
1

The CMS High Level Trigger System
Anzar Afaq, William Badgett, Gerry Bauer, Kurt Biery, Vincent Boyer, James Branson, Angela Brett, Eric Cano,

Andrea Carboni, Harry Cheung, Marek Ciganek, Sergio Cittolin, William Dagenhart, Samim Erhan,
Dominique Gigi, Frank Glege, Robert Gomez-Reino, Michele Gulmini, Johannes Gutleber, Claude Jacobs,

Jin Cheol Kim, Markus Klute, Jim Kowalkowski, Elliot Lipeles, Juan Antonio Lopez Perez, Gaetano Maron,
Frans Meijers, Emilio Meschi, Roland Moser, Esteban Gutierrez Mlot, Steven Murray, Alexander Oh,

Luciano Orsini, Christoph Paus, Andrea Petrucci, Marco Pieri, Lucien Pollet, Attila Racz, Hannes Sakulin,
Matteo Sani, Philipp Schieferdecker, Christoph Schwick, Elizabeth Sexton-Kennedy, Konstanty Sumorok,

Ichiro Suzuki, Dimitrios Tsirigkas, Joao Varela

Abstract— The CMS Data Acquisition (DAQ) System relies on
a purely software driven High Level Trigger (HLT) to reduce
the full Level 1 accept rate of 100 kHz to approximately 100 Hz
for archiving and later offline analysis. The HLT operates on
the full information of events assembled by an event builder
collecting detector data from the CMS front-end systems. The
HLT software consists of a sequence of reconstruction and
filtering modules executed on a farm of O(1000) CPUs built from
commodity hardware. This paper presents the architecture of the
CMS HLT, which integrates the CMS reconstruction framework
in the online environment. The mechanisms to configure, control,
and monitor the Filter Farm and the procedures to validate the
filtering code within the DAQ environment are described.

I. INTRODUCTION

The Large Hadron Collider (LHC) at CERN is scheduled
to begin operation in 2008 and will deliver proton-proton
collisions to the CMS [1] detector at a rate of 40 MHz.
This rate must be significantly reduced to comply with the
performance limitations of the mass storage hardware, and
the capabilities of the offline computing resources to process
the collected data in a timely fashion for physics analysis.
At the same time, the physics signals of interest must be
retained with high efficiency. CMS features a two-level trigger

Manuscript received May 11, 2007.
We acknowledge support from the DOE and NSF (USA), KRF (Korea)

and Marie Curie Program.
R. Moser is with the Vienna University of Technology, Vienna, Austria and

CERN, Geneva, Switzerland.
G. Maron and A. Petrucci are with INFN - Laboratori Nazionali di Legnaro,

Legnaro, Italy.
J. Varela is with LIP, Lisbon, Portugal and CERN, Geneva, Switzerland.
J.-C. Kim is with the Kyungpook National University, Daegu, Kyungpook,

South Korea.
V. Boyer, A. Brett, E. Cano, A. Carboni, M. Ciganek, S. Cittolin,

D. Gigi, F. Glege, R. Gomez-Reino, M. Gulmini, J. Gutleber, C. Jacobs, J.-
A. Lopez Perez, F. Meijers, E. Meschi, E. Gutierrez Mlot, A. Oh, L. Orsini,
A. Racz, H. Sakulin, P. Schieferdecker (corresponding author. phone: +41 22
76 71674, fax: +41 22 76 68959, e-mail: philipp.schieferdecker@cern.ch),
C. Schwick, and D. Tsirigkas are with CERN, Geneva, Switzerland.

J. Branson, E. Lipeles, M. Pieri, and M. Sani are with the University of
California San Diego, La Jolla, California, USA.

S. Erhan is with the University of California, Los Angeles, California, USA
and CERN, Geneva, Switzerland.

A. Afaq, W. Badgett, k. Biery, H.Cheung, W. Degenhart, J. Kowalkowski,
S. Murray, E. Sexton-Kennedy, and I. Suzuki are with FNAL, Batavia, Illinois,
USA.

G. Bauer, M. Klute, C. Paus, and K. Sumorok are with the Massachusetts
Institute of Technology, Cambridge, Massachusetts, USA.

system to reduce the rate to approximately 100 Hz. The Level 1
trigger [2] is based on custom hardware and designed to
reduce the rate to about 100 kHz, corresponding to 100 GB/s,
assuming an average event size of 1 MB. The High Level
Trigger (HLT [3]) is purely software-based and must achieve
the remaining rate reduction by executing sophisticated offline-
quality algorithms. No additional intermediate trigger level
is required, as the event builder is dimensioned such that
complete events are assembled at the full Level 1 accept rate.
HLT algorithm sequences are moreover efficiently scheduled:
in each sequence (or “path”) algorithms are executed in order
of increasing complexity, and the execution of a path is
stopped unless evidence for the signal of interest is found. This
way more sophisticated and time consuming reconstruction
algorithms are only seldom applied. The CMS Trigger system
must choose an average of 1/400000 crossing each second,
using a very limited amount of computing time of about 40 ms
per crossing. The ability to select the events of interest is the
foundation of our quest for rare new physics phenomena and
is a true “needle-in-the-haystick” task. A flexible and accurate
HLT selection together with the stable operation of the DAQ
are vital for the success of the CMS physics program. The
architecture of the CMS HLT, which combines the power
of the offline reconstruction [4] with the robustness required
for reliable online operation of the DAQ, is presented in the
following.

II. ARCHITECTURE

The global architecture of the CMS DAQ system is sketched
in Fig. 1. Event fragments are read out and stored in “readout
buffers” (Readout Unit, RU) for each event accepted by the
Level 1 trigger. The fragments are subsequently assembled
into complete events by an Event Builder through a complex
of switched networks into “event buffers” (Builder Unit, BU).
The full event content is then handed to one of the HLT
Filter Units (FU) for processing, and events found to be
sufficiently interesting for offline analysis are forwarded to
the StorageManager (SM). All DAQ components are based
on a common framework (XDAQ [5]) for distributed operation,
which provides all DAQ components with coherent access to
basic services to interoperate, exchange data, publish monitor-
ing information, and receive external messages. Components

FERMILAB-CONF-07-693-E



2

Fig. 1. CMS DAQ Architecture. The size of the event builder (72 Readout
Units, 288 Builder Units) represents one “slice”; the system can be equipped
with up to eight slices.

are configured and controlled by the CMS Run Control and
Monitoring System (RCMS [3]), predefining a hierarchical
control structure for all the detector subsystems involved in
the DAQ. RCMS distributes commands, and monitors the state
of all system components.

A Filter Unit must receive and reformat events from the
event builder, execute a series of physics reconstruction and
filter algorithms, and forward accepted events to the Stor-
ageManager. The internal architecture of each Filter Unit is
illustrated in Fig. 2. It consists of two separate applications, the
ResourceBroker, which exchanges data with the DAQ, and the
EventProcessor, which integrates the reconstruction software.
The physics algorithms are extensively tested on simulated
data, and every effort is made to anticipate and appropriately
handle events with unusual content. It is unavoidable though
that some scenarios will be encountered in real detector data
for the first time, potentially leading to unexpected algorithm
behavior or even abnormal termination. The decoupling of
physics algorithm execution from data flow allows each Fil-
ter Unit to continue operation, recover the content of the
problematic event, and forward it to be stored unprocessed.
Reconstruction and detector experts can access and analyze
the data offline to understand and eliminate the problem. The
robustness of the DAQ and the ability to study problem-events
offline are crucial for the commissioning of the detector and
the HLT. The three Filter Farm components are described in
more detail in the following sections.

A. ResourceBroker

Given the involved event sizes and rates, reformatting raw
events consisting of a large number of small data fragments
into the physical memory of a Filter Unit requires high
bandwidth I/O, while the subsequent HLT processing is mostly
CPU intensive. The ResourceBroker is responsible for receiv-

Fig. 2. Filter Unit architecture: the responsibilities to receive, reformat, and
send accepted events (ResourceBroker), and to reconstruct the physics content
(EventProcessor) are split.

ing and reformatting raw events from the Builder Unit, and dis-
patching processed and accepted events to the StorageManager
via the communication protocol based on the proposed I2O [5]
standard. The ResourceBroker is a pure DAQ component,
unaware of the HLT processing code. Since each Filter Unit
hosts several CPU cores and thus several filtering processes are
executed in parallel, the ResourceBroker manages a queue of
reformatted events in a shared memory buffer. Filtering tasks
running as separate processes on the same machine are granted
read-only access to the buffer and consume available events on
demand. The ResourceBroker manages a separate shared mem-
ory buffer for events accepted by any of the filtering processes,
and reintegrates them with the global data stream. Write-access
to each shared memory segment is given to only one filter
process at a time, ensuring system-level protection against data
corruption between processes. Abnormally terminated filter
processes are automatically detected and the corresponding
raw data is recovered and forwarded to be stored unprocessed
for later offline error analysis.

B. EventProcessor

The EventProcessor encapsulates the event processing ma-
chinery of the CMS reconstruction, providing the full flexi-
bility required to execute complex physics algorithms. Only
the components within the filter job responsible to read raw
event data and to output processed selected events have
access to the shared memory buffer (Sec. II-A) interacting
with the DAQ. The loose coupling of the filter processes
to the rest of the DAQ via asynchronous shared memory
communication provides the high degree of robustness and
fault tolerance described above. Experience shows furthermore
that algorithms are typically developed and optimized offline,
by analyzing simulated or already recorded data samples.
Sharing the same software infrastructure allows for the fast
and efficient migration of improved reconstruction and filtering
strategies from offline studies to HLT operation. It moreover
spares algorithm developers the cumbersome task of providing



3

the same or similar functionality within different software
contexts.

C. StorageManager

All Filter Units send events accepted by the HLT to the
StorageManager. Events are received and organized in streams
according to the parameters of the current run and the specific
physics content of each individual event as identified by the
filter decision. Events are subsequently written to disk files.
Each StorageManager transaction is only acknowledged to
the ResourceBroker when complete, thus providing an indirect
back-pressure mechanism in case of large fluctuations of the
accept rate. Each Filter Unit is paced by balanced counts of
sent and acknowledged events. Besides collecting event data,
the StorageManager is also responsible for collecting Data
Quality Monitoring (DQM) information (see Sec. VI).

III. CONTROL

The CMS Run Control and Monitoring System (RCMS [3])
is designed to configure, control, and monitor the large number
of DAQ computing elements and software processes. When the
RCMS initializes the DAQ system, each application process
is started on its assigned computing node. All Filter Farm
applications implement a common State Machine, which is
defined by the three states Halted (initial state), Configured,
Enabled, and transitions between these states. The RCMS can
be instructed to send control messages to each application
and trigger state transitions, associated with a set of actions
and an expected target state. The state of each application
is monitored at all times. Controlled components actively
notify modifications of their state, which are accounted for.
Unexpected or missing notifications are handled appropriately.

IV. CONFIGURATION

The creation of an HLT configuration and its deployment
to all Filter Farm nodes is based on data in a relational
database. The database schema is an abstract description of
the configuration language data model, which consists of
sequences of reconstruction and filtering algorithms. For a
given software release, a thin code parsing layer is employed
to discover all available components and store them as tem-
plates in the database. Specific configurations based on these
templates are created and stored with a dedicated graphical
tool. Configurations can be retrieved and transformed into
several different representations, most notably the one used by
the reconstruction framework to configure, to be distributed
to each filter node via the Run Control layer. Formatting
and deploying of the configuration are decoupled from the
database schema, allowing the target configuration grammar
to evolve independently. The creation and manipulation of
configurations stored in the database is kept flexible enough
for fast and efficient development, and is designed to offer
data integrity and consistency over the full lifetime of the
experiment.

V. CALIBRATION

To reach its full potential, each HLT process needs access
to the latest set of calibrations for each sub-detector, which
is expected to amount to approximately 100 MB of data for
the fully equipped detector per process. The calibration is
conceptually separated from the configuration. CMS stores
all calibration information in a dedicated database system,
available to the local DAQ and offline reconstruction centers
around the world, with generic access mechanisms from
within the software framework. The infrastructure for O(1000)
processes to access this sizable amount of data at the same
time is provided by means of a local calibration cache on
each node, which services HLT algorithm requests without
explicit database transactions. This cache can be updated
asynchronously such that the performance of the global DAQ
is not impacted by extensive concurrent access to the database.
The data management mechanisms guarantee that for each
recorded event, the calibration applied during data-taking can
be traced offline.

VI. MONITORING

The monitoring of the Filter Farm complex consists of two
tasks: monitoring the applications, and monitoring the quality
of the detector data and and their physics content. The DAQ
software framework provides each application with standard-
ized mechanisms to publish information about its current state
and performance. This information is collected, optionally
stored in a database, and dispatched to monitor applications
which process and visualize the state and performance of
the whole system and each of its components. For the Filter
Farm, the state of each application, the throughput and CPU
performance on each node, and the output bandwidth to mass
storage represent crucial monitoring informations to be at the
finger tips of the system operators at all time.

To ensure that the recorded event data is meaningful and
meets the expectations in terms of physics, the quality of the
stored events must be monitored. A DQM infrastructure [7]
provides the tools to create, serialize, and collect accumu-
lated statistical information about data quality. Automated
client processes compare current distributions to references
and detect deviations. Operators are informed about potential
inconsistencies, and experts can use DQM tools to investigate
the causes of the problem. A small fraction of the bandwidth to
mass storage is reserved to transport DQM information, which
is accumulated within each EventProcessor, to the Storage-
Manager between predefined intervals. The StorageManager
collects this information and dispatches it to a dedicated server,
where it is preprocessed and collated, and accessible to the
clients. The dedicated DQM path ensures that the number and
frequency of DQM requests does not impact the performance
of the StorageManager during data-taking.

VII. VALIDATION

To validate the stable operation of the Filter Farm infrastruc-
ture and the functioning and physics performance of any given
HLT configuration, a Playback system is setup using a small
number of nodes. A special Builder Unit (“AutoBU”) mimics



4

Fig. 3. Playback Setup of the Filter Farm: events are read by a dedicated
event builder replacement from a file and injected into the Filter Units using
the standard data exchange protocol.

the CMS detector readout and event building, reading recorded
or simulated physics events from files and reformatting the
raw portion of each event according to the standard protocol
of the event builder. The configuration of the Playback system
is illustrated in Fig. 3, where an EventProcessor is used to
read event data stored in the common offline file format.
A dedicated HLT validation system will be put in place
throughout the lifetime of the experiment to validate the
performance and quality of new HLT configurations before
deployment.

VIII. CONCLUSION

The CMS High Level Trigger System is integrated with the
DAQ through a common framework and controlled, config-
ured, and monitored through standardized and reliable mech-
anisms established for the entire DAQ system. The internal
architecture of each Filter Unit decouples the DAQ from
the physics-algorithms and provides the full-fledged offline
reconstruction to process and filter detector events. Problem-
atic events are handled without impacting the operation of
the global DAQ and recovered and stored for offline expert
inspection.

REFERENCES

[1] The CMS Collaboration, CMS Technical Proposal, CERN LHCC 94-38,
1994.

[2] The CMS Collaboration, CMS, The TriDAS Project, Technical Design
Report, Volume 1: The Trigger Systems, CERN LHCC 2000-38, 2000.

[3] The CMS Collaboration, CMS, The TriDAS Project, Technical Design
Report, Volume 2: Data Acquisition and High-Level Trigger, CERN
LHCC 2002-36, 2002.

[4] C. D. Jones et al., “The new CMS data model and framework”, in 2006
Proc. CHEP Conf.

[5] J. Gutleber and L. Orsini, “Software architecture for processing clusters
based on I2O”, Cluster Computing 5(1):55-64, 2002.

[6] C. D. Jones, “Acess to non-event data for CMS”, in 2006 Proc. CHEP
Conf.

[7] C. Leonidopoulos et al., “Physics and data quality monitoring at CMS”,
in 2006 Proc. CHEP Conf.




