
Available on CMS information server CMS CR-2007/015

 May 11, 2007

Effects of Adaptive Wormhole Routing

in Event Builder Networks

R. Moser

CERN, Geneva, Switzerland

Vienna University of Technology, Vienna, Austria

CMS Collaboration

Abstract

The data acquisition system of the CMS experiment at the Large Hadron Collider features a two-stage event

builder, which combines data from about 500 sources into full events at an aggregate throughput of 100

GByte/s. To meet the requirements, several architectures and interconnect technologies have been quantitatively

evaluated. Both Gigabit Ethernet and Myrinet networks will be employed during the first run. Nearly full bi-

section throughput can be obtained using a custom software driver for Myrinet based on barrel shifter traffic

shaping.

This paper discusses the use of Myrinet dual-port network interface cards supporting channel bonding to

achieve virtual 5GBit/s links with adaptive routing to alleviate the throughput limitations associated with

wormhole routing. Adaptive routing is not expected to be suitable for high-throughput event builder

applications in high-energy physics. To corroborate this claim, results from the CMS event builder preseries

installation at CERN are presented and the problems of wormhole routing networks are discussed.

Presented at 15
th

 IEEE NPSS Real Time Conference 2007, Batavia, Illinois, USA, April 29 – May 4, 2007

Submitted to IEEE NPSS Real Time Conference

Submitted to IEEE Transactions on Nuclear Science

FERMILAB-CONF-07-362-E

Effects of Adaptive Wormhole Routing

in Event Builder Networks

G. Bauer
9
, V. Boyer

5
, J. Branson

6
, A. Brett

5
, E. Cano

5
, A. Carboni

5
, M. Ciganek

5
, S. Cittolin

5
, S. Erhan

5,7
, D. Gigi

5
,

F. Glege
5
, R. Gomez-Reino

5
, M. Gulmini

2,5
, E. Gutierrez Mlot

5
, J. Gutleber

5
, C. Jacobs

5
, J.C. Kim

4
, M. Klute

9
,

E. Lipeles
6
, J.A. Lopez Perez

5
, G. Maron

2
, F. Meijers

5
, E. Meschi

5
, R. Moser

1,5
, S. Murray

8
, A. Oh

5
, L. Orsini

5
,

C. Paus
9
, A. Petrucci

2
, M. Pieri

6
, L. Pollet

5
, A. Racz

5
, H. Sakulin

5
, M. Sani

6
, P. Schieferdecker

5
, C. Schwick

5
,

K. Sumorok
9
, I. Suzuki

8
, D. Tsirigkas

5
, J. Varela

3,5

1
Vienna University of Technology, Vienna, Austria

2
INFN - Laboratori Nazionali di Legnaro, Legnaro, Italy

3
LIP, Lisbon, Portugal

4
Kyungpook National University, Daegu, Kyungpook, South Korea

5
CERN, Geneva, Switzerland

6
University of California San Diego, La Jolla, California, USA

7
University of California, Los Angeles, California, USA

8
FNAL, Batavia, Illinois, USA

9
Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

Presented by Roland Moser (roland.moser@cern.ch)

Abstract!The data acquisition system of the CMS experiment

at the Large Hadron Collider features a two-stage event builder,

which combines data from about 500 sources into full events at

an aggregate throughput of 100 GByte/s. To meet the

requirements, several architectures and interconnect technologies

have been quantitatively evaluated. Both Gigabit Ethernet and

Myrinet networks will be employed during the first run. Nearly

full bi-section throughput can be obtained using a custom

software driver for Myrinet based on barrel shifter traffic

shaping.

This paper discusses the use of Myrinet dual-port network

interface cards supporting channel bonding to achieve virtual

5GBit/s links with adaptive routing to alleviate the throughput

limitations associated with wormhole routing. Adaptive routing is

not expected to be suitable for high-throughput event builder

applications in high-energy physics. To corroborate this claim,

results from the CMS event builder preseries installation at

CERN are presented and the problems of wormhole routing

networks are discussed.

I. INTRODUCTION

The architecture blueprint of the data acquisition (DAQ)

system for the CMS experiment [1]-[3] at the CERN LHC pp

collider is sketched out in Fig. 1. A high performance network

connects 512 readout units (RUs), via a switch fabric, to 512

builder units (BUs). The RUs receive event data fragments

from detector elements at a first level trigger peak rate of 100

kHz and buffer the fragments for up to one second. The

expected average event size is 1 MByte (log-normal

distributed), corresponding to event fragment sizes of 2

kBytes. With events of this size, the 512 ! 512 event building

network requires an effective aggregate throughput of 100

GByte/s. A software trigger running in filter units (FUs)

connected to the BUs further reduces the rate to about 100 Hz.

The remaining accepted events are forwarded to permanent

storage for off-line analysis. The event manager controls the

event flow. It broadcasts the first level trigger information to

all RUs and assigns the destination BU to each event. This

message flow is routed through the event-building network.

Event building traffic is highly systematic as multiple

sources compete for the same destination. Depending on the

switching technology, the result may be reduced throughput,

increased latency and/or loss of data. An appropriate

destination assignment algorithm and traffic shaping can

reduce these effects [4]. Traffic shaping controls the outgoing

messages before their submission to the network. One such

technique is the barrel shifter [5], [6]. In this scheme, sources

are synchronized to emit fragments in time slots in such a way

that no two sources send to the same destination during the

same time slot and all sources regularly send to all

destinations in a cycle. This approach is efficient for fixed size

data blocks.

Fig. 1. The CMS data acquisition architecture.

Up to now Gigabit Ethernet [7], Myrinet [8], [9] and a

custom barrel shifter implementation based on Myrinet [5],

[6] have been analyzed. This paper presents an evaluation of

the next generation Myrinet traffic shaping technology found

in the Myrinet Express [10,11] message-passing library. It

implements 2-port channel bonding and adaptive wormhole

routing. To determine properties and limitations of this

communication subsystem we carried out studies with

standalone test programs and event builder applications.

II. MYRINET

Myrinet is a low-latency, wormhole routing based

supercomputer interconnect [11]-[13]. The signal rate of a

single Myrinet link is 2.5 GBit/s and corresponds to a

maximum throughput of 2 GBit/s due to 8B10B coding [14].

Myrinet network interface cards (NIC) feature a

programmable RISC CPU that makes this technology

attractive for customization in environments constrained by

high-performance communication requirements. In addition,

the card features three controllable DMA engines. The CPU is

programmed in the C language using a host to NIC cross

compiler. The compiled program called MCP (Myrinet

Control Program) is a real-time application that is uploaded to

the NIC through the host PCI interface.

Myrinet Express (MX) is a protocol on top of Myrinet

hardware. MX consists of two parts, an MCP firmware

residing in the network interface cards processor and a host

based user space library. The protocol implements channel

bonding to improve throughput and to reduce the effects of

Head of Line (HoL) Blocking [15].

Connecting each input port to each output port would result

in N
2
 connections. To limit the number of physical links,

Myrinet uses cost and performance effective Clos switches

[16]. They have a minimum bisection of N for N senders and

receivers. Hence, this switch technology permits achieving full

bisectional throughput. In addition, this type of network can

tolerate failing internal links and switches [17].

Myrinet is a source-routed network. Each connected host

needs a complete map of the network to be able to route the

packets to the correct destination. A daemon process running

on each computer called mx_mapper scouts out the network at

regular intervals [18]. It performs leader election based on

MAC addresses. The election winner continues to map the

network using breadth-first search. Once fully mapped, a

binary lookup tree is generated and distributed to all

computers in the network.

Based on this information hosts generate routes using

Dijkstra’s breadth-first search algorithm [19] that finds the

routes with the lowest number of hops. An improved

algorithm is implemented that chooses the successor randomly

to generate different routes on different hosts for further

reducing the number of potentially conflicting routes.

Myrinet Express uses adaptive dispersive routing [20].

Based on the assumption that traffic follows repetitive

patterns, a route is changing only when blocking is detected.

This aims at reducing the Clos internal link contention. The

algorithm allows finding non-blocking routes in Clos-based

networks in case of rarely changing communication patterns.

III. MATERIALS AND METHODS

Our testing environment is the tdrdemo development cluster

of the CMS experiment at CERN. This cluster comprises 15

computers, each one running Scientific Linux CERN Release

3.0.6 (SL), using a Linux 2.4.21 kernel and consisting of the

components listed in table 1.

The Myrinet kernel driver has been configured to use

Programmed Input/Output (PIO) for message sizes ranging

from 0 to 127 bytes. To transfer larger packets the NIC utilizes

Direct Memory Access (DMA).

For testing and benchmarking Myrinet Express, a number of

different test programs have been used to determine

throughput in different scenarios [21]. To highlight differences

in message routing, each test program was run with both ports

active (channel bonding) and with only one port active. Each

test is repeated 10 times for obtaining representative mean

values and standard deviations. For each test run 100.000

messages (about 1.6 GBytes of event data) are sent from each

source to each destination node.

A standalone program measures the raw performance of

MX without additional application layer overhead. The test

measures unidirectional message transmission. Buffers are

allocated during initialization and reused afterwards.

A roundtrip application is implemented with XDAQ the

CMS experiment’s on-line software framework [22]-[24]. It

induces additional application layer processing overheads in

the order of 4 microseconds per incoming message. XDAQ

decouples distributed applications from the underlying

network technologies. Peer transports provide this abstraction

and present a standard communication interface to application

developers. Thus, the transport layer can be switched from

Fig. 2. Block diagram of the Myrinet network interface card.

TABLE I

COMPUTER COMPONENTS OF THE TEST ENVIRONMENT

CPU 2! Intel® Xeon™, 2.40GHz, 512kB cache, 533MHz FSB

Motherboard Supermicro, Inc. X5DL8-GG, 533MHz FSB

Memory Memory 2! 256MB, DDR-SDRAM, PC2700, CL2.5, ECC

Registered

Myrinet NIC 1! Myrinet M3F2-PCIXE in 64bit 100MHz PCI-X slot

Ethernet to Myrinet without modifying the application code

concerned.

By design, the roundtrip test mimics the UNIX ping

command. The test program can pipeline multiple messages as

shown in Fig. 3. For measuring two-way bandwidth, 2000

messages are allowed to be in the network at the same time.

Transmission bottlenecks may not only stem from limits of

the network link but may also be dominated by the memory

bandwidth of the interface between the computer’s memory

and the Myrinet card [25]. Therefore we also measured this

vital parameter using a tool (mx_dmabench) provided by

Myricom.

MStreamIO is a test application implemented with XDAQ

to test full N!N communication. Fig. 4 lays out the protocol

between server and client using only one client and one server.

For measuring unidirectional throughput of N sources and N

sinks, additional control messages are needed. Once a client

has received “start” message from every server application it

begins sending data messages to each server.

The event builder is a production XDAQ application for the

CMS data acquisition system. In test mode the readout unit

(RU) generates test data and the builder unit (BU) discards the

data as soon as all event fragments have been assembled [26].

The first ports of the event manager (EVM) and seven

readout units (RUs) are connected to one line card as shown in

Fig. 5. Their second ports are linked to a second line card.

Another seven computers, called builder units (BUs), are

connected to a third and fourth line card. A Myrinet chassis

implementing a 3-layered Clos switching fabric (Clos-128)

hosts these four line cards.

The event building protocol [27] is shown in Fig. 6. The

BUs sends event requests to the event manager. It assigns a

BU destination to each event and replies with an event

identifier to the requesting BU. The BU initiates the data

transfer by requesting event fragments from each RU. After all

fragments making up a full event have been received by the

BU, it sends a message to the EVM to clear the event

identifier. The communication pattern between RUs and BUs

is N!N, whereas the traffic between EVM and BUs it is N!1.

All communication, data and control, are carried out using

Myrinet. This affects the results of pure N!N data message

exchange only slightly and is negligible since multiple control

commands are gathered in single messages.

IV. RESULTS

Using the applications described in the previous section,

unidirectional and bidirectional throughputs have been

measured. Additional tests quantify throughput and scalability

parameters using N senders and N receivers concurrently.

One-way throughput data obtained with a standalone

program and MStreamIO are compared in table 2. The

framework based application reaches 95 percent of the

standalone performance corresponding to an application

induced overhead of 11 MB in single port mode and 24 MB in

channel bonding mode. Fig. 7 visualizes throughput over

message size.

Fig. 3. The roundtrip protocol. One message in the network (left).

Maximum of three messages in the network (right).

Fig. 4. The MStreamIO protocol for measuring unidirectional throughput.

1!1 communication (left), N!N communication (right).

Fig. 5. 4x4 Event Builder setup

Fig. 6. The event building protocol.

Two-way throughput was determined using the roundtrip

framework-based application. In single port mode the card

was able to saturate the output link at 93 percent of its

theoretical limit. Using both ports, however, a maximum

throughput of only 65 percent of the sum of the theoretical

limit per link was achieved.

Table 4 lists the throughput limits between host memory

and network interface card. It should be noted that the bus

capacity is 800MB/s (100MHz and 64 bit). Measuring an

upper bound of combined read and write was not possible due

to vendor software limitations, but has been calculated

assuming equal size for each read and write request, resulting

in 684.85 MB/s. Hence, the achieved two-way throughput is

94.9 percent of the raw host memory to NIC bandwidth.

The throughput behavior for unidirectional throughput from

multiple source nodes to multiple destination nodes has been

determined using MStreamIO. Table 5 shows the average

throughput per node for 16KB packets. With growing system

size the throughput drops to 40 percent of the wire-throughput

at 7 senders and 7 receivers (see fig. 10).

Finally the event builder results are compiled in table 6. The

application has been run in test mode with auto-generated data

and 16kB fixed sized fragments. The aggregate throughput of

the builder units is shown in fig. 11 for a system scaling from

1RU/1BU to 7RUs/BUs. Adding additional senders and

receivers did not further increase the aggregated throughput of

the event builder.

Fig. 7. One Way throughput plotted over packet size.

Fig. 8. Two Way Throughput.

TABLE V

MSTREAMIO N!N THROUGHPUT PER NODE

 1 port 2 ports

N Throughput

(MB/s)

Saturation

(%)

Throughput

(MB/s)

Saturation

(%)

1 233.46±0.02 93.38 465.66±0.65 93.13

2 192.16±0.36 76.87 346.06±0.14 69.21

3 157.05±4.41 62.82 289.47±0.39 57.89

4 137.23±0.30 54.89 263.11±0.33 52.62

5 123.33±0.95 49.33 224.63±3.49 44.93

6 110.33±1.45 44.13 209.64±2.80 41.93

7 102.00±1.28 40.80 199.18±0.79 39.83

TABLE VI

EVENT BUILDER N!N THROUGHPUT PER NODE

 1 port 2 ports

N Throughput

(MB/s)

Saturation

(%)

Throughput

(MB/s)

Saturation

(%)

1 242.16±0.09 96.87 484.63±1.03 96.93

2 191.96±0.86 76.78 338.03±0.49 67.61

3 154.08±0.88 61.63 277.19±0.63 55.44

4 129.28±0.42 51.71 231.83±1.08 46.37

5 109.74±1.94 43.90 191.36±3.52 38.27

6 93.71±1.89 37.48 164.29±3.52 32.86

7 79.04±2.23 31.62 141.60±4.34 28.32

TABLE II

MAXIMUM ONE WAY THROUGHPUT

Program Number of

used ports

Maximum

throughput

(MB/s)

Saturation

(%)

1 246.71 98.68
Standalone

2 493.41 98.68

1 235.01 94.00
MStreamIO

2 469.14 93.83

TABLE III

MAXIMUM TWO WAY THROUGHPUT

 Maximum throughput

(MB/s)

Saturation

(%)

1 port 465.98 93.20

2 ports 649.90 64.99

TABLE IV

MEMORY THROUGHPUT WITH DMA
Mode Maximum throughput

(MB/s)

Read 630.41±2.36

Write 749.59±0.31

Combined (calculated) 684.85

V. DISCUSSION

The effective performance of high-speed wormhole routing

networks depends on a number of factors, among them the

application level communication patterns [21], [28], [29].

While these effects have been studied extensively for

supercomputing computation-bound applications [30]-[32],

experience for communication-bound applications like high-

energy physics data acquisition is still scarce. For small

packets as found in scientific parallel computing, throughput is

affected by the application-processing overhead. This

overhead becomes largely negligible for messages larger than

8KB with today’s network latencies. This is the case for our

event-building application that operates with 16KB messages.

For fully bidirectional traffic an additional bottleneck between

the host’s memory and the network interface card was

revealed. Such effect is technology independent and applies to

all high-speed networks. One aspect inherent to adaptive

wormhole routing becomes observable in the presence of

unidirectional N!N traffic, as it is the case for event building.

Due to Head of Line and switching fabric internal blocking,

systems become meta-stable and show evidence of sub-linear

scaling. Interrupts cause no problems as the Myrinet Express

API is working in polling mode.

In our tests, unidirectional traffic (MStreamIO) reaches 95

percent throughput of a standalone program. Using the

asynchronous API we enqueue multiple send and receive

requests, which are handled concurrently by the MCP on the

network card. Handling requests on this layer is more efficient

due to better scheduling granularity compared to application

level and due to offloading processing power from the host

CPU. Hence, the additional processing of the framework is

mostly shadowed for messages larger than 8KB.

In addition, throughput in the presence of small packets is

independent on the number of physical links. The gap between

two consecutive messages is constant and largely application

dependent. Thus channel bonding has no impact and the

throughput remains the same for single-port and dual-port

mode. Full throughput can be reached when the transmission

time is larger or equal to the gap. In this case the application

overhead is mostly shadowed by the transmission time.

When sending in both directions simultaneously over both

ports the theoretic upper throughput limit is 1 GB/s. This is at

the same time the limit of the PCI-X bus. Accordingly the

highest achievable throughput may be lower depending on the

components used for bridges and DMA controllers. For dual-

port mode the highest achieved throughput is about 650 MB/s.

We have seen that the throughput is limited by the interface

between the host’s memory and NIC to about 685 MB/s

(neglecting read/write overhead). Using better hardware

components throughput can be increased to over 900 MB/s. In

one-port operation a single link can be almost saturated,

because its wire-speed is well below the DMA engines limits.

In contrast, Head of Line and internal blocking in the switch

fabric limit event building and unidirectional N!N traffic. The

measured results obtained with Myrinet Express drop to 40

percent in case of unidirectional traffic and to about 30 percent

for event building. Randomization at application level has

been exercised, but has shown to be ineffective.

Fig. 11. Aggregate throughput for event building in N!N configuration.

Fig. 12. Throughput per node for event building in N!N configuration.

Fig. 9. Aggregate throughput for MStreamIO in N!N configuration.

Fig. 10. Throughput per node for MStreamIO in N!N configuration.

Assuming an internally non-blocking switching fabric an

upper throughput limit can be analytically obtained by

applying Queueing Theory [33]. Table 7 presents these

numbers per single switch input and output node for random

traffic. For an infinite number of inputs and outputs the

throughput levels-off at 58.58 percent of the wire bandwidth

per link. Contrary to our initial assumptions, blocking may

well occur in multi-stage Clos switching fabrics if used with

source routing. Internal blocking is suggested to be a cause for

the difference between Queueing Theory predicted and the

experimentally obtained results. Two or more data sources

may independently choose the same intermediate path for a

route resulting in degraded throughput due to the waiting

condition.

The high degree of complexity resulting from the

interactions among the switching stages does not yet permit

taking these effects into consideration when performing

analytic performance predictions. However, simulations can

provide better predictions as in [3]. In addition efforts on

improving simulation environments that may eventually

include such effects are under way [34], [35].

Adaptive routing aims at getting around this situation by

changing routes in case of blocking. To find a non-blocking

routing configuration the routes must remain stable for

O(1000) consecutive messages. For event building traffic,

destinations of consecutive messages are always diverse.

Hence, the algorithm cannot determine a stable non-blocking

routing configuration. This leads to significant lower

throughput compared to the theoretical limits based on

Poisson distributed random traffic shown in table 7.

Generally spoken, traffic shaping is shown to be effective if

performed close to the wire, operating at time scales similar to

the one of the networking technology (microseconds in case of

Myrinet) [5], [6]. One example is a peer transport

implementation for the CMS on-line software infrastructure

based on a barrel shifter algorithm implemented as MCP [5].

It provides higher throughput than the theoretical limit for

random traffic for a specific traffic pattern. An event builder

deploying this communication subsystem benefits from linear

scalability.

The barrel shifter implementation builds upon the idea to

have one queue for each destination at the source. It takes

advantage of the backpressure for synchronizing the sending

operations among all data sources. After initialization each

source node cycles through all destination queues in the same

order scatter/gathers pending messages into fixed size buckets

and sends them. To keep synchronization every source has to

send a packet in each timeslot and thus must send empty

packets if not data are pending for output [6].

The barrel shifter based implementation used the previous

LANai 9 based NIC with a single link and was shown to

provide over 95 percent of the wire-throughput for event-

building traffic for up to 32 readout and builder units [36].

Fig. 13 presents the aggregated throughput results for event

building for the 2 modes of Myrinet Express and an

extrapolation of the barrel shifter based MCP. For the CMS

experiment 200 MB/s throughput per node are required for

event building [6]. This cannot be achieved by the MX based

peer transport for more than 3 RUs and 3 BUs.

It remains to be elucidated, however, that a barrel-shifter

system is stable under continuous, long-lasting operation as

barrel-shifter synchronization is entirely based on the

backpressure signals from the Clos fabric’s input-layer switch

ports. A disadvantage of the barrel shifter is also the

constraint of the quadratic system configuration (N!N), thus

avoiding mixed configurations with a variable number of

readout and builder units. A trapezoid setup in which readout

units send event data fragments directly to the high-level

trigger processing nodes (filter units) is therefore not

achievable with the Myrinet based barrel shifter

implementation.

VI. SUMMARY

We have implemented a Myrinet Express based peer

transport for the CMS on-line software framework (XDAQ)

and we have determined the values for various event building

traffic related parameters. We have identified and discussed

several throughput and scalability limiting factors associated

with adaptive wormhole routing networks.

Due to the high transfer rates, network throughput in

channel bonding mode is at first order limited by the

bandwidth between host memory and network interface card.

In dual-port operation with full bi-directional communication,

65 percent of the wire throughput was reached in our test

environment.

Using N!N random traffic the throughput drops to 40

percent of the theoretical maximum. In case of event building

traffic, the throughput decreases further to 30 percent of the

wire-throughput with seven sources and seven destinations.

Primary causes for throughput degradation are Head of Line

TABLE VII

THEORETICAL THROUGHPUT LIMIT (QUEUEING THEORY)
N Throughput

(%)

1 100.0

2 75.00

3 68.25

4 65.53

5 63.99

6 63.02

7 62.34

8 61.84
! 58.58

Fig. 13. Aggregate throughput for event building in N!N configuration.

and multistage switching fabric internal blocking. Sources

choose their routing paths independent from the others and

may select the same intermediate path. This results in

(internal) blocking of all packets except one at a time for this

sub path. Adaptive routing alternates blocking routes to find a

non-blocking configuration. For proper functioning of the

algorithm, routes must remain stable for a large number of

consecutive messages. This is not the case for event-building

traffic, where consecutive messages have different

destinations. Hence, the algorithm fails to adapt to this

situation.

From our quantitative evaluation we conclude that adaptive

wormhole routing is not well suited for event building traffic.

Myrinet Express is targeted at scenarios where multiple

consecutive messages are sent to the same destination,

allowing adapting routes to find a non-blocking configuration.

This applies to calculation bound parallel computing, clearly

demonstrating the difference of data bound cluster computing

such as high-energy physics applications.

ACKNOWLEDGMENTS

We acknowledge support from the DOE and NSF (USA),

KRF (Korea), Marie Curie Program and Eva Kühn (Vienna

University of Technology, Austria).

REFERENCES

[1] The CMS Collaboration, The Compact Muon Solenoid, CERN,

Technical proposal, No. 7, LHCC 94-38, 1995.

[2] J. Gutleber, “High Performance Distributed Objects in Large Hadron

Collider Experiments,” 1999.

[3] P. Sphicas et al. Cms, The TriDAS Project - Technical Design Report,

Volume 2: Data Acquisition and High-Level Trigger, 2002.

[4] E. Barsotti, A. Booth, M. Bowden, “Effects of Various Event Building

Techniques on Data Acquisition System Architectures,” Computing in

high energy physics, 1990.

[5] G. Antchev et al., “Evaluation of Myrinet for the Event Builder of the

CMS Experiment,” First Myrinet User Group Conference, Lyon,

France, 2000.

[6] V. Brigljevic et al., “The CMS Event Builder,” Proceedings of 2003

Conference for Computing in High Energy and Nuclear Physics

(CHEP03), La Jolla, California, pp. WEPT003, 2003.

[7] M. Bellato et al., “The CMS Event Builder Demonstrator based on

GigaEthernet Switched Network,” Computing in High Energy and

Nuclear Physics (CHEP2000), Padova, Italy, 1999.

[8] G. Antchev et al., “The CMS Event Builder Demonstrator based on

Myrinet,” Proceedings of the 14th IEEE NPSS Real Time Conference,

Santa Fe, NM, 1999.

[9] Antchev, G., et al. “The CMS Event Builder Demonstrator and Results

with Myrinet,” Computing Physics Communications, vol. 140, pp. 130–

138, 2001.

[10] P. Geoffray, “Myrinet eXpress (MX): Is your Interconnect Smart?”

Seventh International Conference on High Performance Computing

and Grid in Asia Pacific Region, 2004.

[11] Myrinet.com Inc., “Myrinet Express (mx): A High-Performance, Low-

Level, Message-Passing Interface for Myrinet,” 2005.

[12] M. Gerla, P. Palnati, S. Walton, “Multicasting Protocols for High-

speed, Wormhole-Routing Local Area Networks,” Conference

proceedings on Applications, technologies, architectures, andprotocols

for computer communications, pp. 184-193, 1996.

[13] N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L. Seitz, J.N.

Seizovic, Wen-King Su, “Myrinet – A Gigabit-per-Second Local Area

Network”, IEEE Micro, vol. 15(11), pp. 29-36, 1995.

[14] A.X. Widmer and P.A. Franaszek, “A DC-Balanced, Partitioned-Block,

8B/10B Transmission Code,” IBM J. Res. Develop, vol. 27(5), pp. 440-

451, 1983.

[15] T. Nachiondo, J. Flich and J. Duato, “Destination-Based HoL Blocking

Elimination,” 12th International Conference on Parallel and

Distributed Systems, ICPADS 2006, pp. 10, 2006.

[16] Myricom.com Inc., “Guide to Myrinet-2000 Switches and Switch

Networks,” 2001.

[17] R. Kettimuthu and S. Muthukrishnan, “A Performance Study of parallel

FFT in Clos and Mesh Networks,” Proceedings of the 2005

International Conference on Parallel and Distributed Processing

Techniques and Applications (PDPTA 2005), 2005

[18] Myrinet.com Inc., “The GM Message Passing System,“ 2000.

[19] M.A. Anwar, T. Yoshida, “OORF: an object-oriented route finder,”

Proceedings of the 2000 ACM symposium on Applied computing, pp.

301-306, vol. 1, 2000.

[20] Private communication with Myrinet.com, Inc.

[21] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, A. Gupta, “The SPLASH-2

Programs: Characterization and Methodological Considerations,”

Proceedings of the 22nd annual international symposium on Computer

architecture, pp. 24 - 36, 1995.

[22] J. Gutleber, S. Murray, and L. Orsini, “Towards a homogeneous

architecture for high-energy physics data acquisition systems,”

Computing Physics Communications, vol. 153, pp. 155–163, 2003.

[23] J. Gutleber and L. Orsini, “Software Architecture for Processing

Clusters Based on I2O,” Cluster Computing, vol. 5(1), pp. 55-64, 2002.

[24] G. Lo Presti. Peer-to-peer Architectures in Distributed Data

Management Systems for Large Hadron Collider Experiments, 2004.

Available: http://lopresti.home.cern.ch/lopresti/phd.html

[25] C.A. Thekkath, H.M. Levy, “Limits to Low-Latency Communication

on High-Speed Networks,” ACM Transactions on Computer Systems

(TOCS), vol. 11(2), pp. 179-203, 1993.

[26] S. Murray, “RU Builder User Manual,” Version 3.9.

[27] G. Antchev, L. Berti, E. Cano, et al, “The CMS Event Builder

Demonstrator and Results with Ethernet and Myrinet Switch

Technologies,” Computing in High Energy and Nuclear Physics

(CHEP01), 2001.

[28] J.P. Singh, J.L. Hennessy, A.Gupta, “Implications of Hierarchical N-

body Methods for Multiprocessor Architectures,” ACM Transactions

on Computer Systems (TOCS), vol. 13(2), pp. 141-202, 1995.

[29] R. Fatoohi, K. Kardys, S. Koshy, S. Sivaramakrishnan, J.S. Vetter,

“Performance Evaluation of High-Speed Interconnects using Dense

Communication Patterns,” International Conference Workshops on

Parallel Processing (ICPP 2005 Workshops), pp. 554-561, 2005.

[30] J. J. Dongarra , “The LINPACK Benchmark: An Explanation,”

Proceedings of the 1st International Conference on Supercomputing,

Springer-Verlag New York , pp. 456-474, 1998.

[31] J.P. Singh, W. Weber, A. Gupta, “SPLASH: Stanford Parallel

Applications for Shared-Memory,” Technical Report: CSL-TR-91-469,

Stanford University, 1991.

[32] J.P. Singh, W. Weber, A. Gupta, “SPLASH: Stanford Parallel

Applications for Shared-Memory,” Technical Report: CSL-TR-92-526,

Stanford University, 1992.

[33] M.G. Hluchyj and M.J. Karol, “Queueing in High-Performance Packet

Switching,” IEEE Journal on Selected Areas in Communications, vol.

6(9), pp. 1587-1597, 1998.

[34] D. Tutsch, M. Brenner, “MINSimulate - A Multistage Interconnection

Network Simulator,” 17th European Simulation Multiconference:

Foundations for successful Modelling Simulation (ESM’03),

Nottingham, UK., pp. 211–216, 2003.

[35] T.L. Wilmarth, G. Zheng, E.J. Bohm, Y. Mahta, N. Choudhury, P.

Jagadishprasad, L.V. Kal"e, “Performance Prediction using Simulation

of Large-Scale Interconnection Networks in POSE,” Proceedings of the

Workshop on Principles of Advanced and Distributed Simulation

(PADS’05), 2005.

[36] F. Meijers, D. Samyn, “EVB Demonstrators. Status and Plans – New

Results on Myrinet RU-Builder Plans,” 2002.

