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We have searched for a heavy resonance decaying into a Z+jet final state in pp collisions at a center
of mass energy of 1.96 TeV at the Fermilab Tevatron collider using the D0 detector. No indication for



such a resonance was found in a data sample corresponding to an integrated luminosity of 370 pb~*.
We set upper limits on the cross section times branching fraction for heavy resonance production at
the 95% C.L. as a function of the resonance mass and width. The limits are interpreted within the
framework of a specific model of excited quark production.

PACS numbers: 13.85.Rm,14.65.-q,14.70.Hp,14.80.-j

Heavy resonances decaying into a quark and a gauge
boson may signal the existence of excited quarks and
thereby indicate quark substructure [1]. Searches for ex-
cited quarks have been carried out in the past using dijet
[2-4], photon+jet, and W+jet [5] final states. In the
analysis described here, we searched for resonances in
the Z+jet channel, where the Z boson is detected via its
Z — ete™ decay mode. This signature is practically free
of instrumental background. However, it suffers from the
low branching fraction (3.36%) of the Z — ete™ decay
channel. The high luminosity delivered by the Fermilab
Tevatron collider in Run II makes it possible to present
results on this final state for the first time.

For the production and decay of a resonance, we con-
sidered the model [1] implemented in PYTHIA 6.202 [6].
Here, a quark (antiquark) and a gluon from the colliding
proton and antiproton form a resonance, ¢*, which subse-
quently decays into a Z boson and a quark: ¢* — g+ Z.
The model has two free parameters, My~, the mass of
the resonance, and A, the compositeness scale. They
determine the production cross section and the natural
width of the resonance. The latter scales as 1/£%, where
&=A/Mg.

The Run II DO detector [7] consists of several layered
subdetectors. For the present analysis, the most rele-
vant parts are the liquid-argon/uranium calorimeter [8]
and the central tracking system. The calorimeter, di-
vided into electromagnetic and hadronic sections, has a
granularity of An x A¢ = 0.1 x 0.1, where 7 is the pseu-
dorapidity (n = —In[tan(f/2)] with 0 being the polar
angle measured from the geometrical center of the de-
tector with respect to the proton beam direction) and
¢ is the azimuthal angle. The third innermost layer, in
which the largest electromagnetic energy deposition is ex-
pected, has a finer granularity of An x A¢ = 0.05 x 0.05.
The central calorimeter covers || < 1.1, and the two end
calorimeters extend coverage to |n| &~ 4.5. The tracking
system consists of a silicon microstrip tracker and a cen-
tral fiber tracker, both located within a 2 T supercon-
ducting solenoidal magnet, with designs optimized for
tracking and vertexing at pseudorapidities || < 3 and
In| < 2, respectively.

The data used in this analysis were collected between
April 2002 and August 2004, with an integrated lumi-
nosity of 370 pb~!. The selected events were required to
pass at least one of several single- or di-electron triggers.
The efficiency of the trigger was measured with data and
found to reach a plateau of 4,35 = 0.98240.011 for events
satisfying the final event selection criteria.

Offline event selection was based on run quality, event
properties, and electron and jet identification criteria.
Events were required to have a reconstructed vertex with
a longitudinal position within 60 cm of the detector cen-
ter. Electrons were reconstructed from electromagnetic
(EM) clusters in the calorimeter using a cone algorithm.
The reconstructed electron candidates were required to
satisfy either || < 1.1 or 1.5 < |n| < 2.5. Electron pairs
with p%l > 30 GeV and pﬁg > 25 GeV in the event were
used to reconstruct the Z boson candidate. The electron
pair was required to have an invariant mass M., near the
Z boson mass, 80 < M., < 102 GeV.

To reduce background contamination, mainly from jets
misidentified as electrons, the EM clusters were required
to pass three quality criteria based on shower profile: (7)
the ratio of the energy deposited in the electromagnetic
part of the calorimeter to the total shower energy had
to exceed 0.9; (i¢) the lateral and longitudinal shapes
of the energy cluster had to be consistent with those
of an electron; and (ii¢) the electron had to be isolated
from other energy deposits in the calorimeter with iso-
lation fraction f;s, < 0.15. The isolation fraction is de-
fined as fiso = [E(0.4) — Egn(0.2)] /Ega(0.2), where
E(Rcone) and Egp(Reone) are the total and the EM
energy, respectively, deposited within a cone of radius
Reone = v/ (An)2 + (Ap)? centered around the electron.
Additionally, at least one of the electrons was required
to have a spatially close track with a momentum con-
sistent with the EM shower energy. A total of 24,734
events passed these criteria. In Fig. 1, the distribution
of the invariant mass, M., of the two selected electrons
is shown. A very clean, almost background-free Z boson
signal is evident.

Jets were reconstructed using the “Run II cone algo-
rithm” [9] which combines cell energies within a cone of
radius Reone = 0.5. Spurious jets from isolated noisy
calorimeter cells were supressed by cuts on the jet shape
and by requiring that the charged tracks associated with
the jet had to carry a minimum fraction of the jet trans-
verse energy. The transverse momentum of each jet was
corrected for offsets due to the underlying event, multiple
pp interactions and noise, out-of-cone showering, and the
detector energy response as determined from the trans-
verse energy balance of photon+jet events. Jets were
required to have pp > 20 GeV and |n| < 2.5 and to not
overlap with any of the reconstructed EM objects within
a distance of 0.4 in (1, ¢) space. Requiring one or more
jets with these selection criteria, 2,417 data events re-
main.
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FIG. 1: The invariant mass of the two selected electrons in
the data events.

We have considered two kinds of instrumental back-
grounds where hadronic jets are misreconstructed as EM
clusters and mimic Z boson events. A background from
genuine QCD multi-jet production arises when both of
the EM objects are hadronic jets that fluctuate to elec-
tromagnetic final states. This background has been es-
timated to be (0.56 £ 0.02)% of the signal in the mass
region of 80 < M., < 102 GeV as calculated by com-
paring the M., mass distribution of the selected events
with a distribution that required inverted shower shape
criteria and the absence of matching tracks. The other
source of background is W — ev+jets events where a
hadronic jet is misidentified as an electron. These events
are characterized by significant missing transverse energy
(Er), and should also appear in the data sample where
only one of the EM objects has a matched track. From
comparison of the Fr distribution of these events with
that where both electrons do have matched tracks, we
estimate that this background is an order of magnitude
less than the QCD background.

The main standard model (SM) background to the ex-
cited quark signal is inclusive Z/v* — eTe™ pair pro-
duction which has been simulated with PYTHIA using the
CTEQS5L [10] parton distribution functions (PDFs). In
order to enhance the statistics for events where the in-
variant mass of the Z boson and the leading jet, Mz;1,
is high, in addition to the so-called 2 — 1 process, we
have also generated events including matrix elements of
first order in a5 (2 — 2 process) with different thresholds
of Mzq, the invariant mass of the Z boson and the ac-
companying parton in the final state. A minimum value
of 30 GeV for prp, the transverse momentum of the par-
ton in the 2 — 2 collision, has been set in order to avoid
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FIG. 2: Invariant mass distribution of the Z boson and the
leading jet, Mz;1. The data are shown by the full squares
with error bars. The actual number of events in a bin is the
product of the plotted value and the bin width measured in
10 GeV units. The SM backgrounds generated with PYTHIA
are shown in the histograms: 2 — 1 without threshold (solid
line), 2 — 2 with various Mz, thresholds (discontinuous lines,
as indicated). Each curve with a defininte Mz, threshold
value stops when the curve of the next threshold value takes
over. Also shown with open circles is the signal due to an
excited quark of 500 GeV mass and narrow width (§ = 1).
The resonance production cross section is taken from Ref.

).

collinear divergences. The leading jet pr distribution has
a mean and an RMS value of 106 GeV and 27 GeV, re-
spectively, at the lowest resonance mass investigated and
after the final selection, therefore the pr, cut does not
affect the analysis. The shape of the Mz;; distribution
has been compared with that obtained with the ALPGEN
program [11] and there is reasonable agreement between
them. Any differences in the background level have been
taken into account as a systematic uncertainty.

Signal events were generated with PYTHIA using the
CTEQSL PDFs for the following resonance mass val-
ues: Mg~ = 300, 400, 500, 600 and 700 GeV with &
= A/My, = 1. For each mass, except for the lowest
one, we also generated events with £ = 0.3, 0.5, 0.7, in
order to vary the natural width of the resonance, I'y-.
The form factors associated with the interaction of the
quarks with the SM gauge bosons were set to unity. The
MC events were passed through the same reconstruction
software and selection criteria as the data. The events
have been used to estimate the geometrical acceptance
and jet and electron identification efficiencies. The com-
bined acceptance times efficiencies are listed in Table 1.
The resolution of Mz;; has been found to be ~ 9%.



In Fig. 2 we compare the Mz, distribution of the data
with the PYTHIA 2 — 1 process and with the PYTHIA
2 — 2 processes with various Mz, thresholds. For the
2 — 1 process, the MC is normalized to the total number
of data events. A different but common normalization
factor is used for all 2 — 2 processes determined using
the Mz, > 100 GeV MC sample for Mz;; > 150 GeV.
The 2 — 1 simulation agrees well with the data but pro-
vides sufficient statistics only for Mz;; < 300 GeV. On
the other hand, the 2 — 2 processes describe the data
with reasonable precision for Mz;; > 150 GeV. Since
the latter is the region of interest for the present search,
we have used only the 2 — 2 process for estimation of the
SM background with an Mz, threshold chosen according
to the Mz;1 region to be investigated. Also shown in
Fig. 2 is the signal due to an excited quark of 500 GeV
mass and narrow width (£ = 1).

400

Mq*=500 GeV
350 % SM background
300
250

P, [GeV]
N
o
o
\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\

150
100
50
- oS} \\\\NX\\\\‘.\\\\‘\\\\‘\\\\
% 100 200 300 400 500 600 700 800
Mg;; [GeV]

FIG. 3: prz vs Mzj; distributions for a resonance of mass of
500 GeV (£ = 1) and for the SM background. Both the signal
and background events passed through complete reconstruc-
tion. Each distribution is arbitrarily normalized.

Since no significant excess of events is observed, which
would indicate the presence of a resonance, we deter-
mined the upper limit on the production cross section of
a hypothetical resonance as a function of its mass and
width. We made use of the fact that in the prz vs Mz
plane, events from the resonance are concentrated for
Mz;1 around the mass value and for prz at about half
of the mass value of the resonance, since the resonance
is nearly at rest. The SM background does not exhibit a
similar structure, as it is shown in Fig. 3. In addition, fi-
nite width and mass resolutions wash out the correlation
between prz and Mz;1. We therefore considered events
around the peak values M7, and pf, of the resonance

determined by the following condition:

2
My — M5, N
< Zjl Z_]l) + (PTZ pTZ) < k2 (1)

Mze Ty
and we optimized the cut value k. Here, M77}* and py%*
are the RMS values of the corresponding distributions
of the resonance. At given values of mass and width,
the latter defined by £, we varied k in Eqn.(1) between
0 and 3 in steps of 0.1. Based only on the infor-

TABLE I: Measured (o95) and expected (0§5°) values of the
upper limit on the resonance cross section times branching
fraction, signal acceptance X efficiency, SM background, and
number of observed events at the optimal value of the topo-
logical cut k for different resonance masses and for £ = 1.

My ko095 0§5° Acceptance SM Data
(GeV) (pb) (pb) x efficiency background (events)
300 1.1 0.25 0.290 0.140 £ 0.009 32.8 £ 2.9 31
400 1.2 0.15 0.129 0.164 £ 0.010 7.5 £ 0.8 9
500 1.3 0.08 0.079 0.195 £+ 0.012 2.9 £ 0.8 3
600 1.8 0.05 0.053 0.244 £ 0.014 1.6 £ 0.6 1
700 1.7 0.03 0.044 0.243 £ 0.014 0.64 £ 0.06 0

TABLE II: Measured upper limit on the resonance cross sec-
tion times branching fraction at the 95% C.L., ogs, for differ-
ent resonance masses and £ values. o4+, the production cross
section of an excited quark times its decay branching fraction
into Z4jet and Z — ete™, is calculated in LO. The width
for £ = 1 is also shown [1] for each resonance mass. Cross
sections are quoted in pb, whereas masses and widths are in

GeV.

Mass O95 g [y
£=0.3 0.5 0.7 1 E=1
300 0.25 2.045 13
400 0.32 0.16 0.15 0.15 0.382 16
500 0.17 0.08 0.07 0.08 0.084 20
600 0.10 0.06 0.05 0.05 0.021 24
700 0.07 0.05 0.05 0.03 0.005 27

mation from the signal and background simulation, for
each k we calculated 0§2°, the expected value of the up-
per limit on the resonance production cross section times
branching fraction at the 95% C.L. using a Bayesian ap-
proach [12] and by averaging over possible outcomes of
the background-only hypothesis assuming Poisson statis-
tics of the background. The optimum value of k corre-
sponds to the minimum value of ¢§2¢. At this value of k,
using also the data, we derived ogs, the measured value
of the upper limit on the resonance production cross sec-
tion times branching fraction at the 95% C.L. In this
calculation we have taken into account systematic uncer-
tainties in the determination of the luminosity (6.5%),
trigger and identification efficiencies, and those of the jet
calibration and resolution. Systematic uncertainties due
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FIG. 4: Upper limit on the resonance cross section times
branching fraction at the 95% C.L., o095, for different reso-
nance masses as a function of the resonance width.
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FIG. 5: Upper limits on the resonance cross section times
branching fraction at the 95% C.L., 095, for different £ values
as functions of the resonance mass (open symbols). Full circles
indicate the LO production cross section of an excited quark
times its decay branching fraction into Z+jet and Z — ete™,
Ogx, for £ =1 [1].

to the modeling of the SM background and to the choice
of the PDF, as well as those due to the threshold of the
Mzj1 > 150 GeV in the normalization of the background,
have also been included.

In Table I, og5 and o§2° are shown together with the

signal acceptance, the SM background level, and the

number of data events for £ = 1. The measured ogs
values are displayed in Fig. 4 and Fig. 5, and are com-
piled in Table II for different masses and widths (£). In
Fig. 5, also shown is o4, the LO production cross sec-
tion of an excited quark times its decay branching frac-
tion into Z+jet and Z — ete™, for £ = 1 [1]. We find
a lower limit of 510 GeV at the 95% C.L. for the mass
of an excited quark for £ = 1 within the framework of
the model considered. In earlier measurements, lower
bounds of 460, 530 and 775 GeV were obtained for the
same quantity, but in different decay modes, namely in
q* — qv [5], ¢" — ¢W [5], and ¢* — qg [4], respectively,
and therefore with different systematics.

In conclusion, we have searched for a resonance pro-
duced by the fusion of a gluon and a quark in pp collisions
at a center of mass energy of 1.96 TeV which decays into
a Z boson and a quark in the Z — ete™ decay chan-
nel. In the absence of a signal, we have determined 95%
C.L. upper limits on the cross section times branching
fraction as a function of the mass and width of the res-
onance. The present study is complementary to earlier
searches because it has sensitivity to hypothetical models
with enhanced couplings to the Z boson.
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