a 

significantly lower current (see Fig. 5). The highest quench 

current reached in the 1
st
 thermal cycle ~20.1 kA was quench 

#104 at a ramp rate of 5 A/s and a heater current of 2.38 A. 

With quench #106, TC-1 was completed and the magnet was 

warmed to room temperature. 

The second thermal cycle (TC-2) started with quench #107 

at a current of ~16 kA with the strip heater off. The quench 

current and location was consistent with quenches at the 

beginning of TC-1. Then the heater was switched on and the 

magnet showed some training with quenches in the pole block 

of the inner layer. In quench #112, a current of ~19.7 kA was 

reached with a strip heater current of 2.38 A. 

 After quench #115, the magnet was cooled to 2.2 K to 

perform heater tests at lower temperature. After a short 

training period with a heater current of 3.05 A the magnet 

quench current increased to 20.2-20.4 kA. The testing at 2.2 K 

was finished with a ramp rate study and the highest quench 

current of ~20.6 kA was reached in quench #135 at a ramp 

rate of 10 A/s.  
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Fig. 5. Quench locations with the strip heater on. The heater current was 

switched off for quenches #102 and #107. 

 
Fig. 6. Quench multiplicity in the inner and outer layers with and without 

current on the streap heater. 

At 3.1K, the magnet was quenched 5 times with the strip 

heater on to study the temperature dependence of the quench 

performance. The quench program in TC-2 was completed at 

4.5 K by taking few more quenches at different ramp rates.  

The heater current was set to 2.39 A as it was during the ramp 

rate study at 4.5 K in the first thermal cycle. 

  At the very end of TC-2 the magnet was ramped up to ~ 19 

kA at the rate of 10 A/s, then the heater current was reduced 

from 2.39 A to 0 A, lowering the temperature of the inner 

layer mid-plane block. In this case the quench current 

increased to 20.7 kA which is 87.4% of the estimated short 

sample limit for the magnet at 4.5 K. This was the maximum 

current reached during the testing of this magnet.  

 Quench multiplicity in the inner and outer layers, with and 

without the strip heater, is summarized in Fig. 6. In total, 144 

quenches were performed, and in only 8 cases a quench 

developed in the inner-layer pole block. The estimated 

locations for these 8 quenches are in the innermost turn and 

they were not concentrated in a particular region.  

D. Ramp Rate Dependence 

Several quenches were performed for the ramp rate 

dependence study at 4.5 K and 2.2 K in both thermal cycles. 

The ramp rate dependence for quenches in the inner layer only 

(i.e. with the strip heater on) is shown in Fig. 7. 
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Fig. 8. Quench current vs. heater current for the inner-layer mid-plane block. 
 

One can see that the quench current decreases with increasing 

current ramp rate or temperature. The shape of this ramp rate 

dependence is consistent with measurements on the reference 

short model HFDM06 [10]. However, the maximum quench 

current of the magnet in the highest field region (the inner-

layer pole block) cannot be extrapolated from this dependence 

since only one quench occurred in the pole block during the 

ramp rate study. 

E. Temperature Dependence 

Quenches originating only in the inner-layer mid-plane 

blocks for three different test temperatures 4.5 K, 3.1 K and 

2.2 K at a ramp rate of 20 A/s are plotted in Fig. 8. This plot 

illustrates that the measurements at different temperatures are 

consistent and clearly exhibit similar temperature dependence. 

A parabolic extrapolation of data in Fig. 8 to zero heater 

power allows the cable critical current in the inner-layer mid-

plane block to be estimated. These data are presented in Table 

I. Calculated critical currents for the inner-layer mid-plane 

block, based on the magnet short sample limit of 23.7 kA at 

4.5 K, as well as the critical current of the inner-layer pole 

block (which determines the magnet critical current limit), at 

different temperatures are shown in this table.  

 Based on the data in Table I, degradation of the cable 

critical current in the inner-layer mid-plane block reaches 

~23%. This degradation could be due to the compressive 

stress ~100 MPa (according to ANSYS calculations) applied 

to the cable in the mid-plane block during excitation [11] or 

due to the non-uniform current distribution in the mid-plane 

blocks close to the coil leads. The latter could also explain the 

lower level of instability current in LM02 (HFDM08) with 

respect to the reference HFDM06 [10]. 

F. Residual Resistivity Ratio (RRR) 

 The conductor RRR in LM02 (HFDM08) coil blocks was 

measured during magnet warm-up between the two thermal 

cycles. During the cold RRR measurement the temperature of 

the magnet at top, middle and bottom were 23.7 K, 20.5 K and 

17.2 K respectively. The total coil RRR is 158, the inner layer 

and the outer layer RRR values are 153 and 166 respectively. 

The measured variations of coil RRR for the reference short 

model HFDM06 were 172±3 [10]. 

 

TABLE I  INNER-LAYER MIDPLANE  BLOCK CALCULATED IC_CALC AND 
EXTRAPOLATED FROM THE HEATER STUDY IC_EXTR CRITICAL CURRENTS. 

T (K) Ic_calc (kA) Ic_extr (kA) Ic_extr/Ic_calc Ic_pole (kA) 

2.2 29.12 22.291 0.765 26.06 

3.1 28.21 21.781 0.772 25.25 

4.5 26.5 21.086 0.796 23.7 

IV. CONCLUSIONS 

The first 4-m long shell-type Nb3Sn coil made of 1-mm 

RRP strand with 108/127 sub-elements was fabricated and 

successfully tested at Fermilab in a mirror configuration. 

Initially the quench current was limited by low-field flux jump 

instabilities both at 4.5 K and 2.2 K. Significant improvement 

was achieved by locally heating the outer layer mid-plane 

block using one of the quench protection heaters. As a result 

of flux jump suppression, the quench location moved from the 

outer to the inner-layer mid-plane block.  

The maximum quench current reached in this test was 20.7 

kA at 4.5 K, which is 87.4% of the estimated short sample 

limit for the magnet at this temperature. The magnet training 

was not completed due to limitations related to coil heating by 

the strip heater. These test results confirm significant progress 

towards controlled fabrication and successful performance of 

long Nb3Sn accelerator magnets. This work complements the 

Nb3Sn technology scale up program for LARP in preparation 

to the fabrication and test of 4-m long large-aperture Nb3Sn 

quadrupoles of LQ series [12], [13]. 
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