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Abstract

We consider Randall-Sundrum scenarios based on SU(2)L × SU(2)R and a discrete
parity exchanging L with R. The custodial and parity symmetries can be used to make
the tree level contribution to the T parameter and the anomalous couplings of the bottom
quark to the Z very small. We show that the resulting quantum numbers typically induce a
negative T parameter at one loop that, together with the positive value of the S parameter,
restrict considerably these models. There are nevertheless regions of parameter space that
successfully reproduce the fit to electroweak precision observables with light Kaluza-Klein
excitations accessible at colliders. We consider models of gauge-Higgs unification that
implement the custodial and parity symmetries and find that the electroweak data singles
out a very well defined region in parameter space. In this region one typically finds light
gauge boson Kaluza-Klein excitations as well as light SU(2)L singlet, and sometimes also
doublet, fermionic states, that mix with the top quark, and that may yield interesting
signatures at future colliders.
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1 Introduction

The LHC era that is about to start is expected to unravel the mysteries of electroweak (EW)

symmetry breaking and the origin of the gauge hierarchy. Among the theories that attempt to

explain the hierarchy problem, the Randall-Sundrum model [1] stands out as one of the most

promising ones. The well-known little hierarchy problem becomes, however, critical in such a

model. In fact, it is not just a matter of fine-tuning, but also that the EW precision data turn

out to be so constraining that the masses of the Kaluza-Klein (KK) modes of bulk fields are

pushed to scales that make their discovery at the LHC extremely challenging. Even though

placing the fermions (together with the gauge bosons) in the bulk softens the constraints, there

is still a very large contribution to the Peskin-Takeuchi [2] T parameter [3]. The presence

of infrared (IR) brane kinetic terms [4] can reduce the size of the oblique corrections and,

if large enough, induce a spectrum of gauge KK modes accessible at colliders [5, 6]. In this

paper we will consider a different alternative based on custodial symmetry. It was noticed

in [7] that extending the bulk gauge symmetry to a custodially symmetric SU(2)L × SU(2)R,

also reduces the tree level contribution to the T parameter to phenomenologically allowed

levels for masses of the KK excitations of the gauge bosons MKK ∼ 3 TeV. At the same

time, the Right-Handed (RH) quarks were included in doublets under the SU(2)R symmetry

bringing with them SU(2)R-symmetric partners that in the case of the RH top quark can be

very light. Unfortunately, this mode mixes with the bottom quark and induces anomalous

couplings to the Z that again puts strong constraints on these models, pushing the KK modes

beyond experimental detectability. However, it has been very recently pointed out [8] that the

custodial symmetry together with a discrete L ↔ R symmetry can protect the b coupling to

the Z from anomalous corrections, therefore apparently saving the last hurdle for a realistic

Randall-Sundrum model with small brane kinetic terms and observable KK modes at the LHC.

In this article we show that, although the custodial and LR parity symmetries are very powerful

in rendering the tree level contributions to the T parameter and the Zb̄LbL coupling very small,

the quantum numbers we are forced upon to get such a protection – bidoublets under the

SU(2)L × SU(2)R symmetry – typically induce sizable and negative contributions to T at the

loop level. Such negative contribution to the T parameter, together with a positive value of

the S parameter greatly constraint the masses of the KK modes. A scan over parameter space

shows however that there are regions where the sign of T is reversed and gauge boson KK

masses, MKK ∼ 3 TeV, can be compatible with experimental data. Hence, we obtain the first
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Randall-Sundrum model with negligible brane kinetic terms that is fully compatible with EW

precision observables and has gauge boson KK masses accessible at the LHC.

The above scenarios are based on a fundamental Higgs field, and suffer from the little

hierarchy problem. An alternative theory of EW symmetry breaking, that does not require any

fundamental scalars, has received a lot of attention recently in the context of models with extra

dimensions. These are the models of “gauge-Higgs unification” [9, 10], where the Higgs field is

a pseudo-Nambu-Goldstone boson that arises as the component along the extra dimensions of

gauge fields of broken symmetries. The higher dimensional gauge symmetry protects the Higgs

from cut-off sensitive corrections making its potential, that arises at the quantum level, finite

and therefore calculable. A very simple, yet realistic example is based on an SO(5) × U(1)X

bulk symmetry broken to SO(4) × U(1)X ∼ SU(2)L × SU(2)R × U(1)X on the IR brane and

to SU(2)L × U(1)Y on the UV brane. The Higgs field corresponds to the zero mode of the

A5 gauge boson along the broken direction SO(5)/SO(4) [10]. The extended gauge symmetry

makes models of gauge-Higgs unification very predictive and therefore also very constrained.

In particular, a light Higgs is a generic prediction of these models. Also, the fact that Yukawa

couplings are really gauge couplings reduces the freedom to play with the location of the zero

modes and makes it more difficult to cancel the negative contribution to the T parameter

generated by the bidoublets. Interestingly, the allowed regions of parameter space typically

lead to fermion states well under a TeV.

The structure of the paper is the following. In section 2 we introduce the custodially sym-

metric version of the RS model with a fundamental Higgs, not necessarily localized on the

IR brane, and review the constraints coming from oblique parameters and the Zb̄b coupling.

We show that, as already noted in Ref. [8], in the absence of large brane kinetic terms, in

order to obtain light enough KK states, accessible at the LHC, the Left-Handed (LH) quarks

are required to belong to bidoublets of SU(2)L × SU(2)R. In section 3 we compute in detail

the one-loop contributions to the T parameter and show that the bidoublets induce a sizable,

negative T in most regions of parameter space. We then consider models of gauge-Higgs uni-

fication in section 4, and identify the regions of parameter space allowed by the EW precision

measurements. In section 5 we present the most relevant features of the phenomenology of this

type of models, and we conclude in section 6.
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2 SU(2)L × SU(2)R scenarios

We consider an SU(2)L × SU(2)R × U(1)X gauge theory on a slice of AdS5 with metric

ds2 = e−2kyηµνdx
µdxν − dy2, (1)

and fifth-dimensional coordinate 0 ≤ y ≤ L. The fermions are allowed to propagate in the bulk.

In order to address the gauge hierarchy problem, the Higgs field has to be localized near the

IR brane (y = L). We will analyze both the case of a Higgs exactly localized on the IR brane,

as well as the case of a Higgs propagating in the bulk, as it occurs in gauge-Higgs unification

scenarios.

The gauge group is broken by boundary conditions to the Standard Model (SM) on the UV

brane (y = 0). This is done with the following assignment of boundary conditions

W a
Lµ ∼ (+,+) , Bµ ∼ (+,+) , (2)

W b
Rµ ∼ (−,+) , Z ′

µ ∼ (−,+) , (3)

where + (−) stands for Neumann (Dirichlet) boundary conditions, a = 1, 2, 3, b = 1, 2 and Bµ

and Z ′
µ are the following two combinations of neutral gauge bosons

Bµ =
g5XW

3
Rµ + g5RXµ√
g2
5R + g2

5X

, Z ′
µ =

g5RW
3
Rµ − g5XXµ√
g2
5R + g2

5X

, (4)

with g5R, g5X the five-dimensional coupling constants of the SU(2)R and U(1)X groups, respec-

tively. The covariant derivative in the basis of well defined parities then reads

Dµ = ∂µ − i

[
g5LW

a
LµT

a
L + g′5

Y

2
Bµ + g5RW

b
RµT

b
R + g5Z′Q′

ZZ
′
µ

]
, (5)

where the hypercharge and Z ′ gauge couplings are

g′5 =
g5R g5X√
g2
5R + g2

5X

, g5Z′ =
√
g2
5R + g2

5X , (6)

whereas the charges are

Y

2
= T 3

R +QX , Q′
Z =

g2
5RT

3
R − g2

5XQX

g2
5R + g2

5X

, (7)

so that the electric charge reads

Q = T 3
L + T 3

R +QX . (8)
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The modes with (+,+) boundary conditions have zero modes that make the gauge bosons of the

SM whereas the ones with (−+) boundary conditions only have massive modes. We can now

integrate out these and the KK excitations of the SM gauge bosons to obtain a four-dimensional

effective theory that can be compared to experiment.

2.1 Tree-level Corrections from Gauge KK Modes

The massive gauge bosons induce tree-level corrections to the SM gauge boson masses and to

their couplings to the fermions (as well as four-fermion interactions). Given that the KK scale

is well above the EW breaking scale, we may treat the Higgs vacuum expectation value (vev)

perturbatively and keep only the leading corrections. These can be expressed in terms of the

zero-momentum gauge boson propagators for the massive KK modes obeying (+,+) boundary

conditions. More precisely, in terms of the coefficient of Pµν = ηµν − pµpν/p
2, with zero mode

parts subtracted [5] :

G̃++
p=0(y, y

′) =
1

4k(kL)

{
1 − e2kL

kL
+ e2ky<(1 − 2ky<) + e2ky> [1 + 2k(L− y>)]

}
, (9)

and those obeying (−,+) boundary conditions:

G̃−+
p=0(y, y

′) = − 1

2k

[
e2ky< − 1

]
. (10)

Here p is the 4-dimensional momentum and y< (y>) denote the smallest (largest) of y and y′,

the fifth-dimensional coordinate.

To leading order in the corrections, the SM gauge boson masses are

m2
Z =

e2v2

2s2c2

{
1 +

e2

s2c2

[
δ2
++ +

(
g2
R

g2
L

c2 − s2

)
δ2
−+

]
+ · · ·

}
, (11)

m2
W =

e2v2

2s2

{
1 +

e2

s2

[
δ2
++ +

g2
R

g2
L

δ2
−+

]
+ · · ·

}
, (12)

where v = 174 GeV is the SM Higgs vev, four-dimensional couplings are defined in terms of

the five-dimensional ones as gL = g5L/
√
L (similarly for the rest), and we have defined as it is

customary

e =
g′ gL√
g2
L + g′ 2

, s =
e

gL
, c =

√
1 − s2 . (13)

The corrections from exchange of the towers of the W a
L and hypercharge B gauge bosons are

contained in

δ2
++ =

Lv2

2

∫ L

0

dydy′e−2kyfH(y)2G̃++
p=0(y, y

′)e−2ky′fH(y′)2 . (14)
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The function fH(y) is the Higgs profile which is kept arbitrary for the time being. The con-

tributions from the W b
R and the neutral Z ′ towers are encoded in δ2

−+, which is defined as in

Eq. (14), but in terms of the massive propagator given in Eq. (10).

The corrections to the couplings of the SM gauge bosons to the fermion currents depend on

the fermion zero-mode wavefunctions. The couplings to the Z take the form

e

sc
Zµ
∑

ψ

{
ψ̄(0,r)γµ

(
T 3
L − s2Q

)
ψ(0,r′)

[
δrr

′

+
e2

s2c2
Grr′

++

]

− e2

s2c2
ψ̄(0,r)γµ

(
g2
R

g2
L

c2T 3
R + s2T 3

L − s2Q

)
ψ(0,r′)Grr′

−+

}
, (15)

where the sum runs over all chiral fermions. Here,

Grr′

++ =
v2

2

∫ L

0

dydy′
[
f 0
ψr(y)

]∗
f 0
ψr′ (y)G̃

++
p=0(y, y

′)e−2ky′fH(y′)2 , (16)

where G̃++
p=0(y, y

′) was defined in Eq. (9), and f 0
ψr(y) is the zero-mode wavefunction for the

fermion ψr, r being a flavor index. Grr′

−+ is defined analogously in terms of the propagator of

Eq. (10).

Similarly, the charged currents read

e√
2s
W+
µ

∑

ψ

{
ψ̄(0,r)γµT+

L ψ
(0,r′)

[
δrr

′

+
e2

s2
Grr′

++

]
+
g2
R

g2
L

e2

s2
ψ̄(0,r)γµT+

R ψ
(0,r′)Grr′

−+

}
+ h.c. (17)

where T+
L,R = T 1

L,R + iT 2
L,R and the sum runs over all chiral fermions.

In the general case, the previous corrections are flavor-dependent and would set very strin-

gent bounds on the masses of the KK modes. However, it is well known that these effects can

be controlled effectively in RS scenarios by localizing the fermions of the first two generations

closer to the UV brane than to the IR brane [11]. In fact, in this region of parameter space

the quantities Grr′

++ and Grr′

−+ become essentially independent of the fermion profile, thus lead-

ing to universal effects that can be recast in the form of oblique corrections. Furthermore, in

this same region it becomes possible to generate the fermion mass hierarchies entirely from

the overlaps between the Higgs and fermion wavefunctions. Therefore, we concentrate on this

scenario, which allows us to parametrize the corrections to the Z-pole observables measured at

LEP and SLD together with the mass of the W measured at the Tevatron and LEP2 in terms

of the Peskin-Takeuchi S, T and U parameters [2].
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For the first two quark and lepton generations as well as the third generation leptons, the

general couplings to the Z and W given in Eqs. (15) and (17) reduce to

e

sc
Zµ
[
ψ̄(0,r)γµ

(
T 3
L − s2Q

)
ψ(0,r)

](
1 +

e2

s2c2
Gf

++

)
, (18)

and

e√
2s
W+
µ

[
ψ̄(0,r)γµT+

L ψ
(0,r)
] (

1 +
e2

s2
Gf

++

)
, (19)

where we denote by Gf
++ the common value of Eq. (16) for the fermions with ci > 1/2, and

used the fact that the corrections proportional to Grr′

−+ in Eqs. (15) and (17) become negligible

for such values of ci. Since these shifts are universal they may be absorbed by a rescaling of

the gauge boson fields which allows to describe these effects in terms of the oblique parameters

S, T and U . In fact, to describe the Z-pole observables it is possible to take into account the

most important non-oblique corrections, coming from KK exchange contributions to the Fermi

constant, GF , by using the effective parameters of [4]

Seff = 32πGf
++ ,

Teff =
8π

c2
Gf

++ − 4π

c2
[
δ2
++ − δ2

−+

]
+

2πv2

s2
Gµµ

++ , (20)

Ueff = −8πv2Gµµ
++ .

In the above,

Gµµ
++ =

1

L

∫ L

0

dydy′|f (0)
µ (y)|2G̃++

p=0(y, y
′)|f (0)

µ (y′)|2 (21)

represents the contribution to muon decay from the exchange of the KK towers of the SU(2)L

gauge bosons, with f
(0)
µ (y) the wave function of the muon zero mode. The Higgs vev is v =

174 GeV. In general, there are also terms proportional to Gf
−+ and Gµµ

−+, that have not been

included in Eq. (20) since they become negligibly small when the leptons and the first two

quark generations are localized close to the UV brane. Furthermore, as is apparent from

Eq. (15), these corrections depend on the relative values of T 3
R and T 3

L. Hence, whenever these

corrections become important, non-universal fermion-gauge-boson couplings are induced, even

when all fermions are localized identically. Thus, although localizing the leptons and first two

quark generations near the conformal point can be interesting due to the possibility of a small

coupling to the lightest gauge boson KK modes, a determination of the bounds requires a global
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fit to the EW observables and will be presented elsewhere [12]. In this paper we will concentrate

on a region of parameter space where an analysis based on the effective parameters S, T and

U is sufficient. Consequently, we have not included such terms in Eqs. (20).

We see in the expression for T in Eq. (20) the custodial symmetry mechanism at work:

the largest contribution coming from the fermion-independent terms parametrized by δ2
++ of

Eq. (14) is partially canceled by the corresponding contribution associated with the Z ′ gauge

boson, parametrized by δ2
−+. The cancellation is not perfect due to the breaking of the custodial

symmetry induced by the choice of boundary conditions. Thus, one finds that the tree-level

contribution to the T parameter is not identically zero, although, in practice, it is quite small.

We have evaluated the effects due to the KK-tower contributions to GF , which are also rather

small in the region we are considering, so that Ueff is very small. Thus, in Eq. (20) it is the

S parameter that receives the largest contributions, and generically leads to strong bounds on

the present class of scenarios. It is important to note that in the models under study, in which

the light fermions are localized far from the IR brane, the S parameter is always positive. In

section 3 we will show that the residual loop-level contributions to the T parameter are also

quite relevant.

The third quark generation doublet needs to be localized closer to the IR brane in order to

generate the large top mass. As a result, one should introduce an additional parameter that

allows to describe the difference in the corrections to the coupling of the bottom quark with

respect to the light quarks. The accurate measurement of Rb, the ratio of the width of the

Z-boson decay into bottom-quarks and the total hadronic width, puts strong constraints on

this difference. Since the LH bottom coupling to the Z is roughly five times larger than the RH

one, this mostly constrains the former. The RH coupling, in turn, is mainly constrained by the

measurement of the forward-backward and left-right bottom quark asymmetries measured at

the LEP and SLD colliders. However, these constraints are much weaker than those affecting

the LH coupling [13, 14]. Moreover, since the experimental value of Rb is approximately one

standard deviation larger than the value predicted by the SM, positive and negative corrections

on this coupling are not equally constrained. Approximately, at the 2-σ level, assuming no

large correction to the RH bottom coupling, the constraint on the correction to the LH bottom

coupling to the Z reads [14],

−2 × 10−3 ∼<
δgb L
gb L

∼< 6 × 10−3. (22)

Since the LH bottom couples to the SU(2)R and/or U(1)X gauge bosons, the shift in its coupling

7



to the Z, given in Eq. (15), receives a contribution from the terms proportional to GbL
−+. After

rescaling the Z wave function so that its couplings to the first two generations do not present

anomalous shifts, the value of the anomalous LH bottom quark coupling to the Z is given by

δgbL
gb L

=
e2

s2c2

[
GbL

++ − c2T 3
Rg

2
R/g

2
L + s2T 3

L − s2Q

T 3
L − s2Q

GbL
−+ −Gf

++

]
, (23)

where T 3
L = −1/2 and Q = −1/3 are the SU(2)L isospin and charge quantum numbers of the

LH bottom quark, respectively. T 3
R is the bottom quark SU(2)R isospin, which is determined

by the embedding into the 5D gauge group representation.

For the case of T 3
R = 0, negative corrections to δgb L/gbL are generated, that become larger in

absolute value as the LH bottom is localized closer to the infrared brane. Indeed, for T 3
R(bL) = 0,

Eq. (23) gives

δgb L
gb L

(T 3
R = 0) =

e2

s2c2

[
GbL

++ − s2 T 3
L −Q

T 3
L − s2Q

GbL
−+ −Gf

++

]
≈ e2

s2c2

[
GbL

++ − 0.09GbL
−+ −Gf

++

]
.

(24)

These corrections are depicted by the curve labeled by “gauge” in Fig. 1, which we will explain

in more detail below, and become small as we separate bL (and tL) from the IR brane, in which

case the coupling of the bottom and the light fermions to the Z become similar. Note however

that tL cannot be too far from the IR brane, since this would lead to an unacceptably small

top quark Yukawa coupling.

We can also see how, when the LH bottom acquires a non-vanishing value of T 3
R, the SU(2)R

custodial symmetry can protect the bottom coupling to the Z [8]. If we set T 3
L = T 3

R for bL,

together with gR = gL, the anomalous coupling greatly simplifies

δgb L
gbL

(T 3
R = T 3

L, gR = gL) =
e2

s2c2

[
GbL

++ −GbL
−+ −Gf

++

]
, (25)

and the contributions from GbL
++ and GbL

−+ tend to cancel as a result of the custodial symmetry

and the quantum numbers of the bottom. As was the case for the T parameter, the breaking

due to the boundary conditions makes the cancellation imperfect. Notice that the degree of

cancellation depends on both the bottom localization and the Higgs profile. Furthermore, since

GbL
++ and GbL

−+ are different even when the bottom and Higgs fields are exactly localized on

the IR brane, a residual effect still remains in this limit.1 In fact, one finds that the difference

GbL
++ −GbL

−+ increases slightly as the LH bottom comes closer to the IR brane.

1When both the Higgs and bottom fields are exactly localized on the IR brane, one finds (GbL

++−GbL

−+)/GbL

++ ≈
−1/kL. When the Higgs is not exactly localized, the residual difference is about twice as large due to the tail
of the Higgs wavefunction that “feels” the breaking of the custodial symmetry away from the IR brane.
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Since δgb L measures the deviation of the bottom coupling to the Z relative to the couplings

of the first two generations, Eq. (25) receives an extra contribution from Gf
++. In particular,

for an appropriate localization of the fermion fields, it is possible for the terms in Eq. (25) to

cancel exactly, but we do not explore such a possibility here. Thus, although the anomalous

Zb̄LbL coupling is small, it is not necessarily irrelevant.

2.2 Tree-level Corrections from Fermion KK Modes

In addition to the corrections due to the presence of massive spin-1 fields given in the previous

section there are extra tree-level contributions to the couplings of the fermions to the SM gauge

fields. These arise from integrating out the fermion KK modes that mix with the fermion

zero-modes through the Higgs vev. Given that we are taking the first two generations to be

localized away from the Higgs field, for the light quarks and leptons these mixing effects are

exponentially suppressed due to the associated zero-mode wavefunction. However, for the third

generation such effects can be important, as pointed out in [15].

As we will see, in the models of Ref. [7] this constraint by itself is strong enough to put the

higher dimensional physics beyond the reach of the LHC. We conclude that a mechanism that

suppresses the anomalous Zb̄LbL coupling as outlined at the end of the previous section seems

to be an essential ingredient for these models to be viable.

Thus, we start by studying the class of models with custodial SU(2), where the SM LH top

and bottom arise from 5D SU(2)R singlets and the RH top arises from an SU(2)R doublet:

qL =

(
qtL(+,+)
qbL(+,+)

)
, QR =

(
tR(+,+)
b′R(−,+)

)
, (26)

where, under SU(2)L × SU(2)R, q ∼ (2, 1) and Q ∼ (1, 2). We also indicated the boundary

conditions by assigning parities at the UV and IR branes, respectively.2 The choice of parities

is determined by the requirement that the low-energy theory should have a LH doublet and a

RH top, and by the requirement that SU(2)R be preserved on the IR brane. We exhibit only

the parities for the chiralities containing zero modes. The parity assignments for the opposite

chiralities can be simply read from these.

2As for gauge bosons, a − parity assignment stands for a Dirichlet boundary condition at the corresponding
brane. For fermions, a Dirichlet boundary condition for a given 4D chirality fixes, through the equations of
motion, the boundary condition obeyed by the opposite chirality. We denote this boundary condition by a +
parity assignment. It is, in general, a condition on the first derivative with respect to the extra-dimensional
coordinate.
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Figure 1: Contribution to δgbL/gbL from Eq. (24), labeled by “gauge”, the contribution due
mixing with the lightest modes of b′R, and the sum of the two, for models based on SU(2)R
doublets and for k̃ = ke−kL = 1.5 TeV. The solid line gives δgbL/gbL from Eq. (23) for models
based on bidoublets of SU(2)L × SU(2)R. It is assumed that the Higgs is localized on the IR
brane. The band is the current 2σ bound.

The important point is that reproducing the top mass requires the localization of the zero

mode in Q near the IR brane. (As we mentioned in the previous section and will make explicit

below, the LH doublet qL cannot be taken too close to the IR brane due to large corrections to

the anomalous b couplings.) This in turn implies that the lightest mode of b′R, a state with the

quantum numbers of the RH bottom, becomes rather light. Its tree-level mixing with the LH

bottom induces large anomalous couplings of the latter to the Z gauge boson.

In Fig. 1 we plot the minimum obtainable δgbL/gbL as a function of cq, the localization

parameter of the SU(2)L doublet, assuming the Higgs is exactly localized on the IR brane. We

include the contribution due to exchange of KK gauge bosons in the case that the LH bottom

is a singlet of SU(2)R and gL = gR, given by Eq. (24), as well as the contribution due to the

mixing with the lightest b′R states. The gauge contribution depends only on cq and the KK

scale k̃ = k e−kL. The contribution due to mixing depends on cQ, the localization parameter for
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tR, and only very slightly on cq. In fact, since the top mass is given in terms of the zero-mode

wavefunctions by

mtop = λ4 fq(0)
L

(L)f
t
(0)
R

(L) v , (27)

where λ4 = λ5/L and λ5 is the 5D top Yukawa coupling, we can express the mixing between

b
(0)
L and b

′(1)
R as

λ4v
2

m2

b
′(1)
R

f
q
(0)
L

(L)f
b
′(1)
R

(L) =
mtopv

m2

b
′(1)
R

f
b
′(1)
R

(L)

f
t
(0)
R

(L)
, (28)

which depends only on cQ. The cQ dependence enters both through the wavefunctions and the

mass of the lightest b′R state. The absolute value of this function reaches a minimum for cQ ≈ 0.

The curve marked as b′R in Fig. 1 corresponds to the choice of cQ that minimizes the

contribution to δgbL/gb L, and is almost constant as a function of cq (the slight cq dependence is

due to the higher KK modes). We took k̃ = 1.5 TeV, that corresponds to gauge boson masses

of approximately 3.75 TeV. We thus see that δgbL/gb L gives a rather model independent bound

on scenarios where the RH top arises from a 5D SU(2)R doublet, and that the bounds are rather

severe, most likely putting the gauge boson KK sates beyond the reach of upcoming collider

experiments. For example, even for cQ ≈ 0.5, the constraint Eq. (22) leads to k̃ ∼> 3.5 TeV, or

gauge boson KK masses starting at 8.75 TeV.

In Fig. 1, we also plot δgbL/gbL in models where the SM doublets arise from 5D SU(2)L ×
SU(2)R bidoublets, for which the condition T 3

R = T 3
L can be fulfilled for bL. In this case there

are either no states with the quantum numbers of the LH bottom in the multiplets that couple

through the top Yukawa coupling, or they come in pairs whose effects cancel against each

other (due to the symmetry exchanging L with R). There can be states that mix with the

LH bottom and give a non-vanishing contribution to δgbL/gb L, coming from the multiplet that

gives rise to the RH bottom. However, these contributions can be easily suppressed through the

bottom quark Yukawa coupling. Therefore, we only plot the contribution due to the exchange

of gauge KK states, as given in Eq. (25). The anomalous couplings are easily within the

experimental limits, which gives a strong motivation for including the mechanism of Ref. [8] to

suppress contributions to δgb L/gb L. In the next sections we concentrate on further constraints

on scenarios with SU(2)L × SU(2)R bidoublets.
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3 SU(2)L × SU(2)R bidoublets and the T parameter

The custodial SU(2) symmetry, which is broken only by boundary conditions, ensures that

the contribution to the T parameter due to fermion loops is finite. Nevertheless, the finite

contributions involving the KK modes of the top quark impose significant constraints. In fact,

we will see that making the top-bottom doublet part of a bidoublet of SU(2)L×SU(2)R implies

a rather definite prediction for the 1-loop contributions to the T parameter. We concentrate

here on the top sector since it gives the largest effects. Other one-loop contributions to T, due

to gauge bosons and light fermions, are much smaller [7].

The cancellation of the contributions to δgb L/gbL advocated in [8] requires that the LH

bottom be part of a SU(2)L × SU(2)R bidoublet, with T 3
L = T 3

R, i.e. T 3
L + T 3

R = −1, which

implies from Eq. (8) that the bidoublet U(1)X charge is fixed to X = 2/3. Therefore, in

addition to the top partner, the LH bottom is accompanied by a charge 2/3 field, χd, and a

charge 5/3 field, χu. Writing the Higgs field as a bidoublet of SU(2)L×SU(2)R, we see that to

write a top Yukawa coupling, the top SU(2)L singlet must arise either from an SU(2)R singlet

or an SU(2)R triplet, with charge X = 2/3 [the bottom SU(2)L singlet then must come from

an SU(2)R triplet with charge X = 2/3]. In the latter case, the PLR parity that ensures the

cancellation of δgbL/gb L requires an additional SU(2)L triplet, with couplings related to those

of the SU(2)R triplet. Thus, we have the following possible assignments:

QL =

(
χuL(−,+) qtL(+,+)
χdL(−,+) qbL(+,+)

)
, tR(+,+) , (29)

or

QL =

(
χuL(−,+) qtL(+,+)
χdL(−,+) qbL(+,+)

)
, T1R =



ψ′
R(−,+)
t′R(−,+)
b′R(−,+)


 , T2R =



ψ′′
R(−,+)
tR(+,+)
b′′R(−,+)


 , (30)

where, in the bidoublets, SU(2)L acts vertically and SU(2)R acts horizontally. T1 and T2

transform as (3, 1) and (1, 3), respectively, under SU(2)L × SU(2)R. In Eq. (30), the parity

assignments on Q and T2 are determined by the requirement that SU(2)R be preserved on the

IR brane, together with the zero-mode spectrum. The parity of the state b′ in T1 is chosen

to be identical to that of b′′ in T2 to avoid large contributions to δgb L/gbL from mixing of the

bottom with light bottom-like states.

We are interested in the contributions to the T parameter arising from 1-loop diagrams in-

volving the KK modes in the above cases. We concentrate on the assignments shown in Eq. (29),

12



but at the end of the section we comment on the results in the case that the top quark arises

from the multiplets in Eq. (30). There are also contributions due to the remaining multiplets

needed to embed the SM, but these can be easily suppressed either by taking moderately small

5D Yukawa couplings in those sectors or by choosing their localization parameters such that

the overlap of their zero-mode with the Higgs is exponentially suppressed. The latter occurs

when the light fermion modes are localized close to the UV brane, as we have assumed in this

work. In the top sector, however, accommodating the top mass imposes strong constraints on

such contributions.

Since the sums over KK mode loops are finite due to the nonlocal breaking of the custodial

SU(2) symmetry, it is possible to compute T by including only the lowest lying states. We

compute it by numerically diagonalizing the mass matrix of KK modes, including the mixings

induced by the Higgs vev, and calculating the self-energies for W 1
µ and W 3

µ , via [16]

T =
Nc

16πs2c2m2
Z

×
{
∑

α

∑

i

(
V L
αiV

L∗
αi + V R

αiV
R∗
αi

)
θ+(Mαα

u ,Mii) + 2 Re
(
V L
αiV

R∗
αi

)
θ−(Mαα

u ,Mii) (31)

−
∑

α

α−1∑

β

(
UL
αβU

L∗
αβ + UR

αβU
R∗
αβ

)
θ+(Mαα

u ,Mββ
u ) + 2 Re

(
UL
αβU

R∗
αβ

)
θ−(Mαα

u ,Mββ
u )

}
,

where Nc = 3 is the number of colors and

θ+(y1, y2) = y2
1 + y2

2 −
2y2

1y
2
2

y2
1 − y2

2

ln
y2

1

y2
2

, (32)

θ−(y1, y2) = 2y1y2

(
2y2

1y
2
2

y2
1 − y2

2

ln
y2

1

y2
2

− 2

)
. (33)

Mu is the diagonal matrix of charge 2/3 states (qt, χd and t), and M contains the (diagonal)

masses for the remaining states that do not mix among themselves (qb and χu). V L (V R) is

the matrix of couplings of LH (RH) fermion fields to W 1
µ in the mass eigenstate basis, and UL

(UR) is the corresponding matrix of couplings of the charge 2/3 states to W 3
µ . The matrices

UL,R are hermitian and satisfy the relations

(UL,R)2 = V L,RV L,R† ,

ULMuU
R = V LMV R† , (34)

M = V L†MuV
R ,

13



-0.15

-0.1

-0.05

 0

 0.05

 0.1

-0.4 -0.2  0  0.2  0.4

T

ct

cQ=0.49

cQ=0.45

cQ=0

cQ=-0.2

Figure 2: Contribution to the T parameter involving the KK modes of Eq. (29), which couple
to the Higgs through the top Yukawa coupling. We use k̃ = 1.5 TeV and mtop = 167 GeV. The
dots indicate the point beyond which the theory is strongly coupled at the scale of the first KK
mode. It is assumed that the Higgs field is exactly localized on the IR brane.

which can be used to show that the UV divergences associated with the 4D momentum inte-

gration cancel in the expression for T .

To obtain the contribution to the T parameter due to the new physics, we need to subtract

the SM model top quark contribution

Ttop =
Ncm

2
top

16πs2c2m2
Z

, (35)

where mtop is the would-be zero-mode mass, obtained after diagonalization of the mass matrix.

We have checked that the result converges fast with the number of KK modes.

In Fig. 2 we show the T parameter arising from the multiplets in Eq. (29), with the top

quark contribution subtracted, as a function of ct and for several values of cQ, the localization

parameters of the singlet and bidoublet, respectively. It is assumed that the Higgs is localized

on the IR brane. Fig. 3 shows the case where the Higgs is “maximally” delocalized [17], as

would be the case in scenarios of gauge-Higgs unification (see section 4 below). There is also a
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Figure 3: Contribution to the T parameter involving the KK modes of Eq. (29), which couple
to the Higgs through the top Yukawa coupling. We use k̃ = 1.5 TeV and mtop = 167 GeV. It
is assumed that the Higgs field has the profile of gauge-Higgs unification models, Eq. (48).

contribution to T coming from the gauge sector, as given in Eq. (20), which is not included in

Figs. 2 or 3. It is independent of cQ and ct, and is subdominant.

The figures exhibit the following features:

• T becomes more negative as cQ decreases, which localizes the bidoublet zero-modes near

the IR brane.

• As ct increases, which localizes tR near the IR brane, T becomes negative.

• If we separate tR sufficiently from the IR brane, T can become positive. However, in

doing so one is forced to increase the 5D top Yukawa coupling to reproduce the top mass,

eventually entering the strong coupling regime, i.e. the one-loop corrections are of the

same order as the tree-level coupling. We have cut the curves when the theory is strongly

coupled at the scale of the first KK mode. Thus, depending on the localization of the

bidoublet, cQ, T may never reach positive values.
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In fact, the negative contribution to the T parameter is a direct consequence of the em-

bedding of the SM SU(2)L doublets into bidoublets of SU(2)L × SU(2)R. To clarify this point

we derive approximate expressions in the case where t is a singlet of SU(2)R, as in Eq. (29).

Given that the mixing masses are small compared to the scale of KK masses, it is justified to

treat them perturbatively. Also, since the KK sums are convergent, we may keep only the first

KK modes of the bidoublet and singlet. For clarity we consider separately the case with only

the vector-like bidoublet KK modes, and the case with only the vector-like singlet KK modes

included. The general (and more complicated) case can be understood from these simplified

results.

Let us first consider the case that includes, in addition to the SM top and bottom, a single

vector-like SU(2)L × SU(2)R bidoublet (in the scenarios at hand, the first KK excitations of

the 5D bidoublet fields). We allow for the KK mass of the χ’s to be different from the mass of

the q’s, since they obey different boundary conditions. However, since we are treating the EW

breaking vev perturbatively, we use common KK masses Mχ and Mq for their upper and lower

SU(2)L components. There are also EW breaking masses that mix the (zero-mode) singlet t

with the bidoublet components qt and χd. These mixing masses, which we call mqt,t and mχd,t

respectively, depend on the integral over the extra dimension of the Higgs zero-mode profile

and the fermion wavefunctions (for the zero-mode of t and the first KK modes of qt or χd).

With this notation, the lowest order contribution to the T parameter takes the form

∆T = Ttop

m2
χd,t

M2
q

[
−F1

(
M2

q

M2
χ

,
m2
qt,t

m2
χd,t

,
M2

χ

m2
top

)
+
m2
χd,t

m2
top

F2

(
M2

q

M2
χ

,
m2
qt,t

m2
χd,t

)]
, (36)

where Ttop is the SM contribution due to the top quark given in Eq. (35), and

F1(rm, rλ, rtop) = 2 [(rm − rλ) (2 ln rtop − 3) − 2rλ ln rm] , (37)

F2(rm, rλ) =
4

3(rm − 1)3

{
−3rmrλ(r

2
m + 1) ln rm

+(rm − 1)[r2
λ + r3

m + r2
m(r2

λ + 3rλ − 2) − rm(2r2
λ − 3rλ − 1)]

}
. (38)

The functions F1,2 are complicated functions of their arguments. However, the boundary condi-

tions Eqs. (29) imply that Mχ < Mq and mχd,t > mqt,t. Therefore, we concentrate in the region

rm ≥ 1 and 0 ≤ rλ ≤ 1. In this region, both F1 and F2 are positive. Furthermore, given that

mtop < Mχ, one also has F2 ≪ F1. In fact, for fixed 0 ≤ rλ ≤ 1, the ratio F2/F1 is bounded by

1 − r2
λ

6 ln rtop − 9/2
≤ F2(rm, rλ)

F1(rm, rλ, rtop)
≤ 1

6 ln rtop − 9/2
, (39)
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Figure 4: Diagrams that give the dominant contribution to the T parameter when only vector-
like bidoublets are present. When the SU(2)L singlet top quark is also an SU(2)R singlet as in
Eq. (29), there are no diagrams contributing to Π11. We show explicitly the relative minus sign
between the isospin charges of qt and χd. The top mass insertions in the zero-mode propagator
are resummed to all orders. Each cross represents an insertion of the EW breaking mass mixing
the singlet t with qtn or χdn.

where the lower value is attained for rm = 1 and the upper one for rλ/rm → ∞. Therefore,

in the region of interest, the second term in Eq. (36) is subdominant (unless the mixing mass

mχd,t is much larger than mtop) and the sign of T is determined by the first term, which is

logarithmically enhanced. The term associated with F1 corresponds to the diagrams shown

in Fig. 4. The logarithm corresponds to an infrared divergence regulated by the top mass.

Therefore, we have taken mtop = 167 GeV, the running top mass at the scale of the pole top

mass in our numerical studies.3

For example, in the limit that Mχ ≈ Mq and mχd,t ≈ mqt,t, as is the case when the zero-

modes in the bidoublet are not too close to the IR brane, if we write

Mχ = (1 − ηm)Mq , mχd,t = (1 + ηλ)mqt,t , (40)

and work to first order in ηm and ηλ, we obtain

∆T = −Ttop

4m2
χd,t

M2
q

[
2(ηm + ηλ) ln

M2
q

m2
top

− 5ηm − 3ηλ + O
(
m2
χd,t

m2
top

η2
m,
m2
χd,t

m2
top

η2
λ

)]
. (41)

We see that in this limit the terms that scale like m4
χd,t are suppressed by order ηm or ηλ, and

are negligible unless the mixing mχd,t is sufficiently large compared to the top mass to overcome

3A more precise treatment would integrate out the massive fermion KK modes at the KK scale of order

a few TeV, where the operator (1/M2
KK)H†DµH t̄

(0)
R γµt

(0)
R , that gives rise to an effective tR-tR-W vertex, is

induced (as a well as a small 1-loop matching contribution to the “T -parameter” operator (1/M2
KK)|H†DµH |2).

The dominant contribution to the T parameter is induced at the scale of the top mass, where the top quark
is integrated out. ∆T is the part associated with the effective vertex of tR to the W’s above. Therefore, one
should use a running top mass at the scale where this contribution is induced, but the top Yukawa coupling
that enters the effective tR-tR-W vertex should be evaluated at the KK scale. Our simplified approach errs on
the conservative side.
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the degree of degeneracy parametrized by the η′s. The boundary conditions on q and χ imply

that ηm, ηλ > 0 (χd is lighter and couples more strongly to the Higgs than qt). Thus, we see

that if the logarithm is sufficiently large (Mq ∼> 3.5mtop), ∆T is negative.

A different limit is obtained when the zero-modes in the bidoublet are localized close to the

IR brane. In this case one has Mχ ≪Mq and the expression for ∆T reduces to

∆T = −Ttop

4m2
χd,t

M2
χ

[
ln

M2
χ

m2
top

− 3

2
−
m2
χd,t

3m2
top

+ O
(
M2

χ

M2
q

)]
. (42)

In fact, in the limit cQ < −1/2, χ becomes ultralight and its contribution tends to cancel

the positive top quark contribution to the T parameter. Our analytic expressions assumed

Mχ ≫ mtop and therefore do not apply in this limit. However, the formulas we use in the

numerical studies, Eq. (32), do not suffer from this restriction. We conclude that in the present

class of scenarios the contribution to the T parameter of the vector-like bidoublets is always

negative.

We turn now to the case where only the first KK mode of the SU(2)L singlet t, with a KK

mass Mt, is retained. There is an EW breaking mass that mixes the vector-like singlet with

the zero mode in qt, which we call mqt
0,t

. In this case we obtain the simple result

∆T = Ttop

2m2
qt
0,t

M2
t

(
ln

M2
t

m2
top

− 1 +
m2
qt
0,t

2m2
top

)
, (43)

which is positive for Mt ≫ mtop. This contribution is in competition with that of the bidoublets

and explains the positive values of T in the case that the singlet zero-mode is localized away

from the IR brane (smaller values of ct in Figs. 2 and 3).

We may now explain the qualitative features exhibited in the figures:

• The singlet KK mass, Mt, reaches a minimum for ct = −1/2 (the conformal point for a

RH zero-mode) and increases approximately linearly with ct away from that point. For

fixed cQ the positive contribution due to the singlet, Eq. (43) is maximized near ct = −1/2

where Mt is smallest, and is suppressed as Mt increases with ct.

• The rapid increase observed as ct → −1/2 is due to the increased value of the 5D top

Yukawa coupling, as determined by the top mass, mtop. This enhances the effects due to

mixing via the Higgs vev [e.g., the second term in Eq. (36)].
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Figure 5: Contribution to the T parameter involving the KK modes of the bidoublets and
triplets which couple to the Higgs through the top Yukawa coupling, for the parity and quantum
number assignments given in Eq. (30), We use k̃ = 1.5 TeV and mtop = 167 GeV. It is assumed
that the Higgs has the profile of gauge-Higgs unification models, Eq. (48).

• The KK bidoublets become more degenerate as cQ moves in the positive direction, so

their negative contribution to T becomes smaller [see Eq. (41)]. As cQ approaches −1/2,

the negative contribution due to the light mode χd becomes more important (solid curve

in Fig. 2).

The quantitative behavior also depends on the EW breaking masses that mix the first KK

modes of the bidoublets and the singlet, that were not included in our analytic expressions

above. However, Fig. 2 includes these effects exactly, as well as the effects due to higher KK

modes (which are negligibly small).

For the cases that include triplets, as in Eq. (30), Eq. (32) has to be generalized to include the

mixing within states of charge 5/3, 2/3 or −1/3. We show the T parameter for this case in Fig. 5.

The new ingredient is the presence of states, not part of a bidoublet, with parity assignments

(+,−) or (−,+). This may lead to additional light states [18], and correspondingly important

contributions to the T parameter, depending on the value of ct (the discrete parity PLR implies

19



that both triplets, T1 and T2, are controlled by the same localization parameter, which we call

again ct). For the parity assignments of the triplets in Eq. (30), that were motivated by the

SU(2)R×PLR symmetry protecting T and δgb L/gbL, the triplet states become light as ct → 1/2

(the RH zero mode is localized near the IR brane, and the first KK mode obeying (−,+)

boundary conditions for its RH components becomes light). These give a positive contribution

to the T parameter that explains the upward turn in the curves as ct → 1/2. In particular, the

T parameter can be positive in this region. Away from this region the triplet states are not

particularly light and the behavior is similar to what was found for the assignments of Eq. (29):

T is dominated by a negative contribution due to the bidoublets, except near ct ∼ −1/2 (the

conformal point for RH modes) where a large 5D Yukawa coupling enhances the mixing effects

and the importance of various positive contributions (see the second term in Eq. (36), for

example).

Thus, we see that the mechanism suggested in [8] to control the anomalous couplings of the

bottom to the Z implies a sizable negative contribution to the T parameter in large regions

of parameter space. There are, however, regions where T can be positive. Given the positive

S parameter discussed in section 2.1, and that under these circumstances the EW data prefer

positive values of the T parameter, we conclude that the favored region has cQ not too close

to 1/2 and ct somewhere around −0.4 to −0.5 [or also around 0.5 for models based on the

assignment (30)]. 4 We postpone a more detailed discussion of the EW constraints to the next

section, where very similar bounds are found in the context of gauge-Higgs unification models.

We will see that gauge bosons with KK masses around 3 TeV are allowed. The most important

lesson of this section is that the contribution to T can be sufficiently important to select rather

well-defined regions of parameter space, in this case the localization of the top quark multiplets

in models based on SU(2)L × SU(2)R × PLR.

Let us finish this section by mentioning that vector-like quarks as the ones present in these

models also contribute to the S parameter at one loop. Such a contribution is always positive

and much less dependent on the parameters of the model. It is given by

S =
Nc

4π

∑

α,β

[(
U †αβ
L Y βα

L + U †αβ
R Y βα

R

)
χ̄+(Mall

αα,Mall
ββ)

+
(
U †αβ
L Y βα

R + U †αβ
R Y βα

L

)
χ̄−(Mall

αα,Mall
ββ)
]
, (44)

4Note that a negative value of the S parameter as might be obtained with the mechanism of Ref. [19] could
be compatible with a negative value of the T parameter.
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where

χ̄+(y1, y2) =
5(y4

1 + y4
2) − 22y2

1y
2
2

9(y2
1 − y2

2)
2

+
3y2

1y
2
2(y

2
1 + y2

2) − (y6
1 + y6

2)

3(y2
1 − y2

2)
3

ln

(
y2

1

y2
2

)
− 2

3
ln

(
y1y2

µ2

)
,

χ̄−(y1, y2) =
y1y2

(y2
1 − y2

2)
3

[
y4

1 − y4
2 − 2y2

1y
2
2 ln

(
y2

1

y2
2

)]
. (45)

We assume that there are no exactly massless fermions in the theory. These would lead to IR

divergences that need to be carefully subtracted. In the above, µ is an arbitrary scale that

cancels out as a consequence of Tr[U †
LYL + U †

RYR] = 0, where YL,R is the matrix of left- and

right-handed hypercharge couplings in the mass eigenstate basis, while UL,R is the corresponding

matrix of couplings to W 3
µ . Note that in Eq. (44) we have put all fermion masses in a single

(diagonal) matrix Mall. To obtain the contribution due to the new physics one needs to subtract

the SM part. For example, the one due to the top-bottom system is

St,b = − 1

6π

[
ln

(
m2

top

m2
bottom

)
− 3

]
. (46)

We will include the phenomenological impact of this contribution to S in the analysis of the

next section.

4 Gauge-Higgs Unification

The models based on SU(2)L × SU(2)R × U(1)X discussed in the previous sections can be

naturally embedded into SO(5) × U(1)X . The analysis of subsection 2.1 applies to this case

by simply taking gL = gR. The additional gauge fields have the quantum numbers of the SM

Higgs under SU(2)L × SU(2)R and offer the interesting possibility that the Higgs be part of a

higher dimensional gauge field. This can help address the little hierarchy problem present in

RS scenarios based on a fundamental scalar Higgs field. Imposing (+,+) boundary conditions

on the fifth component of the gauge fields in SO(5)/SU(2)L×SU(2)R allows one to identify the

SM Higgs with their zero-mode components. One finds that these zero-modes have a nontrivial

profile along the extra dimension

Aâ5(x, y) = A
â(0)
5 (x)fH(y) + · · · (47)

where â labels the generators of SO(5)/SU(2)L × SU(2)R, and

fH(y) =

(
2k

e2kL − 1

)1/2

e2ky . (48)
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The Higgs field corresponds to the SU(2)L × SU(2)R bidoublet contained in the adjoint repre-

sentation of SO(5).

Regarding the fermion sector, the bidoublet plus singlet system of Eq. (29) fits into the

fundamental representation of SO(5),

5 ∼ (2, 2) ⊕ 1 , (49)

while the system of a bidoublet and triplets of Eq. (30) fits into the 10-dimensional represen-

tation of SO(5),

10 ∼ (2, 2) ⊕ (3, 1) ⊕ (1, 3) . (50)

Therefore, no fermions with quantum numbers different to those already encountered in the

SU(2)L × SU(2)R theory studied in the previous sections are necessary. The results for the

fermion loop contributions to the T parameter can then be understood from the physics already

discussed, with a couple of restrictions:

• A single bulk mass parameter controls simultaneously the localization of the bidoublet

and singlet (or triplets) in a given SO(5) multiplet.

• The Yukawa couplings are no longer free parameters, but are related to observed gauge

couplings.

The SM fermions can be embedded in various ways into the above 5-dimensional SO(5)

structure. An economical way to do it is to let the SM singlet and doublet components of, say,

the up-type sector arise from a single SO(5) multiplet. That is, let the multiplets in Eqs. (29)

or (30) come from the same SO(5) multiplet:

ξ5 = Q ⊕ u , (51)

or

ξ10 = Q ⊕ T1 ⊕ T2 . (52)

In either case, the down-type sector must be assigned to a different 10 of SO(5). In these

scenarios the up-type Yukawa couplings arise directly from the bulk gauge interactions, while

the down-type Yukawa couplings can arise from mixing effects such as those discussed below.
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It is instructive to consider the expression for the top Yukawa coupling in these cases. When

both the LH and RH components of the top quark come from a 5 of SO(5), one finds

λ5
top =

g4√
2

[
(1

4
− c2)2kLe2kL

(1 − e(1−2c)kL)(1 − e(1+2c)kL)

]1/2

, (53)

where the factor of 1/
√

2 arises from the normalization of the Higgs field. The factor in paren-

thesis arises from the integral over the extra dimension of the Higgs wavefunction, Eq. (48),

times the fermion zero-mode wavefunctions (c is the dimensionless mass parameter that con-

trols the localization of the zero-modes). This factor reaches a maximum at c = 0, and is

exponentially suppressed for |c| > 1/2. Taking g4 ≈ 0.65, a running top quark mass of 167 GeV

is obtained for |c| ≈ 0.42. For c = 0.42, we can directly read the associated contribution to

the T parameter from Fig. 3 by setting c1 = c2 = 0.42. For k̃ = 1.5 TeV, which corresponds

to gauge KK masses starting at 3.75 TeV, this gives ∆T ≈ −0.08. For c = −0.42 one finds

∆T ≈ −0.25.

If the top quark comes from a decouplet, one finds instead

λ10
top =

1

2
√

2
λ5

top . (54)

The factor of 1/2 is an SO(5) group theory factor, while the 1/
√

2 comes from the normalization

of the isospin-0 component of the SU(2)R triplet. For c = 0, the maximum obtainable top mass

is about 110 GeV, so that this scenario is ruled out.

A different possibility is to assign an independent SO(5) multiplet for each SM model

fermion. In this case, the gauge coupling, which is diagonal in flavor space, does not induce

masses for the zero-modes. However, localized mass terms that mix different SO(5) multiplets

can generate the fermion masses and mixing angles, once the Higgs field gets a vev. Since

the Higgs field is localized near the IR brane, see Eq. (48), only masses localized on the IR

brane can be effective, and we may restrict ourselves to such cases. These masses preserve

SU(2)L×SU(2)R, so one may have localized masses that we call M̂Q for the bidoublets, M̂u for

the singlets, and M̂T1 and M̂T2 for the triplets. Due to the localization, these “mass parameters”

are dimensionless.

We are mainly interested in the fermion loop contributions to the T parameter, thus we

restrict ourselves again to the top quark sector (the contributions due to the other quark and

lepton fields can be made negligibly small). A priori there are several ways of assigning the

LH and RH top quark components to the 5 and 10 representations of SO(5). However, due
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to the group theory factors associated with the 10-dimensional representation of SO(5) it is

impossible to accommodate the observed top mass unless the SU(2)L singlet top comes from a

5. The SU(2)L doublet components can arise either from a 5 or a 10 of SO(5).5 Therefore, in

the top quark sector, only the bidoublet and singlet localized masses (M̂Q and M̂u) are relevant.

The localized masses also affect the spectrum of KK modes and have the important conse-

quence that they make the light states even lighter. Based on this observation we see that

• The bidoublet localized mass, M̂Q, by pushing the χ states to lower masses, has the effect

of enhancing the negative contributions to the T parameter discussed in section 3.

• The localized mass M̂u can also generate light states in the singlet towers, which in general

enhances their positive contributions to the T parameter.

We find that whenever the bidoublet mass, M̂Q, is appreciable, the negative contributions to

the T parameter are very important. In fact, if the top mass is generated only from M̂Q, T

is negative for all c1 and c2, the localization parameters for the two SO(5) multiplets that

generate the top quark [12].

Given the restrictions imposed by the top quark mass, and in order to obtain positive

values of T , we consider the case with only quintuplets of SO(5), and choose the parities so

that bidoublet mixing masses are forbidden:

ξ1L ∼ Q1L =

(
χu1L(−,+) quL(+,+)
χd1L(−,+) qdL(+,+)

)
⊕ u′L(−,+) ,

ξ2R ∼ Q2R =

(
χu2R(+,−) q′uR (+,−)
χd2R(+,−) q′dR(+,−)

)
⊕ uR(+,+) ,

(55)

where, under SU(2)L × SU(2)R, Qi ∼ (2, 2) for i = 1, 2, and u and u′ are singlets under this

symmetry. All multiplets are taken to have charge X = 2/3. The parities of Q1 and u are

fixed by the unbroken SU(2)R symmetry on the IR brane, and by the low-energy content. The

parities of Q2 are chosen so the bidoublets cannot mix through IR brane localized masses, and

the parity of u′ is then fixed so a singlet mixing mass, that generates the top quark mass, can

be written:

δ(L− y)
[
M̂uū

′
LuR + h.c.

]
. (56)

5When both a 5 and a 10 are used, only the bidoublets in each multiplet can mix, due to the unbroken
SU(2)L × SU(2)R symmetry on the IR brane. Maximizing the top Yukawa coupling requires maximizing the
mixing. If one assigns the singlet to the 10 and makes the mixing large, one finds a situation where effectively
both chiralities come from a 10, which leads to a small top mass. Therefore, the singlet must come from a 5.
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The parities of the remaining chiralities are opposite to the ones shown in Eq. (55).

This system is relatively simple to analyze. There are three fundamental parameters, c1, c2

and M̂u. Given c1 and c2, the top mass fixes M̂u. The top Yukawa coupling is given by

λtop ≈ g4√
2
M̂u

[
(1

2
− c1)(

1
2

+ c2)2kLe
2(1+c2−c1)kL

(1 − e(1−2c1)kL)(1 − e(1+2c2)kL)

]1/2

×
[
1 + M̂2

u e
2(c2−c1)kL

(1
2

+ c2)(1 − e(1+2c1)kL)

(1
2

+ c1)(1 − e(1+2c2)kL)

]−1/2

, (57)

In the limit of small M̂u, the top Yukawa coupling is given by

λtop ≈ g4√
2
M̂u

[
(1

2
− c1)(

1
2

+ c2)2kLe
2(1+c2−c1)kL

(1 − e(1−2c1)kL)(1 − e(1+2c2)kL)

]1/2

, (58)

while for M̂u ≫ 1 the singlet zero-mode lives in ξ1, and the top Yukawa coupling reduces to

Eq. (53) with c = c1. In particular, it becomes independent of c2. For given c1,2, this last limit

corresponds to the maximum achievable top Yukawa coupling. If |c1| is too large, it may be

impossible to accommodate a large enough Yukawa coupling (for example, for mtop = 167 GeV,

one needs |c1| ∼< 0.42, although mixing with light KK states can change this.) Therefore, the

system contains two free parameters c1 and c2, where |c1| cannot be too close to 1/2 in order

to generate a sufficiently large top Yukawa coupling.

In Fig. 6 we plot the T parameter as a function of c2 for several values of c1. We see that

the situation is qualitatively similar to the case without gauge-Higgs unification presented in

Fig 3, with T negative for most values of c2, and a rapid increase as c2 approaches −1/2.6

Given a positive S parameter, and for small values of U , as is the case when the first two

families are localized near the UV brane, the EW data prefer a positive value of T . We see

in Fig. 6 that this restricts c2 to be in the vicinity of −0.4 to −0.5, where T crosses through

zero. Thus, the most important constraints in the previous scenario come from the T and S

parameters discussed in section 2.1, plus the extra contribution from the loops of fermion KK

modes, Eq. (44). With the first two families near the UV brane (localization parameters for

LH zero-modes, c ∼> 0.55 or so), the prediction for S is

S ≈ 9
v2

k̃2
+ ∆Sf , (59)

6As we have mentioned, the bottom quark must arise from a different multiplet, ξ3, that is a 10 of SO(5).
Therefore, the bottom quark mass is generated through a localized mixing mass, M̂Q, for the bidoublets in ξ1

and ξ3. This mass makes the χd’s in ξ1 lighter and enhances their negative contribution to T . Therefore, it
should be taken sufficiently small for a region with positive (or zero) T to exist [12].
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Figure 6: Contribution to the T parameter involving the KK modes of Eq. (55), which couple
to the Higgs through the top Yukawa coupling. We use k̃ = 1.5 TeV and mtop = 167 GeV.

where k̃ = ke−kL, and ∆Sf is the contribution from the fermion loops given in Eq. (44). In

Fig. 7 we show ∆Sf as a function of c2 for several values of c1. We see that, as we said, it is

positive and much less dependent on the parameters of the model.

For a light Higgs with mH ≃ 115 GeV (recall that gauge-Higgs unification models typically

predict a light Higgs), a 2σ bound on S ∼< 0.3 appears [20]. In order to be consistent with the

2σ S-T bounds for the largest allowed values of S, a positive contribution of T ≈ 0.3 is also

required. The bound on S leads to a lower bound k̃ ≈ 1.2 TeV (this includes a contribution

∆Sf ≈ +0.06), which corresponds to KK gauge boson masses of MKK ≈ 2.5 k̃ ≈ 3 TeV. In

turn, the positive contribution to T can arise from the 1-loop effects associated with the top

sector discussed above, for specific values of the bulk mass parameters. For example, taking

c1 = 0, this can be obtained for c2 = −0.468. The top mass fixes M̂u ≈ 2.91. The gauge

contributions to the T and U parameters of Eq. (20) are negligible (∆Tgauge ≈ −0.006 and

∆Ugauge ≈ 0.005).

For the above values of parameters, one also finds δgb L/gb L ≈ 0.8 × 10−3, arising from the

gauge contribution in Eq. (25). There are also potentially important loop-level contributions
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Figure 7: Contribution to the S parameter involving the KK modes of Eq. (55), which couple
to the Higgs through the top Yukawa coupling. We use k̃ = 1.2 TeV and mtop = 167 GeV.

to δgb L/gb L, involving the sector of fermion KK modes that mix with the top. In fact, in order

to obtain a positive T parameter this mixing needs to be relatively large. We have estimated

this contribution using the results of [29], and obtained δgloop
bL /gb L ≈ −5× 10−3. The net value

of δgb L/gbL falls outside the range given in Eq. (22). A naive estimation, using only Rb, would

seem to push the lower bound k̃ ≈ 1.5 TeV. A more careful analysis requires a global fit to all

EW observables that is currently underway [12].

We conclude that there are rather well defined regions of parameter space that pass all

current bounds from precision measurements with relatively light, and probably accessible at

the LHC, gauge boson KK excitations. In fact, one typically finds fermion KK excitations,

with masses below 1 TeV, that should give clear signals at the LHC, as we discuss next.

5 Phenomenology

We have seen in the previous sections how the SU(2) custodial symmetry plus the L ↔ R

discrete symmetry allow for Randall-Sundrum models with KK excitations of the gauge bosons
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as low as MKK ∼ 3 TeV, mainly constrained by the S parameter. In order to avoid large

negative contributions to the T parameter at the loop level, a very well defined pattern emerges,

with the RH top quark not so strongly localized near the IR brane (c2 ∼ −0.4 to −0.5, −0.5

being the conformal point for a RH fermion). We will focus on the gauge-Higgs unification

model discussed in the previous section, with the quantum numbers and parities as in Eq. (55),

and will outline the differences for other models at the end. The net positive contribution

to the T parameter in this case comes from a large positive contribution from a vector-like

SU(2)L singlet that compensates a relatively large negative contribution from a light bidoublet

(c2 ∼ −1/2 localizes a LH zero mode near the IR brane, and the LH components of Q2, that

obey (−,+) boundary conditions develop a light mode). Furthermore, the singlet is lighter than

one would have expected from its localization parameter c2 due to the effect of the localized mass

M̂u. As an illustration, for the choice of parameters satisfying the EW constraints discussed

above, one finds for the states with charges 5/3 and −1/3, that do not mix through the Higgs

vev:

Mχu
2

= Mq′d ≈ 470 GeV . (60)

The lightest charge 2/3 states, coming from Q2, are split due to EW symmetry breaking effects.

In fact, only one linear combination of χd2 and q′u mixes with the singlets. We call q1 the linear

combination that does not feel the Higgs vev. We call the two remaining states q2 and u2 (for

a small Higgs vev, q2 would be mostly an SU(2)L doublet while u2 would be mostly an SU(2)L

singlet). Their masses are

Mq1 ≈ 470 GeV , Mq2 ≈ 495 GeV , Mu2 ≈ 742 GeV . (61)

The mixing between the top quark and the latter mode is about ∼ 32%. There are additional

fermion states starting at about 1.9 TeV.

Light vector-like quarks that mix strongly with the top have two main phenomenological

effects. First, anomalous couplings of the SM quarks to the Z and W bosons [21] are induced

due to mixing. For instance, in the numerical example we are considering the LH top coupling

to the Z and the WtLbL coupling are reduced by

δgLZtt/g
L
Ztt ∼ −0.2 , δgLWtb/g

L
Wtb ∼ −0.07 , (62)

The WtLbL coupling has not been directly measured yet. Early studies for single top production

at the Tevatron [22] show that it may be measured with a precision of about 10 % for a total
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integrated luminosity of order 8 fb−1. At the LHC, this coupling is expected to be measured

to a ∼ 5–10% precision [23]. Apart from the effect of the mixing with the fermion KK modes,

there is an extra effect due to the mixing of the Z with the gauge KK modes, similar to the one

we discussed for the bottom couplings in section 2.1. Actually, the mechanism that protects the

bottom quark coupling from corrections cannot simultaneously protect the top couplings [8].

Eq. (23) applies equally well to the top quark where we now have T 3
R = −T 3

L = 1(0) for the LH

(RH) top quark chirality. This results in a very small modification of the RH coupling (recall

that the one loop contribution to the T parameter requires the RH top to leave not so close to

the IR brane) whereas the LH coupling is modified by a factor

δg
L(gauge)
Ztt /gLZtt ∼ −0.04 , (63)

whereas the WtLbL coupling receives a correction

δg
L(gauge)
Wtb /gLWtb ∼ −0.015 . (64)

As we see, this effect is smaller than the one coming from mixing with fermion KK modes.

Apart from modifications of the diagonal top couplings, Flavor Changing Neutral Couplings

(FCNC) are also generated both through mixing with vector-like quarks and due to the different

top quark couplings in the gauge eigenstate basis that get mixed in the physical basis. These

effects depend on the mixing with the first two families that we have not considered in detail

here. The latter effect has been recently discussed in [24] with the result that FCNC possibly

observable at the LHC can be generated. Recall, however, that due to the constraints associated

with the T parameter it is the LH top that is localized closer to the IR brane, and therefore it

receives the largest modifications to its couplings. The authors of Ref. [24], instead, assumed

that the largest effects appear in the RH sector.

Another phenomenological implication of light vector-like fermions is of course the possibility

of direct production at colliders. The two relevant modes that are light and mix with the top

are, in the gauge eigenstate basis, a bidoublet that is an equal admixture of a quark with isospin

+1/2 and isospin −1/2 (and therefore its effects due to mixing are typically suppressed) and

a singlet that mixes strongly with the top. Thus, as a first approximation we will consider the

phenomenology of just the singlet. A more detailed analysis of the collider phenomenology of

these and other fermion KK modes will be presented elsewhere [12].

Vector-like singlets of charge 2/3 can be pair or singly produced at colliders. Pair production

is quite independent of the heavy quark mixing with the top but the cross section dies off very
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quickly with the mass of the heavy quark. For instance, the production cross section of a

500 GeV quark at the Tevatron collider is about 1 fb [25], while it increases to values of a

few pb at the LHC. Such small cross sections at the Tevatron imply that searches for these

quarks, decaying mainly into third generation states, become quite challenging [25, 26]. Searches

become much more promising at the LHC. A recent study [27] shows that a 500 GeV (1 TeV)

vector-like quark singlet can be discovered at the LHC with an integrated luminosity of ∼ 1.2

fb−1 (∼ 90 fb−1) thus rendering the signatures of our model easily observable.

Single production is not suppressed as much by the mass of the heavy quark but depends

on the details of the mixing with the top-bottom sector. A comparison with the ATLAS study

of little Higgs models [28] shows that a vector-like singlet with the parameters of our numerical

example is well within LHC reach in single production. In particular the T → Wb channel

looks particularly promising in the discovery of a quark with mass of order 750 GeV and a

∼ 32% mixing with the top. Furthermore, the mass of the singlet is typically light enough to

make pair production competitive with single production.

We have thus seen that realistic models of gauge-Higgs unification with gauge KK excitations

with masses as low as 3 TeV can be constructed. Generic predictions of these models include

deviations of the Wtb coupling sufficiently large to be observed with the ∼ 5–10% accuracy

achievable at the LHC, as well as vector-like quarks light enough to be produced at the LHC,

both in pairs and together with SM quarks. Alternative choices of quantum numbers and

parities, but still compatible with EW precision observables, can have slightly different features

regarding the spectrum of bidoublets, but light and strongly mixed vector-like singlets remain

as a solid prediction of the models. If we relax the gauge-Higgs unification condition and allow

for a fundamental Higgs as in sections 2 and 3, then vector-like singlets do not need to be

that light. However, they still need to mix very strongly with the top to compensate for the

negative contribution of bidoublets to the T parameter. This typically results in a scenario

with somewhat light vector-like bidoublets, with masses Mχ ∼ 1 TeV, and heavy vector-like

singlets, with masses Mt ∼ 2.5 TeV, which will be more challenging for the LHC. However, due

to the strong mixing, large corrections to the top gauge couplings, in the ∼ 10 − 20% range,

and therefore observable at the LHC, are expected in these models.
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6 Conclusions

The Randall-Sundrum scenario with gauge and fermion fields propagating in the bulk offers

an attractive solution to the hierarchy problem, an understanding of the observed fermion

hierarchies by extra-dimensional localization effects, and a natural suppression of dangerous

flavor changing processes. A generic feature of these scenarios is that the third generation

is quite different from the first two: by being closer to the IR brane the top quark avoids

an exponential suppression in its mass, in contrast with the first two generation quarks and

leptons, and can naturally be as heavy as the EW scale. One can then generically expect

important deviations from the SM in this sector, most notably anomalous couplings to the Z

gauge boson, and contributions to the Peskin-Takeuchi T parameter. The first two generations

can also give important contributions to the S parameter. These constraints tend to put the

gauge boson KK excitations beyond the reach of the LHC, unless these states are lighter and

more weakly coupled than expected, for example due to the presence of moderately large IR

brane kinetic terms.

In the absence of brane localized terms, an SU(2)L × SU(2)R bulk gauge symmetry to-

gether with a discrete symmetry exchanging L with R [8] seem to be essential in bringing the

contributions to the T parameter, and the anomalous contributions to the Zb̄LbL vertex, un-

der control. These symmetries, being broken non-locally by boundary conditions, imply that

such effects are calculable. We have seen that they can still place important constraints on

these models. A detailed calculation shows that the 1-loop contributions to the T parameter

are in general sizable. Furthermore, we have shown that the existence of SU(2)L × SU(2)R

bidoublets, an essential ingredient in these scenarios, gives a negative contribution to the T

parameter. Contributions coming from singlets or triplets can compensate such effects, but

the conspiracy occurs in rather well defined regions of parameter space. The S-T constraints,

in particular, very directly constrain the location of the third generation multiplets. In this

regions, however, KK gauge excitations as light as 3 TeV are allowed, thus providing the first

example of RS scenarios with negligible brane localized terms, that are consistent with all EW

precision data and with gauge boson KK states accessible at the LHC.

We also studied the EW constraints in models in which, in addition to the above structure,

the Higgs arises from an extra-dimensional gauge field, thus alleviating the little hierarchy

problem associated with a 5D scalar field. These scenarios contain further theoretical relations

due to the embedding of the field content into larger gauge multiplets, as well as due to the fact
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that the Yukawa couplings are related to SM gauge couplings. In spite of these restrictions, we

find that the EW measurements set bounds on the gauge boson KK masses of the order of 3 TeV,

similar to those found in the absence of the gauge-Higgs unification assumption. An important

difference, however, is that the required multiplet structure, together with the constraints on

the location of the third family, typically lead to light vector-like fermionic excitations. Quite

generically, a light SU(2)L singlet, that mixes with the top quark, is expected. Furthermore,

it is likely that additional light SU(2)L doublet states, some of them with exotic charges, are

present. All these states can easily have masses in the 500 − 800 GeV range, and should be

observable at the LHC, both by direct (single or pair) production and by their effect through

mixing on the anomalous couplings of the top. Further fermionic excitations starting as low

as 1 − 2 TeV are also generically expected. All of these should provide interesting discovery

signals and warrant a more detailed study of the associated phenomenology [12].
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