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Abstract

The proposed International Linear Collider (ILC) is well-suited for
discovering physics beyond the Standard Model and for precisely
unraveling the structure of the underlying physics. The physics re-
turn can be maximized by the use of polarized beams. This report
shows the paramount role of polarized beams and summarizes the
benefits obtained from polarizing the positron beam, as well as the
electron beam. The physics case for this option is illustrated ex-
plicitly by analyzing reference reactions in different physics scenar-
ios. The results show that positron polarization, combined with the
clean experimental environment provided by the linear collider, al-
lows to improve strongly the potential of searches for new particles
and the identification of their dynamics, which opens the road to re-
solve shortcomings of the Standard Model. The report also presents
an overview of possible designs for polarizing both beams at the
ILC, as well as for measuring their polarization.
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Chapter 1

Introduction

1.1 Overview

The first exploration of the TeV energy scale will be made with the proton–proton Large
Hadron Collider (LHC) now under construction at CERN, which is scheduled to start op-
eration in the year 2007. Its discovery potential would be complemented by the electron–
positron International Linear Collider (ILC) now being designed. The clean signatures
and the precise measurements made possible by a high-luminosity linear collider at a
known and tunable beam energy could bring revolutionary new insights into our under-
standing of the fundamental interactions of nature and the structure of matter, space and
time [1, 2].

The physics return from the investment in a linear collider would be maximized by
the possibility of providing polarized beams, particularly because a high degree of polar-
ization can be realized without a significant loss in luminosity. A polarized electron beam
would already provide a valuable tool for stringent tests of the Standard Model and for
diagnosing new physics. The purpose of this report is to demonstrate that the full potential of
the linear collider could be realized only with a polarized positron beam as well. In addition to
detailed studies of directly accessible new particles, it would also make possible indirect
searches for new physics with high sensitivity in a largely model-independent approach.

In the hunt for physics beyond the Standard Model, only small signs may be visible,
and a linear collider (LC) provides optimal conditions for searching for the unexpected.
We recall that, in the recent past, the availability of a polarized beam at the SLC (SLAC
Linear Collider), the prototype for the ILC, enabled it to compensate in some respects for
the fact that it had a lower luminosity than LEP (Large Electron Positron collider). In par-
allel, polarized lepton scattering has been providing surprising revelations in hadronic
structure, and polarized beams play a crucial role in the experimental programmes of
RHIC (Relativistic Heavy Ion Collider) as well as HERA (Hadron-Elektron-Ring-Anlage).
It is recognized that beam polarization can play an important role in the ILC programme,
and polarization of the electron beam is already foreseen for the baseline design [3]. A
high degree of at least 80% polarization is already envisaged, and new results indicate
that 90% should be achievable. The importance of polarizing the positron beam has al-
ready been studied in [1,2,4,5] and is discussed as an upgrade option for the ILC [3]. This
report focuses on the physics case for choosing this option, as well as reviewing its cur-
rent technical status. Most of the studies are explicitly evaluated at

√
s = 500 GeV with

an integrated luminosity of Lint = 500 fb−1, which matches the energy reach and annual
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luminosity goal for the first stage of the ILC. The qualitative features of the results with
regard to beam polarization, however, are more generally valid also for future energy
upgrades from 1 TeV up to multi-TeV energies [1, 2, 6].

The dominant processes in e+e− experiments are annihilation (s-channel) and scatter-
ing (t- and u-channel) processes. In annihilation processes, the helicities of the electron
and positron are correlated by the spin of the particle(s) exchanged in the direct chan-
nel. Suitable combinations of the electron and positron beam polarizations may therefore
be used to enhance considerably signal rates and also to efficiently suppress unwanted
background processes. These capabilities are particularly welcome in planning searches
for new physics, where in many cases only very small rates are predicted. An increased
signal/background ratio combined with large luminosity gives additional opportunities
for possible discoveries.

On the other hand, in scattering processes, the helicities of the electron and positron
can be related directly to the properties of any produced (new) particles. The ability to ad-
just independently the polarizations of both beams simultaneously will provide unique
possibilities for directly probing the properties of the new particles. In particular, it be-
comes possible to gain direct access to their quantum numbers and chiral couplings with
a minimal number of assumptions.

The detailed advantages of polarized beams for many examples of physics both within
and beyond the Standard Model are discussed in later sections of this report. Many mod-
els of physics beyond the Standard Model have a large number of free parameters.For
example, the Minimal Supersymmetric extension of the Standard Model (MSSM) con-
tains more than one hundred new physical parameters, whose complete determination
would require many independent experimental observables. Having both beams polar-
ized would increase significantly the number of measurable observables, providing more
powerful diagnostic tools, which could be crucial for determining or constraining the
many free parameters. The examples show that the combination of two polarized beams
may not only be important for the discovery of new particles, but may also be indispens-
able for revealing the structure of the underlying new physics.

Another prominent example of potential new physics is provided by CP violation. The
measured baryon asymmetry of the Universe cannot be explained by the small amount
of CP violation present in the Standard Model. Scenarios for new physics beyond the
Standard Model, such as supersymmetry, predict numerous additional sources of CP vio-
lation. However, there are tight experimental bounds on CP-violating parameters beyond
the Standard Model, and ongoing experiments will strengthen these bounds, constraining
severely non-standard sources of CP violation, or perhaps revealing them. In the quest
for CP violation beyond the Standard Model, the simultaneous availability of two po-
larized beams would offer unique access to powerful CP-odd observables. In particular,
transverse beam polarizations would give access to azimuthal asymmetries that can be
defined directly in terms of products of final particle momenta, without the need to mea-
sure final-state polarizations. For (V, A) interactions, due to the negligible electron mass,
observables involving transversely-polarized beams are only available if both beams are
polarized.

In addition to direct searches for new physics, the simultaneous polarization of both
beams offers new prospects for model-independent indirect searches. Some scales rele-
vant to new physics, such as those characterizing gravity in models with extra dimen-
sions or the compositeness scale of quarks and leptons, could be too large to be directly
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accessible at the energies of future as well as present accelerators. Optimal strategies for
indirect searches, as sensitive as possible to small deviations of cross sections from Stan-
dard Model predictions due to new physics, may therefore be decisive in these cases. Such
searches will undoubtedly take advantage of the clean experimental environment and the
high luminosity available at a linear collider. In general, the results may depend strongly
on the particular models chosen for analyzing the data. However, the larger class of ob-
servables available if both beams are polarized will make it possible to minimize such
model dependence.

Even within the Standard Model, having both beams polarized will make it possible
to perform tests of unprecedented precision, either at the Z pole, the WW-threshold or
at higher energies. In the GigaZ option the precision on the weak mixing angle can be
improved by two orders of magnitude using the left-right asymmetry. This method was
pioneered by the SLD experiment at the SLC. Such tests require knowledge of the polar-
ization degree at the per mille-level, which is not possible with conventional polarimetry
alone, but may be achieved with the polarization of both beams by applying the Blondel
scheme originally proposed for LEP.

In the following, the physics case for positron polarization is presented in detail. Sec-
tion 1.2 gives an overview of the possible contributing terms in polarized e+e− processes.
It provides—for the more concerned reader—in the beginning a formalism [7, 8] for in-
cluding longitudinally- as well as transversely-polarized beams. It continues with pre-
senting useful definitions and possible statistical gains in effective polarization, left-right
asymmetry measurements and background suppression in searches for new physics are
presented. Section 1.3 refers some experimental details from the SLD experiment at the
SLC where already highly polarized e− beams have been used. In chapter 2 the impact
of the polarization of both beams for Standard Model physics at high energy and at the
GigaZ option is discussed. Chapter 3 addresses the advantages of polarized beams in
direct as well as indirect searches for different kinds of new physics models. The physics
results are summarised and the quantitative gain factors are listed in chapter 4. One may
conclude as follows: in the search for unknown new physics that we expect at a linear
collider, a polarized positron beam provides important new observables so that two polar-
ized beams could provide decisive tools and that one always gains when using both beams
polarized, independent of the direction of physics beyond the Standard Model.

In chapter 5 we also give an overview of the ILC machine considerations for polarized
beams, i.e. of sources, spin transport and polarization measurement. The status of de-
signs for both undulator-based and laser-based polarized positron sources are reviewed
and compared to that of a conventional unpolarized positron source. It is technically fea-
sible to provide colliding polarized beams with minimal loss in luminosity, and without
severe commissioning problems. The precise technical details of these designs will be
given in forthcoming technical design reports.

1.2 Polarized cross sections at an e+e− collider

1.2.1 Formalism

The helicity amplitudes for the process

e−(pe−, λe−)e+(pe+ , λe+)→ X (1.1)
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can be expressed∗ as a sum of products of the electron/positron currents Jk,

Jk(λe−, λe+) = v̄(pe+, λe+)Γku(pe−, λe−), (1.2)

and the contributionsAk of the transition amplitude which depend on the respective final
state. In eq. (1.2) Γk = (γµ, γµγ5, 1, γ5, σµν) are the basis elements (V, A, S, P, T) of the Dirac
algebra. The four-component spinors u, v are denoted with the four-momenta pe− , pe+ in
the e−e+-c.m.s. and the helicities λe− , λe+ . In the high-energy limit, the vector and axial-
vector (V, A) couple opposite-sign helicities, the scalars (S, P) and tensors (T) equal-sign
helicities.

The helicity amplitude can be written in compact form

Fλe−λe+
= v̄(pe+, λe+)Γu(pe−, λe−), (1.3)

where for simplification the matrix Γ =
∑

ΓkAk is introduced.
The polarized electron/positron beam is described by the 2 × 2 spin-density matrix

ρλe±λ′
e±

so that the transition probability is given by:

|M|2 =
∑

λe−λe+λ′
e−

λ′
e+

ρλ
e−λ′

e−
ρλ

e+λ′
e+

Fλe−λe+
F ∗

λ′
e−

λ′
e+

(1.4)

=
∑

λe−λe+λ′
e−

λ′
e+

ρλ
e−λ′

e−
ρλ

e+λ′
e+

v̄(pe+, λe+)Γu(pe−, λe−)ū(pe−, λ′
e−)Γ̄v(pe+ , λ′

e+),(1.5)

where Γ̄ =
∑

Γ̄ℓA∗
ℓ and Γ̄ℓ = γ0Γ†

ℓγ
0. To evaluate eq. (1.5) helicity projection operators are

applied:

u(p, λ
′

)ū(p, λ) =
1

2
[δλλ′ + γ5 6saσa

λλ′ ]( 6p + m) (1.6)

v(p, λ
′

)v̄(p, λ) =
1

2
[δλ′λ + γ5 6saσa

λ′λ
]( 6p−m), (1.7)

where the Pauli matrices are denoted by σa, a = 1, 2, 3. The three four-component spin
vectors sa and the momentum p/m form an orthonormal system and can be chosen as

s3µ =
1

m
(|p|, Ep̂), (1.8)

s2µ =

(
0,

s3 × pref

|s3 × pref |

)
, (1.9)

s1µ =

(
0,

s2 × s3

|s2 × s3|

)
, (1.10)

where p̂ is the unit 3-vector in the direction of the respective particle momentum and
pref denotes a reference momentum, e.g. of the final state which defines with pe− the
scattering plane. The three 4-vectors (s1, s2, s3) build a right-handed-system and form
together with p/m an orthonormal system (for further details see [7]).

In the high-energy limit, (Ee ≫ me), eqn. (1.6)-(1.7), can be written as:

u(pe±, λ
′

e±)ū(pe±, λe±) =
1

2
{(1 + 2λe±γ5)δλ

e±λ
′

e±
+ γ5[6s1

e±σ1
λe±λ

′

e±

+ 6s2
e±σ2

λe±λ
′

e±

]}6pe±, (1.11)

∗A Fierz transformation may be required.
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v(pe±, λ
′

e±)v̄(pe±, λe±) =
1

2
{(1− 2λe±γ5)δλ

′

e±
λe±

+ γ5[6s1
e±σ1

λ
′

e±
λ

e±
+ 6s2

e±σ2
λ
′

e±
λ

e±
]}6pe±, (1.12)

The 2× 2 spin-density matrix of the electron (positron) in eq.(1.5) can be expanded in
terms of Pauli matrices σ1,2,3:

ρλe±λ′
e±

=
1

2
(δλe±λ′

e±
+ P 1

e±σ1
λe±λ′

e±
+ P 2

e±σ2
λe±λ′

e±
+ P 3

e±σ3
λe±λ′

e±
). (1.13)

Here P 3
e± (in the following denoted by Pe±) is the longitudinal degree of polarization with

Pe± > 0 (right-handed polarization) if it is parallel to the respective beam direction and
Pe± < 0 (left-handed polarization) if it is antiparallel to the beam direction. P 2

e± is the
degree of polarization perpendicular to the scattering plane (spanned by pe− and the ref-
erence momentum pref). P 1

e± is the degree of transverse polarization in the scattering
plane. The signs of the transverse polarizations are chosen with respect to the basis sys-
tem, eqn.(1.8)-(1.10).

For arbitrarily oriented transverse polarization the components of the transverse po-
larizations are P 1

e± = ∓PT
e± cos(φ±−φ) and P 2

e± = PT
e± sin(φ±−φ) where φ is the azimuthal

angle in the c.m.s., φ+ and φ− are the azimuthal angles of the e+ and e− polarizations with
respect to a fixed coordinate system, e.g. the lab system, and PT

e± =
√

(P 1
e±)2 + (P 2

e±)2 is
the degree of the transverse polarization, respectively.

The matrix element squared for a process at an e+e− collider with polarized beams can
then be written as (cf. also [8, 9]):

|M|2 =
1

4

{
(1− Pe−)(1 + Pe+)|FLR|2 + (1 + Pe−)(1− Pe+)|FRL|2

+(1− Pe−)(1− Pe+)|FLL|2 + (1 + Pe−)(1 + Pe+)|FRR|2
−2PT

e−PT
e+{[cos(φ− − φ+) Re(FRRF ∗

LL) + cos(φ− + φ+ − 2φ) Re(FLRF ∗
RL)]

+ [sin(φ− + φ+ − 2φ) Im(FLRF ∗
RL) + sin(φ− − φ+) Im(F ∗

RRFLL)]}
+2PT

e−{cos(φ− − φ)[(1− Pe+) Re(FRLF ∗
LL) + (1 + Pe+) Re(FRRF ∗

LR)]

− sin(φ− − φ)[(1− Pe+) Im(F ∗
RLFLL)− (1 + Pe+) Im(F ∗

RRFLR)]}
−2PT

e+{cos(φ+ − φ)[(1− Pe−) Re(FLRF ∗
LL) + (1 + Pe−) Re(FRRF ∗

RL)]

+ sin(φ+ − φ)[(1− Pe−) Im(F ∗
LRFLL)− (1 + Pe−) Im(F ∗

RRFRL)]}
}

, (1.14)

where FLL, etc. denote the helicity amlitudes, eq. (1.3), with L (R)≡ λ = −1
2
(+1

2
).

In the case of circular accelerators [10] one gets (due to the Sokolov-Ternov effect [11])
φ+ = φ− + π, whereas at a linear collider φ− and φ+ are given by the experimental set-up
and can be changed independently.

A few comments may be added to interpret and illustrate the formula (1.14):

• In this expression, the F ’s contain the dependence of the differential cross section
on the polar angle θ and on

√
s.

• The contributions of different helicity configurations add up incoherently for longi-
tudinally-polarized beams.

• transversely-polarized beams generate interference terms between left- and right-
helicity amplitudes.
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In the limit me → 0 and within the Standard Model (SM), FRR = FLL = 0, so that if the
transverse polarization of the final state particles is not measured, the effects of transverse
polarizations are absent in the φ averaged cross section [9].

In table 1.1 the dependence of the cross section on beam polarization for scalar, pseudo-
scalar, vector, axial-vector and tensor interactions, Γ =(S,P,V,A,T), are listed for me → 0
(see also [12]). In the general case, me 6= 0, all combinations: bilinear, linear, and interfer-
ence of longitudinal with transverse polarization exist (with the exception of pure S or P
interactions where no linear polarization dependences occur).

Interaction structure Longitudinal Transverse Longitudinal/Transverse

Γk Γ̄ℓ Bilinear Linear Bilinear Linear Interference

S S ∼ Pe−Pe+ – ∼ P T
e−P T

e+ – –

S P – ∼ Pe± ∼ P T
e−P T

e+ – –

S V,A – – – ∼ P T
e± ∼ Pe±P T

e∓

S T ∼ Pe−Pe+ ∼ Pe± ∼ P T
e−P T

e+ –

P P ∼ Pe−Pe+ – ∼ P T
e−P T

e+ – –

P V,A ∼ Pe−Pe+ ∼ Pe± ∼ P T
e−P T

e+ ∼ P T
e± ∼ Pe±P T

e∓

P T ∼ Pe−Pe+ ∼ Pe± ∼ P T
e−P T

e+ –

V,A V,A ∼ Pe−Pe+ ∼ Pe± ∼ P T
e−P T

e+ – –

V,A T – – – ∼ P T
e± ∼ Pe±P T

e∓

T T ∼ Pe−Pe+ ∼ Pe± ∼ P T
e−P T

e+ – –

Table 1.1: Dependence on beam polarization of the transition probability, for
(pseudo)scalar-, (axial)vector- and tensor-interactions in the limit me → 0.

As can be seen from table 1.1, in pure V,A-interactions for me → 0 the effects from
transverse beam polarization occur only if both beams are polarized. Effects from trans-
verse beam polarization are particularly interesting in searches for new sources of CP
violation [13], see later sections. A key issue for exploiting this option is to use specific
differential cross sections and define new CP-odd as well as CP-even asymmetries.

1.2.2 Longitudinally-polarized beams

With longitudinally-polarized beams, cross sections at an e+e− collider can be subdivided
(see fig. 1.1) in [9]:

σPe−Pe+
=

1

4

{
(1 + Pe−)(1 + Pe+)σRR + (1− Pe−)(1− Pe+)σLL

+(1 + Pe−)(1− Pe+)σRL + (1− Pe−)(1 + Pe+)σLR

}
, (1.15)

where σRL stands for the cross section if the e−-beam is completely right-handed polarized
(Pe− = +1) and the e+-beam is completely left-handed polarized (Pe+ = −1). the cross
sections σLR, σRR and σLL are defined analogously. For partially polarized beams the
corresponding measurable cross sections will be denoted as σ++, σ+−, σ−+, σ−−, where
the indices give the signs of the absolute electron/positron polarizations |Pe−| and |Pe+ |.
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e− e+

σRR
1+Pe−

2
·1+Pe+

2

σLL
1−Pe−

2
·1−Pe+

2

Jz = 0

σRL
1+Pe−

2
·1−Pe+

2

σLR
1−Pe−

2
·1+Pe+

2

Jz = 1

Figure 1.1: The various longitudinal spin configurations in e+e− collisions. The thick
arrow represents the direction of motion of the particle and the double arrow its spin
direction. The first column indicates the corresponding cross section, the fourth column
the fraction of this configuration and the last column the total spin projection onto the
e+e− direction.

One has to distinguish two cases:

a) in annihilation diagrams, see fig. 1.2, the helicities of the incoming beams are cou-
pled to each other;

b) in exchange diagrams, see fig. 1.3, the helicities of the incoming beams are directly
coupled to the helicities of the final particles.

�
e−

e+

J=1 ← only from RL, LR: γ, Z or Z ′

J=0 ← only from LL, RR

Figure 1.2: Possible configurations in s-channel diagrams: the helicities of the incoming
e+e− beams are directly coupled. Within the Standard Model (SM) only the recombination
into a vector particle with J = 1 is possible, which is given by the LR and RL configura-
tions. New physics (NP) models might contribute to J = 1 but also to J = 0, hence the
LL or RR configurations.

In case a) within the SM only the recombination into a vector particle with total an-
gular momentum J = 1 is possible, i.e., the beams have to carry opposite helicities,
FLL = FRR = 0. New physics (NP) models can contribute to J = 1 but might also al-
low to produce scalar particles, so that also J = 0 would be allowed, which would result
in same-sign helicities of the incoming beams, see fig. 1.2.

In case b) the exchanged particle could be vector, fermion or scalar; the helicity of the
incoming particle is directly coupled to the vertex and is independent of the helicity of the
second incoming particle. Therefore all possible helicity configurations are in principle
possible, see fig. 1.3.
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depends on Pe+

Idepends on Pe−

ie+

e−

a

c

b

i

⇒ helicity of e− not coupled
with helicity of e+

Figure 1.3: Possible configurations in t- and u-channel diagrams: the helicity of the in-
coming beam is directly coupled to the helicity of the final particle and is completely
independent of the helicity of the second incoming particle.

SM candidates for case b) are single W production, see fig. 1.4, where the e+W+ν̄
coupling is only influenced by Pe+, and Bhabha scattering, where the γ, Z exchange in
the t-channel leads to an enhancement of the LL configuration so that the cross sections
for the configurations (Pe−, Pe+) = (−80%, 0), (−80%, +60%) and (−80%,−60%) can be of
the same order of magnitude, see table 1.2.

	
influenced byPe+

ie+

e−

ν̄

e−

W+

γ

Figure 1.4: Single W+ production: the vertex e+W+ν̄ depends only on Pe+ .

(Pe−, Pe+) unpolarized (−80%, 0) (−80%,−60%) (−80%, +60%)
σ(e+e− → e+e−) 4.50 pb 4.63 pb 4.69 pb 4.58 pb

Table 1.2: Bhabha scattering at
√

s = 500 GeV for 45◦ < θ < 135◦. Due to the γ, Z exchange
in the t-channel all possible helicity configurations are allowed, e.g. the configuration LL
leads to higher cross sections than LR.

1.2.3 Use of effective polarization and left-right asymmetry

In the case of e+e− annihilation into a vector particle (in the SM this would be e+e− →
γ/Z0) only the two J = 1 configurations σRL and σLR contribute, as already mentioned in
sect. 1.2.2, and the cross section for arbitrary beam polarizations is given by

σPe−Pe+
=

1 + Pe−

2

1− Pe+

2
σRL +

1− Pe−

2

1 + Pe+

2
σLR

= (1− Pe−Pe+)
σRL + σLR

4

[
1 − Pe− − Pe+

1− Pe+Pe−

σLR − σRL

σLR + σRL

]

= (1− Pe+Pe−) σ0 [1 − Peff ALR] , (1.16)
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with

the unpolarized cross section: σ0 =
σRL + σLR

4
(1.17)

the left-right asymmetry: ALR =
σLR − σRL

σLR + σRL

(1.18)

and the effective polarization: Peff =
Pe− − Pe+

1− Pe+Pe−
(1.19)

The collision cross sections can be enhanced if both beams are polarized and if Pe− and
Pe+ have different signs, see eq. (1.16). Introducing the effective luminosity (where the
ratio Leff/L reflects the fraction of interacting particles) by

Leff =
1

2
(1− Pe−Pe+)L, (1.20)

eq. (1.16) can be rewritten as:

σPe−Pe+
= 2σ0(Leff/L) [1− PeffALR] . (1.21)

Some values for the effective polarization as well as for the ratio Leff/L are given in ta-
ble 1.3.

Peff Leff/L
Pe− = 0, Pe+ = 0 0% 0.50
Pe− = −100%, Pe+ = 0 −100% 0.50
Pe− = −80%, Pe+ = 0 −80% 0.50
Pe− = −80%, Pe+ = +60% −95% 0.74

Table 1.3: Effective polarization and effective luminosity, for maximal and realistic values
of beam polarization.

The values of the effective polarization can be read off from fig. 1.5. Notice that the
effective polarization is closer to 100% than either of the two beam polarizations. For
further references, see [8, 14].

In an experiment one would like to extract, e.g., the two quantities σ0 and ALR, as
determined by annihilation into a vector particle, eq. (1.16). This can be done by running
the experiment with two different polarization configurations. One would choose one
configuration with the electron beam predominantly left-handed and the positron beam
right-handed and the second one with both spins reversed. The corresponding cross
sections, σ−+ and σ+−, can be expressed as

σ−+ =
1

4
{(1 + |Pe−||Pe+|)(σLR + σRL) + (|Pe−|+ |Pe+|)(σLR − σRL)} , (1.22)

σ+− =
1

4
{(1 + |Pe−||Pe+|)(σLR + σRL)− (|Pe−|+ |Pe+|)(σLR − σRL)} , (1.23)

where the subscripts denote the signs of Pe− and Pe+ , respectively. It follows that

σ0 =
σ−+ + σ+−

2 (1 + |Pe+||Pe−|)
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Figure 1.5: Effective polarization vs. positron beam polarization.
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Figure 1.6: Relative uncertainty on the effective polarization, ∆Peff/|Peff| ∼ ∆ALR/ALR,
normalized to the relative polarimeter precision x = ∆Pe−/Pe− = ∆Pe+/Pe+ for indepen-
dent and correlated errors on Pe− and Pe+, see eqs. (1.25), (1.27).

ALR =
1

Peff
Aobs

LR =
1

Peff

σ−+ − σ+−
σ−+ + σ+−

, (1.24)

where Aobs
LR is the measured left-right asymmetry of processes with partially polarized

beams.
The contribution of the uncertainty of the polarization measurement to the error in

ALR is, under the assumption that the errors are completely independent and added in
quadrature:

∆Peff

Peff

=
x

(|Pe+|+ |Pe−|) (1 + |Pe+ ||Pe−|)
√

(1− |Pe−|2)2 P 2
e+ + (1− |Pe+ |2)2 P 2

e− (1.25)

∣∣∣∣
∆ALR

ALR

∣∣∣∣ =

∣∣∣∣
∆Peff

Peff

∣∣∣∣ . (1.26)

Equal relative precision x ≡ ∆Pe−/Pe− = ∆Pe+/Pe+ of the two beam polarizations is
assumed.

In the case where the relative errors on Pe− and Pe+ are fully correlated, like for exam-
ple by depolarization effects from Bremsstrahlung, the polarization contribution to the
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uncertainty in ALR is given by the linear sum:

∆Peff

Peff
=

1− |Pe+||Pe−|
1 + |Pe+||Pe−|

x. (1.27)

It is immediately obvious from eqs. (1.25) and (1.27), that in both cases ∆Peff/Peff <
∆Pe−/Pe− . The improvement from positron polarization for the polarization contribution
to the error in ALR is shown in fig. 1.6. The improvement due to positron beam polariza-
tion is substantial. For a positron polarization of 60% the error on ALR is reduced by a
factor of about 3, see also [15].

1.2.4 Suppression of background in new physics searches

The use of both beams polarized compared with only electrons polarized can lead to
an important gain in statistics and luminosity, i.e. it reduces the required running time.
Furthermore, in order to find even small traces of physics beyond the SM and detect new
signals, it is important to reduce possible background processes as efficiently as possible.
Beam polarization plays an important role in this context by enhancing the signal and
suppressing the background rates. It is parametrized by a scaling factor comparing the
cross sections with two different polarization configurations a) and b):

scaling factor = σ(Pe− ,Pe+)b)/σ(Pe− ,Pe+)a) . (1.28)

Using both beams polarized in configuration b) instead of just the electron beam polarized
in configuration a) can lead to a scaling factor between 0 and at most 2, cf. eq. (1.15).

In cases where the background process depends on beam polarization in a way differ-
ent from the expected signal process, the gain in using both beams polarized is obvious:
suppressing the background and enhancing the signal simultaneously with the suitable
polarizaton configuration.

However, also in cases where both processes, background as well as expected signal,
show a similar dependence on beam polarization, it is advantageous to use this tool be-
cause of the immediate gain in statistical significance. In order to detect a signal,

S = σ(e+e− → X1X2, . . .)× Lint, (1.29)

where X1, X2, . . . are any possible produced particles and Lint denotes the integrated lu-
minosity, the signal (S) has to be separated from the possible background (B) process(es).

The background has a statistical variation of
√

B (Gaussian distribution assumed, which
is suitable thanks to the high statistics at the LC). In order to get a significance of Nσ

standard deviations for the new signal, it is required that

S > Nσ ×
√

B. (1.30)

Therefore, in order to evaluate the statistical gain correctly when applying both beams

polarized, one has to consider not only S/B but also S/
√

B. In table 1.4 the respective
values are listed for the two cases where the background and signal processes have the
same or an inverse scaling factor. This clearly shows that one gains even in the latter case,
since the significance is enhanced!
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S B S/B S/
√

B

Example 1 ×2 ×0.5 ×4 ×2
√

2

Example 2 ×2 ×2 Unchanged ×
√

2

Table 1.4: The gain in ‘signal over background’, S/B, and in significance, S/
√

B, when
both beams are polarized compared with the case of polarized electrons only, for two
examples where the background and signal processes have the same or an inverse scaling
factor.

1.3 Importance of electron polarization at the SLC

Before examining, in the next chapters, the physics motivations for polarizing both beams,
it is useful to highlight the importance the polarized electron beam had for the SLD exper-
iment at the SLAC Linear Collider (SLC) [16], and to review some of the technical aspects.
SLD made detailed and precise measurements of parity violation in weak neutral cur-
rent interactions by studying e+e− collisions at the Z resonance, and utilizing an electron
beam with 75% electron polarization. This degree of electron polarization provided an im-
provement in statistical power of approximately a factor 25 for many Z-pole asymmetry
observables, e.g. when using the left-right forward-backward asymmetry, ALR,FB(cos θ)
instead of the forward-backward asymmetry AFB(cos θ). In particular, it allowed the SLD
experiment to make the best individual measurement of the weak mixing angle, which is
a key ingredient for indirect predictions of the SM Higgs mass. The electron polarization
at SLC also provided a powerful tool for bottom quark studies providing a means for
tagging b or b quark jets, by utilizing the large polarized forward-backward asymmetry
in this channel. Moreover, it allowed for studies of parity violation in the Zbb vertex.

The flagship measurement for SLD was a high-precision measurement of the left-right
asymmetry, and it is useful to recall this measurement in some detail. With the data
obtained from 383500 Z decays in 1996-98 (about three quarters of the total SLD data
sample), the pole value of the asymmetry was measured with high precision, A0

LR =
0.15056 ± 0.00239 [17]. The measurement required a precise knowledge of the absolute
beam polarization, but did not require the knowledge of absolute luminosity, detector
acceptance and efficiency, provided the efficiency for detecting a fermion at some polar
angle was equal to the efficiency for detecting an antifermion at the same polar angle.

The beam polarization was measured by a Compton-scattering polarimeter that an-
alyzed the Compton-scattered electrons in a magnetic spectrometer. The accepted en-
ergy of the Compton electrons was in the range between 17 and 30 GeV. The kinematical
minimum was at 17.36 GeV. Resolution and spectrometer effects were included and the
derived analyzing power of the detector differed by typically about 1% from the theoret-
ical Compton polarization asymmetry function [18]. Polarimeter data were continuously
acquired during the SLC operation [19].

Two additional detectors analyzed the Compton-scattered gammas and assisted in the
calibration of the primary spectrometer-based polarimeter. Although they were not used
during collision, both provided a useful cross-check for the calibration procedure.

The systematic uncertainties affecting the polarization measurements were a) laser
polarization, b) detector linearity, c) analysing power calibration and d) electric noise
which led to an uncertainty of ∆Pe/Pe ∼ 0.5%, see table 1.5.
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Uncertainty ∆Pe−/Pe− ∆ALR/ALR ∆A0
LR/A0

LR

Laser polarization 0.10%
Detector linearity 0.20%
Analysing power calibration 0.40%
Electronic noise 0.20%
Total polarimetry uncertainty 0.50% 0.50%
Chromaticity and IP corrections 0.15%
Corrections between measured and theoretical ALR 0.07%
ALR systematic uncertainty 0.52% 0.52%
Electroweak interference corrections 0.39%
A0

LR systematic uncertainty 0.64%

Table 1.5: Systematic uncertainties that affect the ALR measurement. The uncertainty on
the electroweak interference correction is caused by the uncertainty on the SLC energy
scale, see [17].

Due to chromatic effects (finite beam energy spread, spin precession in the SLC arcs
and small chromatic aberrations in the final focus optics) and the large angular divergence
of the colliding beams, there is an additional uncertainty in extracting the luminosity-
weighted beam polarization from the polarimeter measurements. The depolarization due
to the e+e− interaction itself turned out to be negligible. These effects contribute to an
additional 0.15% uncertainty, see table 1.5.

There could have been small corrections to the left-right asymmetry extracted by di-
viding the measured asymmetry by the luminosity-weighted beam polarization. These
corrections can arise from left-right asymmetries in luminosity, beam energy, beam po-
larization, detector backgrounds and detector efficiency. Another potential source of cor-
rection is any positron polarization of constant helicity, but this was measured to be neg-
ligible. At the SLD experiment these small corrections resulted in an additional 0.07%
uncertainty. The final relative uncertainty for ALR was 0.52%.

To obtain the pole asymmetry A0
LR, the experimental asymmetry ALR had to be cor-

rected for effects arising from pure photon exchange and Zγ interference, where these
electroweak corrections sensitively depend on uncertainties in the c.m. energy

√
s. The

relative systematic uncertainty for A0
LR was finally around 0.64%, see table 1.5, and led to

the determination of sin2 θeff
W = 0.23107± 0.00030 from the 1996-98 data sample. Including

all of the SLD data sample results in sin2 θeff
W = 0.23097± 0.00027.

The high-precision measurement of the left-right asymmetry at the Z-boson shows the
power of the polarized electron beam and also the numerous effects which must be taken
into account to achieve such high precision. The SLD experiment has demonstrated how
successfully these effects can be controlled.
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Chapter 2

Open questions of the Standard Model

2.1 Top couplings, influence of effective polarization

Top quark production occurs in the SM via γ, Z exchange and the influence of polar-
ized beams can be described by the effective polarization Peff. Availability of both
beams polarized allows for a substantial improvement in the ALR measurement and
the determination of couplings and limits for non-standard top physics. Limits on
flavour-changing neutral couplings or CP-violating interactions are particularly im-
proved.

The top quark is by far the heaviest fermion observed, yet all the experimental results
obtained so far indicate that it behaves as would be expected for a sequential third gener-
ation quark. Its large mass, which is close to the scale of electroweak symmetry breaking,
makes the top quark a unique object for studying the fundamental interactions in the at-
tometer regime. It is likely to play a key role in pinning down the origin of electroweak
symmetry breaking [20]. High precision measurements of the properties of the top quark
will be an essential part of the ILC research program.

a) Determination of static electroweak top properties

A linear collider provides an ideal tool to probe the couplings of the top quark to the elec-
troweak gauge bosons. The neutral electroweak couplings are accessible only at lepton
colliders, because top quarks at hadron colliders are pair-produced via gluon exchange.

The most general (γ, Z)tt̄ couplings can be written as [2, 21, 22]

Γµ
tt̄γ,Z = ie

{
γµ[F γ,Z

1V + F γ,Z
1A γ5] +

(pt − pt̄)
µ

2mt

[F γ,Z
2V + F γ,Z

2A γ5]

}
, (2.1)

where the only form factors different from zero in the SM are

F γ
1V =

2

3
, F Z

1V =
1

2 sin(2θW )
(1− 8

3
sin2 θW ), F Z

1A = − 1

2 sin(2θW )
. (2.2)

The form factor (e/mt)F
γ
2A is the CP-violating electric dipole moment, (e/mt)F

Z
2A is the

weak electric dipole moment. The factors (e/mt)F
γ,Z
2V are the electric and weak magnetic

dipole moments.
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Polarization effects have been studied at the top threshold [23]. In the SM the main
production process occurs via γ, Z exchange and the ratios between the polarized and
unpolarized cross sections are given by the scaling factors (1 − Pe−)(1 + Pe+) and (1 +
Pe−)(1− Pe+), that can be parametrized with the effective polarization Peff. To determine
the SM top vector coupling, vt = (1 − 8

3
sin2 θW ), one has to measure the left–right asym-

metry ALR with high accuracy. With an integrated luminosity of Lint = 300 fb−1 precisions
in ALR and vt of about 0.4% and 1%, respectively, can be achieved at the LC. The gain in
using simultaneously polarized e− and e+ beams with

(Pe−, Pe+) = (∓80%,±60%) (2.3)

is given by the higher effective polarization of Peff = 95% compared to the case of only
polarized electrons with |Pe−| = 80%. This leads, according to fig. 1.6 and eqs. (1.25) and
(1.26) to a reduction of the relative uncertainty ∆ALR/ALR ≃ ∆Peff/Peff by about a factor
of 3 [2].

Limits to all the above mentioned form factors have also been derived in the contin-
uum at

√
s = 500 GeV for unpolarized beams and (|Pe−|, |Pe+|) = (80%, 0) [1, 2]. It has

been estimated that the polarization of both beams with (|Pe−|, |Pe+|) = (80%, 60%) leads
to an increase of the tt̄ cross section by about a factor∼ 1.5 and improves again the bounds
by about a factor 3 [2].

b) Limits for CP-violating top dipole couplings

Measurements aimed at testing top-quark couplings to gauge bosons (both CP-conserving
and CP-violating), see eq. 2.1, certainly are an important issue to reveal new fundamen-
tal interactions at the linear collider. Searches of anomalous tt̄γ and tt̄Z couplings can
be made by studying the decay energy and angular distributions of l+ (l−) or b (b̄) in
e+e− → tt̄ followed by the subsequent decays t→ l+νlb (t̄→ l−ν̄lb̄), as in fig. 2.1 [24, 25].

e+

e−

γ, Z
t

t̄

b

b̄

W +

W −

Figure 2.1: Anomalous top dipole interaction.

Particularly interesting are the CP-violating couplings F V
2A, V = γ, Z, that in the SM

can be generated only at the (extremely suppressed) two-loop level. Therefore, detection
of the above CP-violating couplings would be a clear manifestation of physics beyond the
SM.

In principle, also the Wtb vertex can have an anomalous structure, viz.

Γµ
Wtb = − g√

2
Vtb

[
γµ(fL

1 PL + fR
1 PR)− iσµν(pt − pb)ν

mW

(fL
2 PL + fR

2 PR)

]
, (2.4)
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since in the SM only fL
1 = 1 while all others vanish (in the limit mb → 0, which is used

here). Also, it is assumed that the electron interactions with the gauge bosons are de-
scribed by the SM.

Focusing on CP violation, a suitable observable is represented by the forward-backward
charge asymmetry [24, 25]

Af
CP(Pe−, Pe+) =

∫ π/2

θ0
d cos θf

dσ−

d cos θf
−

∫ π−θ0

π/2
d cos θf

dσ+

d cos θ
∫ π/2

θ0
d cos θf

dσ−

d cos θf
+

∫ π−θ0

π/2
d cos θf

dσ+

d cos θ

, (2.5)

where dσ∓ refer to f and f̄ polar angle distribution in the e+−e− c.m. frame, respectively
(with f = l, b), and θ0 is a polar angle cut. The asymmetry (2.5) is a genuine measure of
CP violation and, actually, for f = l it is sensitive exclusively to the CP violation at the
tt̄ production vertices. Conversely, for f = b the anomalous structure of Wtb in eq. (2.4)
appears.

Moreover, the asymmetry (2.5) is defined, and proportional to the CP-violating cou-
plings for all values of beam polarizations, although for Pe− 6= Pe+ the initial state is not a
CP eigenstate. This is due to the s-channel spin-one exchange character of the production
process, that forces only the (e−L e+

R) or the (e−Re+
L ) components of the initial state to interact

with angular momentum conservation.
With

√
s = 500 GeV, Lint = 500 fb−1, and 60% reconstruction efficiency for either lep-

ton or b, the forward-backward charge asymmetry could be measured at the 5.1-σ (2.4-σ)
level for b-quarks (leptons) assuming CP-violating couplings of the order of 5× 10−2 and

unpolarized beams. Having both beams 80% polarized the reach on Af
CP would even

increase up to 16-σ (3.5-σ) and, also, optimal observables and beam polarizations can
be adjusted to minimize the statistical error on the determination of the anomalous cou-
plings [24].

Some more CP asymmetries, both in the polar and in the azimuthal angles, can be
combined and are studied in [25]. The latter ones, however, require the additional re-
construction of the t, t̄ directions. At

√
s = 500 GeV, Lint = 500 fb−1, the simultaneous

90% C.L. limits on the CP-violating couplings with ±80% polarized electrons and un-
polarized positrons are of the order of (1–2)×10−1. Including positron polarization, i.e.,
(Pe−, Pe+) = (±80%,∓60%), the sensitivity can be further improved by 20–30%.∗ These
sensitivities seem not so far from the predictions of some models for new physics, that
may be at the level of 10−2 − 10−3. Also, they compare favourably with the potential of
probing anomalous tt̄V couplings at hadron colliders, see e.g. ref. [26] for the LHC.

c) Limits for flavour-changing neutral top couplings

Flavour-changing neutral (FCN) couplings of the top quark are relevant to numerous ex-
tensions of the SM, and can represent an interesting field for new-physics searches. Limits
on top FCN decay branching ratios can be obtained from top-pair production with subse-
quent t̄ decay into γ, Z plus light quark governed by the FCN anomalous tV q couplings
(V = γ, Z and q = u, c), e+e− → tt̄ → W+bV q̄, see fig. 2.2, or from single top production
e+e− → tq̄ → W+bq̄ mediated by the anomalous couplings at the production vertex as

∗Individual limits, assuming one non-zero anomalous coupling at a time, are of course substantially
more stringent.
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in fig. 2.3. The general expression for the effective-interaction describing the FCN tV q
couplings can be written as (effective top couplings to Higgs bosons are not considered
in the following) [27]:

−L =
gW

2cW

Xtq t̄γµ(x
L
tq PL + xR

tq PR)qZµ +
gW

2cW

κtq t̄(κ
v
tq − κa

tq γ5)
iσµνq

ν

mt

q Zµ

+ eλtq t̄(λv
tq − λa

tqγ5)
iσµν qν

mt

q Aµ (2.6)

Here, colour indices are summed over, and the chirality-dependent couplings are normal-

ized as
(
xL

tq

)2
+

(
xR

tq

)2
= 1,

(
κv

tq

)2
+

(
κa

tq

)2
= 1,

(
λv

tq

)2
+

(
λa

tq

)2
= 1. In the SM, vertices such

as those in (2.6) can only be generated at very strongly GIM suppressed loops.

e+

e−

γ, Z
t

t̄

b

q̄

W +

V

FCNC

Figure 2.2: Flavour-changing neutral coupling in tt̄ production.

e+

e−

γ, Z

q̄

t

FCNC

Figure 2.3: Feynman diagrams for e+e− → tq̄ via Ztq or γtq FCN couplings. The top
quark is off-shell and has SM decays.

Single top production is more sensitive to top anomalous couplings but top decays
help to disentangle the type of anomalous coupling involved. Beam polarization is very
efficient in significantly reducing the background and is therefore particulary important
in limits obtained from single top production. The background is essentially dominated
by the W+ +2jets final state, with W+ decaying into lν and one jet misidentified as a b-jet.

With polarization (80%, 0), the background decreases by a factor of 1/(1 − Pe−) ≈ 5
while keeping 90% of the signal. With (80%,−45%) the background is reduced by a factor
of 1/(1− Pe−)(1 + Pe+) ≈ 9 and the signal is increased by 20% compared to the case of no

polarization [27]. In conclusion, S/B and S/
√

B are improved by factors of 2.1 and 1.7,
respectively.†

†For a discussion of these ratios, see sect. 1.2.4.
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Already with e− and e+ polarization (80%, 45%), as an example, one improves the 3-σ
discovery limits on the vector (γµ) coupling at

√
s = 500 GeV by a factor of 3 (a factor of

1.7 compared to only electron polarization) and the limits on the tensor (σµν) coupling at√
s = 800 GeV by about a factor 2.6 (a factor 1.8 compared to electron polarization only),

see table 2.1.

unpolarized beams |Pe−| = 80% (|Pe−|, |Pe+|) = (80%, 45%)√
s = 500 GeV

BR(t→ Zq)(γµ) 6.1× 10−4 3.9× 10−4 2.2× 10−4

BR(t→ Zq)(σµν) 4.8× 10−5 3.1× 10−5 1.7× 10−5

BR(t→ γq) 3.0× 10−5 1.7× 10−5 9.3× 10−6

√
s = 800 GeV

BR(t→ Zq)(γµ) 5.9× 10−4 4.3× 10−4 2.3× 10−4

BR(t→ Zq)(σµν) 1.7× 10−5 1.3× 10−5 7.0× 10−6

BR(t→ γq) 1.0× 10−5 6.7× 10−6 3.6× 10−6

Table 2.1: Single top production: 3-σ discovery limits on top flavour changing neutral
couplings from top branching fractions at

√
s = 500 GeV with Lint = 300 fb−1 and at√

s = 800 GeV with Lint = 500 fb−1 [27].

A more recent study was made for (|Pe−|, |Pe+|) = (80%, 60%) at
√

s = 500 GeV with
Lint = 345 fb−1 and at

√
s = 800 GeV with Lint = 534 fb−1 including initial state radiation,

beamstrahlung and using different kinematical cuts [28]. Comparison with the limits for
FNC couplings expected at the LHC shows that the LC measurements are complemen-
tary in searches for FCN couplings. Whereas the LHC can be superior in the discovery
potential for γµ couplings, the ILC at

√
s = 800 GeV with (80%, 60%) may gain an order of

magnitude for the discovery of σµν couplings to the Z and the photon, see table 2.2. For
comparison with the results of full simulation studies for the ATLAS and CMS detector
with regard to the LHC discovery potential of FCN couplings, see also [29].

The listed results show that having both beams polarized improves the results con-
cerning measurements of the top properties and enhances considerably the discovery
potential for deviations from SM predictions.

Quantitative results: The determination of the top vector coupling is improved by
about a factor 3 compared with the case of having only polarized electrons. The lim-
its for top FCN couplings in single top production are improved by about a factor 1.8

LHC ILC,
√

s = 500 GeV ILC,
√

s = 800 GeV
BR(t→ Zc) (γµ) 3.6× 10−5 1.9× 10−4 1.9× 10−4

BR(t→ Zc) (σµν) 3.6× 10−5 1.8× 10−5 7.2× 10−6

BR(t→ γc) 1.2× 10−5 1.0× 10−5 3.8× 10−6

Table 2.2: 3-σ discovery limit on top FCN couplings that can be obtained from top decay
processes at the LHC and in single top production at the ILC,

√
s = 500 GeV and 800 GeV

with (Pe−, Pe+) = (80%, 60%) for one year of operation [28]. One anomalous coupling
different from zero at a time is assumed.
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Figure 2.4: Main production mechanism of the SM Higgs boson at the LC

and the sensitivity to CP-violating top couplings is improved by about a factor 1.4
when both beams are longitudinally polarized compared to the case with only polar-
ized electrons, getting closer to predictions from non-standard models.

2.2 Standard Model Higgs searches

One of the major physics goals at the ILC is the precise analysis of all the properties
of the Higgs particle. For a light Higgs the two major production processes, Higgs-
strahlung e+e− → HZ and WW fusion e+e− → Hνν̄ , will have similar rates at√

s = 500 GeV. Beam polarization will be important for background suppression and
a better separation of the two processes. Furthermore, the determination of the general
Higgs couplings is greatly improved when both beams are polarized.

An accurate study of Higgs production and decay properties can be performed in the
clean environment of e+e− linear colliders in order to experimentally establish the Higgs
mechanism as being responsible for electroweak symmetry breaking [30]. The study of
Higgs particles will therefore represent a central part of the ILC physics programme.
Beam polarization does not play a key role in determining the Higgs properties; how-
ever, it is very helpful for separating the production processes, suppressing the dominant
background processes, and improving the accuracy in determining the general couplings.
The use of polarized beams is in this context mainly of statistical importance. Since the
study of the Higgs properties plays one of the major roles in the ILC programme, we here
review the benefits in the Higgs sector of having both beams polarized simultaneously.

2.2.1 Separation of production processes

Higgs production at an LC occurs mainly via Higgs-strahlung e+e− → HZ, fig. 2.4 left,
and WW fusion, e+e− → Hνν̄, fig. 2.4 right. Polarizing both beams enhances the signal
and suppresses the background. In table 2.3 the scaling factors, i.e. the ratios of polarized
and unpolarized cross sections, are compared for two cases (1) (Pe−, Pe+) = (±80%, 0),
and (2) (Pe−, Pe+) = (±80%,∓60%).

If a light Higgs with mH ≤ 130 GeV is assumed, which is the range preferred by both
fits of precision observables in the SM [32] and predictions of SUSY theories (see e.g. [33]),
Higgs-strahlung dominates for

√
s <∼ 500 GeV and WW fusion for

√
s >∼ 500 GeV. At a LC
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Configuration Scaling factors
(Pe−, Pe+) e+e− → Hνν̄ e+e− → HZ
(+80%, 0) 0.20 0.87
(−80%, 0) 1.80 1.13
(+80%,−60%) 0.08 1.26
(−80%, +60%) 2.88 1.70

Table 2.3: Higgs production scaling factors, eq. (1.28), in the Standard Model at
√

s =
500 GeV for different polarization configurations with regard to the unpolarized case [5,
31].

with
√

s = 500 GeV and unpolarized beams, the two processes have comparable cross
sections. In the Hνeν̄e final state, there are important contributions from both HZ pro-
duction and WW fusion. These two contributions exhibit different shapes of the missing
mass distributions, which can be exploited to obtain an enriched sample of either process
(interference must also be taken into account). Beam polarization can be used to enhance
the HZ contribution with respect to the WW fusion signal and vice versa. Table 2.3 shows
that there is a gain of a factor (1.26/0.08)/(0.87/0.20) ∼ 4 in the ratio σ(HZ)/σ(Hνν̄)
when left-handed polarized positrons are used in addition to right-handed polarized elec-
trons. Thus, the relative contribution of HZ and WW fusion can be easily extracted from
the missing-mass distribution with two different polarizations without strong model as-
sumptions.

2.2.2 Suppression of background

Right-handed electron polarization very efficiently suppresses the background from WW
and single Z production via WW fusion, e+e− → Zνeν̄e, with Z decaying into fermion
pairs. At

√
s = 500 GeV the latter is important for a light Higgs. For the WW case, fig. 2.5,

the suppression can be up to an additional factor 2 if left-handed polarized positrons are
also available compared to the case with only right-handed polarized electrons. Positron
beam polarization turns out to be also a powerful tool to suppress the W background
from single W production, e+e− →W−e+νe and e+e− → W+e−ν̄e, see fig. 2.6.

�e�
e+

W�
W+ e�

e+
W�
W+ Z0e�

e+
W�
W+

Figure 2.5: Production of W pairs in e+e− annihilation.

Instead, the advantage of polarization in reducing the ZZ background is rather lim-
ited, see table 2.4. However, even in that case where the S/B ratio is only slightly im-
proved, positron polarization in addition to electron polarization (e.g. |Pe−| = 80% and
|Pe+| = 60%) improves the statistical significance, see table 1.4. In the case of the HZ
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signal compared to the ZZ background one gains more than 20% in S/
√

B when using
(Pe−, Pe+) = (+80%,−60%) instead of only (Pe−, Pe+) = (+80%, 0).

γ
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e+
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e
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Figure 2.6: Single W production in e+e− annihilation.

Beam polarization e+e− →W+W− e+e− → ZZ
(+80%, 0) 0.20 0.76
(−80%, 0) 1.80 1.25

(+80%,−60%) 0.10 1.05
(−80%, +60%) 2.85 1.91

Table 2.4: Scaling factors, eq. (1.28), of WW and ZZ production at
√

s = 500 GeV for
different polarization configurations with regard to the unpolarized case [5, 31].

2.2.3 Determination of general ZZH and ZγH couplings

The accuracy obtainable at the ILC in the determination of the general ZZH and ZγH
couplings, was assessed from e+e− → HZ → Hff̄ , by using an optimal-observable
method which allows to minimize statistical uncertainties on the couplings, [34, 35]. The
general effective HZV interaction Lagrangian considered is parametrized as [36]

L = (1 + aZ)
gZmZ

2
HZµZ

µ +
gZ

mZ
[bV HZµνV

µν + cV (∂µHZν − ∂νHZµ)V
µν + b̃V HZµν Ṽ µν ],

(2.7)
where Ṽ µν = ǫµναβVαβ is the dual of V µν = ∂µV ν − ∂νV µ and V = γ, Z. It was shown
that beam polarization is essential for determining the sensitivity to the seven general

couplings, the CP-even aZ , bZ , cZ , bγ , cγ and the CP-odd b̃Z , b̃γ [35]. In particular, to fix the
ZγH couplings beam polarization is essential. Simultaneous polarization of the e+ and
e− beams results in an increase in the sensitivity, so that for

√
s = 500 GeV, Lint = 300 fb−1

and (Pe−, Pe+) = (±80%, 60%) the sensitivity is improved by 20–30% compared to the case
of (±80%, 0) [5, 34], cf. table 2.5.

Quantitative results: For Higgs masses and c.m. energies where both Higgs-strahlung
and WW fusion lead to similar production cross sections, beam polarization is im-
portant for the distinction between these processes. The separation is improved by
a factor of about 4 with (Pe− , Pe+) = (+80%, −60%), with respect to the case with
only right-handed polarized electrons. Furthermore, a factor of 2 can be gained for the
WW background suppression. When determining the general ZV H couplings, the
sensitivity is increased by about 30% with respect to the case where only the electrons
are polarized and in general limits of the order of 10−4 can be reached.
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ǫτ = 0 = ǫb ǫτ = 50%, ǫb = 60%
(Pe−, Pe+) (0, 0) (80%, 0) (80%, 60%) (80%, 60%)
Re(bZ) 5.5 2.8 2.3 2.2
Re(cZ) 6.5 1.4 1.1 1.1
Re(bγ) 123.2 5.2 3.6 3.4
Re(cγ) 54.2 1.1 0.8 0.7

Re(b̃Z) 10.4 9.5 7.8 5.2

Re(b̃γ) 61.8 14.5 10.1 6.3
Im(bZ − cZ) 105.5 7.0 4.9 4.6
Im(bγ − cγ) 20.6 7.0 5.7 5.4

Im(b̃Z) 52.1 3.2 2.2 2.2

Im(b̃γ) 10.1 3.2 2.6 2.6

Table 2.5: Determination of general Higgs couplings: Optimal errors in units [10−4] on
general ZZΦ and ZγΦ couplings for different identification efficiencies ǫτ , ǫb and beam
polarizations [5, 34, 35].

2.3 Triple gauge boson couplings in WW production

2.3.1 Impact of longitudinally-polarized beams

In order to test the electroweak gauge group, it is convenient to apply a general para-
metrization of the gauge-boson self-interactions, which leads to 14 complex parame-
ters, 6 of them CP-violating. Determining all of them in WW -pair production repre-
sents a strong test of the SM, which predicts only 4 couplings (CP-conserving) to be
non-zero. With both beams longitudinally polarized the sensitivity to the different
triple gauge couplings is strongly enhanced.

An important feature of the electroweak Standard Model is the non-Abelian nature
of its gauge group, which gives rise to gauge boson self-interactions, in particular to the
triple gauge couplings (TGCs) WWγ and WWZ. The most general vertex contains al-
together 14 complex parameters, six of them CP-violating. The SM predicts only four
CP-conserving real couplings to be non-zero at tree level.

The triple gauge boson vertex WWV (V = Z or γ and gWWγ = −e, gWWZ = −e cot θW ,
e denoting the positron charge and θW the Weinberg angle) can be described in the most
general form by the effective Lagrangian [37]:

LWWV

igWWV
= gV

1 V µ
(
W−

µνW
+ν −W+

µνW
−ν

)
− κV W−

µ W+
ν V µν − λV

m2
W

V µνW+ρ
µ W−

ρν

+ igV
4 W−

µ W+
ν (∂µV ν + ∂νV µ)

+ igV
5 εµνρσ

[
(∂ρW

−
µ )W+

ν −W−
µ (∂ρW

+
ν )

]
Vσ

− κ̃V

2
W−

µ W+
ν εµνρσVρσ −

λ̃V

2m2
W

W−
ρµW+µ

νε
νραβVαβ, (2.8)

which is parametrized by seven couplings for each V . Their behaviour under the dis-
crete symmetries C, P and CP can be used to divide them into four classes. The three
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couplings gV
1 , κV and λV conserve C and P, while gV

5 violates C and P but conserves CP.

The couplings gV
4 , κ̃V and λ̃V violate CP, but gV

4 conserves P, while κ̃V and λ̃V conserve
C. In the SM at tree level the couplings are gV

1 = κV = 1, while all others are zero. For con-
venience one introduces the deviations from the Standard-Model values: ∆gγ

1 = gγ
1 − 1,

∆gZ
1 = gZ

1 − 1, ∆κγ = κγ − 1 and ∆κZ = κZ − 1.
Electromagnetic gauge invariance requires gγ

1 = 1 and reduces the number of C and
P conserving couplings to five. If one imposed SU(2)L × U(1)Y on eq. (2.8), one would
obtain the following relations among the C- and P-conserving couplings, see e.g. [38, 39]

∆κZ = −∆κγ tan2 θW + ∆gZ
1

λZ = λγ. (2.9)

This is sometimes used in fits with a reduced number of independent couplings and tests
of particular models (not used in the results shown here).

A precision measurement of the TGCs at high energies will be a crucial test of the va-
lidity of the SM, given that a variety of new-physics effects can manifest themselves by
deviations from the SM predictions (for references, see e.g. [40]). Although no deviation
from the SM has been found for the TGCs from LEP data [41], the bounds obtained are
comparatively weak. The tightest bounds on the anomalous couplings, i.e., on the differ-
ences between couplings and their SM values are of order 0.05 for ∆gZ

1 and λγ , of order 0.1
for ∆κγ , and of order 0.1 to 0.6 for the real and imaginary parts of C- and/or P-violating
couplings. These numbers correspond to fits where all anomalous couplings, except one,
are set to zero. Moreover, many couplings, e.g. the imaginary parts of CP-conserving
couplings, have been excluded from the analyses so far.

At a future linear e+e− collider one will be able to study these couplings with un-
precedented accuracy. A process particularly suitable to study for this purpose is W pair
production e+e− →W+W− → (f1f̄2)(f3f̄4), where the final fermions are either leptons or
quarks, and where both the WWγ and the WWZ couplings can be measured at the c.m.s.
energy scale.

Study of TGCs with optimal observables

In [40] the prospects to measure the full set of 28 (real) TGCs was systematically investi-
gated for unpolarized beams as well as for longitudinal beam polarization, using optimal
integrated observables. These observables are constructed to give the smallest possible
statistical uncertainties for a given event distribution [42, 43]. In addition, the above-
mentioned discrete symmetries are used to simplify the analysis by classifying the TGCs
and to test the stability of the results. In W pair production the covariance matrix of these
observables consists of four blocks that correspond to CP-even or CP-odd TGCs and to
their real or imaginary parts. Within each block all correlations between couplings are
taken into account, and simultaneous diagonalization of the covariance matrix allows to
treat all 14 couplings at a time and derive separate limits on each one.

The results for the real parts of the CP-conserving TGCs are shown in table 2.6. Only
those events where one W boson decays hadronically and the other one into eν or µν
are considered due to the favourable reconstruction and branching ratios. In the case
of longitudinal polarization, the luminosity is assumed to be equally distributed among
both signs and the results are then combined.
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√
s = 500 GeV Re ∆gγ

1 Re ∆gZ
1 Re ∆κγ Re ∆κZ Re λγ Re λZ Re gγ

5 Re gZ
5

No polarization 6.5 5.2 1.3 1.4 2.3 1.8 4.4 3.3
(Pe−, Pe+) = (±80%, 0) 3.2 2.6 0.61 0.58 1.1 0.86 2.2 1.7
(Pe−, Pe+) = (±80%,∓60%) 1.9 1.6 0.40 0.36 0.62 0.50 1.4 1.1
(PT

e−, PT
e+) = (80%, 60%) 2.8 2.4 0.69 0.82 0.69 0.55 2.5 1.9√

s = 800 GeV

No polarization 4.0 3.2 0.47 0.58 1.1 0.90 3.1 2.5
(Pe−, Pe+) = (±80%, 0) 1.9 1.6 0.21 0.21 0.53 0.43 1.6 1.3
(Pe−, Pe+) = (±80%,∓60%) 1.1 0.97 0.14 0.13 0.29 0.24 0.97 0.82
(PT

e−, PT
e+) = (80%, 60%) 1.8 1.5 0.27 0.35 0.28 0.23 1.7 1.3

Table 2.6: One-σ statistical reach in units of 10−3 on the real parts of CP-conserving TGCs
in the multi-parameter analysis including all anomalous couplings at

√
s = 500 GeV,

Lint = 500 fb−1 and
√

s = 800 GeV, Lint = 1000 fb−1, without and with different beam
polarizations [44].

At 800 GeV and an integrated luminosity of L = 1000 fb−1, all uncertainties (with or
without polarization) are smaller than for

√
s = 500 GeV and 500 fb−1, reflecting that the

anomalous effects in the cross section would be more pronounced at the higher energy.
This holds in particular for Re ∆κγ . For both c.m. energies the errors on the couplings
decrease by about a factor 2 when going from unpolarized beams to longitudinal e− po-
larization and an unpolarized e+ beam. Going from unpolarized beams to polarized e−

and e+ this gain factor is between 3 and 4 for all couplings, except for Re ∆κZ at 800 GeV,
where it is 4.5.

It has been emphasized [42] that the following linear combinations can be measured
with much smaller correlations than for the parametrization (2.8):

gL
1 = 4 sin2 θW gγ

1 + (2− 4 sin2θW ) ξ gZ
1 ,

gR
1 = 4 sin2 θW gγ

1 − 4 sin2θW ξ gZ
1 , (2.10)

where ξ = s/(s −m2
Z), and similarly for the other couplings. The L and R couplings ap-

pear in the amplitudes for left- and right-handed initial e−, respectively. Therefore, this
parametrization is more ‘natural’ in the presence of beam polarization than the conven-
tional one of eq. (2.8). For detailed plots showing the sensitivity to the TGCs as a function
of the degree of longitudinal polarization, we refer to [40]. There, an extended optimal-
observable method [45] has been used, where correlations between TGCs are eliminated
through appropriate energy- and polarization-dependent reparametrizations.

For the imaginary parts of the CP-conserving couplings, see table 2.7, the linear com-

binations h̃± = Im(gR
1 ± κR)/

√
2 are used instead of Im gR

1 and Im κR [44].

Simulation study of sensitivity to TGCs

The sensitivity to TGCs for both unpolarized and longitudinally-polarized beams has
been simulated in [46], using a spin density matrix method and cos θW distributions, lim-
iting the multi-parameter fit to a restricted number of couplings (in particular, no imag-
inary parts). Concerning the expected statistics, the cases considered are

√
s = 500 GeV,

Lint = 500 fb−1 and
√

s = 800 GeV, Lint = 1 ab−1. At both energies roughly 4 × 106
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√
s = 500 GeV Im gL

1 Im κL Im λL Im gL
5 h̃− h̃+ Im λR Im gR

5

No polarization 2.7 1.7 0.48 2.5 11 — 3.1 17

(Pe− , Pe+) = (∓80%, 0) 2.6 1.2 0.45 2.0 4.5 — 1.4 4.3

(Pe− , Pe+) = (∓80%,±60%) 2.1 0.95 0.37 1.6 2.5 — 0.75 2.3

(PT
e− , PT

e+) = (80%, 60%) 2.6 1.2 0.46 2.0 3.7 3.2 0.98 4.4
√

s = 800 GeV

No polarization 1.5 0.74 0.18 1.5 6.0 — 1.2 9.0

(Pe− , Pe+) = (∓80%, 0) 1.5 0.60 0.17 1.3 2.4 — 0.54 2.7

(Pe− , Pe+) = (∓80%,±60%) 1.2 0.48 0.14 1.0 1.3 — 0.29 1.4

(PT
e− , PT

e+) = (80%, 60%) 1.5 0.60 0.17 1.3 2.1 2.0 0.39 2.8

Table 2.7: Same as table 2.6, but for the imaginary parts and with the L–R parametrization
in units 10−3 [44].

W -pair signal events are expected in one or two years runs. As in the previous anal-
ysis, the semileptonic WW → qq̄ℓν, ℓ = e, µ, τ decay channel was used, and in the
polarized beams case the luminosity has been equally shared between the two consid-
ered polarization configurations [(∓80%,0) for unpolarized positrons and (−80%, +60%),
(+80%,−60%) for both beams polarized]. Also, for maximal sensitivity and to disentan-
gle WWZ fromWWγ couplings, the data at both polarizations should be fitted simulta-
neously.

The Monte Carlo generation of W−W+ signals included also effects from initial state
radiation and beamstrahlung, and W -pair generators appropriate to initial polarized beams
were used. Other uncertainties that can be relevant to the measurement, such as those on
the W -mass and on the beam energy, have been taken into account. The background is
known from LEP analyses to be very small [47], but in any case it has been fully accounted
for. Also simulated detector effects (using the detector simulation program SIMDET [48])
have been included in the unpolarized case in the single-parameter fits of the coupling
constants [46].

∆gZ
1 ∆κγ λγ ∆κZ λZ gZ

4 gZ
5 κ̃Z λ̃Z

500 GeV Unpolarized 3.8 0.5 1.2 0.9 1.2 8.6 2.8 6.5 1.1

(|Pe−|, |Pe+|) = (80%, 0) 2.5 0.4 0.8 0.5 0.9 8.0 2.3 5.1 1.0

(|Pe−|, |Pe+|) = (80%, 60%) 1.6 0.3 0.6 0.3 0.7 4.6 1.7 3.9 0.8

800 GeV Unpolarized 3.9 0.3 0.5 0.5 0.5 4.2 2.9 3.0 0.5

(|Pe−|, |Pe+|) = (80%, 0) 2.2 0.2 0.5 0.3 0.5 3.2 2.4 2.4 0.4

(|Pe−|, |Pe+|) = (80%, 60%) 1.3 0.2 0.3 0.2 0.3 1.8 1.4 1.4 0.3

Table 2.8: Expected sensitivity [10−3] for the real parts of different couplings at c.m.
energies of 500 and 800 GeV and Lint = 500 and 1000 fb−1, respectively. In the case
of polarized beams the luminosity is equally shared between the two combinations
(Pe−, Pe+) = (±80%,∓60%) [46].

The results of this analysis at the generator level for both unpolarized and polarized
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beams are displayed in table 2.8; they are at the level 10−3−10−4. The numerical results in
this table are obtained by allowing only one coupling to vary freely, with all others set to
their SM values (one-parameter fit). They show that both beams at the highest degree of
polarization can substantially improve the sensitivity expected from electron polarization
only. In particular it turns out that most correlations among the different couplings can
be suppressed using polarized beams. The correlation can be reduced by about a factor
two with (Pe−, Pe+) = (±80%,∓60%) compared to (Pe−, Pe+) = (±80%, 0) derived for a
two-dimensional fit at

√
s = 500 GeV. For further comparison with multi-parameter fits

and correlation matrix see [46]. A quantitative discussion of the major systematic un-
certainties has also been performed. The systematic uncertainty on the measurements of
all couplings, that results from varying the experimental beam polarization ∆P by about
1%, is largely dominant (by a factor up to 5–10 over the statistical uncertainty, especially
at
√

s = 500 GeV). This implies that, in order to fully exploit the high statistical sensitivity,
the polarization must be known very precisely in order to reduce such systematic uncer-
tainty, say to ∆P ∼ 0.1%–0.2%, so that ∆Pe−/Pe− = 0.1− 0.2 % and ∆Pe+/Pe+ = 0.2− 0.3
% would be needed. Such an experimental accuracy on beam polarizations requires ex-
cellent polarimetry or, in case, the application of the Blondel scheme, where polarizations
could be derived from polarized cross sections, and with presumably very small corre-
lations with the TGCs. In case of only polarized electrons the beam polarization can be
also deduced from the left-right asymmetry from the W production in the forward region
(also with rather small correlations with the TGCs), cf. section 5.6.

Quantitative results: With both beams longitudinally polarized the gain in the sen-
sitivity to the triple gauge couplings is up to a factor of 1.8 with respect to the case of
only the electron beam polarized.

2.3.2 Use of transversely-polarized beams

Specific azimuthal asymmetries with transversely-polarized beams may be crucial for
sensitive tests of TGCs. Indeed, the imaginary part of one specific CP-conserving
anomalous couplings is accessible with transversely- but not with longitudinally-po-
larized beams.

It was emphasized in [49] that transversely-polarized beams are important as a tool for
studying TGCs and longitudinal WL, in particular for measuring relative phases among
helicity amplitudes in WW production.

Optimal observables and multi-parameter analysis have been applied to assess the
sensitivity obtainable on TGCs in the case of both electron and positron transversely po-
larized, and the results are displayed in the bottom lines of tables 2.6 and 2.7 [44]. It

turns out that, for most couplings (except h̃+ to be discussed separately), the expected
uncertainty is approximately of the same size as in the case of only electron longitudinal
polarization, but worse than obtained in the case of both beams longitudinally polarized.
This situation is common to both c.m. energies

√
s = 500 GeV and

√
s = 800GeV.

Consequently, one can conclude that, at least for the c.m. energies and the degrees of
polarization considered here, the best sensitivity (and separate limits) on both CP-con-
serving and CP-violating couplings are obtained by the option of both e− and e+ longitu-
dinally polarized.

The notable exception is represented by h̃+ which, as shown in [40], is not measurable
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from the normalized event distribution even with longitudinal polarization. However,

with transversely-polarized beams it is possible to measure h̃+ with a good sensitivity,
see table 2.7 [44]. In the γ − Z parametrization, eq. (2.8), this means that the four cou-
plings Imgγ

1 , ImgZ
1 , Imκγ and ImκZ are not simultaneously measurable without transverse

polarization.
In conclusion, although for most anomalous TGCs the longitudinal polarization of

both beams is most convenient, the measurement of all possible couplings requires to
spend part of the integrated luminosity of the linear collider also in the transverse polar-
ization mode.

Quantitative result: One specific CP-conserving triple gauge coupling, h̃+, is only
accessible with both beams transversely polarized. With polarizations (P T

e− , P T
e+)=(80%,

60%), a one-σ statistical uncertainty of about 3.2 × 10−3 could be obtained on h̃+ at√
s = 500 GeV.

2.4 Precision electroweak measurements at GigaZ

2.4.1 Measurement of sin2θeff
W , application of the Blondel scheme

Extremely sensitive tests of the SM can be performed with the help of electroweak pre-
cision observables. These can be measured with very high accuracy with the GigaZ op-
tion of the ILC, i.e., running with high luminosity at the Z-boson resonance. Measur-
ing accurately the left–right asymmetry allows a determination of the effective weak
mixing angle sin2θeff

W with the highest precision. However, in order to exploit the gain
in statistics at GigaZ, the relative uncertainties on the beam polarization have to be
kept below 0.1%. This ultimate precision cannot be reached with Compton polarime-
try, but by using a modified Blondel scheme, which requires both beams polarized.

The GigaZ option refers to running the ILC at the Z-boson resonance, yielding about
109 Z events in 50–100 days of running, resulting in the most sensitive test of the SM
ever made, i.e. determining the electroweak precision observables with an unprecedented
precision, see table 2.9 [50].

SLC/LEP2/Tevatron Tevatron/LHC LC GigaZ/WW
mW [Mev] 34 15 10 7

sin2θeff
W [10−5] 16 14–20 – 1.3

Table 2.9: Precision of mW and the electroweak mixing angle, sin2θeff
W , compared at present

and future experiments [50]. For the measurement of sin2θeff
W at the GigaZ option the Blon-

del scheme with (|Pe−|, |Pe+|) = (80%, 60%) has been applied [51]. The precision for the
mW measurement has been derived in threshold scans, applying both beams polarized
with (|Pe−|, |Pe+|) = (80%, 60%) [52].

In the SM, the left–right asymmetry ALR can be written in terms of the effective lep-
tonic electroweak mixing angle:

ALR =
2(1− 4 sin2θeff

W )

1 + (1− 4 sin2θeff
W )2

. (2.11)
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The statistical power of the data sample can be fully exploited only when ∆ALR(pol) <
∆ALR(stat). For 108–109 Zs this occurs when ∆Peff < 0.1%. In this limit ∆ sin2θeff

W ∼ 10−5,
which is an order of magnitude smaller than the present value. Thus, it will be crucial to
minimize the error in the determination of the polarization.

While improvements in Compton polarimetry achieving a precision < 0.1% may be
difficult to attain, the desired precision should, nevertheless, be possible with the Blondel
scheme [54], where the electron and positron polarizations are measured from the polar-
ized cross sections, see also sect. 5.6.2. In this scheme, it is not necessary to know the
beam polarization with such extreme accuracy, since ALR can be directly expressed via
cross sections for producing Zs with longitudinally-polarized beams:

σ = σunpol[1− Pe−Pe+ + ALR(Pe+ − Pe−)], (2.12)

ALR =

√
(σ++ + σ+− − σ−+ − σ−−)(−σ++ + σ+− − σ−+ + σ−−)

(σ++ + σ+− + σ−+ + σ−−)(−σ++ + σ+− + σ−+ − σ−−)
. (2.13)

where the cross sections on the RHS have been introduced in sect. 1.2.3. In eqs. (2.12)
and (2.13) the absolute polarization values of the left- and right-handed degrees of beam
polarization are assumed to be the same. These assumptions have to be checked ex-
perimentally by means of polarimetry techniques; since only relative measurements are
needed for these measurements, the absolute calibration of the polarimeter cancels and
the uncertainty ∆ALR is practically independent of ∆Pe±/Pe± [51].

It can be seen from (2.13) that the Blondel scheme also requires some luminosity for
σ++ and σ−−. However, as shown in figure 2.7 a) only about 10% of running time will be
needed for these combinations to reach the accuracy desired for these high-precision mea-
surements. Fig. 2.7 b) shows the statistical error on ALR as a function of the positron po-
larization for Pe− = 80%. Already with 20% positron polarization the goal of ∆ sin2θeff

W <
10−4 can be reached. For the comparison of different beam polarization configurations
and the gain for the ALR measurements, see also [55].

With the polarization of both beams using the Blondel scheme, i.e. 80% polarization
for electrons and 60% polarization for positrons, an accuracy of ∆ sin2θeff

W = 1.3×10−5 can
be achieved in the leptonic final state [51]. If only electron polarization were available,
the accuracy would be about ∆ sin2θeff

W = 9.5 × 10−5 [58] if only ∆Pe−/Pe− = 0.5% are
achievable. If Pe− = 90% but ∆Pe−/Pe− = 0.25% are assumed, an accuracy of about
∆ sin2θeff

W = 5× 10−5 [53] may be reachable.
As an example of the potential of the GigaZ sin2θeff

W measurement, fig. 2.8 [50] com-
pares the present experimental accuracy on sin2θeff

W and mW from LEP/SLD/Tevatron and
the prospective accuracy from the LHC and from the LC without GigaZ option with the
predictions of the SM and the MSSM. With GigaZ a very sensitive test of the theory will
be possible.

Quantitative results: Compared with the case with only the electron beam polarized
and using Compton polarimetry, the effective gain is up to an order of magnitude in
the accuracy for measuring sin2θeff

W with both beams polarized and using the Blondel
scheme if (|Pe− |, |Pe+|) = (80%, 60%) and ∆Pe± /Pe± = 0.5% are assumed.
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Figure 2.7: Test of the electroweak theory: the statistical error on ALR of e+e− → Z →
ℓℓ̄ at GigaZ, (a) as a function of the fraction of luminosity spent on the less favoured
polarization combinations σ++ and σ−− and (b) its dependence on Pe+ for fixed Pe− =
±80% [51].

2.4.2 Constraints from sin2θeff
W on Higgs-boson masses and SUSY pa-

rameters

Compared with the case where only the electron beam is polarized, the polarization
of both beams leads to a gain of about one order of magnitude in the accuracy of the
effective weak mixing angle, sin2θeff

W . Within the SM, this has a dramatic effect on
the indirect determination of the Higgs-boson mass, providing a highly sensitive con-
sistency test of the model that may possibly point towards large new-physics scales.
Within the MSSM, the large increase in the precision of sin2θeff

W will allow to obtain
stringent indirect bounds on SUSY parameters. This will constitute, in analogy to the
SM case, a powerful consistency test of supersymmetry at the quantum level and may
be crucial to constrain SUSY parameters that are not directly experimentally accessible.

At the GigaZ option of the ILC a precision measurement of the effective leptonic weak
mixing angle at the Z-boson resonance, sin2θeff

W , will be possible, allowing a very sensi-
tive test of the electroweak theory [57]. The impact of the more precise measurement
of sin2θeff

W for testing the electroweak theory is illustrated in fig. 2.9 (left panel), where
the experimental accuracy (using the current experimental central value of sin2θeff

W [61]) is
compared with the predictions in the SM and the Minimal Supersymmetric extension of
the Standard Model (MSSM), see also sect. 3.1. The theoretical predictions are shown for
values of mh corresponding to the SM Higgs-boson mass and to the mass of the lightest
CP-even Higgs boson h in the MSSM, respectively. In the region where the two models
overlap, mh <∼ 140 GeV [33, 62], the SM prediction corresponds to the MSSM result in the
limit where all SUSY partners are heavy. The area in the plot associated with the MSSM
prediction was obtained by varying all relevant SUSY parameters independently, taking
into account the constraints from the direct search for SUSY particles and the LEP Higgs
search [59, 60]. The MSSM predictions are based on the results described in [50], and the
Higgs-mass predictions have been obtained with FeynHiggs2.0 [63]. For the top-quark
mass a value of mt = 175 ± 0.1 GeV has been used, assuming the prospective linear col-
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Figure 2.8: Prospective precision on sin2θeff
W from ALR: a high-precision measurement at

GigaZ of the left–right asymmetry ALR and consequently of sin2 θeff allows a test of the
electroweak theory at an unprecedented level. The allowed parameter space of the SM
and the MSSM in the sin2 θeff–mW plane is shown together with the experimental accu-
racy reachable at GigaZ (applying the Blondel scheme) and polarized threshold scans for
mW . For comparison, the current experimental accuracy (LEP/SLD/Tevatron) and the
prospective accuracy at the LHC and an LC without GigaZ option (LHC/LC) are also
shown [50, 56, 57].

lider accuracy (using instead a central value of mt = 178 GeV would induce a decrease in
the sin2θeff

W prediction of about 10−4).
The impact of the precision on sin2θeff

W reachable with polarization of both beams com-
pared to the case of electron polarization only can be clearly seen by confronting the
SM prediction for sin2θeff

W as function of mh with the prospective experimental accuracy.
Requiring the SM prediction to agree with the sin2θeff

W measurement at the one-σ level (ne-
glecting the uncertainties from unknown higher-order corrections) constrains the Higgs-
boson mass to an interval of few GeV for the case of simultaneous polarization of both
beams, while a measurement of sin2θeff

W based on electron polarization only leaves an un-
certainty of about ±25 GeV in mh.

Comparing the indirect constraints on the Higgs-boson mass with a direct measure-
ment of mh provides a sensitive test of the electroweak theory at the quantum level.
This is illustrated in fig. 2.9 (left panel), where a hypothetical measurement of mh =
115.5±0.5 GeV is indicated. The assumed error of 0.5 GeV summarizes both the prospec-
tive experimental error and the theoretical uncertainty in the relation between mh and
sin2θeff

W . The latter is significantly larger in the MSSM, but for simplicity we use the more
conservative MSSM value for both models. For the scenario shown in the plot the mea-
surement of sin2θeff

W based on electron polarization only combined with the mh measure-
ment would not allow to distinguish between the predictions of the SM and the MSSM.
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Figure 2.9: Left panel: the predictions for sin2θeff
W in the SM and the MSSM are compared

with the experimental accuracies obtainable at GigaZ with an 80% polarized electron
beam only and with simultaneous polarization of both beams. The present experimental
error on sin2θeff

W is also indicated. The theoretical predictions are given in terms of mh,
which denotes the Higgs-boson mass in the SM and the mass of the lightest CP-even
Higgs boson in the MSSM, respectively. The allowed area in the MSSM results from a
scan over the relevant SUSY parameters entering via loop corrections. The sensitivity of
the sin2θeff

W measurement to deviations between the two models is illustrated for a hypo-
thetical measurement of mh = 115.5 ± 0.5 GeV [64]. Right panel: Allowed range for the
SUSY mass parameter m1/2 in a specific model, the CMSSM [64]. Experimental constraint
from LEP searches as well as bounds from cold dark matter searches have been taken into
account.

Both models would be compatible with the experimental measurements at the one-σ level
in this case. A measurement of sin2θeff

W with simultaneous polarization of both beams, on
the other hand, would resolve the different quantum corrections of the two models. The
high-precision measurement of sin2θeff

W combined with the mh measurement would show
a large deviation from the SM prediction and would therefore indicate a clear preference
for the MSSM. Within the MSSM the precision measurement provides a stringent consis-
tency test, yielding sensitive constraints on the underlying SUSY parameters entering via
quantum corrections.

In fig. 2.9 (right panel) the strong constraints on the parameter space of new physics
models arising from the precision measurement of sin2θeff

W are demonstrated [65]. Shown
is the prediction of sin2θeff

W as a function of m1/2, the generic fermionic mass parameter in
the CMSSM (the Constrained MSSM), see sect. 3.1. Experimental constraints from LEP
searches as well as bounds from cold dark matter searches have been taken into account.
The unprecedented accuracy in sin2θeff

W strongly constrains the allowed parameter range
for m1/2, which is reduced by about a factor of 5 with (|Pe−|, |Pe+|) = (80%, 60%) compared
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with the case of only polarized electrons |Pe−| = 80%.

Quantitative results: The gain of about one order of magnitude in the accuracy of
the determination of sin2θeff

W applying a Blondel scheme with (|Pe− |, |Pe+|) = (80%, 60%)
and ∆Pe± /Pe± = 0.5% instead of using only Pe− = 80%, has strong impacts on
bounds on the Higgs boson mass as well as on bounds on SUSY mass parameters. The
resulting indirect bounds on the mass of the Higgs boson in the SM also improves by
about an order of magnitude. Regarding a specific SUSY model the allowed parameter
range for the specific SUSY mass parameters m1/2 is reduced by about a factor five.

2.4.3 CP violation in 3-jet and 4-jet decays of the Z-boson at GigaZ

An interesting sector where to look for physics beyond the SM is represented by CP-
violating Z decays to heavy leptons and quarks, in particular to final states with bb̄
pairs. The high statistics available at GigaZ should allow a search for signals from non-
standard CP-violating couplings with unprecedented sensitivity. It is also improved by
initial electron and positron longitudinal polarization. It is expected that one can reach
an accuracy of about an order of magnitude better than at LEP.

CP-violating effects in flavour-diagonal Z decays are found to be extremely small in
the SM [66], therefore this sector seems particularly suitable for non-standard physics
searches. A relevant example is represented by the processes Z → bb̄g and Z → bb̄gg,
where g denotes the gluon, leading to 3-jet and 4-jet final states, respectively [67, 68]. The
CP-violating couplings in the Zbb̄g vertex and in the Zbb̄gg vertex (the latter related to the
former by QCD gauge invariance), have been searched for at LEP, where no significant
deviation from the SM was found [70].

For a model-independent analysis of CP-violation in the above processes, an effective
Lagrangian approach is most convenient [66] and, accordingly, one can add to the SM the
CP-violating Zbb̄g four-point vertex:

LCP(x) =[ hV b b̄(x) T a γν b(x) + hAb b̄(x) T a γν γ5 b(x) ] Zµ(x) Ga
µν(x) , (2.14)

where T a are the familiar SU(3)C generators. Here, hV b and hAb are real CP-violating
vector and axial-vector chirality-conserving coupling constants. Due to the quadratic
gluon term present in Ga

µν , the vertex eq. (2.14) is involved in both Z → 3 jets and in

Z → 4 jets. Dimensionless coupling constants ĥV b,Ab can then be defined by using mZ as a

scale parameter, through the relations hV b,Ab = e gs ĥV b,Ab/(sin θW cos θW m2
Z), with gs the

QCD coupling constant.
Such chirality-conserving CP-violating interactions (2.14) can originate in different

scenarios, for instance in multi-Higgs extensions of the SM [71] and in models with ex-
cited quarks, typical of compositeness, where quarks have substructure [72].

In the latter scenario, one assumes that the b quark has an excited partner b′ with
mass mb′ and spin 1

2
. Both chirality-conserving Zb′b couplings at the GigaZ scale and

chirality-flipping bb′g couplings, allowed in such composite models, can be expressed via
an effective interaction of the form

L′(x) = − e

2 sin θW cos θW
Zµ(x) b̄′(x) γµ (g′

V − g′
Aγ5) b(x)

− i
gs

2mb′
d̂c b̄′(x) σµν γ5 T a b(x) Ga

µν(x) + h.c. (2.15)
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Here g′
V , g′

A and d̂c are complex constants that, as is conventional for composite models,
can be expected to be of order unity if the novel dynamics underlying compositeness is
strong. It is understood that mb′ ≫ mZ , and from virtual b′ exchange one derives for the

couplings in eq. (2.14): ĥV b = Re(d̂c g′∗
A)m2

Z/m2
b′ and ĥAb = −Re(d̂c g′∗

V )m2
Z/m2

b′ [71].
Assuming flavour-tagging [1], the b-quark momenta can be reconstructed. CP-violating

couplings may then be searched for by using CP-odd observables constructed from the
b and b̄ quark momenta [66, 67] (with ‘3’ the cartesian component in the Z rest frame
corresponding to the positron beam):

T33 = (k̂b̄ − k̂b)3 (k̂b̄ × k̂b)3 , (2.16)

V3 = (k̂b̄ × k̂b)3 . (2.17)

The observable T33 transforms as a tensor component, V3 as a vector component.
To a very good approximation, for Z → 3 jets and Z → 4 jets the tensor observable T33

and the vector one V3 turn out to be sensitive only to the combinations ĥb = ĥAbgV b−ĥV bgAb

and h̃b = ĥV bgV b − ĥAbgAb, respectively, where gV b = −1
2

+ 2
3
sin2 θW and gAb = −1

2
[67].

Clearly, a non-zero value of one of the above observables is an unambiguous indicator
of CP violation. Note that for longitudinally-polarized beams, the additional assumption
that the Ze+e− vertex is free from chirality-flipping interactions is necessary.

Numerical results

The sensitivities of the observables (2.16) and (2.17) on the couplings ĥb and h̃b depend
on the jet resolution cut ycut , see also [73]. The expectation values of T33 do not depend

on initial longitudinal polarization, and therefore the sensitivity to ĥb only reflects the
statistics.

The one-σ uncertainty on the measurement of h̃b through the observable (2.17) is eval-
uated on a statistical basis of N = 109 Z decays with unpolarized beams. The results for
Z → 3 jets and different choices of beam polarizations are shown in table 2.10 (the results
for Z → 4 jets are presented in [68]). As indicated by the table, the advantage of initial
beam polarization is significant: for Pe− = −80% and Pe+ = +60% the sensitivity is max-
imal, more than a factor of 6 compared to the case of unpolarized beams (the improve-
ment due to additional positron polarization leads to a factor of about 1.5 compared to
the case where only electrons are polarized). On the other hand, numerical results show
a stability against changes in the jet resolution parameter ycut up to 0.1. Notice also, that
the results in table 2.10 are obtained by assuming, for the measurement of the vector ob-
servable V3, a 100% b–b̄ distinction. In the case of no experimental signal at one-σ, lower
bounds on mb′ can be derived. These are also shown in table 2.10 under the assumption

Re(d̂c g′∗
A) = Re(d̂c g′∗

V ) = 1.

As can be seen, the coupling h̃b could be measured at GigaZ with an accuracy of order
1.5 × 10−3 (one-σ level) from Z → 3 jets (one obtains qualitatively similar results from
Z → 4 jets for lower values of ycut ). In the case of non-observation of the effect at the
one-σ level, the lower bound on the mb′ mass, mb′ > 2.2 TeV, can be derived, assuming as
usual the couplings of the novel compositeness interaction to be of the strong interaction
size. Such bound should be compared with the best current limits mq′ > 775 GeV [74] that,
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however, applies to u- and d-quarks but may not exclude lighter b′ excitations.‡ Although
not sensitive to beam polarization, i.e. unpolarized beams would be sufficient, one may

mention for the case of the observable T33 that the one-σ accuracy on ĥb would be of order
0.004 from Z → 3 jets.

In a realistic analysis, also actual reconstruction efficiences and systematic uncertain-
ties should be taken into account. Nevertheless, assuming them to be of the same size

as the statistical uncertainties, one could conclude that the achievable sensitivities to ĥb

and h̃b are one order of magnitude better than those obtained at LEP. This can give valu-
able information on, e.g., the scalar sector in multi-Higgs extensions of the SM, as well as
provide stringent tests of models with excited quarks.

(Pe−, Pe+)

V3 ycut (0, 0) (+80%, 0) (−80%, 0) (+80%,−60%) (−80%, +60%)

∆h̃b [10−4] 0.01 85 27 19 18 14

0.1 94 30 21 20 15

mb′ [TeV] 0.01 0.91 1.6 1.9 2.0 2.3

0.1 0.87 1.5 1.8 1.9 2.1

Table 2.10: Accuracy on the vector observable V3 on ∆h̃b and corresponding lower limits
on the excited quark mass mb′ at the one-σ level. [69].

Quantitative example: Having both beams polarized with |Pe− | = 80%, |Pe+| =
60% improves the sensitivity by up to a factor 6 compared with using unpolarized
beams and by about 20–35% compared with the case when only electrons are polarized.

‡These numbers should be compared to the excited quark mass limits at the 2-σ level. In that case a

measurement of ĥb h̃b has to produce a mean value larger than 2 ∆ĥb, 2 ∆h̃b to be able to claim a non-zero
effect. The mass limits at the one-σ level given in table 2.10 have to be divided by a factor

√
2 to get the

limits at the 2-σ level.
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Chapter 3

Searches for new physics with polarized
e− and e+ beams

3.1 Supersymmetry

3.1.1 Introduction and choice of SUSY scenarios

The importance of the polarization of both beams at the ILC is here demonstrated for su-
persymmetry, which is one of the best motivated possibilities for New Physics (NP). With
supersymmetry the unification of the U(1), SU(2) and SU(3) gauge couplings is possible
and this new symmetry also stabilizes the Higgs mass with respect to radiative correc-
tions. If nature is supersymmetric at the electroweak scale, there is a priori a large number
of parameters specifying different scenarios.

The Minimal Supersymmetric Standard Model (MSSM) is the minimal extension of
the SM particle sector to incorporate supersymmetry. In addition to the particles of the

SM, the MSSM contains their supersymmetric partners: sleptons ℓ̃±, ν̃ℓ (ℓ = e, µ, τ ),
squarks q̃, charginos χ̃±

1,2 and neutralinos χ̃0
i , i = 1, . . . , 4. Two complex Higgs doublets

(H0
1 , H

+), (H−, H0
2) are needed to generate the masses of up- and down-quarks. They lead

to five physical Higgs bosons, the neutral h, H (CP-even), A (CP-odd) and the charged
H± particles.

Both the SM and the SUSY partners are described in common multiplets and carry
the same quantum numbers—with the exception of the spin quantum number, which
differs by half a unit. Since the SUSY partners are not degenerate in mass with their SM
partners, SUSY has to be a broken symmetry. In a most general parametrization, soft
supersymmetry-breaking terms with many new parameters are introduced. Due to the
electroweak symmetry breaking and the SUSY breaking, the interaction eigenstates of
the fermions, gauginos and higgsinos W̃±, H̃±

1,2 (γ̃, Z̃, H̃0
1,2), i.e. the SUSY partners of

the charged (neutral) gauge and Higgs bosons, mix to form mass eigenstates χ̃±
1,2 (χ̃0

1,...,4).
The masses and couplings of the charginos and neutralinos are determined by the cor-
responding mass matrices, which depend on the U(1) (SU(2)) gaugino mass parameters
M1 (M2), the higgsino mass parameter µ and the ratio of the Higgs expectation values
tanβ = v2/v1, see e.g. [75].

Corresponding to the two chirality states of the leptons and quarks one has the left

and right scalar partners ℓ̃L, q̃L and ℓ̃R, q̃R. The mass matrices of the sfermions depend on
scalar mass parameters MQ, MU , MD, ML, ME trilinear couplings Aℓ, Aq and µ and tanβ.
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Mixing effects between the R- and L-scalar states are expected to be most important for

the third generation; the corresponding mass eigenstates are called t̃1, b̃1, τ̃1 and t̃2, b̃2, τ̃2.
In order to distinguish between SUSY and SM particles a new quantum number R-

parity is introduced, R=−1 for SUSY particles, and +1 for SM particles. If R-parity is con-
served, the SUSY particles can only be produced in pairs and the lightest SUSY particle
has to be stable and represents the final particle of all decay chains of SUSY particles. In
all studies shown here, the lightest SUSY particle is assumed to be the lightest neutralino
χ̃0

1, which is also a good candidate for the cold dark matter particle.
Since in SUSY also many new sources of CP violation could occur, one ends up, even

in the MSSM with conserved R-parity, with 105 new parameters. With specific model
assumptions about the SUSY breaking mechanism and mass unifications, the number of
free parameters is strongly reduced. In the so-called minimal supergravity (mSUGRA)
model, for example, one has only three parameters and one sign. However, one should
keep in mind, that at future experiments at the LHC and the LC, one has—after detect-
ing signals expected by SUSY—to determine the parameters as model-independently as
possible and to confirm the underlying assumptions.

Choice of SUSY scenarios

A priori it can not be stated whether one specific point in the multi-parameter space of
SUSY is less probable than others. There exist mass limits from the direct searches for
Higgs and SUSY particles at LEP and the Tevatron and indirect bounds from tests of
electroweak precision observables and of searches for gµ − 2 [76] and b → sγ [78] from
low-energy experiments. Indirect limits for the CP-violating phases can be derived from
the EDM of the electron, neutron and atomic systems [79]. Further indirect bounds for
the MSSM parameter space can be derived from dark matter searches [80]. The chosen
point has to be checked case-by-case whether it violates any experimental bounds. If a
specific SUSY breaking scheme has been assumed, as e.g. mSUGRA, exclusion bounds
in the corresponding parameter space can be derived due to the restricted small number
of parameters. However, such choices reduce the variety of possible signatures consider-
ably.

In order to give an overview of the many effects of beam polarization in searches for
supersymmetry the chosen SUSY scenarios have not been restricted to a specific SUSY
breaking scheme and unification assumptions. This approach has led to the consider-
ation, in this report, of a large variety of different SUSY scenarios. In some examples
polarizing both beams is absolutely necessary for analyzing the properties of particles
and couplings. In other studies the polarization of both beams is needed for quantitative
reasons and leads to better statistics, i.e., higher cross sections and better background sup-
pression, which can be decisive for a discovery. Therefore, having both beams polarized
is crucial to face the many challenges in supersymmetry and to resolve and determine
precisely this candidate for a new theory.

Table 3.1 provides an overview of different parameters sets, together with references
to the topic that is addressed in the study.

3.1.2 Determination of selectron properties

In order to test whether the SUSY partners of the electrons/positrons carry the same
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|M1| ϕM1 M2 |µ| ϕµ tanβ scalar sector parameters topic of study

MSSM scenarios without CP-violating phases:

S1 150 0 210 400 0 20 mẽR,L
= 195, 200 GeV selectron properties

S2 103 0 232 403 0 10 mẽR,L
= 187, 223 GeV selectron proporties

S3∗ 163 0 311 509 0 10 mµ̃R,L
= 178, 287 GeV smuon masses

S4 99 0 193 140 0 20 mτ̃1 = 155 GeV stau properties

| cos θτ̃ | = 0.08

S5 – – – – – – mt̃1 = 200 GeV stop properties

| cos θt̃| = 0.4 and 0.66

S6† GUT 0 193 352 0 10 mνe,ẽL
= 186, 202 GeV charginos

S7 90 0 350 140 0 20 mẽL,R
variable neutralinos

S15 100 0 200 1000 0 [2,30] MQ̃ = MŨ = 350, heavy Higgs

At = Ab = 700 + µ/ tanβ

mA = [400, 800] GeV

MSSM scenarios with CP-violating phases: CP asymmetries:

S8 200 π/5 400 240 0 10 mẽR,L
= 220, 372 GeV χ̃0

2: 2-body decay

S9 100 0 200 250 0 5 mτ̃1,2 = 143, 210 GeV χ̃0
2: 2-body decay

|Aτ | = 1500, ϕAτ = π/2 into τ ; ϕAτ 6= 0

S10 100 π/5 200 250 0 5 mτ̃1,2 = 144, 209 GeV χ̃0
2: 2-body decay

Aτ = 250, ϕAτ = 0 into τ ; ϕM1 6= 0

S11 150 π/5 300 200 0 10 mẽR,L
= 224, 268 GeV χ̃0

2: 3-body decay

S12 GUT π/2 M2–|µ| variable 0 3 mẽR,L
= 150, 400 GeV χ̃0

1χ̃
0
2 with PT

e− , PT
e+

Scenarios in extended SUSY models:

S13 a) 195 0 300 350 0 20 mẽR,L
= 143, 202 GeV distinction:

S13 b) 270 0 381 – 0 20 mẽR,L
= 143, 202 GeV, MSSM↔NMSSM

µeff = 350, κ = 0.152

S14 – – – – – – mν̃e = 650, Γν̃e = 1 R-parity violation:

λ131 = 0.05 spin-0 in s-channel

Table 3.1: SUSY parameters of the scenarios studied in this report: the U(1) (SU(2)) gaug-
ino mass parameters M1 (M2), the higgsino mass parameter µ, the ratio of the Higgs vac-
uum expectation values tanβ = v2/v1, the mass of the CP-odd Higgs mA, the slepton
masses mℓ̃L,R

, the trilinear couplings of the 3rd generations At, Ab, Aτ and the possi-

ble non-vanishing phases ϕM1 , ϕµ, ϕAt,b,τ
. All mass parameters and trilinear couplings

are given in GeV. In case that unification between the U(1) and SU(2) parameters is as-
sumed, the absolute value of M1 is given by |M1| = 5

3
tan2 θW M2 and is denoted by ‘GUT’.

Listed are only those parameters which are relevant for the presented study. The large
number of scenarios reflects the variety of possible different signatures in the MSSM; the
scenario number reflects sequence of corresponding plots in this chapter (∗≡SPS3 and
†≡SPS1a [81]).
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chiral quantum numbers as their SM partners one has to separate the scattering process
from the annihilation process. With both beams polarized the production vertices in
the t- and u-channel can be analysed independently. Another important test of the
theory is to show that the SUSY Yukawa couplings are equal to the gauge couplings.
Polarized positrons are needed for such model tests, in particular in scenarios where
even a fully polarized electron beam is insufficient.

In this section selectron production, e+e− → ẽ+
L,Rẽ−L,R, with polarized beams is stud-

ied. The process occurs via γ, Z exchange in the s-channel and via neutralino exchanges,
χ̃0

1,2,3,4, in the t-channel, see fig. 3.1. In the t-channel both pair production, ẽ+
L ẽ−L , ẽ+

Rẽ−R,
as well as associated production, ẽ+

L ẽ−R, ẽ+
Rẽ−L , is possible, whereas in the s-channel only

pairs, ẽ+
L ẽ−L , ẽ+

Rẽ−R, can be produced. In the MSSM at tree-level this sector depends on the
scalar masses and, due to the exchange of all neutralinos in the t-channel, on the gaug-
ino/higgsino mixing parameters M1,2, ϕM1 , µ, ϕµ and tan β.

In the following the impact of beam polarization for determining a) the quantum num-
bers L, R and b) the Yukawa couplings is studied.

e+

e−

ẽ+
L,R

ẽ−L,R

e+

e−

ẽ+
L,R

ẽ−R,L

Figure 3.1: Selectron production: γ, Z-exchange in the s-channel and χ̃0
1,. . . , χ̃0

4-exchange
in the t-channel.

Chiral quantum numbers

Supersymmetry associates scalars to chiral (anti)fermions

e−L,R ↔ ẽ−L,R and e+
L,R ↔ ẽ+

R,L. (3.1)

In order to prove this association it is necessary to have both beams polarized [82]. The
association can be directly tested only in the t-channel, as can be inferred from fig. 3.1.
Polarized beams serve to separate this channel from the s-channel and enhance the cross
section of just those SUSY partners of the initial chiral e−L,R and e+

L,R given by the beam

polarization, see eq. (3.1). This is demonstrated by isolation of ẽ+
L ẽ−R by the RR configu-

ration of the initial beams in an example where the selectron masses are close together,
namely mẽL

= 200 GeV, mẽR
= 195 GeV so that both ẽL, ẽR decay via the same channels,

ẽL,R → χ̃0
1e. The decay products can be separated e.g. via their different energy spec-

tra and charge separation. At the LC it is then possible to measure the selectron masses
with an expected accuracy of typically a few hundred MeV [1]. In addition, all SM back-
ground events, e.g., those from W+W− production, are strongly suppressed with the RR
configuration. The other SUSY parameters correspond to the scenario S1 in table 3.1.
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The importance of having both beams polarized is demonstrated in fig. 3.2, which
exhibits the isolation of the ẽ+

L ẽ−R pair. Even extremely high right-handed electron polar-
ization, Pe− ≥ +90%, is not sufficient by itself to disentangle the pairs ẽ+

L ẽ−R and ẽ+
R ẽ−R and

to test their association to the chiral quantum numbers, since both cross sections are nu-
merically very close, as seen in fig. 3.2 (left panel). Only with right-handed polarizations
of both beams, the pair ẽ+

L ẽ−R can be separated, as seen in fig. 3.2 (right panel).
Note that the t- (s-wave) and s-channel (p-wave) production could also be separated

via threshold scans [83], where sufficient running time at different energies close to the
threshold is required. It is, however, also necessary to have both beams polarized in that
case to test whether indeed the couplings of the produced selectrons uniquely correspond
to the chirality of the electrons/positrons, respectively, as in eq. (3.1).
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Figure 3.2: Separation of the selectron pair ẽ+
L ẽ−R in e+e− → ẽ+

L,Rẽ−L,R → e+e−2χ̃0
1 is not

possible with electron polarization only (left panel). If, however, both beams are polar-
ized, the cross sections (right panel) differ and the RR configuration separates the pair
ẽ+
L ẽ−R [84]. The SUSY parameters are chosen as in scenario S1, table 3.1.

Yukawa couplings

As a consequence of supersymmetry, the SU(2) and U(1) SUSY Yukawa couplings have
to be identical to the corresponding SM gauge couplings. Assuming that the masses and
mixing parameters of the neutralinos are known, the production cross sections of ẽ+

R ẽ−R
and ẽ+

L ẽ−R can be exploited to derive the Yukawa couplings. In [85] a one-σ uncertainty
of 0.2% (1.2%) in the determination of the U(1) (SU(2)) Yukawa couplings has been de-
rived for the SUSY reference scenario SPS1a [81]. The study was done at

√
s = 500 GeV,

Lint = 500 fb−1, including specific cuts to reduce the SM background and taking also into
account effects from beamstrahlung and initial-state radiation (ISR). With (|Pe−|, |Pe+|) =
(80%, 50%) the result is improved by a factor of 1.4 compared with the case of (80%, 0).

In this analysis performed in the SPS1a scenario, the chirality of the produced selec-
trons can be distinguished by their decay modes, since L-selectrons can decay into the
second-lightest neutralino χ̃0

2, while for the R-selectrons only the decay channel ẽ±R →
e±χ̃0

1 is open. For a slightly heavier gaugino mass M1/2 and smaller scalar mass m0, how-
ever, both selectron states have identical decay modes, ẽ±R,L → e±χ̃0

1. In this case the
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Figure 3.3: 1σ bounds on the determination of the supersymmetric U(1) and SU(2)
Yukawa couplings between e+, ẽ+

R,L and χ̃0
i from selectron cross-section measurements.

The blue (shaded) bands indicate results from measurements using only electron beam
polarization for two values Pe− = +90% (R) and Pe− = −90% (L). The light green
bands add information from measurements with both beams polarized for the values
(Pe+, Pe−) = (−60%, +90%) (LR) and (+60%, +90%) (RR). Combining all constraints leads
to the dark red region. The errors correspond to an integrated luminosity of 100 fb−1 for
each polarization combination [86]. The SUSY parameters are chosen as in scenario S2,
table 3.1.

different combinations of ẽR and ẽL can only be distinguished by the initial beam polar-
ization. If one provides the relative contributions of the different produced selectron pairs
from theory, the use of electron polarization alone would be sufficient to measure both the
SU(2) and U(1) SUSY Yukawa couplings.

Without using this theoretical information, it is necessary to have both beams polar-
ized for a measurement of the Yukawa couplings. This is illustrated in fig. 3.3 for scenario
S2, cf. table 3.1. The use of only e− beam polarization leaves a four-fold ambiguity in the
determination of the Yukawa couplings, which can be resolved by including cross-section
measurements with simultaneous polarization of the e+ and e− beams. Combining this
information, the U(1) and SU(2) Yukawa couplings can be determined with a precision
of 0.2% and 1.2%, respectively, see fig. 3.3. The results shown take into account the selec-
tron decay distributions, including SM and SUSY backgrounds that have been reduced
by appropriate cuts, beamstrahlung, ISR and the most important systematic uncertainties
(see [85] for details).

Quantitative example: The above analysis shows that even an extremely high de-
gree of electron polarization, say Pe− ≥ 90%, would be insufficient to test the chiral
quantum numbers associated to the scalar ẽ±. Also, a measurement of the Yukawa
couplings, which is important to prove their equality to the gauge couplings in SUSY,
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might not succeed if only polarized electrons were available.

3.1.3 Smuon mass measurement above the production threshold

Smuon production occurs only via γ and Z exchange. In order to measure the masses,
the suppression of the SM WW process is necessary. The polarization of both beams
may be decisive to observe all kinematical edges and measure mµ̃L,R

in the continuum.
This is also important to optimize threshold scans.

Smuons are only pair-produced via γ, Z exchange in the s-channel, e+e− → µ̃+
L,Rµ̃−

L,R,
cf. fig. 3.1. The production process depends at tree-level only on the mass parameters of
the scalar sector. In threshold scans at the linear collider the smuon masses can be deter-
mined very precisely to the order of a few 100 MeV [1]. Since, however, threshold scans
need running time, i.e. it requires luminosity specific around this energy, it is important to
measure the masses already rather precisely far beyond the threshold, in the continuum.
To achieve a precision measurement it is important to suppress efficiently background
processes. For smuon production, W+W− final states represent one of the worst back-
grounds; however, they can easily be suppressed with right-handed electron/left-handed
positron beams. The scaling factors are listed in table 2.4, see section 2.2.

The background suppression may be decisive for the detection of the new particles
and the accurate measurement of their masses mµ̃ in the continuum. Since µ̃+µ̃− pro-
duction only proceeds via s-channel γ, Z exchange, the initial beam configurations LR
(Pe− < 0, Pe+ > 0) and RL (Pe− > 0, Pe+ < 0) are favoured. A case study has been
made [87] for the scenario S3, cf. table 3.1, where the masses are

mµ̃R
= 178.3 GeV, mµ̃L

= 287.1 GeV. (3.2)

Polarization σ(µ̃+
Rµ̃−

R) [fb] σ(µ̃+
L µ̃−

L) [fb] σ(W+W−) [fb]
(−80%,−80%) 11.44 5.06 1448
(−80%, +80%) 21.23 37.74 12995
(+80%,−80%) 82.99 8.37 198
(+80%, +80%) 11.44 5.06 1448

(−80%, 0) 16.34 21.40 7241
(+80%, 0) 47.21 6.72 824

Table 3.2: Cross sections for e+e− → µ̃+µ̃− at
√

s = 750 GeV for the scenario S3 [87]. One
observes a large reduction of the W+W− cross section when the electron is right-handed
and the positron is left-handed. This helps significantly in observing µ̃L.

The cross sections are shown in table 3.2, where the considerable reduction in the
WW production cross section for right-handed electrons and left-handed positrons can be

noted. One gains a factor of about 2.6 in the ratio S/
√

B with (Pe−, Pe+) = (+80%,−80%)
compared to (+80%, 0). In fig. 3.4 the expected muon energy distribution is shown for an
integrated luminosity of 500 fb−1 at

√
s = 750 GeV and for the polarization configurations

(Pe−, Pe+) = (−80%, +80%) (left panel) and (+80%,−80%) (right panel). The background
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from W+W− decaying into the µν final state is included. Only with polarized e− and e+

beams can both muon-energy edges, at around 65 and 220 GeV, be reconstructed. The
slepton masses can be determined in the continuum up to a few GeV uncertainty. This
shows the real importance of positron polarization for a clear observation of the low-
energy edge associated to the µ̃R, which cannot be clearly seen unless the positron is
polarized [87].

Energy spectrum of µ+µ− [GeV]

µ+µ− events (incl. W+W−)

(Pe− , Pe+) = (−80%,+80%)

√
s = 750 GeV

Energy spectrum of µ+µ− [GeV]

µ+µ− events (incl. W+W−)
√

s = 750 GeV

(Pe− , Pe+) = (+80%,−80%)

Figure 3.4: Energy spectrum of muons from µ̃L,R decays into µχ̃0
1 final states, including

the W+W− background decaying into µν final states in the scenario S3, cf. table 3.1, for
two combinations of beam polarizations for

√
s = 750 GeV and Lint = 500 fb−1 [87].

Quantitative examples: The most important background to µ̃ pair production is
WW pair production. Compared with the case of only the electron beam polarized,
the signal gains about a factor 1.8 and the background is suppressed by about a factor
of 4 with (Pe− , Pe+) = (+80%, −80%) compared to (+80%, 0). With both beams
polarized, a rather accurate measurement of the smuon masses is possible already in
the continuum, which can then be used to devise possible threshold scans.

3.1.4 Determination of third-generation sfermion parameters

The advantages of having both beams polarized in third-generation sfermion produc-
tion are the larger cross sections and a more precise determination of masses and mix-
ing angles.

In the third generation of sfermions, Yukawa terms give rise to a mixing between the

‘left’ and ‘right’ states f̃L and f̃R (f̃ = t̃, b̃, τ̃ ). The mass eigenstates are f̃1 = f̃L cos θf̃ +

f̃R sin θf̃ , and f̃2 = f̃R cos θf̃ − f̃L sin θf̃ , with θf̃ the sfermion mixing angle.
In the following phenomenological studies of third-generation sfermions in e+e− an-

nihilation at
√

s = 500 GeV are summarized. Information on the mixing angle can be
obtained by measuring production cross sections with different combinations of beam
polarizations. It has been shown in [88, 90, 91] that beam polarization is important to re-
solve ambiguities, see fig. 3.5. For the unpolarized case, two values of cos 2θτ̃ (θτ̃ being the
mixing angle) are consistent with the cross sections (red lines). However, the use of po-
larized beams allows a single solution (green and blue lines) to be identified. Moreover,
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the simultaneous polarization of both beams is useful for enhancing Peff, eq. (1.19), to-
gether with the signal and thus for reducing uncertainties [91]. This might be particularly
important for τ̃ /τ analyses, which will be difficult to perform, since τs decay also into
2π and 3π final states. In [91] a complete detector simulation of signal and background
(using the program SIMDET [48]) for the scenario S4, table3.1, including angle cuts, QED
radiation and beamstrahlung and using (Pe−, Pe+) = (+80%,−60%), has been performed.
The result was that mτ̃1 could even be measured to a precision of 500 MeV, the mixing
angle cos 2θτ̃ up to 1% and the polarization of the τ , Pτ , up to 6% at the ILC. Compared
to the case with only polarized electrons of |Pe−| = 80% the polarization of both beams
leads in the determination of mτ̃1 and Pτ approximately to a reduction of the uncertainty
by about a factor 1.6. Since the determination of the mixing angle cos 2θτ̃ is mainly deter-
mined by systematics positron polarization leads in this context only to an improvement
of O(10%).

σ(τ̃1τ̃1) [fb]

cos 2 θτ̃

-8

-6

-4

-2

 0

 2

 4
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 8

 0  50  100  150  200

•
• • •physical range{ 1

−1

(0,0)

(80%,-60%)

(80%,0)

/

Figure 3.5: Mixing parameter cos 2θτ̃ vs. cross section σ(e+e− → τ̃1τ̃1) at
√

s = 500 GeV
for beam polarizations as indicated. The vertical lines indicate the predicted cross sec-
tions [91]. The SUSY parameters are chosen as in scenario S4, cf. table 3.1.

In the following, the production of light stops is discussed in detail. The reaction

e+e− → t̃i
¯̃tj, i, j = 1, 2 proceeds via γ and Z exchange in the s-channel. The t̃i couplings

depend on the stop-mixing angle θt̃. In Figs. 3.6 a, b, contour lines of the cross section

σ(e+e− → t̃1
¯̃t1) are shown as functions of the beam polarizations Pe− and Pe+ at

√
s =

500 GeV for mt̃1 = 200 GeV, with (a) cos θt̃ = 0.4 and (b) cos θt̃ = 0.66, see scenario S5,
table 3.1. Initial-state radiation (ISR) and one-loop SUSY-QCD corrections are included
(for details, see [88, 90]). The white windows show the range of polarizations |Pe−| < 0.9
and |Pe+| < 0.6. As can be seen, one significantly increases the cross section by up to a
factor of about 1.6 with (Pe−, Pe+) = (+90%,−60%) compared to (+90%, 0). Moreover,
beam polarization strengthens the cos θt̃ dependence and can thus be essential for the
determination of the mixing angle. Corresponding cross sections for the production of
sbottoms, staus and τ -sneutrinos are presented in [88].

The precision that can be obtained from cross section measurements on the parameters
of the stop sector is estimated using the parameter point S5, table 3.1, with mt̃1 = 200 GeV
and cos θt̃ = −0.66 as an illustrative example. The four cases (Pe−, Pe+) = (∓0.9, 0) and
(Pe−, Pe+) = (∓0.9,±0.6) are studied with integrated luminosities of Lint = 50 fb−1 and
Lint = 250 fb−1 for each polarization. Again, one-loop SUSY-QCD and ISR corrections
are included. A 1% uncertainty in the polarizations of the e+ and e− beams has been
assumed as well as a theoretical uncertainty in the cross sections of 1%, taking full error
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Figure 3.6: Dependence of σ(e+e− → t̃1˜̄t1) on degree of electron and positron polarization
at
√

s = 500 GeV, for mt̃1 = 200 GeV, | cos θt̃| = 0.4 in (a) and | cos θt̃| = 0.66 in (b), cf.
scenario S5, table 3.1 [88].

propagation into account. The anticipated experimental precisions on σ−+ and σ+− are
based on the Monte Carlo study of [92]. Fig. 3.7a shows the error bands for the cross
sections and the corresponding 68% CL error ellipses in the mt̃1–cos θt̃ plane for the four
cases mentioned above.

The mixing angle can be determined even more precisely from the left-right asymme-
try Aobs

LR = (σ−+ − σ+−)/(σ−+ + σ+−), cf. eq. (1.24), because here the kinematical depen-
dence on mt̃1 drops out. The error bands for ALR for the four cases as a function of cos θt̃

are shown in Fig. 3.7b. Table 3.3 summarizes the cross sections and statistical errors as
well as the resulting errors on mt̃1 and cos θt̃ [89].

case Lint Pe− Pe+ σ−+ σ+− ∆σstat.
−+ ∆σstat.

+− ∆mt̃1

Fig. 3.7a
∆ cos θt̃

Fig. 3.7b
∆ cos θt̃

1 100 fb−1 ∓0.9 0 44 fb 27 fb 4.7% 6.3% 1.1% 3.6% 2.3%
2 500 fb−1 ∓0.9 0 44 fb 27 fb 2.1% 2.8% 0.5% 1.8% 1.1%
3 100 fb−1 ∓0.9 ±0.6 69 fb 40 fb 3.1% 4.4% 0.8% 2.3% 1.4%
4 500 fb−1 ∓0.9 ±0.6 69 fb 40 fb 1.4% 2.0% 0.4% 1.1% 0.7%

Table 3.3: Parameters for the cases studied, cross sections, assumed statistical errors and
resulting precisions on mt̃1 and cos θt̃ corresponding to Fig. 3.7 [89] and SUSY scenario S5,
cf. table 3.1.

Quantitative example: In the cases studied in this section, the cross sections are en-
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Figure 3.7: (a) Cross section error bands and 68% CL error ellipses for determining mt̃1

and cos θt̃ from cross section measurements for the four cases given in Table 3.3; the
dashed lines are for Lint = 100 fb−1 and the full lines for Lint = 500 fb−1, the blue (green)
lines are for cases 1 and 2 (cases 3 and 4). (b) Error bands for the determination of cos θt̃

from Aobs
LR . In both plots mt̃1 = 200 GeV, cos θt̃ = −0.66,

√
s = 500 GeV. [89]. The SUSY

parameters are chosen as in scenario S5, cf. table 3.1.

hanced by a factor of about 1.6 with both beams polarized, (|Pe− |, |Pe+|) = (90%, 60%),
as compared to the case with only (|Pe− |, Pe+) = (90%, 0). This gives up to 40% im-
provement in the determination of the stop mass and mixing angle.

3.1.5 Chargino and neutralino production

In chargino and neutralino production, a complicated interplay takes place between
the s-channel amplitudes and the amplitudes originating from scalar exchange in the
t- and u-channels. Consequently, only polarized electrons may not be sufficient for
a model-independent determination of the relevant MSSM parameters, and positron
polarization would also be needed.

e+

e−

γ

χ̃+

i

χ̃−
i

e+

e−

Z

χ̃+

i

χ̃−
j

e+

e−

ν̃

χ̃+

i

χ̃−
j

Figure 3.8: Chargino production: γ, Z-exchange in the s-channel and ν̃e-exchange in the
t-channel.

In the following the fermionic sector of the charginos, χ̃±
1,2, and neutralinos, χ̃0

1,...,4 is
studied. It is expected that at least some of the charginos and neutralinos are sufficiently
light to be directly observed at

√
s = 500 GeV. Since these particles are mixtures of the
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Figure 3.9: Neutralino production: Z-exchange in the s-channel and ẽL, ẽR-exchange in
the t- and u-channel.

gaugino and higgsino interaction states their analysis will give direct access to the SUSY
breaking parameters M1, M2, µ and tanβ [93]. Beam polarization may be useful for the
determination of the parameters and couplings of the gaugino/higgsino sector, in partic-
ular if only part of the spectrum turns out to be kinematically accessible [94].

Charginos (neutralinos) are produced in pairs via exchange of the γ, Z (Z) gauge
bosons in the s-channel and via scalar SUSY particle exchange, ν̃e (ẽL,R), in the t-channel
(t- and u-channel), see figs. 3.8 and 3.9. The production processes depends therefore at
tree-level on the parameters M2, µ, tan β (in the case of χ̃0

j : also on M1) and on the mass
parameters of the exchanged scalar particles. If the beams were fully polarized, only
the LR and RL beam-polarization configurations would contribute to the production pro-
cesses. The cross sections in the configurations LL and RR are non-vanishing for partially
polarized beams. Since charginos and neutralinos are mixtures of gauginos (which cou-
ple only to scalar SUSY partners ν̃e and ẽL,R, respectively) and higgsinos (which couple
only to the Z boson in the s-channel) interesting features can be exposed when apply-
ing all possible polarization configurations for the different chargino and neutralino pair
productions [95].

Beam polarization can significantly enhance the signal and therefore improve the

S/
√

B ratio. In the case of chargino pair production, as can be seen in the left panel
of fig. 3.10 (for the scenario S6, see table 3.1) the cross section for (−90%, +60%) is en-
hanced by a factor of 1.6 compared to the (−90%, 0) case. For right-polarized electrons
the enhancement is much weaker in this scenario. Nevertheless, polarized beams can be
used to disentangle the chargino and sneutrino parameters, exploiting the fact that the ν̃e

exchange affects only the amplitude with left-chiral electrons (and right-chiral positrons).
If the incoming beams were 100% polarized, one could switch the ν̃e exchange on and off,
and analyse the chargino system alone or with ν̃e included, and thus perform an inde-
pendent determination of chargino and ν̃e parameters. With realistic beam polarization,
the ν̃e exchange affects all amplitudes depending on the degree of polarization, as seen in
fig. 3.10. Consequently, the polarization of both beams provides a unique analysing tool.

The case of neutralinos is even more interesting since the structure in the t- and u-
channels is richer. As can be seen in fig. 3.11a for S6, see table 3.1, the cross sections for
pair production are also enhanced by a factor 1.6 for (−90%, +60%) with respect to the
case (−90%, 0). For right-polarized electrons, similar results are obtained, see e.g. σ(χ̃0

3χ̃
0
4),

in fig. 3.11b. In this configuration an even greater advantage of polarizing both beams
with different signs is the suppression of the dominant WW background. One should
note, however, that the obtained enhancement can strongly depend on the considered
scenario, see table 3.4.
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Figure 3.10: Chargino production: cross sections for e+e− → χ̃−
i χ̃+

j at
√

s = 1 TeV for fixed
electron polarization Pe− = −90% (left) and Pe− = +90% (right) as a function of positron
polarization [96]. The SUSY parameters are chosen as in scenario S6, see table 3.1.
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Figure 3.11: Neutralino production: Selected cross sections for e+e− → χ̃0
i χ̃

0
j at
√

s = 1 TeV
in the scenario S6, see table 3.1, where the two lightest neutralinos are gaugino-like and
the two heavier ones are higgsino-like, shown for fixed electron polarization and variable
positron polarization, a) Pe− = −90%, and b) Pe− = +90% [97].

Particularly interesting is the behaviour of the χ̃0
2χ̃

0
2 cross section, which is enhanced

by a factor of 1.6 even for the exceptional configuration (+90%, +60%) with respect to the
case (+90%, 0). This effect is due to the lack of mixing, the χ̃0

2 being nearly pure wino,
and thus not completely suppressed for partial polarization (+90%, +60%). In the case
of completely polarized beams, the RR cross section for χ̃0

2χ̃
0
2 would vanish, since—as

mentioned before—only a V-A interaction occurs in this process.
Neutralino production is very sensitive also to the mass of the exchanged particles, ẽL

and ẽR. The ordering of the cross sections for different polarization configurations (with
(|Pe−|, |Pe+|) = (80%, 60%)) depends on the character of the neutralinos as well as on the
masses of the exchanged particles:

• Pure higgsino (only s-channel):
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σ−+ > σ+− > σ−0 > σ00 > σ+0 > σ−− > σ++ (3.3)

• Pure gaugino and mẽL
≫ mẽR

(only t- and u-channels):

σ+− > σ+0 > σ00 > σ++ > σ−− > σ−0 > σ−+ (3.4)

• Pure gaugino and mẽL
≪ mẽR

(only t- and u-channels):

σ−+ > σ−0 > σ00 > σ−− > σ++ > σ+0 > σ+−, (3.5)

with denotation as defined in eq. (1.15), sect.1.2.2. If only the electron beam is polar-
ized, then the orderings of the cross sections for the cases (3.3) and (3.5) remain the same.
If, however, both beams are simultaneously polarized, the three cases could be distin-
guished from one another [95].

If the slepton masses are known, the fundamental SUSY parameters, M1, M2, µ and
tanβ can easily be determined from measurements of polarized cross sections of the
two lightest neutralinos and the lightest chargino [94]. To give an example of the in-
volved interplay between gaugino/higgsino mixing character, the influence of the vir-
tual slepton masses and the dependence of beam polarization, polarized cross sections
σ(e+e− → χ̃0

1χ̃
0
2) for different mẽL,R

are listed in table 3.4 for the SUSY parameters chosen
as in scenario S7, see table 3.1.

Considering the large number of possible independent SUSY parameters, the avail-
ability of different observables using the polarization of both beams is a decisive tool for
the kind of analysis described here.

(mẽL
, mẽR

) σ(e+e− → χ̃0
1χ̃

0
2) Scaling factors: σpol/σunpol

[GeV] [fb] unpolarized (−90%, 0%) (+90%, 0%) (−90%,+60%) (+90%,−60%)

(200, 200) 102 0.4 1.6 0.6 2.5
(500, 500) 29 0.5 1.5 0.7 2.4

(1000, 1000) 7.4 0.7 1.3 1.1 2.0
(1500, 1500) 4.0 0.9 1.1 1.3 1.8
(2000, 2000) 2.9 1.0 1.0 1.5 1.6
(500, 1500) 8.7 1.4 0.6 2.3 0.8
(1500, 500) 24 0.2 1.8 0.3 2.8

Table 3.4: Polarized cross sections σ(e+e− → χ̃0
1χ̃

0
2) at

√
s = 500 GeV with all possible

beam-polarization configurations for (Pe− , Pe+)=(∓90%, ±60%) and for different selectron
masses mẽL,R

, cf. [97]. The SUSY parameters are given by scenario S7, table 3.1. Cross
sections in the configuration RR and LL are < 1 fb and not listed.

Quantitative examples: One can gain up to a factor of about 1.8 for the production
cross section with both beams polarized with respect to the case where only electrons
are polarized. To determine the fundamental parameters model-independently it is
necessary to observe cross sections with differently polarized beams. Parameters might
be such that having only one beam polarized would not unambiguously determine the
parameters.
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3.1.6 CP violation in neutralino production and decay

With both beams polarized, the CP-violating effects can be enhanced by a considerable
factor, with respect to the case of only electrons polarized.

Particularly interesting in supersymmetry is the study of new CP-violating sources.
In the following, suitable observables for exploring CP violation in the gaugino/higgsino
sector are shown.

The interaction Lagrangian for the neutralino and chargino sectors of the MSSM, see
e.g. [98], allows for some SUSY parameters to be complex: the gaugino mass parameter
M1 (M2 is assumed to be real), the higgsino mass parameter µ, and —involving third
generation sfermions— the trilinear coupling parameter Aτ in the stau sector,

µ = |µ| ei ϕµ, M1 = |M1| ei ϕM1 , Aτ = |Aτ | ei ϕAτ . (3.6)

The physical phases can cause large CP-violating effects already at tree level [98–108]. In
the following, the dependence on the beam polarization of these CP-violating effects in
neutralino production and decay is reviewed [109].

In the following neutralino production

e+ + e− → χ̃0
2 + χ̃0

j , j = 1, 3, (3.7)

with either leptonic two-body decays

χ̃0
2 → ℓ̃ + ℓ1 and ℓ̃→ χ̃0

1 + ℓ2 (3.8)

or the corresponding leptonic three-body decays

χ̃0
2 −→ χ̃0

1 + ℓ1 + ℓ2, (3.9)

with ℓ1,2 = e, µ, τ is studied. The spin correlations between production and decays of the
neutralinos lead to CP-violating effects already at tree level and allow the definition of
several CP-odd asymmetries. In the following only the decays of the χ̃0

2 are studied.
It is convenient to introduce the triple product T = (pe−×pℓ2) ·pℓ1 , where pe− , pℓ1 and

pℓ2 are the momenta of the initial e− beam and the two final leptons ℓ1 and ℓ2, respectively.
A T-odd asymmetry of the cross section σ for the processes (3.7)–(3.9) can then be defined
as:

AT =
σ(T > 0)− σ(T < 0)

σ(T > 0) + σ(T < 0)
=

∫
sign{T }|M|2dLips∫
|M|2dLips

. (3.10)

If final-state phases and finite width effects of exchanged particles are neglected,AT is CP-
violating (CP-odd) due to CPT invariance. AT is proportional to the difference between
the number of events with the final lepton ℓ1 above the plane spanned by pe− and pℓ2 and
those below it. The dependence of AT on ϕM1 and ϕµ has been analysed in [98–100, 104,
107], see sections a) and b) below.

When the neutralino decays into a τ lepton,

χ̃0
i → τ̃±

k τ∓, k = 1, 2, (3.11)

the transverse τ− and τ+ polarizations Pτ− and Pτ+, perpendicular to the plane formed
by the τ and e− momenta, are T-odd and give rise to the CP-odd observable

ACP =
1

2
(Pτ− − Pτ+), (3.12)
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which is also sensitive to ϕAτ . ACP has been discussed in [104, 105] for several MSSM
scenarios. In order to measure the asymmetries AT and ACP in the leptonic two-body
decays of the neutralino, eq. (3.8), the lepton ℓ1 from the neutralino decay and the lepton

ℓ2 from the ℓ̃ decay, have to be distinguished. have to be distinguished. This can be
accomplished by measuring the different energy spectra of the τs [98].

To measure the asymmetries AT and ACP, it is important that both these asymmetries
and the cross sections σ are large. In the following, the impact of longitudinally-polarized
e+ and e− beams of a linear collider in the 500 GeV range on the measurement ofAT,ACP

and σ is discussed.

a) Two-body decays

The above asymmetries AT and ACP are shown in figs. 3.12–3.14 for e+e− → χ̃0
1χ̃

0
2 at√

s = 500 GeV, with the decays (3.8) and (3.11).

In fig. 3.12 the dependence of the cross sections σ(e+e− → χ̃0
1χ̃

0
2) × BR(χ̃0

2 → ℓ̃Rℓ1) ×
BR(ℓ̃R → χ̃0

1ℓ2) and of AT on the beam polarizations is shown [98, 109]. The contribut-
ing CP-violating phases in that process with ℓ1,2 6= τ are ϕM1 and ϕµ. Since the exper-
imental results from the EDM [79] put stringent bounds particularly on ϕµ, we choose
only ϕM1 6= 0. The SUSY parameters are chosen according to scenario S8, table 3.1,

and lead to BR(χ̃0
2 → ℓ̃Rℓ1) = 0.63 (summed over both signs of electric charge) and

BR(ℓ̃R → χ̃0
1ℓ2) = 1. Note that both AT and σ are considerably enhanced for positive

electron and negative positron polarizations.
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Figure 3.12: Contour lines of σ and AT in neutralino production, e+e− → χ̃0
1χ̃

0
2 and the

subsequent decay, eq. (3.8) for scenario S8, table 3.1, with the CP-violating phase ϕM1 =
0.2π [109].

This choice of polarization enhances the contributions of the right-slepton exchange in
the neutralino production, eq. (3.7), and reduces that of the left slepton exchange [95,110].
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While the contributions of right and left slepton exchanges enter σ with the same signs,
they enter AT with opposite signs, which accounts for the sign change of AT in fig. 3.12.

In figs. 3.13 and 3.14, contour lines of the τ polarization asymmetry ACP, eq. (3.12),
are shown. Since in those cases the decay into τs is studied one additional CP-violating
phase contributes, ϕAτ . Since the asymmetry ACP is very sensitive to both phases ϕAτ

and ϕM1 the dependence of σ = σ(e+e− → χ̃0
1χ̃

0
2)× BR(χ̃0

2 → τ̃+
1 τ−) and ACP on the beam

polarization is shown in fig. 3.13 for the case ϕAτ = π/2 in scenario S9, and in fig. 3.14 for
ϕM1 = 0.2π in scenario S10, see table 3.1.

In scenario S9 a large value of |Aτ | = 1500 GeV has been chosen becauseACP increases
with increasing |Aτ | ≫ |µ| tanβ [105, 109]. For unpolarized beams the asymmetry is 1%.
If only the electron beam is polarized, (Pe−, Pe+) = (+80%, 0), the asymmetry reaches
values of about ±10%. It achieves values larger than ±13% if both beams are polarized
with opposite signs. Furthermore, if both beams are polarized, one also gains in statistics.
The cross section σ = σ(e+e− → χ̃0

1χ̃
0
2)×BR(χ̃0

2 → τ̃+
1 τ−), shown in fig. 3.13 with BR(χ̃0

2 →
τ̃+
1 τ−) = 0.22, is very sensitive to the beam polarization and varies between 1 fb and 30

fb.
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Figure 3.13: Contour lines of σ and ACP of the process, e+e− → χ̃0
1χ̃

0
2, with subsequent

decay, eq. (3.11) for the scenario S9, table 3.1, with the CP-violating phase ϕAτ = π/2 [109].

In scenario S10 the phase ϕM1 6= 0 is considered, which influences the neutralino χ̃0
1,2

masses and couplings. Therefore CP-violating effects occur both in the production as
well as in the decay process. The neutralino branching ratio is BR(χ̃0

2 → τ̃+
1 τ−) = 0.19

for the considered scenario. Despite the small phases, ACP reaches values up to −12% for
negative e− and positive e+ beam polarizations.
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Figure 3.14: Contour lines of σ andACP of the process, e+e− → χ̃0
1χ̃

0
2, with subsequent de-

cay, eq. (3.11) for the scenario S10, table 3.1, with the CP-violating phase ϕM1 = 0.2π [109].

b) Three-body decays

In this subsection the influence of longitudinal e− and e+ beam polarizations on the T-odd
asymmetry AT, eq. (3.10), is analysed [107]. The centre-of-mass energy is

√
s = 500 GeV

and the phases are chosen as ϕM1 = 0.2π and ϕµ = 0.
In figs. 3.15(a) and (b)AT is shown as a function of Pe− for different e+ beam polariza-

tions, −60% ≤ Pe+ ≤ +60%. The chosen SUSY parameters, cf. S11 in table 3.1, lead to a
large mixing between the gaugino and higgsino components of χ̃0

1, χ̃0
2 and χ̃0

3 [107]. For
both production processes in fig. 3.15 AT is positive (negative) for Pe− → −1 (Pe− → +1).
For these polarizations the ẽL (ẽR) contributions to the neutralino spin density matrix are
dominant. For (Pe−, Pe+) = (−90%, 0) and (+90%, 0) the result isAT = +9.0 % and−6.2 %
for χ̃0

1χ̃
0
2 production and AT = +8.3 % and −4.8 % for χ̃0

3χ̃
0
2 production, respectively. Ad-

ditional positron beam polarization of opposite sign only slightly enhances these asym-
metries. However, it considerably enhances the corresponding cross sections, hence the
expected rates to measure AT by a factor of about 1.5, see figs. 3.15(c) and (d).

The relative statistical error on AT is given by δAT = ∆AT/AT = Nσ/(AT

√
N) with

Nσ, the number of standard deviations and N = σLint, the number of events for a to-
tal integrated luminosity Lint. Assuming δAT ≈ 1 for AT to be measurable it follows

that Nσ ≈ |AT|
√

σL [98]. In table 3.5, AT, σ and the corresponding standard deviations
Nσ of AT are given for Lint = 500 fb−1 and several sets of beam polarizations. With
(|Pe−|, |Pe+|) = (90%, 60%) the number of standard deviationsNσ increases by up to a fac-
tor 1.4 for χ̃0

1χ̃
0
2 production and by up to a factor 1.6 for χ̃0

3χ̃
0
2 production in scenario S11,

table 3.1, in comparison to only polarized electrons.
Quantitative examples: In neutralino production with subsequent two-body and

three-body decays the cross sections are enhanced by a factor of about 1.5 with both
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Figure 3.15: (a), (b): The T-odd asymmetry AT, eq. (3.10), for e+e− → χ̃0
i χ̃

0
2, (a) i = 1

and (b) i = 3, with subsequent leptonic three-body decay χ̃0
2 → χ̃0

1ℓ
+ℓ−, and (c), (d) the

corresponding cross sections σ = σ(e+e− → χ̃0
i χ̃

0
2) × BR(χ̃0

2 → χ̃0
1ℓ

+ℓ−), (c) i = 1 and (d)
i = 3, summed over ℓ = e, µ, as a function of the e− beam polarization Pe− for different e+

beam polarizations Pe+ and
√

s = 500 GeV in the scenario S11, table 3.1 [107].

e+e− → χ̃0
1χ̃

0
2, χ̃0

2 → χ̃0
1ℓ

+ℓ− e+e− → χ̃0
3χ̃

0
2, χ̃0

2 → χ̃0
1ℓ

+ℓ−

(Pe− , Pe+) (0, 0) (−, 0) (−,+) (+, 0) (+,−) (0, 0) (−, 0) (−,+) (+, 0) (+,−)

AT [%] −1.8 9.0 10.6 −6.2 −6.5 4.5 8.3 8.5 −4.8 −6.3

σ [fb] 6.5 3.7 5.4 9.2 14.6 7.8 11.2 17.6 4.3 6.3

Nσ 1.0 3.9 5.5 4.2 5.6 2.8 6.2 8.0 2.2 3.5

Table 3.5: The T-odd asymmetries AT, eq. (3.10), are listed for e+e− → χ̃0
i χ̃

0
2, i = 1, 3, with

subsequent leptonic three-body decay χ̃0
2 → χ̃0

1ℓ
+ℓ−. The corresponding cross section

σ = σ(e+e− → χ̃0
i χ̃

0
2) × BR(χ̃0

2 → χ̃0
1ℓ

+ℓ−), summed over ℓ = e, µ, and the standard
deviations Nσ = |AT|

√
σLint are given for Lint = 500 fb−1,

√
s = 500 GeV and several

beam polarizations (Pe−, Pe+) = (±90%,±60%) in the scenario S11, table 3.1 [107].

beams polarized compared with only polarized electrons. The CP-odd and T-odd asym-
metries are enhanced by up to a factor of about 1.3 and their measurability by up to a
factor of about 1.6 with both beams polarized compared with the case of only polarized
electrons.

3.1.7 SUSY CP asymmetries with transversely-polarized beams

Only if both beams are polarized, it is possible to exploit transversely-polarized e−
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and e+ beams in chargino/neutralino production and decay. Both CP-even and CP-odd
azimuthal asymmetries can be constructed which give access to determine CP-violating
phases in a broad range of the MSSM parameter space.

Transversely-polarized beams offer the possibility of detailed studies of the effects of
CP violation. They give access to azimuthal asymmetries that can be defined directly in
terms of products of final particle momenta, without the need to measure final-state po-
larizations. For (V, A) interactions, due to the negligible electron mass, new observables
involving transversely-polarized beams are available only if both beams are polarized.
In this section the effects of transversely-polarized beams in the chargino [111] and neu-
tralino [112] processes

e+e− → χ̃+
1 χ̃−

j , with χ̃−
j → ν̃ℓℓ

− and χ̃−
j → W−χ̃0

1, j = 1, 2, (3.13)

e+e− → χ̃0
1χ̃

0
j , with χ̃0

j → ℓ̃±L,Rℓ∓1 → ℓ∓1 ℓ±2 χ̃0
1, j = 2, 3, 4, (3.14)

are summarised.
With transversely-polarized beams new CP-sensitive observables such as CP-odd

triple product correlations as well as CP-even azimuthal asymmetries can be exploited.
CP-odd observables are necessary to determine the underlying interactions unambigu-
ously. Only two complex parameters enter the neutralino/chargino sector: the higgsino
mass parameter µ and the gaugino mass parameter M1.

Transverse beam polarization in chargino production

In the case of chargino production and decay, eq. (3.13), T-odd asymmetries based on
triple products of the electron/positron momentum, transverse polarization vector and
the momentum of the outgoing lepton or W vanish [111]. Therefore, T-odd observables
could only be constructed in that case by analyzing both decays of χ̃±

1 and of χ̃∓
2 , taking

into account the spin-spin correlations between both decaying charginos [111].
On the other hand, transverse polarizations allow to construct CP-even azimuthal

asymmetries [113, 114], which are sensitive to the phases ϕM1 and ϕµ:

Aφ =
1

σ

[∫

+

dσ

dφ
dφ−

∫

−

dσ

dφ
dφ

]
, (3.15)

where φ is the azimuthal angle of the observed final ℓ or W−, eq. (3.13),
∫
± refers to the

integrated phase space hemisphere above (below) the scattering plane and dσ/dφ denotes
the differential cross section for production and decay including the complete spin cor-
relations of the charginos. It has been shown for different scenarios in [111] and for the
process (3.13) that this CP-even asymmetry is a promising observable for the determina-
tion of the phase ϕM1 (up to a two-fold ambiguity) and can reach up to about 20%.

Transverse beam polarization in neutralino production

Contrary to the case of chargino production (Dirac fermions), it is possible to construct
T-odd triple product correlations in the production of neutralinos (Majorana fermions)
[112].

Consider first CP-odd observables in neutralino production with transverse e± beam
polarization, eq. (3.14). The e− direction is chosen as the z axis and the direction of its
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transverse polarization vector as the x axis. If the angle between the transverse polariza-
tion vectors of the e+ and the e− is π/2, with φ+ = π/2 and φ− = 0), the CP-violating
contributions can be isolated with the following integration (this ACP(θ) should not be
confused with the ACP of eq. (3.12)):

ACP(θ) =
1

σ

[∫ π/4

0

−
∫ 3π/4

π/4

+

∫ 5π/4

3π/4

−
∫ 7π/4

5π/4

+

∫ 2π

7π/4

]
d2σ

dφ d cos θ
dφ . (3.16)

Because of the Majorana nature of the neutralinos the CP-violating terms of the t- and u-
channel contributions cancel each other, if integrated over the whole range of θ. Therefore,
the CP-odd asymmetry is defined as

ACP =

[∫ π/2

0

−
∫ π

π/2

]
ACP(θ) d cos θ . (3.17)

In order to measure ACP it is necessary to reconstruct the directions of the neutralinos,
this can be done by analysing the subsequent two-body decays in eq. (3.14).

Fig. 3.16a shows contours of ACP in e+e− → χ̃0
1χ̃

0
2 at
√

s = 500 GeV in the |µ|–M2

SUSY parameter plane with the other MSSM parameters as given in S12, table 3.1. The
CP-odd asymmetry ACP, eq. (3.17), is sizable for large mixing between the gaugino and
the higgsino components of χ̃0

1 and χ̃0
2. If the beams were fully transversely polarized,

(PT
e−, PT

e+) = (100%, 100%), then ACP could reach up to about 8.8%.
Since the asymmetries are here only of the order of a few percent, it is important to

know how much luminosity Lint is required for a measurement with sufficient signifi-
cance. It can be estimated from the relation [98, 112]

Lint = (Nσ)2/[(PT
e−PT

e+ACP)2 σ], (3.18)

whereNσ denotes the number of standard deviations and σ the corresponding neutralino
cross section. In fig. 3.16b is shown how much luminosity is required with (PT

e−, PT
e+) =

(80%, 60%) for a discovery with 5-σ. For the maximum value of the asymmetry ACP the
required luminosity Lint is about 80 fb−1.

The reconstruction of the direction of the neutralinos is not necessary if a CP-odd
asymmetry is defined with respect to the azimuth of the final leptons ℓ1,2 [112]. The
derived asymmetries are of the same order of magnitude as in the case studied before.
At a LC an arbitrary and independent relative orientation of both transversely-polarized
beams could be studied which has not received much attention in the literature so far and
provides high flexibility and a larger amount of observables [112].

Quantitative examples: With transversely-polarized e− and e+ beams new CP-
sensitive observables could be observed. In chargino production and decay CP-even
azimuthal asymmetries of the order of 10% are obtained. In neutralino production
CP-odd as well as CP-even asymmetries can be constructed. At

√
s = 500 GeV with

(P T
e− , P T

e+) = (80%, 60%) and an integrated luminosity Lint = 500 fb−1, the dis-
covery of a CP-odd asymmetry ACP at the 5-σ level is possible for a broad range of
parameters.
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Figure 3.16: Contours of (a) the CP-odd asymmetry ACP, Eq. (3.17), for neutralino pro-
duction, e+e− → χ̃0

1χ̃
0
2, at

√
s = 500 GeV with transverse beam polarization (PT

e−, PT
e+) =

(100%, 100%) in the |µ|–M2 plane for the scenario S12, table 3.1, and (b) the luminosity Lint

needed to measure the asymmetry at the 5-σ level with a degree of transverse polariza-
tion (PT

e−, PT
e+) = (80%, 60%). The light gray region is experimentally excluded because

mχ̃±
1

has to be larger then the exclusion bound 104 GeV (LEP limit). The dark gray region

is excluded because mχ̃0
1

has to be smaller than mẽR
(since mχ̃0

1
is assumed to be the stable

LSP) [112].

3.1.8 Non-minimal SUSY models

3.1.8.1 Extended neutralino sector

Extensions of the MSSM particle sector, e.g. by adding Higgs singlets or new gauge
bosons, enlarge the neutralino sector. Cross sections for the production of singlino-
dominated neutralinos are typically suppressed. The polarization of both beams may
be crucial for a) observing signals with production of singlino-dominated neutralinos
and b) distinguishing between the MSSM and the extended model. Furthermore the
light neutralino cross sections may show opposite dependences on polarization, so that
a model distinction becomes possible.

Non-minimal extensions of the particle sector of the MSSM are characterized by an
additional singlet superfield S with vacuum expectation value x and a trilinear coupling
λ relating the singlet superfield and the two doublet Higgs superfields in the superpoten-
tial. In the Next-to-Minimal Supersymmetric Standard Model (NMSSM) [115–118, 120,
121], the superpotential contains also a trilinear term of the singlet superfield with cou-
pling κ,

W ⊂ λH1H2S +
1

3
κS3. (3.19)

In E6-inspired models [122] one has in addition to the singlet superfield one extra neutral
gauge boson Z ′. There is an additional gaugino mass parameter M ′ related to this extra
U(1) gauge factor.

Dominant singlet higgsino (singlino) component in the lightest neutralino exist for
large vacuum expectation values x & 1 TeV [123].
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Production of singlino-dominated neutralinos

Since the singlino component does not couple to gauge bosons, gauginos, (scalar) leptons
and (scalar) quarks, cross sections for the production of the exotic neutralinos are gener-
ally small [124–127]. However, they may be produced at a high luminosity e+e− linear
collider with cross sections sufficient for detection, which can still be enhanced by using
the polarization of both beams. For a wide range of x values the associated production of
the singlino-dominated neutralino yields detectable cross sections. In the NMSSM [115]
a singlino-dominated neutralino χ̃0

S with mass ≈ 2κx decouples from the other neutrali-
nos for large x≫ |M2| in the neutralino mixing matrix, while the other neutralinos χ̃0

1,...,4

have MSSM character. In an E6-inspired model with one extra neutral gauge boson Z ′

and one additional singlet superfield, that contains six neutralinos, a nearly pure light
singlino-like χ̃0

S exists for very large values |M ′| ≫ x with mass ≈ 0.18 x2/|M ′| in zeroth
approximation [123, 124, 128].

In fig. 3.17 the cross section for associated production of the singlino-dominated χ̃0
S

together with the lightest MSSM-like neutralino χ̃0
1 is shown. The scenarios considered

are such that the MSSM-like neutralinos have similar masses and mixing character as in
the ‘typical mSUGRA’ scenario S6, cf. table 3.1, with a chosen µeff = λx = 352 GeV. The
resulting neutralino masses are 96, 177, 359 and 378 GeV. The cross sections are shown for
unpolarized beams and beam polarizations (Pe−, Pe+) = (+80%, 0) and (+80%,−60%).
Electron beam polarization Pe− = +80% enhances the cross section by a factor 1.5 to 1.8,
while additional positron beam polarization Pe+ = −60% gives a further enhancement
factor of about 1.6. Assuming a cross section of 1 fb to be sufficient for discovery, the
singlino-dominated neutralino can be detected with unpolarized beams for x < 7.4 TeV
(9.7 TeV) in the NMSSM with mχ̃0

S
= 70 GeV (120 GeV) and for x < 8.5 TeV (6.4 TeV) in

the E6 model. For a polarized electron beam, the reach in x is enhanced to x < 10.0 TeV
(12.3 TeV) in the NMSSM and x < 11.4 TeV (7.9 TeV) in the E6 model, and for both beams
polarized to x < 12.6 TeV (15.5 TeV) in the NMSSM and x < 14.4 TeV (10.0 TeV) in the E6

model; see table 3.6.
With both beams polarized the cross sections are enhanced by a factor 2.4–2.9 with

respect to unpolarized beams, depending on the scenario. This enhances the reach for the
singlino-dominated neutralinos to singlet vacuum expectation values as large as 15 TeV.

x reach [TeV]
NMSSM E6

(Pe− , Pe+) mχ̃0
S

= 70 GeV mχ̃0
S

= 120 GeV mχ̃0
S

= 70 GeV mχ̃0
S

= 120 GeV

(0, 0) 7.4 9.7 8.5 6.4
(+80%, 0) 10.0 12.3 11.4 7.9

(+80%,−60%) 12.6 15.5 14.4 10.0

Table 3.6: Accessible range of the singlet vacuum expectation value x under the discov-
ery assumption of σ(e+e− → χ̃0

Sχ̃0
i ) ≥ 1 fb [124]. The SUSY parameters are chosen corre-

sponding to scenario S6 with µeff = λx = 352 GeV, cf table 3.1. The mass of the χ̃0
S is fixed

at 70 GeV and 120 GeV by the parameters κ (NMSSM) and M ′ (E6 model) [124].
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Figure 3.17: Cross sections for the production of a singlino-dominated neutralino χ̃0
S via

e+e− → χ̃0
Sχ̃0

1 at
√

s = 500 GeV, for unpolarized beams (solid) and beam polarizations
of (Pe−, Pe+) = (+80%, 0) (dotted) and (+80%,−60%) (dashed), in the NMSSM and an
E6-inspired model. The SUSY parameters are chosen corresponding to scenario S6 with
µeff = λx = 352 GeV, cf table 3.1. The mass of the χ̃0

S is fixed at 70 GeV and 120 GeV by
the parameters κ (NMSSM) and M ′ (E6 model) [124].

Distinction between MSSM and NMSSM

There are regions of the SUSY parameter space where the distinction between the MSSM
and the NMSSM is very difficult (see for instance [129] and references therein). If the
whole neutralino sector is kinematically accessible, sum rules for the production cross
sections show a different energy dependence in the MSSM and the NMSSM [94]. If, how-
ever, only a part of the spectrum is accessible, polarization effects play an important role.
As an example, consider the case where only the two lightest neutralinos are accessi-
ble at

√
s = 500 GeV with, however, very low cross sections in the MSSM as well as

in the NMSSM. Only with polarized beams the cross sections are sufficiently enhanced
to become measurable. Furthermore, the different dependence on polarization allows a
distinction between the models, as exemplified in table 3.7. The cross sections for both
beams polarized are enhanced by a factor of 1.6 with respect to the case of only electrons
polarized.
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σ(χ̃0
1χ̃

0
2) [fb]

Unpolarized (−90%, 0) (+90%, 0) (−90%, +60%) (+90%,−60%)
MSSM 0.6 0.8 0.5 1.3 0.7

NMSSM 0.5 0.1 0.8 0.1 1.4

Table 3.7: Cross section for the process e+e− → χ̃0
1χ̃

0
2 at
√

s = 500 GeV for beam polar-
ization configuration (Pe−, Pe+). The light-neutralino masses are given by mχ̃0

1
= 189 GeV

and mχ̃0
2

= 267 GeV for the scenario S13 a) (MSSM parameters) and S13 b) (NMSSM pa-
rameters), cf. table 3.1. The heavy neutralinos, the sleptons and the light chargino are
assumed to be kinematically inaccessible [126].

Quantitative examples: In extensions of the MSSM including an additional Higgs
singlet or a new gauge boson, the polarization of both beams enhances the rates of
the neutralino cross sections by about a factor 1.6, as well as the reach on the singlet
vacuum expectation value by about a factor 1.3, up to about 15 TeV, with respect to the
case where only electrons are polarized.

3.1.8.2 R-parity-violating SUSY

If R-parity is not conserved, scalar neutral particles, such as sneutrinos, can be pro-
duced in the s-channel giving rise to spectacular signals. With left-polarized electrons
and left-polarized positrons, the signal uniquely indicates the production of a spin-
zero particle.

The assumption that R-parity is conserved has no strong theoretical justification. Al-
lowing R-parity-violation, in general, one has to introduce in the superpotential the in-
teraction terms that violate lepton and/or baryon number. For illustration purposes we
restrict our discussion to the trilinear lepton number violating terms [130]:

W6RP
= λijkL

i
LLj

LĒk
R + λ′

ijkL
i
LQj

LD̄k
R, (3.20)

where LL (QL) denotes the left-handed doublets of leptons (quarks) and ER (DR) the
right-handed singlets of the charged leptons (down-type quarks), and i, j, k stand for gen-
eration numbers. Respecting the current experimental bounds for the couplings [131], the
following SUSY processes, that receive the s-channel ν̃τ exchange,

e+e− → ν̃τ → e+e− (3.21)

e+e− → ν̃τ → µ+µ−, (3.22)

are possible, could be observed at the ILC. The contributing diagrams are shown in
figs. 3.18 and 3.19, cf. also [132]. The striking effects of the spin-0 s-channel exchange
can be enhanced using the LL configuration of beam polarization. The sneutrino produc-
tion channel in eq. (3.21) receives a strong background from Bhabha scattering (s- and
t-channel γ/Z exchange), as well as also from the t-channel sneutrino exchange. There-
fore the spin-0 verification with beam polarization may be weakened for this process
compared to the process in eq. (3.22). The situation is illustrated in fig. 3.20 for the R-
parity-violating couplings λ131 = 0.05, λ232 = 0.05, scenario S14 in table 3.1. The role of
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Figure 3.18: Diagrams for Bhabha scattering e+e− → e+e− including s- and t-channel
exchange of ν̃τ (λ131 6= 0).

µ+

µ−

µ+

µ−

Figure 3.19: Diagrams for muon production e+e− → µ+µ− with s-channel exchange of ν̃τ

(λ131 6= 0, λ232 6= 0).

the same-sign initial beam polarization in enhancing the signal over the background is
evident, (cf. also table 3.8 [133]).

For the same final states, the s-channel Z ′ exchange with mZ′ ∼ mν̃ would manifest
itself by a similar peak in the cross section if the beams were RL or LR polarized since this
configuration would be preferred in that case [135]. Therefore, beam polarization of both
beams provides an alternative approach for verifying the spin of the exchanged objects
and distinguishing the models without final-state analysis.

In the above example both the production and decay of ν̃τ violates R-parity. However,
sneutrino can decay via R-parity conserving coupling, which may be the dominant decay
mode. In this case we get another interesting class of R-parity violating processes in
which single SUSY particle production can occur [136]. For example, single chargino
(neutralino) production,

e+e− → χ̃±
1 µ∓, (3.23)

occurs via sneutrino (charged slepton) exchange in the s- and t-channels. The chargino
χ̃±

1 decays subsequently into ℓ±χ̃0
1ν and χ̃0

1 into 3 leptons. The process requires the same
lepton flavour violating couplings as in the example shown above. The characteristic
feature of this process is that it requires same sign helicities, the LL configuration.

Quantitative example: Electron polarization with Pe− = −80% enhances the sig-
nal, i.e. Bhabha scattering or muon production including scalar neutrino exchange in
the s-channel, only slightly by about 2-3%, whereas the simultaneous polarization
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Figure 3.20: Sneutrino production in the R-parity-violating model. Resonance produc-
tion e+e− → ν̃τ interfering with Bhabha scattering (left panel) and resonance produc-
tion for e+e− → ν̃τ → µ+µ− (right panel) for different configurations of beam polar-
ization: (Pe−, Pe+) = (−80%, +60%) (dashed), (−80%,−60%) (solid). An angular cut of
45◦ ≤ θ ≤ 135◦ has been applied in Bhabha scattering [134].

Cross section σ [pb]
(Pe−, Pe+) e+e− → e+e− with Bhabha e+e− → µ+µ− with e+e− → µ+µ−

e+e− → ν̃τ → e+e− e+e− → ν̃τ → µ+µ−

unpolarized 7.17 4.50 2.50 0.44
(−80%, 0) 7.32 4.63 2.58 0.52

(−80%,−60%) 8.66 4.69 3.33 0.28
(−80%, +60%) 5.97 4.58 1.85 0.78

Table 3.8: Cross sections for sneutrino production in e+e− → ν̃τ → e+e− and e+e− →
ν̃τ → µ+µ− for different degrees of polarization. The study was made at

√
s = 650 GeV

for mν̃ = 650 GeV, Γν̃ = 1 GeV, an angular cut of 45◦ ≤ θ ≤ 135◦ and the R-parity-violating
couplings λ131 = 0.05 and λ232 = 0.05, respectively [134].

of both beams with (Pe− , Pe+) = (−80%, −60%) produces an increase of about 20-
30%.

3.1.9 Production of heavy Higgs bosons in the MSSM

Searches for heavy SUSY Higgs particles can be extremely challenging for both the
LHC and the ILC. Exploiting single Higgs-boson production in e+e− → νν̄H extends
the kinematical reach considerably. However, in the decoupling region, mA ≫ mZ,
the suppressed couplings of the heavy Higgs boson to SM gauge bosons lead to very
small rates. This difficulty could be attenuated by accumulating a very high integrated
luminosity, together with a further enhancement of the signal cross section by polariz-
ing both beams.

The possibility to enhance cross sections with beam polarization can be very important
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for detecting processes with a low rate. An example has been worked out in [137], where
the production of the heavy neutral CP-even Higgs boson H of the MSSM was studied.
The MSSM Higgs sector is characterized by two parameters at tree-level, the mass of the
pseudoscalar Higgs boson, mA, and tan β. The CP-even Higgs bosons h, H share their
couplings to the gauge bosons, while the couplings of the CP-odd Higgs boson A to two
gauge bosons vanishes.

Over large parts of the whole parameter space, i.e. mA ≫ mZ , the lightest CP-even
Higgs boson, h, of the MSSM is SM-like, and the coupling of the heavy CP-even Higgs
boson to two gauge bosons is suppressed [75]. In this case only the pair production chan-
nel e+e− → HA contributes at full strength. Since for large values of mA the heavy Higgs
bosons A and H are approximately mass degenerate, mA ≈ mH , the pair production
channel e+e− → HA is limited by kinematics to the region mH <

√
s/2. If the rare process

e+e− → νν̄H , governed by the suppressed coupling of H to two gauge bosons, can be
exploited, the kinematic reach of the linear collider can be extended.

In [137] it was shown that higher-order contributions to the couplings of the heavy
Higgs boson to the gauge bosons can remedy the suppression. This leads to consider-
ably higher cross sections in certain domains of the MSSM parameter space and makes
the process potentially accessible at the linear collider. This requires a high integrated
luminosity and polarized beams. The cross section is enhanced for left-handed electrons
and right-handed positrons. While an 80% polarization of the electron beam results in a
cross section that is enhanced by a factor 1.8, the polarization of both beams, i.e. 80% po-
larization for electrons and 60% for positrons, would roughly yield an enhancement by a
factor of 2.9. Therefore, with polarization of both beams, this process may be measurable.
With the ILC running at the high energy of 1 TeV, the enhancement of the cross section
by the beam polarization can extend the kinematic reach by roughly 100 GeV, see fig. 3.21
(right), with respect to the case of unpolarized beams, fig. 3.21 (left). Here the SUSY pa-
rameters are chosen as in scenario S15, cf. table 3.1. It has been assumed that at least
about 20 heavy Higgs boson events have to be observed in order to establish this channel.
This corresponds to an integrated luminosity of the order of 2 ab−1 for a production cross
section larger than 0.1 fb (left dashed and dark regions in fig. 3.21).

Quantitative example: Using (Pe− , Pe+) = (−80%, +60%) instead of (−80%, 0),
one gains about a factor 1.6 for the signal cross sections. Therefore the polarization of
both beams could be decisive to accumulate enough statistics to observe signals of the
heavy SUSY Higgs bosons.

3.2 Effective contact-interactions and heavy gauge bosons

Effective contact-interactions (CI) represent a general tool for parametrizing at ‘low-energy’
the effects of non-standard dynamics characterized by exchanges, among the SM parti-
cles, of very high-mass states, much higher than the available accelerator energy. Mani-
festations of such new interactions can therefore be searched for only through deviations
of cross sections from the SM predictions, and ‘indirect’ bounds on the new energy-scales
and coupling constants can be derived. Denoting by Λ the above-mentioned new large
scales, for dimensional reasons the deviations of the observables from the SM predictions
can be suppressed by powers of the ratio

√
s/Λ which should be smaller that unity for

the effective theory to be a reliable description. Such effects are therefore expected to be
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Figure 3.21: Cross section of heavy Higgs production σ(e+e− → νν̄H) for the scenario
S15, table 3.1, in the mA–tan β plane with σ > 0.05 fb (black), > 0.02 fb (right dashed)
and > 0.01 fb (left dashed) for unpolarized beams (left) and with both beams polarized,
(Pe−, Pe+) = (−80%, +60%) (right) at

√
s = 1 TeV [137].

small, and favoured at high-energy and high-luminosity machines.

3.2.1 Analysis of four-fermion contact-interactions

Longitudinal beam polarization of both beams is decisive to derive model-independent
bounds on the different possible couplings. With both beams polarized, the error in
Peff is reduced and the accuracy of the ALR measurement is considerably enhanced and
more observables can be defined. The systematic errors can be significantly reduced
with both beams polarized, which is of crucial value.

In the following it is focused on the production of Standard Model fermion-pairs.
Although such processes are not primarily devoted at the LC to the search of new phe-
nomena, they guarantee a good sensitivity to exchanges of heavy mass scales Λ ≫ mW,Z

thanks to the clear signature of the final states in the detector and to the available high
statistics.

For the fermion-pair production process

e+ + e− → f + f̄ , (3.24)

the general, SU(3)×SU(2)×U(1) symmetric eeff CI Lagrangian (dimension D = 6) with
helicity-conserving and flavour-diagonal fermion currents, was proposed in [138]:

LCI =
1

1 + δef

∑

i,j

g2
eff ǫij (ēiγµei)

(
f̄jγ

µfj

)
. (3.25)

In eq. (3.25), i, j = L, R denote left- or right-handed helicities (see below), generation and
colour indices have been suppressed, and the CI coupling constants are parametrized in
terms of corresponding mass scales as ǫij = ηij/Λ2

ij with ηij = ±1, 0, depending on the chi-
ral structure of the individual interactions. Also, conventionally g2

eff = 4π is assumed, as a
reminder that, in the case of compositeness, the new interaction would become strong at
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√
s of the order of Λij. Obviously, deviations from the SM and upper bounds or exclusion

ranges for the CI couplings can be equivalently expressed as lower bounds and exclusion
ranges for the corresponding mass scales Λij .

A general, model-independent analysis of the process (3.24) in terms of the interaction
(3.25) must simultaneously account for all CI couplings as free, non-vanishing parame-
ters. On the other hand, one would like to set, from data, separate constraints on the
Λs.

A simplifying procedure is to assume non-zero values for only one of the couplings
(or one specific combination of them) at a time when all others are set to zero, to test
specific CI models only.

With longitudinally-polarized beams, the analysis of contact interactions can make use
of observables integrated over the polar scattering angle: the (unpolarized) total cross
section σ0 and forward–backward asymmetry AFB, the left–right asymmetry ALR and
left–right forward–backward asymmetry ALR,FB. These are defined in this subsection in
the notation of [139], which differs from the notation in eqs. (1.15)–(1.18), (1.22), (1.23) in
section 1.2.1: the first and second subscripts refer to the helicities of the incoming and
outgoing fermion respectively. Therefore the components are denoted with σ̂:

σ0 =
1

4
[σ̂LL + σ̂LR + σ̂RR + σ̂RL] , (3.26)

AFB =
3

4

σ̂LL − σ̂LR + σ̂RR − σ̂RL

σ̂LL + σ̂LR + σ̂RR + σ̂RL
, (3.27)

ALR =
σ̂LL + σ̂LR − σ̂RR − σ̂RL

σ̂LL + σ̂LR + σ̂RR + σ̂RL
, (3.28)

ALR,FB =
3

4

σ̂LL − σ̂RR + σ̂RL − σ̂LR

σ̂LL + σ̂RR + σ̂RL + σ̂LR
. (3.29)

The deviations of measurements of these observables from the SM predictions are ex-
pressed in terms of the CI, ǫij , of eq. (3.25).

It can be seen from eqs. (3.26) and (3.27) that, with unpolarized beams, the CI cou-
plings could not be individually constrained within finite ranges, but only mutual correla-
tions could be derived. With longitudinal beam polarization, the two additional physical
observables, (3.28) and (3.29), are available to obtain finite, model-independent bounds
on all CI couplings [140–142].

In principle, the polarization of the electron beam alone would be sufficient to achieve
model-independent results. The polarization of both beams increases the cross sections
(see section 1.3) and improves the sensitivity to the new parameters which in general
scales for dimension D=6 operators such as (3.25), with

mX

gX
∼

√
∆statσ ∼ (Lint · s)1/4, (3.30)

taking into account statistical errors only. Further, with both beams polarized, the error of
the effective polarization, Peff (see also section 1.2.3), is substantially reduced and involves
a higher accuracy of the ALR measurement:

∆ALR =
√

(∆statALR)2 + (∆sysALR)2 =

√
1− P 2

effA
2
LR

NP 2
eff

+ A2
LR

(
∆Peff

Peff

)2

. (3.31)
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Expected sensitivities to contact interactions

The analysis of CI with f 6= e, t in ref. [140] demonstrates the sensitivity to Λ depending
on the linear collider parameters. To assess the relative roles of statistical and system-
atic uncertainties, the time-integrated luminosity Lint is varied from 50 to 500 fb−1, with
uncertainty ∆Lint/Lint = 0.5%, and a cut | cos θ| ≤ 0.99 is assumed. The polarization of
electron and positron beams is considered as (|Pe−|, |Pe+|) = (80%, 0) and (|Pe−|, |Pe+|) =
(80%, 60%), with the uncertainties ∆Pe−/Pe− = ∆Pe+/Pe+ = 0.5%.

The model-independent bounds on the mass scales Λij in the final bb̄ and cc̄ cases, al-
lowed by these experimental uncertainties, are shown in fig. 3.22. Particle identification
efficiencies of 60% and 30% are assumed in the bb̄ and cc̄ channels, respectively [143].
Thick lines in fig. 3.22 correspond to (|Pe−|, |Pe+|) = (80%, 60%) while thin lines corre-
spond to (|Pe−|, |Pe+|) = (80%, 0).
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20

40

60

100 200 300 400 500
20

40
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Figure 3.22: Lower bounds (95% C.L.) on the scale of CI, Λ, at
√

s = 500 GeV vs. the
integrated luminosity, Lint, for bb̄ and cc̄ final states taking into account the four he-
licity combinations. Thin lines: (|Pe−|, |Pe+|) = (80%, 0), thick lines: (|Pe−|, |Pe+|) =
(80%, 60%) [140].

In fig. 3.23 the expected sensitivities for different models of contact interactions in
e+e− → bb̄, cc̄ are shown, including systematic (∆syst = 0%, 0.5%, 1.0%), luminosity
(∆Lint = 0.2%, 0.5%) and polarization uncertainties (∆Pe−/Pe− = ∆Pe+/Pe+ = 0%, 0.5%).
It can clearly be seen that the reduction of systematic errors will be decisive to extend the
reach on the Λs. This study was done for

√
s = 800 GeV [144].

Contact-interaction analysis in Bhabha scattering

With δef = 1 the four-fermion contact-interaction Lagrangian of eq. (3.25) is relevant to
the Bhabha scattering process e+e− → e+e−, where γ and Z bosons are exchanged in both
s- and t-channels. It turns out that modifications of the pure t-channel contribution to the
cross section, σ̂LR,t, depend on the single CI parameter (ǫLR = ǫRL), while the combinations
of helicity cross sections, dσ̂R and dσ̂L, contribute to the s-channel exchange and depend
on pairs of parameters, (ǫRR,ǫLR) and (ǫLL,ǫLR), respectively.
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Figure 3.23: Limits on contact interactions from e+e− → bb̄ and e+e− → cc̄ without
positron polarization (green) and with 40% polarization (margenta) for the different un-
certainty scenarios ∆Pe±/Pe± = 0, ∆sys = 0, ∆Lint = 0 (single hatched), ∆Pe±/Pe± =
0.5%, ∆sys = 0.5%, ∆L = 0.2% (double hatched) and ∆Pe±/Pe± = 0.5%, ∆sys = 1.0%,
∆Lint = 0.5% (filled) at

√
s = 500 GeV and Lint = 1 ab−1 [144].

The change of the polarization of each beam allows the separate measurements of
the polarized differential cross sections dσ++, dσ+− and dσ−+, cf. discussion following
eq. (1.15) [145]. These differential cross sections represent a system of linear equations
of the helicity cross sections dσ̂R, dσ̂L and σ̂LR,t and allow the CI couplings ǫLL, ǫRR and
ǫLR to be disentangled. Equations (3.26)–(3.29) show that this kind of model-independent
analysis requires both e+ and e− polarized. Fig. 3.24 shows as an example the result of a
χ2 analysis assuming that no deviation from the SM within the experimental uncertainty
(statistical and systematic) is measured in dσ̂L, dσ̂R and dσ̂LR,t for Lint(e

+e−) = 50 fb−1,
(|Pe−|, |Pe+|) = (80%, 60%), ∆Lint/Lint = ∆Pe−/Pe− = ∆Pe+/Pe+ = 0.5%.

A comparison with Møller scattering [145] shows that only in the case whereLint(e
−e−)

is not too low are Bhabha and Møller scattering complementary as regards the sensitivity
to individual couplings in a model-independent data analysis.

Sensitivity to neutral extra gauge bosons

Extra neutral gauge bosons Z ′ can be probed by their virtual effects on cross sections and
asymmetries by replacing ǫij → g′

ig
′
j/(s−M2

Z′). For energies below a Z ′ resonance, mea-
surements of fermion-pair production are sensitive only to this ratio of Z ′ couplings and
Z ′ mass. Therefore, limits on the Z ′ mass can be obtained only in dependence on a model
with given Z ′ couplings (for reviews see, e.g., [146,147]). For example, for the well-known
E6 and LR models, mass sensitivities between 4×√s and 14×√s are reached. Thus, the
LC operating at

√
s = 800 GeV may exceed the sensitivity of the LHC (which is about

4–5 TeV) to a potential Z ′ in some models. Conversely, if a Z ′ will be detected at the LHC
its origin can be found by determining the Z ′ couplings, see fig. 3.25 (left) [148]. While
positron-beam polarization improves only slightly the resolution power for Z ′ models
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Figure 3.24: Allowed areas at 95% C.L. in the planes (ǫLR, ǫRR) and (ǫLR, ǫLL) obtained
from σ̂R and σ̂L in e+e− → e+e− at

√
s = 0.5 TeV, Lint(e

+e−) = 50 fb−1, (|Pe−|, |Pe+|) =
(80%, 60%). Vertical dashed lines indicate the range allowed for ǫLR by σ̂LR,t. The crosses
indicate the constraints obtained by taking only one non-zero parameter at a time instead
of two simultaneously non-zero and independent parameters [145].

in the case of leptonic final states, it will be important for the measurement of the Z ′

couplings to quarks. The polarization of both beams is also important to enhance the res-
olution power considering hadronic final states. In fig. 3.25 (right) the reconstruction of
the Z ′ model is demonstrated without knowledge of the Z ′ mass based on bb̄ final states.
In these analyses the crucial point is the fact that the systematic errors can be significantly
reduced when both beams are polarized [144, 148].

Quantitative examples: With the polarization of both beams the sensitivity to the
new physics scale can be increased by a factor of up to about 1.3 with respect to the case
with only polarized electrons. A similar gain is reached for the resolution power for
Z′ studies in different models. The determination of Z’ couplings can be substantially
improved by up to about a factor 1.5. The crucial systematic errors can be significantly
reduced when both beams are polarized.

3.2.2 Transversely-polarized beams and leptoquark searches

With transversely-polarized beams, CP-conserving and CP-violating azimuthal asym-
metries of the final-state top quark in e+e− → tt̄ can be used to probe a scalar lepto-
quark model.

It was pointed out in refs. [9, 149] that transverse polarization can play a unique
role in isolating chirality-violating couplings, such as scalar or tensorial ones, to which
longitudinally-polarized beams are not sensitive. The interference of new chirality-violating
contributions with the chirality-conserving standard model (SM) couplings give rise to
terms in the angular distribution proportional to sin θ cos φ and sin θ sin φ, where θ and φ
are the polar and azimuthal angles of a final-state particle. Chirality-conserving new cou-
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Figure 3.25: Left: 95% C.L. contours for the axial (a
′

b) and vector (v
′

b) couplings of the Z ′

for MZ′ = 1.0, 1.5 TeV in the χ model with
√

s = 500 GeV and Lint = 500 fb−1. The
dashed lines correspond to Pe+ = 0 [148]; a′

b, v′
b denote the couplings of Z ′ to the b-quarks.

Right: Expected resolution power (95% C.L.) to reconstruct bb̄ couplings of Z ′ (mZ′ =
5 TeV) realized in the χ model based on the measurement of bb̄ final states. Here, the
configuration (Pe−, Pe+) = (80%, 40%) is compared with (Pe−, Pe+) = (80%, 0). The Z ′

mass is assumed to be unknown in this case [144]. The normalized couplings are defined

as aN
b = a′

b

√
s/(m2

Z′ − s) and vN
b = v′

b

√
s/(m2

Z′ − s).

plings, on the other hand, produce interference contributions proportional to sin2 θ cos 2φ
and sin2 θ sin 2φ. Chirality-violating contributions do not interfere with the chirality-
conserving SM contribution with unpolarized or longitudinally-polarized beams when
the electron mass is neglected. Hence transverse polarization would enable the measure-
ment of chirality-violating couplings through the azimuthal distributions and the unam-
biguous distinction from chirality-conserving new interactions.

An example [150] is represented by a specific model where chirality violation appears
already at the tree level, by extending the SM gauge group by a SU(2)L doublet of scalar
leptoquarks (LQ), which couples only to first-generation leptons and third-generation
quarks. Since the couplings of leptoquarks to the third generation quarks are relatively
weakly constrained [151], their effect from t-channel exchange in e+e− → tt̄ can be non-
negligible. The leptoquark couplings of both left and right chiralities are included in the
model, gL and gR, and they are also allowed to be complex. Thus, in principle, also the
possibility of CP violation can be kept open. The reader is referred to [152] for a general
discussion of leptoquark models, and to [153] for a brief review of quantum numbers.

Assume transverse polarizations PT
e− and PT

e+ that are (anti)parallel to each other. The
differential cross section for the process e+e− → tt̄ is here given by the sum of the SM
contribution σSM, the pure leptoquark contribution σLQ, and the contribution σint from
the interference of the leptoquark contribution with the SM contribution. The interference
term between the SM Z and the leptoquark contribution contains terms linear in PT

e− and
PT

e+ that are proportional to sin θ cos φ and sin θ sin φ. These terms are proportional to
the real and imaginary parts of the chirality-violating couplings gRg∗

L, respectively, cf.
the analytical expressions in [150], thus, in principle, also their relative phases can be
measured.

The interference terms that are bilinear in PT
e− and PT

e+ (thus requiring both beams to
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be polarized) and proportional to sin2 θ sin 2φ and sin2 θ cos 2φ contain |gL|2 or |gR|2. These
terms, however, can be studied also using longitudinal polarization.

The interference terms proportional to sin θ cos φ and sin θ sin φ are linear in PT
e− and

PT
e+ (thus not strictly requiring both beams polarized), and are proportional to Re(gR g∗

L)
and the CP-violating Im(gR g∗

L), respectively.
The chirality-violating terms can be isolated by studying the following azimuthal

asymmetries, where θ is integrated over with a cut-off θ0 in the forward and backward
directions:

A1(θ0) =
1

rσ(θ0)

∫ cos θ0

− cos θ0

d cos θ

[∫ π

0

dφ−
∫ 2π

π

dφ

]
dσ

dΩ
, (3.32)

A2(θ0) =
1

σ(θ0)

∫ cos θ0

− cos θ0

d cos θ

[∫ π/2

0

dφ−
∫ 3π/2

π/2

dφ +

∫ 2π

3π/2

dφ

]
dσ

dΩ
, (3.33)

where

σ(θ0) =

∫ cos θ0

− cos θ0

d cos θ

∫ 2π

0

dφ
dσ

dΩ
. (3.34)

It turns out that A1(θ0) and A2(θ0) differ only in the factors (PT
e− − PT

e+) Im(gRg∗
L) and

(PT
e− + PT

e+) Re(gRg∗
L).

A numerical study has been done for
√

s = 500 GeV and Lint = 500 fb−1. Furthermore,
(PT

e−, PT
e+) = (80%,−60%), gL = 1/

√
2, gR = i/

√
2 which corresponds to maximal CP vio-

lation in the leptoquark couplings and a leptoquark mass MLQ = 1 TeV. The asymmetry
A1(θ0) is in this case of the order of 4 × 10−3, and is not very sensitive to the cut-off θ0.
In the case without CP violation, gL = 1/

√
2 and gR = 1/

√
2, the sign of PT

e+ is chosen
positive to maximize the asymmetry and one obtains the same size for A2(θ0).
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Figure 3.26: The 90% CL limit glim that can be obtained on Re(gRg∗
L) or Im(gRg∗

L) respec-
tively from A1 or A2 for

√
s = 500 GeV and Lint = 500 fb−1 vs. θ0 (left panel) and M [GeV ]

(right panel) [150].

Fig. 3.26 shows the 90% C.L. limit glim that can be put on the combinations Im(gRg∗
L)

(in the maximal CP violation case) and Re(gRg∗
L) (in the CP conservation case). This limit

is obtained by equating the asymmetry to 1.64/
√

NSM, where NSM is the number of SM
events, NSM = σSM(θ0)Lint. The possible limit glim on Re(gRg∗

L) or Im(gRg∗
L) is about 2.5×

10−2 for most values of θ0 ≤ π/4 and MLQ = 1000 GeV.
These are ‘direct’ limits. In the case where the leptoquark has both left- and right-

handed couplings, strong indirect limits exist [154, 155], the most stringent ones coming
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from dipole moments of the electron. Requiring the contribution to the electron ge − 2
coming from one-loop diagrams with top and leptoquark internal lines to be less than the
experimental uncertainty of 8×10−12 gives Re(gRg∗

L)/ (MLQ/TeV)2 < 0.1, and therefore the
limits obtainable from the asymmetry A2 are clearly more stringent. Conversely, the direct
limit obtainable from A1, viz., Im(gRg∗

L) < 2.5× 10−2 (for MLQ = 1 TeV) is not competitive
with the indirect constraint derived from the experimental limit on the electric dipole
moment de of about 10−27 e cm, which leads to Im(gRg∗

L)/ (MLQ/TeV)2 < 10−6.
In conclusion, azimuthal asymmetries single out chirality-violating couplings in scalar-

leptoquark models. Longitudinal beam polarization can only put limits on the absolute
values of the left and right chiral couplings. In the considered example the limit that can
be put on the real part of the product of the couplings gRg∗

L is about four times better than
the indirect limit from the ge − 2 of the electron.

Quantitative examples: The CP-conserving asymmetry provides a 4 times better
limit for the chirality-violating couplings than the indirect most stringent limit coming
from magnetic dipole moments. The CP-violating asymmetry could also directly probe
CP-violating phases in the leptoquark sector, however, indirect limits from the electron
electric dipole moment are superior.

3.3 Models of gravity in extra dimensions

3.3.1 Direct graviton production

A signature for direct graviton production, envisaged in formulations of gravity with
extra spatial dimensions, is a relatively soft photon and missing energy. The major
background process is γνν̄ production. It is possible to determine the fundamen-
tal mass scale of gravity as well as the number of extra dimensions independently.
Background suppression with right-handed electrons and left-handed positrons is ex-
tremely important, and the discovery reach is significantly enhanced.

Scenarios of gravity in extra spatial dimensions are currently being considered with
great attention in the context of the hierarchy problem between the Planck and the Fermi
mass scales [156]. The basic idea of the scenario of Arkani-Hamed, Dimopoulos and Dvali
(ADD), is that only gravity can propagate in a bulk with 3+d (d ≥ 2) spatial dimensions
compactified to a radius R, while SM particles live in the usual four-dimensional space.
The corresponding fundamental mass scale MD, related to the four-dimensional Planck
mass scale by

G−1
N = 8πRdM2+d

D , (3.35)

with GN the Newton constant, can for R of the sub-millimeter size be of the TeV order
hence in the sensitivity reach of highest energy colliders.

In the usual four-dimensional space, the characteristic manifestation of the massless
graviton propagating in 4 + d extra dimensions is represented by the propagation (and
emission) of a tower of massive Kaluza-Klein (KK) graviton excitation states. Accord-
ingly, KK gravitons behave as massive, neutral particles very weakly (gravitationally)
interacting with SM particles, their emission at colliders would typically be signalled by
events with large missing transverse energy. The emission process is calculable in terms
of an effective theory, where the number of extra dimensions d and the fundamental grav-
itational mass scale MD appear as parameters [157, 158]. Such a ’low-energy’ effective in-
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teraction can give reliable results only for c.m. energy smaller than MD, depending on the
actual value of d‡., and is not supposed to be able to predict the model-dependent, and
unknown, physical effects at scales above MD. These effects should be related to uncal-
culated, higher dimensional, operators correcting the effective theory, and might mimic
graviton emission signals.

At the linear collider, a candidate reaction for directly producing gravitons is e+e− →
γG. The differential cross section is (xγ = 2Eγ/

√
s, z = cos θ):

dσ

dxγdz
=

α

64s

2πd/2

Γ(d/2)

(√
s

MD

)d+2

xγ (1− xγ)
d/2−1 F1(xγ , z), (3.36)

where the function F1 is explicitly given in [157]. By its power-dependence on the ra-
tio
√

s/MD, eq. (3.36) clearly shows its effective-interaction character: at fixed d the cross
section increases with the c.m. energy and decreases for larger MD while, recalling that√

s/MD must be smaller than unity for the effective-theory to be reliable, larger d-values
result in smaller cross sections, hence in decreasing statistics. Also, eq. (3.36) shows that
for d > 2 the photon spectrum tends to concentrate towards small energy, so that rela-
tively ’soft’ photons should be expected.

The major SM background is determined by e+e− → γνν̄. The contribution from
e+e− → γZ → γνν̄ can easily be eliminated by cutting out the Eγ region around the cor-
responding Z-peak, but there remains a significant, continuous, distribution in Eγ from
e+e− → γνν̄ that has similar behaviour as the signal. This part of the background must
therefore be calculated by appropriate simulation codes and subtracted in order to use the
eventual excess single-photon cross sections to derive information on d and MD. In this
regard, since the neutrino coupling is only left-handed, the background has nearly max-
imal polarization asymmetry and, consequently, polarized electron and positron beams
should be extremely effective in suppressing the γνν̄ channel.

An example is presented in fig. 3.27 which shows, for different d and MD, the signal
e+e− → γG cross section at

√
s = 800 GeV, taking into account also various acceptance

cuts, ISR and beamstrahlung effects [160]. The background γνν̄ for various choices of e+

and e− polarizations is also reported, and the comparison with the signal clearly shows
the strong reduction power obtainable from beam polarization, such that the LC potential
for exploring the graviton emission is greatly enhanced.

The corresponding 5-σ discovery reach on the fundamental gravitational scale MD for
various numbers of extra dimensions, at

√
s = 800 GeV and Lint = 1 ab−1, is shown for

both unpolarized and polarized beams in table 3.9 [160]. Here the benefits of high degree
initial polarizations are quite evident.

If extra dimensions are the origin of the anomalous single-photon rates, a determi-
nation of the number of extra dimensions could in principle be attempted by measuring
the excess (polarized) cross sections at different c.m. energies and making a fit to the ex-
pected behaviour σ ∼ (

√
s)d; some numerical estimates of the sensitivity are presented

in ref. [160]. Hopefully, the result for d should be an integer number in order to interpret
excess events as graviton emission. In conclusion, studying single-photon plus missing

‡Numerous alternative model realizations of gravity in extra dimensions exist, with different features
from the ADD regarding, e.g., the KK graviton spectrum, the R and d-admitted values, and even the pos-
sibility that also SM matter could live in higher-dimensional spaces. For a phenomenological review of
models and the current experimental situation, see e.g. [159]
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Figure 3.27: Total cross sections for e+e− → γG at
√

s = 800 GeV as a function
of the scale MD and of the number d of extra dimensions. The cross section is for
(Pe−, Pe+) = (80%,−60%). The three horizontal lines indicate the background cross sec-
tions from e+e− → νν̄γ for both beams polarized (solid), only electron beam polarized
(dashed) and no polarization (dot-dashed). The signal cross sections are reduced by a
factor of 1.48 for the latter two scenarios [160].

MD [TeV] (|Pe−|, |Pe+|) = (0, 0) (|Pe−|, |Pe+|) = (80%, 0) (|Pe−|, |Pe+|) = (80%,−60%)
d = 2 4.48 6.27 7.86

3 3.54 4.63 5.55
4 2.91 3.64 4.23
5 2.47 3.00 3.41

Table 3.9: Discovery (5-σ) reach MD for direct graviton production e+e− → γG with Lint =
1 ab−1 at

√
s = 800 GeV, for various numbers of extra dimensions d [160]. The major

background, e+e− → νν̄γ, can be efficiently suppressed with beam polarization.

energy events at the LC with different c.m. energies and beam polarizations can be essen-
tial not only for model-independent tests of gravity in extra dimensions, but also to help
distinguishing graviton emission signals from effects of higher dimensional operators.

Studies of graviton emission can also be performed at hadron colliders, e.g., at the
LHC the leading experimental signal is expected from inclusive pp → jet + 6ET from
qg → qG, qq̄ → gG and gg → gG. The situation in this case is complicated by the fact

that the parton c.m. sub-energy
√

ŝ can take different values, and the elementary pro-
duction sub-processes may well-occur in regions where ŝ ≫ M2

D and the ’low-energy’
effective-theory approach is not applicable to predict the excess ’monojet’ cross sections.§

Thus, on the one hand MD must be not too small, and on the other hand d must be not

§At the LC with foreseen c.m. energies in the TeV region, the condition
√

s/MD < 1 assuring the appli-
cability of the effective-theory is, conversely, naturally fulfilled.
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too large. In practice a range in d and MD must be pre-determined phenomenologically,
by truncation procedures in ŝ of the parton-model cross sections and cuts on other kine-
matical variables. Also, initial polarization is not available for background suppression.
Typically, the MD ranges in which a 5σ discovery potential may be achieved at the LHC
with Lint = 100 fb−1, are (in TeV): 4.0− 7.5, 4.5− 5.9 and 5− 5.3 for d = 2, 3 and 4, respec-
tively [161]. For higher values of d the effective theory may break down, whereas they
may still be in the reach of the ILC.

One can conclude, from all the considerations exposed above, that the LC with po-
larized beams has a really important role, also as a complement to LHC, in searches and
tests of gravity in extra dimensions.

Quantitative examples: The detection of direct graviton signals critically depends
on the suppression of the dominant background process γνν̄ . Compared with the case
of only electrons polarized, the background process is suppressed by a factor of about 2
with 60% positron polarization whereas the signal is enhanced by a factor of about 1.5.
Furthermore, the discovery reach is enhanced by an amount depending on the number
of extra dimensions, for example by about 25% (14%) for d = 2 (d = 5).

3.3.2 Signatures of extra dimensions in fermion pair production

Indirect signals of TeV-scale gravity propagating in large, compactified, extra spatial
dimensions can be probed in the framework of effective contact interactions. With
both beams longitudinally polarized, the reach on the relevant mass scales and their
identification over indirect effects from different kinds of non-standard interactions,
can be improved by 10–15% with respect to the cases of no polarization or only elec-
tron polarization. Furthermore, transverse beam polarization allows an unambiguous
distinction between different realizations of extra-dimensional space-time.

Two typical model examples of the ADD [156] and Randall-Sundrum (RS) [162] sce-
narios are discussed in the following.

In the ADD model, the exchanged tower of KK graviton excitations has an evenly
spaced, and almost continuous, mass spectrum with steps ∆m ∝ 1/R. The summation
over the KK states results in an effective D = 8 graviton-exchange interaction, which can
be written in the notation of [163]:

LADD = i
4λ

M4
H

T µνTµν , (3.37)

with Tµν the stress-energy tensor of SM particles, MH a cut-off on the summation over the
KK spectrum expected of the TeV order, and λ = ±1. The exchange of spin-2 graviton
fields introduces, in the helicity amplitudes for e+e− → f f̄ , additional terms with new
and characteristic angular dependences [163, 164]. Such deviations can be parametrized
phenomenologically by the coupling:

fG =
λs2

4παemM4
H

. (3.38)

The (high) dimensionality D = 8 of (3.37) implies the suppression of deviations from the
SM cross section originating from graviton-exchange by the large power (

√
s/MH)4. This

should be compared to the case of the four-fermion contact-interaction scales Λ, where
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the effects are suppressed by only (
√

s/Λ)2, so that numerically lower bounds on MH can
be expected on statistical grounds. Indeed, the search reach on MH scales, according to
previous arguments, as

MH ∼ [s(d−5)Lint]
1/(2d−8) = (s3 · Lint)

1/8. (3.39)

In the simplest version of the RS scenario [162, 165] the setting is a five-dimensional
space-time, the KK excitations are not equally spaced and the characteristic feature is the
existence of a spectrum of narrow spin-2 resonance states with masses expected in the
TeV range. Formally, this can be obtained from (3.37) by the replacement

λ

M4
H

→ −1

8Λ2
π

∑

n

1

s−m2
n + imnΓn

, (3.40)

where Λπ is of the TeV order and mn (Γn) are the masses (widths) of the TeV scale KK
excitations. (In the applications presented here, widths are neglected in the evaluation of
the relevant cross sections [166].)

The spin-2 nature of these graviton exchanges can be explicitly verified through the
direct analysis of the resonances themselves, were they actually produced. Conversely,
with the linear collider energy below the production threshold, the indirect signals of s-
channel exchange of such massive graviton fields through deviations of the e+e− → f f̄
cross sections from the SM predictions can be tested, and distinguished by appropriately
defined observables, from different possible new physics sources of deviations, such as
the ‘conventional’ 4-fermion contact interactions [138, 142, 145].

Identification of graviton-exchange effects

The discovery and the identification reaches on, respectively, Λ and MH can be assessed
by analysing either the dependence of cross sections on the polar angle, or some suitably
defined asymmetries among integrated differential distributions. The sensitivity to new-
physics effects can be described by

a) the discovery reach, which gives values for Λ or MH up to which a deviation from
the Standard Model predictions can be observed, and

b) the identification reach corresponding to values for Λ or MH up to which the partic-
ular models producing the deviation can be differentiated from each other.

The identification reach at the ILC on MH at 5-σ from e+e− → f f̄ is shown in the left panel
of table 3.10, for different luminosities and longitudinal polarization configurations. Sys-
tematic uncertainties on luminosity and beam polarization, in addition to the statistical
ones, have been taken into account.

A clear signature of graviton exchange arises in the differential angular distributions,
in the left–right asymmetry and in the center–edge asymmetries (see, e.g., [144, 163, 166,
167]). In the left panel of table 3.10, the values of MH , indicated as a 5σ identification
reach, represent the resolution power for distinguishing signals of graviton exchange
(3.38) from effects of contact interactions (3.25). The results include the combination of
the channels f = µ, τ, b, c and are a good example of the benefits of positron longitudinal
polarization.
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3.3.3 Use of transversely-polarized beams for graviton searches

If both beams are transversely polarized, additional azimuthal asymmetries sensitive
to spin-2 graviton exchange can be defined. Although the identification reach on the
scale MH is similar to that obtained from just longitudinal electron and positron po-
larization, the specific, azimuthal asymmetries allow an unambiguous separation of
the indirect manifestations of ADD- and RS-like extra-dimensional models.

With reference to the Introduction, eq. (1.14), the φ-dependent part of the matrix ele-
ment squared for e+e− → f f̄ will now be considered. In the study reviewed here only
terms bilinear in the transverse polarization contribute, and the two transverse polariza-
tion vectors are assumed to be antiparallel. In the observables considered in the previous
subsection, this contribution to the differential cross section has been eliminated by the
integration over the full range of φ.

The following azimuthal asymmetry can be defined [169]:

1

N

dAT

d cos θ
=

1

σ

[∫

+

dσ

d cos θdφ
−

∫

−

dσ

d cos θdφ

]
, (3.41)

where θ denotes the polar angle and
∫
± indicates integrations over regions where cos 2φ

takes on positive or negative values. Examples of the z = cos θ dependence of the expres-
sion (3.41) in the SM and in the ADD scenario are shown in fig. 3.28, for final states and
transverse polarization configurations as described in the caption.

From eq. (3.41), the azimuthal forward–backward asymmetry, sensitive to cos θ-odd
terms can be defined:

AT
FB =

1

N

[∫

cos θ≥0

−
∫

cos θ≤0

]
d cos θ

dAT

d cos θ
. (3.42)

For both for the SM and the 4-fermion contact-interactions one finds AT
FB = 0, since

N−1dAT /d cos θ ∝ 1 − cos2 θ is even in cos θ in these cases. Conversely, the spin-2 gravi-
ton exchange introduces cos θ-odd terms, so that AT

FB is non-zero for this kind of new
physics that, accordingly, can be identified by this observable. The corresponding ex-
pected identification reach on MH is reported in the right panel of table 3.10 [169]. Con-
cerning the values of transverse polarizations, 100% efficiency of the spin rotators have
been assumed.

Actually, as an alternative to AT
FB, the distinction of graviton exchange from other new-

physics effects might be attempted by a direct fit to the cos θ dependence of N−1dAT /d cos θ,
emphasizing the deviations from the 1− cos2 θ behaviour. Examples for the reach and for
the identification reach on MH , the latter being potentially as high as 10

√
s, are shown

in the left panel of table 3.11, up to very high energies. It gives the values of MH corre-
sponding to deviations from the SM-predicted angular behaviour that could be observed
on statistical grounds. However, notice that for high luminosities, those values are ex-
pected to be reduced by the systematic effects, which become dominant.

Distinguishing among models with graviton exchange

In the previous subsection, identification reaches on graviton exchange mass scales from
azimuthal asymmetries allowed by transverse beam polarization are found numerically
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equivalent to those obtained by longitudinally-polarized beams. The point now is the dis-
tinction between different extra-dimensional scenarios, in the specific chosen examples,
the ADD and the RS scenarios, were indirect signals of these mechanisms observed.

In the RS model, if
√

s is far from the Z and the KK poles, the imaginary part of
the amplitude entering the sin 2φ term in the differential cross section with transversely-
polarized beams becomes vanishingly small. Conversely, the summation over the essen-
tially continuous spectrum of ADD gravitons can lead to a finite, cut-off independent
imaginary part, also sensitive to the number of extra dimensions [168]. Consequently, fG

of eq. (3.38) can acquire an imaginary part, strongly dependent on the number of extra
dimensions.

With transverse polarization one can define a new asymmetry sensitive to such an
imaginary part, that exploits the sin 2φ term:

1

N

dAT
i

d cos θ
=

1

σ

[∫

+

dσ

d cos θdφ
−

∫

−

dσ

d cos θdφ

]
, (3.43)

where now
∫
± indicate integrations over regions of positive and negative values of sin 2φ.

It can be seen that the cos 2φ terms proportional to the real part cancel for both the RS and
ADD models. The observable (3.43) vanishes identically for both the SM and the RS sce-
nario, thus a non-zero value unambiguously signals ADD graviton exchange. Fig. 3.29 ex-
emplifies the cos θ behaviour for selected values of the ADD mass scales. The right panel
of table 3.11 reports the 5-σ discovery reach from the asymmetry (3.43), assuming d = 3
for illustration purposes, and indicates that the indirect manifestations of the ADD and RS
models could be distinguished from one another up to about MH ∼ (2.5− 3.0)

√
s [169].

This shows the essential role of transverse beam polarization in this kind of analysis,
which otherwise could not be performed.

e+e− → cc̄ ADD

SM

e+e− → bb̄

ADD

SM

Figure 3.28: Differential azimuthal asymmetry distribution for e+e− → f f̄ , i.e. cc̄ (left)
and bb̄ (right), at a 500 GeV LC assuming a luminosity of 500 fb−1, z = cos θ. The
histograms are the SM predictions while the data points assume the ADD model with
MH = 1.5 TeV; (PT

e−, PT
e+) = (80%, 60%) [169].

Quantitative example: With transversely-polarized beams a new asymmetry can
be built, which is sensitive to imaginary parts of the graviton propagator. Below the
graviton poles no imaginary parts occur in the RS model, whereas in the ADD model a
cut-off independent imaginary part emerges. This new observable allows a distinction
between the two models in LC studies up to a scale MH ∼ 3

√
s.
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MH [TeV],
√

s = 0.5 TeV, long. pol.
Lint [fb−1]

(Pe−, Pe+) 100 300 500

(0, 0) 2.3 2.6 2.9
(+80%, 0) 2.5 2.8 3.05

(+80%,−60%) 2.45 3.0 3.25

MH [TeV], (PT
e−, PT

e+) = (80%, 60%)

Lint [fb−1]
100 300 500 1000√

s = 0.5 TeV 1.6 1.9 2.0 2.2√
s = 0.8 TeV 2.4 2.6 2.8 3.1√
s = 1.0 TeV 2.8 3.2 3.4 3.8

Table 3.10: Left: 5-σ identification reach on the mass scale MH vs. integrated luminosity
from the process e+e− → f f̄ , with f summed over µ, τ, b, c, and for the energy 0.5 TeV
[167] (see also [144], where the 95% C.L. sensitivity for MH in e+e− → µµ̄, cc̄, bb̄ has been
simulated). Right: 5-σ identification reach in MH vs. integrated luminosity using AT

FB for
the process e+e− → f f̄ , with f summed over µ, τ, b, c and t [169]. .

ECM Ident. reach 95% CL disc. reach
[GeV] MH [TeV] MH [TeV]

500 5.4 10.2
800 8.8 17.0
1000 11.1 21.5
1200 13.3 26.0
1500 16.7 32.7

5-σ disc. reach Lint [fb−1]
MH [TeV] 100 300 500 1000√
s = 0.5 TeV 1.2 1.3 1.4 1.6√
s = 0.8 TeV 1.8 2.0 2.2 2.4√
s = 1.0 TeV 2.2 2.4 2.6 2.8

Table 3.11: Left: Identification reach and discovery reach MH in the ADD model by fitting
the distribution N−1dAT /d cos θ ∼ 1−cos2 θ for the final states f = µ, τ , f = b and f = c for
different centre-of-mass energies. Right: 5-σ reach for the discovery of a non-zero value
of the azimuthal asymmetry (3.43) vs. Lint for d = 3; MH = MD is assumed throughout as
is (PT

e−, PT
e+) = (80%, 60%) [169].

3.4 Other mechanisms of CP violation

3.4.1 Unconventional interactions in tt̄ production

(Pseudo-) scalar or tensor interactions associated with a new physics scale Λ can lead to
CP-odd observables from interference terms with the virtual γ, Z exchange in the anni-
hilation channel. Only with both beams transversely polarized are these CP-violating
effects measurable without final-state spin analysis.

The observation of CP violation in e+e− collisions requires either the measurement of
the polarization of the final-state particles or the availability of polarized beams. Trans-
verse polarization of initial beams defines one more direction, and can provide CP-odd
asymmetries without the need for directly measuring final-state polarizations. This may
represent an advantage, e.g. as regards the statistical significance of the signal.

Transverse polarization (TP) enables novel CP violation searches in the inclusive pro-
cess [12]

e+e− → A + X. (3.44)

As regards the search for non-standard sources of CP violation, when the spin of particle
A is not observed and me is neglected, only (pseudo-) scalar or tensor currents associ-
ated with a new-physics scale Λ can lead to CP-odd observables at the leading order
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bb̄

µµ̄ + τ τ̄
cc̄

Figure 3.29: The N−1dAT
i /dz distributions at

√
s = 500 GeV assuming MH = MD = 1.5

TeV and d = 3 with an integrated luminosity of 500 fb−1. The plotted points from top
to bottom in the centre of the plot correspond, respectively, to f = b, µ and τ combined
together, and c [169].

in the new interaction if transversely-polarized beams are used. They are due to the
interference between these new currents and the γ and Z exchanges in the s-channel,
cf. also the matrix element squared in the general expression, eq. (1.14). Contributions
from (pseudo-) scalar or tensor currents lead to interference terms which are linear in the
transverse polarizations. However, to construct CP-odd observables both beams must
be transversely polarized: one must compare contributions with transversely-polarized
electrons with those resulting from transversely-polarized positrons (with the same po-
larization degree). Vector-like four-fermion contact interactions can interfere with the SM
amplitudes, but for this kind of (helicity-conserving) non-standard interactions no CP-
odd distribution can arise even in the presence of TP. Thus, the above-mentioned CP-odd
observables have a great selective power of novel (helicity-changing) interactions at the
first order. With longitudinal beam polarization there would be no interference of the SM
with scalar or tensor interactions.

In the following the contributions to the differential cross section due to (pseudo-)
scalar and tensor contact-interactions at leading order in the interaction strengths for the
process e+e− → tt̄ [149] are reviewed. This allows to construct an effective up-down
asymmetry and a version of the same integrated over the polar angle.

An effective Lagrangian that can parametrize the above-mentioned non-standard in-
teractions in a general, model-independent way can be written as:

L = LSM +
1

Λ2

∑

i

( αiOi + h.c. ), (3.45)

where αi are the coefficients which parametrize non-standard interactions and are as-
sumed to be of order unity, Oi are the possible effective dimension-six operators, and Λ is
the scale of new physics.

After Fierz transformation the part of the Lagrangian containing the above four-Fermi
operators, and relevant to e+e− → tt̄, eq. (3.45) can be rewritten as

L4F =
∑

i,j=L,R

[
Sij(ēPie)(t̄Pjt)+Vij(ēγµPie)(t̄γ

µPjt)+Tij(ē
σµν√

2
Pie)(t̄

σµν

√
2
Pjt)

]
+ h.c., (3.46)
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where PL,R are chirality projection operators and the coefficients must satisfy the relations

SRR = S∗
LL, SLR = SRL = 0, Vij = V ∗

ij , TRR = T ∗
LL, TLR = TRL = 0. (3.47)

The differential cross section depends on the combined couplings

S ≡ SRR +
2ct

Ace
V

ct
V ce

A

TRR, (3.48)

where ce,t
V , ce,t

A are the couplings of Z to e+e− and tt. In (3.48) the contribution of the tensor
term relative to the scalar term is suppressed by a factor 2ct

Ace
V /ct

V ce
A ≈ 0.36. In what

follows only the combination S is considered, not SRR and TRR separately.
One can construct a CP-odd asymmetry, up-down asymmetry, as¶

A(θ) =

∫ π

0

dσ+−

dΩ
dφ−

∫ 2π

π

dσ+−

dΩ
dφ

∫ π

0

dσ+−

dΩ
dφ +

∫ 2π

π

dσ+−

dΩ
dφ

, (3.49)

where the superscripts denote opposite transverse polarization of e−, e+ and φ is the
azimuthal angle. One can see that A(θ) is proportional to the imaginary part of S [149],
that appears in the differential distribution as a factor of the sin θ sin φ term.

Also a θ-integrated version of the asymmetry can be defined,

A(θ0) =
1

σ+−(θ0)

∫ cos θ0

− cos θ0

[∫ π

0

−
∫ 2π

π

]
dσ+−

dΩ
d cos θdφ, (3.50)

where a cut-off angle θ0 has been introduced to be away from the beam-pipe direction
and σ+−(θ0) is the cross section integrated with this cut-off.

In a numerical study, limits on S can be put using the integrated asymmetry A(θ0) and
optimized by tuning the value of θ0.
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Figure 3.30: Left: The SM cross section (solid line) and the numerator of the asymmetry
A(θ0) in eq. (3.50) (broken line) vs. θ0; Right: The asymmetry A(θ0) defined in eq. (3.50)
vs. θ0 for Im S = 1 TeV−2 [149].

As can be seen from fig. 3.30, the value of A(θ0) increases with θ0, because the SM cross
section in the denominator of eq. (3.50) decreases with this cut-off faster than the numer-
ator. Here, and in the subsequent figure,

√
s = 500 GeV and (PT

e−, PT
e+) = (100%, 100%)

are assumed.
¶An analogous up-down asymmetry which is available with transverse beam polarization allows for the

separation of light u and d-type flavours [170].
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Figure 3.31: The 90% C.L. that can be obtained on Im S with an integrated luminosity of
500 fb−1 vs. the cut-off angle θ0 [149].

Fig. 3.31 shows the 90% confidence level (C.L.) limits that could be placed on ImS
for an integrated luminosity of Lint = 500 fb−1. This limit translates to a value of Λ of the
order of 8 TeV, assuming that the coefficients αi in (3.45) are of order 1. The corresponding
limit for

√
s = 800 GeV with the same integrated luminosity and complete TP is∼ 9.5 TeV.

Using the more realistic transverse polarization degrees of 80% and 60%, the up-down
asymmetry A(θ) or A(θ0) gets multiplied by a factor 1

2
(PT

e− − PT
e+). For (PT

e−, PT
e+) =

(80%,−60%), this means a reduction of the asymmetry by a factor of 0.7. Since the SM
cross section does not change, this also means that the limit on the parameter Im S goes
up by a factor of 1/0.7 ≈ 1.4, and the limit on Λ goes down by a factor of

√
0.7 ≈ 0.84,

to about 6.7 TeV. If the positron beam is unpolarized, however, the sensitivity decreases
further.

In summary, TP can be used to study CP-violating asymmetries arising from the in-
terference of new-physics scalar and tensor interactions with the SM γ- and Z-exchanges.
These interference terms cannot be seen with longitudinally-polarized or unpolarized
beams. Moreover, such an asymmetry would not be sensitive to new vector and axial-
vector interactions (as for example, from an extra Z ′ neutral boson), or even electric or
“weak” dipole interactions of heavy particles, since it vanishes if me ∼ 0. This manifests
the selective power on new physics of this observable.

Quantitative example: With both beams transversely polarized, CP-odd asymme-
tries can be constructed which are sensitive to new CP-violating (pseudo-) scalar or
tensor interactions. The corresponding new physics scale Λ can be bounded at the 90%
confidence level, at about 7-10 TeV, with plausible assumptions on the centre-of-mass
energy and the values of transverse beam polarizations.

3.4.2 Transversely-polarized beams for CP violation in γZ production

An anomalous CP-violating γγZ vertex gives rise to a novel asymmetry which is acces-
sible with transversely-polarized beams in the process e+e− → γZ. This asymmetry,
which is odd under naive time reversal, is proportional to the real part of the γγZ
CP-violating coupling and is not accessible with longitudinally-polarized beams but
could be measured with transversely-polarized beams. This is in contrast to the sim-
ple forward-backward asymmetry of the γ (or Z) with unpolarized or longitudinally-
polarized beams, which is even under naive time reversal, hence sensitive only to the
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imaginary part of the vertex.

In γZ production a CP-violating contribution can arise if anomalous CP-violating γγZ
and γZZ couplings are present. The contributions of the interferences of these anomalous
couplings with the SM contribution give rise to a polar-angle forward-backward asymme-
try with longitudinally-polarized beams [171]. New combinations of polar and azimuthal
asymmetries occur in the presence of transversely-polarized beams [172, 173].

Indeed, longitudinal beam polarization may play an important role in improving the
sensitivity to absorptive (or real) parts of CP-violating anomalous couplings or form fac-
tors, which are measurable even with unpolarized beams through the forward-backward
asymmetry. However, transverse polarization enables in addition measurements of dis-
persive (or imaginary) parts of certain combinations of form factors (or coupling con-
stants) which are inaccessible with longitudinally-polarized beams [173].

The role of transverse polarization in the context of CP violation has previously been
studied in section 3.4.1 for the process e+e− → tt̄. Basically, since transverse beam polar-
ization provides an additional reference axis in addition to the e+e− beam direction, there
is the possibility of studying the azimuthal distribution of a single final-state particle in-
stead of its polarization via the analysis of its decay distribution.

In the process considered in section 3.4.1, the SM interaction occurs only via s-channel
γ and Z exchanges, and for me = 0 CP-violating effects could only arise from the inter-
ference with chirality changing (pseudo)scalar and tensor effective couplings. If, like in
the present case of e+e− → γZ, t- and u-channel exchanges are present, an additional
dependence on the scattering (polar) angle θ exists and those considerations do not ap-
ply. Indeed, referring to eq. (3.44), if particle A is self-conjugate the forward-backward
asymmetry corresponding to θ → π− θ is CP-odd also in the absence of transverse polar-
ization [171, 174, 175]. Such forward-backward asymmetry would be even under ‘naive’
time reversal T , namely, the reversal of particle spins and momenta but not the exchange
of final with initial state. It can be shown that the CPT theorem implies this asymme-
try to be proportional to an absorptive part of the interfering amplitudes, hence to the
imaginary parts of the new-physics couplings (see, e.g. [172, 176]).

However, if there is transverse polarization, a T-odd but CP-even azimuthal asymme-
try can be combined with the T-even but CP-odd forward-backward asymmetry to give
an asymmetry which is both CP-odd and T-odd. In this case, the CPT theorem would
imply that such an asymmetry can measure the real parts of the new-physics couplings
that, as stated above, could not be measured without transverse polarization.

Turning now to e+e− → γZ, where both produced particles are self-conjugate, at the
tree level CP violation effects can arise if anomalous CP-violating γγZ and γZZ couplings
are present and interfere with the SM amplitudes [172] ‖.

The parametrization of the anomalous vertex can be done in the most general form
consistent with Lorentz invariance, photon gauge invariance and chirality conservation,
includes contact interactions as well as triple gauge boson couplings [177], and can be
written for γγZ and γZZ interactions as:

L = e
λ1

2m2
Z

Fµν

(
∂µZλ∂λZ

ν − ∂νZλ∂λZ
µ
)

+
e

16cW sW

λ2

m2
Z

FµνF
νλ (∂µZλ + ∂λZ

µ) , (3.51)

where cW = cos θW , sW = sin θW and θW is the weak mixing angle. Notice that λ1 and
λ2 do not arise in the SM even at loop level, therefore their non-vanishing represents an

‖For the analysis of the general set of form factors see [173].
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unambiguous signal of new physics. Only indirect limits are available from loop-induced
weak and electric fermion dipole moments, viz. |λ2| < 10−3 and similarly for λ1 [79, 171].
The interest here, however, is in model-independent direct limits on these constants.

The photon angular distribution contains interference terms dependent on Reλ2, Imλ1,
Imλ2 and proportional to the product of electron and positron degrees of transverse po-
larization (parallel transverse polarization directions of e+ and e− are assumed). In par-
ticular, their dependence as cos θ cos 2φ and cos θ sin 2φ, with φ the azimuthal angle, are of
interest for the determinations of the CP-violating couplings.

Define the following CP-odd asymmetries, that combine a forward-backward asym-
metry with an appropriate asymmetry in φ, so as to isolate the anomalous couplings:

A1 =
1

σ0

3∑

n=0

(−1)n

∫ π(n+1)/2

πn/2

dφ

[∫ cos θ0

0

−
∫ 0

− cos θ0

]
d cos θ

dσ

dΩ
, (3.52)

A2 =
1

σ0

3∑

n=0

(−1)n

∫ π(2n+1)/4

π(2n−1)/4

dφ

[∫ cos θ0

0

−
∫ 0

− cos θ0

]
d cos θ

dσ

dΩ
, (3.53)

A3 =
2

σ0

[∫ cos θ0

0

−
∫ 0

− cos θ0

]
d cos θ

[∫ π/4

0

+

∫ 5π/4

3π/4

+

∫ 2π

7π/4

]
dφ

dσ

dΩ
, (3.54)

where σ0 ≡ σ0(θ0) is the total cross section of the process, integrated with a cut-off θ0 in
the polar angle, θ0 < θ ≤ π − θ0.

Explicitly, with PT
e− and PT

e+ the degrees of transverse polarization, one finds [172]:

A1(θ0) = −B′ gA PT
e−PT

e+ Reλ2, (3.55)

A2(θ0) = B′ PT
e−PT

e+ [(g2
V − g2

A) Imλ1 − gV Imλ2], (3.56)

A3(θ0) = B′
[π

2
[(g2

V + g2
A) Imλ1−gV Imλ2] + PT

e−PT
e+[(g2

V − g2
A) Imλ1−gV Imλ2]

]
. (3.57)

where

B′ =
α2

16s2
Wm2

W

(
1− m2

Z

s

)2
cos2 θ0

σ0(θ0)
. (3.58)

It is seen that A1(θ0) is proportional to Reλ2, while the other two asymmetries depend
on both Imλ1 and Imλ2. These two couplings, therefore, can be constrained indepen-
dently from the simultaneous measurement of A2 and A3. Notice that the products of
electron and positron polarizations appear in the expression of the asymmetries, there-
fore both PT

e− and PT
e+ must be non-zero to observe these CP-violating couplings.

The 90% C.L. limit that can be obtained with a linear collider with
√

s = 500 GeV,
Lint = 500 fb−1, (PT

e−, PT
e+) = (80%, 60%), making use of the asymmetries Ai, has been

calculated in [172]. The limiting value λlim (i.e. the respective real or imaginary part of
the coupling) is related to the value A of the asymmetry for unit value of the coupling
constant by λlim = 1.64/(A

√
NSM), where NSM is the number of SM events.

A1 depends on Reλ2 alone, and can therefore place an independent limit on Reλ2. It
should be emphasized that information on Reλ2 cannot be obtained without transverse
polarization. The limits are summarized in table 3.12. In the third and fourth columns
of this table, the constraints are obtained by assuming Imλ1 and Imλ2 non-zero, one at a
time. In the last column, both Imλ1 and Imλ2 have been taken simultaneously non-zero
in A2 and A3, which determines an allowed region for those two couplings.
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Coupling Individual limit from Simultaneous limits
A1 A2 A3

Re λ2 6.2× 10−3

Im λ1 6.2× 10−3 3.8× 10−3 7.1× 10−3

Im λ2 9.1× 10−2 3.0× 10−2 6.7× 10−2

Table 3.12: 90% CL limits on the couplings from asymmetries Ai for a cut-off angle of
θ0 = 26◦, which optimizes the sensitivity,

√
s = 500 GeV, and Lint = 500 fb−1. Assumed

transverse polarizations are (PT
e−, PT

e+) = (80%, 60%) [172].

Quantitative examples: Only with both beams transversely polarized is it possible
to put separate limits on the real as well as the imaginary part of possible CP-violating
anomalous γγZ and γZZ couplings. The sensitivity is rather high, especially on
Reλ2, on which a direct reach of about 6.2 × 10−3 can be achieved.
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Chapter 4

Summary of the physics case

In the previous chapters the benefits from having the positron beams polarized at the
linear collider, as well as the electron beam, have been discussed. The physics case for
this option has been illustrated by explicitly analyzing reference reactions in different
physics scenarios. The results show that positron polarization, combined with the clean
experimental environment provided by a linear collider, would allow one to improve
dramatically the search potential for new particles and the disentanglement of their dy-
namics. This would represent a crucial step towards the understanding of the nature of
fundamental interactions. Concurrently, the Standard Model and its parameters could
be scrutinized and determined with unparallelled precision. The availability of positron
polarization would allow significant progress also in this respect.

In direct searches, the physics potential of the ILC is strongly improved if one can
exploit simultaneously the independent polarizations of both beams, particularly in the
following regards, cf. also table 4.1.

• The chiral structures of interactions in various processes can be identified indepen-
dently and unambiguously. This provides the possibility of determining the quan-
tum numbers of the interacting particles and testing stringently model assumptions.
Several of these tests are not possible with polarized electrons alone.

• The larger number of available observables is crucial for disentangling the new
physics parameters in a largely model independent approach.

• Transverse polarization of both beams enables the construction of new CP-odd ob-
servables using products of particle momenta, and further enlarges the number of
observables available to constrain the new physics parameters.

• The enhanced rates with suitable polarizations of the two beams would allow for
better accuracy in determining cross sections and asymmetries. This increase of the
signal event rate may even be indispensable, in some cases, for the observation of
marginal signals of new physics.

• A more efficient control of background processes can be obtained. The higher signal-
to-background ratio may be crucial for finding manifestations of particles related to
new physics and determining their properties. Important examples are the searches
for signatures of massive gravitons, whose existence is foreseen by models with
extra dimensions, and of supersymmetric particles.
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In indirect searches for new physics, the clear advantages of having both beams po-
larized simultaneously include the following.

• The enhancement of cross sections, and correspondingly of the rates, by effective
use of the polarizations, leads to a reduction in the statistical uncertainties.

• Significant increases in sensitivity to new physics at high energy scales can be achieved,
with the possibility to elucidate the associated interactions.

• The increase in the sensitivity to non-standard couplings due to the synergy of high
energy, high luminosity and especially of different possible initial polarization con-
figurations will allow one to disentangle different kinds of interactions.

• The left-right asymmetry, which can be crucial for distinguishing different mod-
els, is often limited by systematic uncertainties. These can be reduced significantly
when both beams are polarized.

• There is an increase in the sensitivity to new interactions which are not of the current-
current type, such as those mediated by gravitons or (pseudo)scalar exchanges.

Transversely polarization of both beams opens up new possibilities:

• This offers new observables to detect non-standard interactions, including possible
new sources of CP-violation.

• It enhances the sensitivity to graviton interactions and enables one to draw a dis-
tinction between different scenarios of extra spatial dimensions, even far below the
resonance production threshold.

• It provides access to specific triple-gauge couplings which cannot be extracted with
only longitudinally polarized beams.

The precision tests of the Standard Model are unprecedented. In particular, the use
of simultaneously polarized beams improves significantly the precision attainable in the
following measurements.

• It improves the separation between the annihilation and scattering channels in W+W−

production, as required for an optimal determination of triple-gauge-boson cou-
plings.

• High-luminosity GigaZ running at the Z boson resonance or at the W+W− thresh-
old with positron polarization allows for an improvement in the accuracy of the
determination of sin2 θW by an order of magnitude, through studies of the left-right
asymmetry. This will have far-reaching implications for consistency tests of the elec-
troweak theory, in particular in the Higgs sector.

The qualitative and quantitative consequences of having both beams longitudinally
polarized in comparison with the e− polarization only for the reference reactions analysed
in the previous chapters are also listed in table 4.1. These examples by no means exhaust
the whole phenomenology of a polarized positron beam. The quantitative improvement
factors are relative to the case with polarized electrons only. In most cases |Pe−| = 80% and
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|Pe+| = 60% are used as conservative possibilities, but in some examples also |Pe−| = 90%
and |Pe+ | = 80% or 40% have been considered.

It is apparent from the table that in some specific cases of non-standard couplings

factors of about an order of magnitude in the Figur-of-Merit, the S/
√

B ratio, could be
gained when employing two polarized beams, compared with the case of polarized elec-
trons only. Since in some new physics models only very small rates are expected, such
a large gain in the Figur-of-Merit may be crucial to detect the signals. In some exam-
ples, such as testing the quantum numbers and properties of supersymmetric particles,
simultaneously polarized beams are definitely needed.

Indirect searches are a very important tool to find signatures of new interactions char-
acterized by higher mass scales far beyond the kinematical reach of present, future and
next-generation collider experiments. Such new mass scales can be accessed by looking
for deviations of experimental observables from the Standard Model predictions, and in
principle the results depend sensitively on the particular model adopted in order to anal-
yse the data. Since the discovery reach scales with the luminosity, it is often enhanced by
about 20% with both beams polarized compared to the case with only polarized electrons.
Furthermore, the positron polarization option allows more observables to be measured,
reducing to a large extent the model dependence. The use of polarized positrons also im-
proves substantially the precision with which the left-right asymmetry observables can
be measured.

Specific advantages of transverse beam polarization are listed in table 4.1. For ex-
ample, in indirect searches for massive gravitons, one could even distinguish between
different models of the extra dimensions if both beams are transversely polarized. Fur-
thermore, transverse polarization turns out to be particularly promising in the context of
searches of new CP-violating interactions, for example by exploiting azimuthal asymme-
tries that may allow the detection of even marginal manifestations of new sources of CP
violation.

The physics studies are still ongoing, and the listed examples should be understood
solely as a contemporary status report∗. Nevertheless, these examples already show that
positron polarization has excellent possibilities for enrichening considerably the physics
output from the linear collider and that the full potential of the ILC could be realized only
with a polarized positron beam as well.

∗For further information, see http://www.ippp.dur.ac.uk/∼gudrid/power/ .
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Case Effects Gain

SM:

top threshold Improvement of coupling measurement factor 3

tq̄ Limits for FCN top couplings reduced factor 1.8

CPV in tt̄ Azimuthal CP-odd asymmetries give PT
e−PT

e+ required

access to S- and T-currents up to 10 TeV

W+W− Enhancement of S
B

, S√
B

up to a factor 2

TGC: error reduction of ∆κγ , ∆λγ , ∆κZ , ∆λZ factor 1.8

Specific TGC h̃+ = Im(gR
1 + κR)/

√
2 PT

e−PT
e+ required

CPV in γZ Anomalous TGC γγZ, γZZ PT
e−PT

e+ required

HZ Separation: HZ ↔ Hν̄ν factor 4 with RL

Suppression of B = W+ℓ−ν factor 1.7

SUSY:

ẽ+ẽ− Test of quantum numbers L, R Pe+ required

and measurement of e± Yukawa couplings

µ̃µ̃ Enhancement of S/B, B = WW factor 5-7

⇒mµ̃L,R
in the continuum

HA, mA > 500 GeV Access to difficult parameter space factor 1.6

χ̃+χ̃−, χ̃0χ̃0 Enhancement of S
B

, S√
B

factor 2–3

Separation between SUSY models,

’model-independent’ parameter determination

CPV in χ̃0
i χ̃

0
j Direct CP-odd observables PT

e−PT
e+ required

RPV in ν̃τ → ℓ+ℓ− Enhancement of S/B, S/
√

B factor 10 with LL

Test of spin quantum number

ED:

Gγ Enhancement of S/B, B = γνν̄, factor 3

e+e− → f f̄ Distinction between ADD and RS modes PT
e−PT

e+ required

Z′:

e+e− → f f̄ Measurement of Z ′ couplings factor 1.5

CI:

e+e− → qq̄ Model independent bounds Pe+ required

Precision measurements of the Standard Model at GigaZ:

Z-pole Improvement of ∆ sin2 θW factor 5–10

Constraints on CMSSM space factor 5

CPV in Z → bb̄ Enhancement of sensitivity factor 3

Table 4.1: Some of the physics examples given in this report. The case of having both
beams polarized is compared with the case of using only polarized electrons; in many
cases (|Pe−|, |Pe+|) = (80%, 60%) is compared to (|Pe−|, |Pe+|) = (80%, 0%), cf. see corre-
sponding chapter; B (S) denotes background (signal); CPV (RPV) means CP (R-parity)
violation.

94



Chapter 5

Machine issues

Polarized positrons are produced via pair production from circularly-polarized photons.
The main issues associated with the development of a polarized-positron source for a lin-
ear collider are: the generation of polarized photons, the efficient capture of the positrons,
and dealing with the high heat loads (and accompanying radiation) due to the required
flux. This chapter discusses the photon-based schemes for polarized-positron production
being considered for the ILC. Status updates of work towards the realization of viable
polarized-positron sources are also given. A report of work on polarized-electron sources
is included, followed by a discussion of the spin manipulation systems required in the
ILC. The chapter continues with a section about measuring the polarization with conven-
tional polarimetry. Emphasis is put on Compton polarimetry and designs for polarime-
try up- as well as downstream of the IP are discussed. However, an overview of other
methods such as Møller polarimetry is also given and future design work is outlined.
The chapter concludes with a section about measuring the polarization from physics pro-
cesses in W and W -pair production and from collider data via application of the Blondel
scheme.

5.1 General remarks

In this section, a short introduction to polarized positron production is given along with
brief descriptions of the possible sources of polarization loss. A description of the polar-
ized electron source for the ILC is included for completeness.

The current parameter specifications for the ILC list polarized electrons with Pe− ≥
80% for the baseline machine whereas positron polarization (with Pe+ ≥ 50%) is sug-
gested as an option for a later upgrade [3]. If adequately planned in the baseline, the
upgrade to polarized positrons is relatively straight forward and not prohibitively ex-
pensive in terms of either cost or downtime required to implement the upgrade. The
two main methods for positron production under consideration for the ILC are a photon-
based source and a ‘conventional’ source. The photon-based source uses multi-MeV pho-
tons and relatively thin targets (less than a radiation length thick) to produce positrons. If
the photons are circularly polarized, the positrons (and electrons) are spin polarized. This
positron polarization can be preserved in the subsequent capture, acceleration, damping,
and transport to the collision point(s). The conventional source uses a multi-GeV electron
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drive beam in conjunction with thick, high-Z targets to produce positrons from the resul-
tant electromagnetic cascade in the target. The positrons produced by this method cannot
be polarized. These two schemes ultimately present very similar engineering challenges
while at the same time having distinct attributes and drawbacks. It is emphasized, how-
ever, that only the photon-based schemes offer the promise of positron polarization [178].

In addition to developing a source of polarized positrons (and electrons) for a high en-
ergy linear collider, it is important to ensure that no significant polarization is lost during
the transport of the positron and electron beams from the source to the interaction region.
Transport elements downstream of the sources which can contribute to a loss of polariza-
tion include the initial acceleration structures, transport lines to the damping rings, the
damping rings, the main linacs, and the high energy beam delivery systems. As discussed
below, the largest depolarization effect is expected to result from the collision of the two
beams at the interaction point(s). This effect is expected to decreases the polarization by
about 0.25%, see section 5.5.

5.1.1 Polarized-positron source

Circularly-polarized photons are required for the generation of longitudinally-polarized
positrons via e± pair production in a thin target. The photons are in the energy range
of a few MeV up to about 100 MeV. Because the target is typically a fraction of a radia-
tion length thick, high strength materials, such as titanium alloys, can be considered as
opposed to conventional targets, where high-Z, high-density materials are required to
minimize the emittance of the produced positrons. The two methods for generating the
polarized photons under consideration are:

• a high-energy electron beam ( >∼ 150 GeV) passing through a short period, helical
undulator. This scheme is discussed in greater detail in sections 5.2.1, 5.2.2. The
E-166 experiment, which is currently running at SLAC, is a demonstration of this
undulator-based polarized positron production scheme. The experiment will be
finished in 2005.

• Compton backscattering of laser light off a GeV energy-range electron beam. This is
discussed in detail in section 5.2.3 and the concept is being tested in an experiment
which is currently running at KEK.

In both schemes a positron polarization of about |Pe+| ≥ 60% is expected at the ILC.
Both schemes would be applicable for the ILC design [3] and also adaptable for a pos-

sible future multi-TeV LC design [6].

Comparison with conventional (unpolarized) positron sources

Apart from the obvious advantage of generating polarized positron beams, photon drive
beam based positron sources have various advantages and disadvantages as compared
with conventional sources using electron drive beams. At this time both the conventional
and undulator-based positron source designs are equally mature and can meet the ILC
requirements. The big advantage of the conventional source is that is completely de-
coupled from the rest of the ILC whereas the undulator-based positron source needs a
working ILC main linac for operation. This leads to some advantages in commissioning
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and uptime. With careful design and an additional simple keep-alive positron source,
these advantages can be mitigated, though not completely eliminated.
The photon-based positron source has three advantages over the conventional source [179].

• First the fact that the target is thinner allows for the use of lower-Z materials such
as Ti-alloys that are stronger than the W-Re alloys used in the conventional sources.

• Secondly the photon energy can be chosen to be lower than the neutron photo-
production cross-section and the activation of the target material may be much re-
duced.

• Thirdly the emittance of the produced positrons is less because the target is thin.
This will have advantages for the design of the positron damping ring(s) and maybe
reduce the cost advantages of the conventional source.

Cost and availability issues associated with an undulator-based positron source are
discussed in [180]. In this study, a comparison is made between an undulator-based sys-
tem and a conventional (unpolarized) system. Whereas the detailed assumptions and
quantitative results of [180] are open to discussion, the general conclusions are reason-
able: the cost difference between an undulator source and an upgrade from a conven-
tional source is small (∼ 1%) in comparison to the overall project cost; availability and
schedule are impacted due to the requirement of high energy electrons for undulator-
based positron production. These issues need to be addressed in future design studies.

5.1.2 Polarized electron source

The polarized electron source consists of a polarized high-power laser beam and a high-
voltage dc gun with a semiconductor photocathode. This design was developed and
successfully used at the SLC and is currently in use at CEBAF. The SLC system can be
adopted directly for the ILC using a laser system with the appropriate time structure.
While there is discussion about the benefits of a low-emittance radio frequency (RF) gun
for polarized-electron production, no R&D is ongoing or planned for such a gun. Recent
work in the area of polarized electron source design for the ILC is presented in section 5.3
and it is expected to achieve a degree of electron polarization of about |Pe−| ≤ 90% at the
ILC.

5.1.3 Polarization preservation

Low-energy beam capture and acceleration:

The transverse and longitudinal phase space of the positrons coming out of the target is
matched into the 6-D acceptance of the downstream system by a longitudinally varying
solenoidal field. The positrons are then accelerated up to the damping-ring energy of 5
GeV. Axial solenoid fields are used for the transverse capture optics at the low energies
up to about 250 MeV. Thereafter, magnetic quadrupoles are used for focusing. The lon-
gitudinal polarization is preserved while the transverse component is washed out due to
spin precession in the solenoidal magnetic fields used for the initial capture. Because of
the high incident beam power on the target and constraints in the mechanical design of
positron targets, multiple target stations running in parallel may be required for the ILC.
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The layouts of these target stations can be configured so that the polarization remains lon-
gitudinal after bunches from the different targets are combined into the ILC beam. Space
charge effects are not expected to be a source of depolarization. Because of the lower
energy, space-charge forces are significantly larger in the case of the polarized-electron
source but even in this case no spin depolarization has been observed.

Damping rings:

Only polarization parallel or anti-parallel to the guide fields of the damping ring is pre-
served. Thus the incoming longitudinal polarization must be rotated into the vertical
prior to injection into the rings. This is done in the transport line leading from the end of
the 5 GeV linac to the damping ring, utilizing an appropriate combination of dipole and
solenoid fields. The vertical spins can be rotated back to the longitudinal direction with
an analogous system in the damping ring extraction line leading to the main linac. These
spin manipulation systems are discussed in further detail in section 5.4.

It is important to avoid spin-orbit coupling resonance depolarizing effects by oper-
ating off the resonant energies. Depolarization due to the stochastic nature of photon
emission can be estimated by comparing the time that a beam spends in the damping
ring to the time constant for depolarization. This ratio is typically very small and hence
depolarization in the rings is expected to be vanishingly small. Nevertheless it is impor-
tant to revisit these issues as the ring designs become available and a detailed simulation
of depolarization effects should be made. This is best carried out using a Monte–Carlo
simulation of the spin–orbit motion [181–183].

Main linac:

In a linac, the electric field and the particle velocity are essentially parallel. Then, ac-
cording to the Thomas-Bargmann-Michel-Telegdi (T-BMT) equation the electric field will
cause negligible spin precession. The effects of the transverse field from the RF couplers
and quadrupoles are also negligible. There should be no loss of polarization in the main
linac.

Beam delivery system:

After acceleration in the main linacs, the e± beams are brought to collision by the beam
delivery systems. These beam lines contain bend magnets. According to the T-BMT
equation, a beam deflection of δθb in a transverse magnetic field causes a spin rotation
of aγδθb ≈ E(GeV)/0.441(GeV)δθb. Depolarization associated with synchrotron radiation
in the transport system bends is expected to be negligible. Care is needed to ensure that
the polarization is longitudinal (or perhaps transverse) as needed at the interaction point.
The spin rotator systems between the damping rings and the main linacs permit the set-
ting of arbitrary polarization vector orientations at the IP.

Beam-beam interactions:

Loss of polarization can also occur as the electron and positron bunches collide. The two
mechanisms responsible for this are spin rotation, according to the T-BMT equation, of the
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spins in one bunch due to the electric and magnetic fields in the oncoming bunch; and
spin flip due to synchrotron radiation (the Sokolov-Ternov effect). The combined effect
of these two mechanisms has been studied analytically [184] as well as numerically [185,
186]. At 500 GeV center-of-mass energy for the nominal ILC parameters [3], the expected
overall loss of polarization [185] of either beam is expected to be ∆P/P ≃ 1%. However,
the effective loss up to the point of interaction (luminosity-weighted) is only≃ 0.25%: see
section 5.5 for more detail. Updates of these calculations using actual design parameters
are needed as the machine parameters become available.

5.2 Positron polarization

Polarized positrons are produced via pair production from circularly-polarized photons.
The concepts under consideration for polarized-positron sources differ only in the man-
ner in which the circularly-polarized photons are produced: either through the use of
a helical undulator or from Compton backscattering. The issues associated with target
engineering, optimization of the capture yield and positron polarization are identical for
both types of schemes.

This section begins with a discussion of undulator-based production of polarized
positrons. The basic concept is presented and followed by a description of the SLAC E166
demonstration experiment. A summary of work at Daresbury on the development of un-
dulator prototypes concludes the discussion of the undulator-based sources. The design
of a laser-Compton based polarized positron source is described in 5.2.3. A discussion of
a demonstration experiment which has been developed at the KEK ATF is included.

5.2.1 Undulator-based polarized positron source

A polarized positron source based on the radiation from an undulator was first proposed
by Balakin and Mikhailichenko [187] in 1979 in the framework of the VLEPP project,
several prototypes for short period helical super-conducting undulators have been pro-
posed [188]. This method requires a multi-hundred GeV electron beam and in order to
save on ILC cost, it is proposed to use the electron main linac to provide this beam. Fig. 5.1
shows the layout of the polarized positron source as developed for the USLCTOS cold
reference design [180]. The electron beam is extracted from the electron main linac at an
energy of about 150 GeV and transported through ∼ 200 m of the helical undulator. The
electrons are then injected back into the linac and are used for collisions. The period of
the undulator is nominally 1 cm and the magnetic field on axis has a strength of about
B=1.1 T. Photons generated in the undulator have an energy of the order of 10 MeV and
are circularly polarized. These photons are incident on a thin target (about 0.4 radiation
lengths). Within the target, the photons convert to electron-positron pairs. The helicity of
the initial state is conserved in the pair creation process. As described in detail in [189],
the spin orientation of the created positron is correlated to its energy relative to that of
the initial, polarized photon. The polarization of the beam of positrons that is collected
from the target falls in the range of 40%-70%, and depends on the details of the initial
photon polarization spectrum, target material and thickness, and capture phase space.
This scheme provides also a high intensity of polarized positrons.
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The TESLA proposal has the undulator placed at the end of the linac with consequen-
tially higher energy electrons and photons [190]. While the details of the two designs
vary due to the different available electron energy (150 GeV in the case of the USLCTOS
design and 250 GeV in the case of TESLA design), see fig. 5.1, either scenario (TESLA or
USLCTOS) can be used to produce a beam of polarized positrons for the ILC. Operational
aspects of the two different scenarios are somewhat different. The USLCTOS design is
based largely on the TESLA design with the difference that the undulator is placed along
the electron linac rather than at the end. This is done so that the electron drive beam
energy does not vary if the collision energy is changed. This design choice requires that
a linac bypass must be built which does not adversely dilute the electron emittance. A
principle concern in the design is the effect of the limited energy passband of the bypass
with regard to machine protection in the event of a sudden loss of electron energy. Design
effort to mitigate this problem is ongoing.

To Positron Damping Ring

Electron Main Linac

Helical Undulator Photon Drift

Redundant Targets

4.8 GeV L-Band Linac

Undulator Bypass Line

150 GeV e- 
150 GeV e- 

Electron Main Linac

Figure 5.1: A possible layout of the polarized positron source at the ILC. The electrons
could be extracted form the main linac with an energy of 150 GeV, as shown in the fig-
ure [180]. The undulator could also be placed at the end of the linac, where the electrons
have an energy of 250 GeV [190].

The SLC positron source is a good starting point for extrapolation to a positron source
for the ILC. However, the required ILC positron source flux is a factor of about 60 greater
than that in the SLC positron target system. The power of the incident drive beam and
the energy deposited in the target station and downstream systems is a factor of about
10 greater than in the SLC design. In addition, the pulse structure of the ILC beam is
significantly different from that at the SLC. The discrepancy between the factor of 60 in
flux and the factor of 10 in dissipated power is due to the expected increase in the accep-
tance of the positron capture systems with respect to the SLC design. Both the TESLA
Design Report and USLCTOS have descriptions of plausible system designs. The design
effort for the ILC positron source is aimed at realizing the increase in positron capture effi-
ciency and handling the increase in power. This engineering effort spans the entire range
of component parameter space in the quest to maximize the positron polarization while
minimizing the incident beam power. It should be noted that the design issues associated
with both the unpolarized conventional and the photon-based systems are essentially
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the same for the systems downstream of the target: the matching optics, RF capture sec-
tions, and damping ring acceptance. Even the power absorption in the conventional and
photon-based target systems is very similar. The work to develop a viable positron source
includes the engineering and testing of high strength target materials, development and
testing of magnetic capture optics, and prototyping of the RF structures used for the initial
acceleration and the target vault design and associated remoted handling systems.

Some effort is still required to meet the engineering challenges, whether or not positron
polarization is chosen for the ILC baseline.

5.2.1.1 Demonstration experiment E-166

A demonstration experiment for undulator-based polarized-positron production at the
ILC has been approved at SLAC [191]. This experiment, E-166, is scheduled to run in
2005 in the SLAC Final Focus Test Beam (FFTB) area. The aim of the experiment is to test
the fundamental process of generating circularly-polarized photons in a helical undula-
tor [192] and the production of polarized positrons via pair production in a thin target
with these photons. In addition, the parameters of the experiment were chosen so that
the photon spectrum would be the same as that for the USLCTOS design and E166 would
be a scaled down demonstration of a polarized ILC positron source.

A schematic layout of E166 is shown in fig. 5.2. The FFTB electron beam passes
through a 1-m long pulsed helical undulator to generate the circularly polarized pho-
tons. Because the FFTB beam can have a maximum beam energy of about 50 GeV, instead
of the higher energies for the ILC design, the undulator aperture has to be reduced to less
than 1 mm in order to generate the same photon spectrum (approximately 10 MeV cut-off
for the first harmonic of the undulator radiation). The photons are converted to positrons
(and electrons) in a thin, moveable target. Titanium and tungsten targets, which are both
candidates for use in linear colliders, will be tested. The experiment will measure the
flux and polarization of the undulator photons, as well as the spectrum and polarization
of the positrons produced in the conversion target, and compare the results of measure-
ment with simulations. Thus the proposed experiment directly tests the validity of the
simulation programs used for the physics of polarized pair production in finite matter, in
particular the effects of multiple scattering on polarization.

Table 5.1 provides a comparison of the E-166 parameters with those of the unpolarized
TESLA TDR design and of the polarized design of the USLCTOS cold option. It is seen
that E-166 produces photons in the same energy range, uses similar target materials and
thicknesses, and produces positrons with the same polarization characteristics as those in
the two linear collider designs.

The achievable precision of 5-10% of the proposed transmission polarimetry is suffi-
cient. Good agreement between the experimental results and the simulations will lead
to greater confidence in the proposed designs of polarized-positron sources for the next
generation of linear colliders.

This experiment, however, will not address detailed systems issues related to polarized-
positron production at a linear collider, such as capture efficiency, target thermal hydro-
dynamics, radiation damage in the target, or an undulator prototype suitable for use at
the ILC; such issues are well within the scope of R&D of a linear collider project that
chooses to implement a polarized-positron source based on a helical undulator.
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Figure 5.2: Conceptual layout of the experiment to demonstrate the production of po-
larized positrons in the SLAC FFTB. The 50-GeV e− beam passes through an undulator,
producing a beam of circularly polarized photons of MeV energy. The electrons are de-
flected by the D1 magnet. The photons are converted to electrons and positrons in a thin
Ti target. The polarizations of the positrons and photons are measured in polarimeters
based on Compton scattering of electrons in magnetised iron [191].

Parameter TESLA USLCTOS E-166

Beam Energy, Ee [GeV] 150-250 150 50
Ne/bunch 3× 1010 2× 1010 1× 1010

Nbunch/pulse 2820 2820 1
Pulses/s [Hz] 5 5 30
Undulator Type plan./helical helical helical
Und. Parameter, K 1 1 0.17
Und. Period, λu [cm] 1.4 1.0 0.24
Und. Length, L [m] 135 200 1
1st Harmon., Ec10 [MeV] 9-25 11 9.6
Target Material Ti-alloy Ti-alloy Ti-alloy, W
Target Thickn. [rad. len.] 0.4 0.4 0.25-0.5
Pos. Pol. [%] 0 59 53

Table 5.1: Positron parameters for the unpolarized TESLA baseline design, polarized
USLCTOS design, and the E-166 experiment [191].
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5.2.2 Helical undulator development

Two helical undulator prototypes for the ILC are being developed under the guidance
of the ASTeC group at Daresbury Laboratory [193]. The first device uses a bifilar helix
of niobium-titanium superconducting wire; the second device is based on neodymium-
iron-boron permanent magnet material. Table 5.2 lists the parameters of the magnets.
An undulator period of 14 mm has been selected for the prototypes and fig. 5.3 gives
an indication of the magnetic fields required to produce photons of approximately the
correct energy. The parameters have been chosen to meet the requirements of the TESLA
TDR, and can be scaled to the current ILC design. In table 5.2, ‘Length’ refers to the
prototype and ‘Full Module’ is the length of an undulator section as envisaged for the ILC.
The full ILC undulator consists of a large number of modules to make up the ∼ 200 m
total required length. Studies to date have shown that both the superconducting and
permanent magnet technologies will meet the ILC undulator design criteria. To help
in deciding which design is better, short 10- to 20-period models have been developed.
These models will enable:

• the field quality and strength of each design to be checked.

• assessment of the size and probability of magnet errors.

• the evaluation of the effort required for full-sized module construction.

• an improvement of cost estimates.

Type Period On-Axis Field Magnet Aperture Material Current density Length Full Module
SC 14 mm 0.85 T 4 mm NbTi 1000 A/mm2 30 cm 2-5 m

PPM 14 mm 0.83 T 4 mm NdFeB (1.3 T) 15 cm 2-5 m

Table 5.2: Parameters of the prototype of a super-conducting (SC) and permanent-magnet
(PPM) helical undulator design parameters [193].

It was decided that both prototype devices would have the same period of 14 mm to
facilitate the comparison. Modelling of the superconducting device indicates that an on-
axis field greater than the specified value of 0.85 T is possible with the inclusion of iron.
The NdFeB undulator can also achieve a greater field strength than the 0.83 T listed in ta-
ble 5.2. Higher fields permit a reduction in the period. However magnet inhomogeneities,
magnetization vector misalignments (in the case of the PPM device), and assembly errors
combine to reduce the field quality. The dependence of the field quality on these errors is
one of the areas under investigation.

For the superconducting undulator, two wires are wrapped in a double helix around
the vacuum vessel [194]. When current is passed through the wires the longitudinal com-
ponents of the magnetic field cancel leaving only the rotating (helical) field required on
axis. A 20 period (30 cm) long prototype has been made using NbTi wire. This device is
currently being tested.

In the case of the permanent magnet device, each period of the undulator is divided
into slices. Each slice comprises a ring of trapezoidally shaped permanent magnet mate-
rial blocks whose magnetization vectors rotate through 720◦ around the ring to produce a
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Figure 5.3: On-axis B field versus undulator period to produce circularly-polarized
20 MeV photons with a 250 GeV electron beam [193].

Figure 5.4: Schematic of wires wrapped in a helix around a former showing different
current directions [193].

transverse dipole field [195]. Adjacent rings are rotated through 360◦ over one undulator
period to form a helical field pattern. By changing the number of blocks in a ring and the
number of rings in a period, the field strength and quality is altered. An 8 × 8 prototype
is being developed which uses 8 blocks to form a ring with 8 rings to a period. The device
is 10 periods long or about 15 cm, including end pieces. This undulator will be ready for
testing in the spring of 2005.

5.2.3 Laser-Compton based polarized positron source

Polarized positrons can be also created by a laser-based scheme, where circularly po-
larized gamma-photons are obtained by backscattering laser light off an electron beam.
These circularly polarized gammas are then used to generate longitudinally-polarized
positrons via pair production in a thin radiator in the same manner as in the undulator-
based case. One of the advantages of this scheme is that because the required electron
beam has a few GeV and can be generated in a stand-alone linac, the positron source is
independent of the electron main linac in contrast to the case with the undulator-based
source. The main technical challenge in this scheme is to realize the total laser light inten-
sity needed for an ILC-capable positron source. Three possible ways are under consider-
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Figure 5.5: Undulator prototype with super-conducting (SC) wires being wound [193].

Figure 5.6: Dipole field created by many permanent-magnets (PM) blocks arranged in a
ring. Many rings are stacked together and rotated to create the helical field [193].
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ation to realize this scheme [196].

• The first uses CO2 lasers. Collision of a 5.8 GeV electron beam and CO2 laser light
creates photons with a maximum energy of 60 MeV, see fig. 5.7, whose energies are
suitable for positron production. A multi-bunch pulse CO2 laser needs to be de-
veloped for this purpose. The possibility currently considered is to create 100 laser
bunches with an inter-bunch spacing of 2.8 nsec. A 5.8 GeV electron beam must
then have the same bunch time spacing to get collisions of all bunches. The above
design is similar to the design for a warm LC [197].

To meet ILC requirements, about 30 lasers are used to obtain 3000 bunches. Since
the ILC operates at 5 Hz, one has 200 msec between pulses. 100 msec are used for the
generation of the 3000 bunches and 100 msec are used for damping. Fast kickers are
necessary to handle such bunches when one injects (extracts) into (from) a damping
ring.

• A second technique employs FELs of CO2 wave length for the light source [198].
By using an FEL, one can produce 3000 bunches of light in one pulse. The electron
beam also has 3000 bunches to get collisions with all photon bunches. The bunch
spacing of both beams should be identical for that purpose. The bunch spacing
can be chosen in a very wide range when one employs FELs as light sources: for
example one can choose a bunch time spacing of 2.8 nsec, 20 nsec, or 300 nsec .

• Lastly, a new idea requires accumulation of positrons in a ring. Since the ILC op-
erates at 5 Hz, one has 100 msec to accumulate positrons and get the required pop-
ulation. Then the number of positrons created in one collision can be drastically
reduced. Thus the collision repetition rate should be very high (more than MHz) in
order to get the required population. To achieve this, one proposal is to use pulse
stacking by inserting a cavity of laser light in an electron ring [199]. Another pro-
posal to realize high-repetition collisions is to use a high-repetition FEL based on
ERL (energy recovery linac) technology developed for light sources [200].

Work is still necessary to develop these schemes to the point where they can be considered
as viable options for polarized positron production.

5.2.3.1 Laser-Compton demonstration experiment

An experiment is ongoing at the KEK-ATF to make a proof-of-principle demonstration
of laser-based schemes, and to develop the polarimetry of short pulses of photons and
positrons. In this experiment, a 1.28 GeV electron beam from the ATF and the 2nd har-
monic of a YAG laser are used to produce polarized photons with a maximum energy
of 56 MeV [201]. The collision point is located in the extraction line of the ATF. At the
collision point a specially designed chamber, the Compton chamber, is installed; fig. 5.8.
This chamber has screens at the collision point, and also downstream and upstream of the
collision point. By using these screens, the positions and angles of the laser and electron
beams are adjusted in order to realize accurate head-on collisions. The Compton chamber
also has a wire scanner and a knife-edge scanner to measure the spot sizes of the electron
and laser beams at the collision point. The polarization of the produced photons is mea-
sured by a transmission method. In this method the intensities of transmitted photons

106



Figure 5.7: Collision of a 5.8 GeV electron beam and CO2 laser light creates circularly-
polarized gamma-photons with maximum energy of 60 MeV. Polarized positrons are then
generated via pair production in a target [197].

Figure 5.8: Compton chamber: with screens at the collision point as well as upstream
and downstream of the collision point, the positions and angles of the laser and electron
beams are adjusted so that accurate head-on collisions can be realized. The spot sizes of
the electron and laser beams are measured with a wire and a knife-edge scanner.

for the parallel and the anti-parallel cases are measured downstream of magnetized iron.
Here the parallel (anti-parallel) case means that the spins of the photons and the electrons
in the magnetized iron are parallel (anti-parallel) to each other. Since no event identifica-
tion is necessary in this transmission method, it is suitable for measuring the polarization
of a high-intensity beam in which a very large number of photons in the beam interact
in a very short time ( 30 psec). The iron pole in an electromagnet is used as the magne-
tized iron. The polarity of the magnet is flipped to measure the transmission asymmetry
in the two cases. The transmission asymmetry is proportional to the polarization of the
photons. Fig 5.9 shows the measured transmission asymmetry of the photons [202]. This
asymmetry corresponds to a photon polarization of about 90%. Photons are measured
above a threshold of 21 MeV.
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Figure 5.9: Measured transmission asymmetry of the photons [202]. This asymmetry is
proportional to the polarization of the photons and corresponds to a photon polarization
of about 90%. The photons are measured above a threshold of 21 MeV.

Fig. 5.10 shows the apparatus for producing polarized positrons from polarized pho-
tons and for measuring the polarization of these positrons. In this design, ∼ 107 gamma-

Figure 5.10: Production of polarized positrons in a thin tungsten target. Dipole magnets
separate the polarized electrons and positrons. The positron polarization is measured
with the Compton-transmission method.

photons are produced in a bunch. Polarized electrons and positrons are produced by
pair creation in a thin tungsten target. A pair of dipole magnets separates positrons and
electrons. The dipole magnets select only the high-energy part of the positron spectrum
(about 25 – 45 MeV). The number of positrons after momentum selection is ∼ 104 per
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bunch. One uses again a Compton-transmission method to measure the positron polar-
ization, fig. 5.10. The expected value of the transmission asymmetry is about 0.7 %. The
experiment is in progress.

5.3 Polarized electrons

Highly-polarized electrons are obtained from GaAs by directing a circularly-polarized
laser beam on to a thin (typically 100 nm) p-doped epilayer of strained GaAs [203], of
strained InGaAs [204], and of a short period superlattice [205]. Only a small fraction of
the photons are absorbed in the epilayer. Electrons with zero momentum are promoted
from the highest level of the valence band (VB) to the lowest level of the conduction band
(CB) upon the absorption of laser photons, see fig. 5.11. A biaxial compressive strain pro-
duced by a lattice mismatch with the substrate or by the quantum confinement associated
with short-period superlattice (SL) structures breaks the degeneracy of the heavy-hole
(hh) and light-hole (lh) bands at the highest level of the VB [209]. A hh-lh separation of
∼80 MeV is readily achieved, which in carefully grown structures, is sufficient to allow
the selection of electrons from the hh band only. With the laser wavelength tuned to the
band gap, angular momentum selection rules result in the production of CB electrons in
one spin state exclusively. A thin epilayer is chosen to minimize strain relaxation. As
the CB electrons diffuse to the surface, they undergo some depolarization, primarily by
interaction with holes. This effect can be considerably reduced by decreasing the dopant
density [206] (everywhere except the last few nanometers near the surface, which is often
called gradient doping method [207]). Near the surface, the energy levels for p-doped GaAs
bend downwards. Most of the electrons reaching the surface are confined to this band-
bending region (BBR) for a finite time until they are emitted to vacuum or lose sufficient
energy for them to be trapped in surface states. Although the BBR is depleted of holes,
the confined but still mobile electrons in the BBR lose energy by scattering from optical
phonons, as a result of which the amplitude and phase of the spin precession vector is
continually reoriented, leading to a significant depolarization. The probability for elec-
trons to escape to vacuum can be as high as 20% if the surface is properly activated with
caesium and an oxide to create a negative electron affinity.

The SLC demonstrated that electron beams with polarization at the IP approaching
80% can be generated reliably for a period of years. The SLC beam was produced us-
ing a 100-nm thick GaAsP/GaAs strained-layer photocathode. By decreasing the dopant
density in the bulk, the polarization of this type of cathode was slightly improved for the
initial run of a parity violation experiment E158 at SLAC. Higher polarization is an on-
going R&D aim. Several laboratories have reported electron beams with polarization of
90% or even higher. The problem is that such high values are universally achieved only
with a cathode surface having a relatively low quantum efficiency (QE), defined as the
number of photoemitted electrons per incident photon. Improvements in polarization
while maintaining a high QE have recently been achieved with strained GaAsP/GaAs
superlattice (SL) structures [208]. Each layer of the superlattice (typically 4 nm) is con-
siderably thinner than the critical thickness (∼10 nm) for the onset of strain relaxation,
while the transport efficiency for electrons in the conduction band can still be high. In ad-
dition the effective band gap for such superlattices is larger than for GaAs alone, which
improves the QE. Today, 100-nm thick, gradient-doped GaAsP/GaAs superlattice pho-
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Figure 5.11: Band gap diagram and transition probabilities at the Γ point for (a) GaAs and
(b) strained-layer GaAsP/GaAs. ∆SO is the spin-orbit splitting, δ is the hh-lh (heavy hole-
light hole) splitting due to strain. A non-zero δ can also be produced with a superlattice
structure. At room temperature, Eg = 1.424 eV, ∆SO = 0.340 eV. On the right, relative
transition probabilities between s and p orbitals for excitation by σ− light are shown.
Transitions at the band gap minimum are shown as solid lines.

tocathodes routinely yield at least 85% polarization at low energy with a maximized QE
of ∼1%. This type of cathode was successfully used during the summer 2003 dedicated
run at SLAC of E158-III, for which the polarization at high energy, measured by a Møller
polarimeter, was (89 ± 4)% except for short periods following refreshment of the cathode
QE (accomplished every few days by adding a small amount of Cs to the surface). This
experience points to the possibility of a constant 90% polarization if a technique to con-
trol the minimum surface barrier can be developed. Recent data for 2 SL photocathodes
are compared with that for the best of the strain-layer cathodes in table 5.3. In the table,
λ0 is the wavelength corresponding to the maximum polarization, Pe,max. The absolute
accuracy of the polarimeters is on the order of ±5%.

The ILC beam is a train of 2820 bunches spaced 337 ns apart at a repetition rate of
5 Hz. The electron source should be able to generate at least twice the charge required
at the interaction point (IP). Thus the required charge at the source will be ∼6.4 nC per
bunch, ∼20 µC per train. A dc-biased photocathode gun as used for the SLC is expected
to be used. The bunching systems necessary for the ILC electrons are very similar to those
used at the SLC notwithstanding the requirement of the ILC bunch format.
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Cathode Growth Polarimeter Pe,max λ0 QEmax(λ0) Ref.

Structure Method (nm)

GaAsP/GaAs strained SL:
Nagoya MOCVD Mott ≥ 0.90 775 0.004 [210]

SLAC MBE CTS Mott 0.86 783 0.012 [211]

Møller E158-III 0.89 780 0.008 [212]

GaAsP/GaAs strained-layer:
SLAC MOCVD CTS Mott 0.82 805 0.001 [213]

Møller E158-I 0.85 800 0.004 [214]

Table 5.3: Comparison of 2 strained superlattice and 1 strained-layer photocathodes.

5.4 Spin manipulation systems

A spin rotation scheme for the ILC that allows the polarization vector of the electron and
positron beams to be tuned independently for two interaction regions (IR) is described
in [215]. The correct polarization direction for a particular IR can be selected by directing
the beam into one of two parallel spin rotation beam lines located between the damping
ring and the linac. With fast kicker magnets, it is possible to rapidly switch between these
parallel beam lines, so that polarized beams can be delivered to two IRs on a pulse-train
by pulse-train basis. Fig. 5.12 shows the layout of the electron damping ring system and
fig. 5.13 shows the layout for the positron damping ring system. A similar scheme can
be employed in the low-energy transport (LTR) to the positron damping ring, to allow
rapid helicity switching for polarized positrons. In that case the axial solenoid fields must
have equal but opposite directions in the two lines. A pair of kicker magnets is turned
on between pulse trains to deflect the beam to the spin rotation solenoids with negative
B-field.

The system shown in fig. 5.14 forms the basic spin rotation building block in each of
the IR1/IR2 ring-to-linac transport lines.

If properly designed, such a spin rotation system after the damping ring will allow the
spin of the beams to be set to any arbitrary orientation by the time they reach the IP. The
system described in [216] accomplishes the desired spin manipulation while minimizing
emittance dilution of the flat beams. Fig. 5.14 illustrates the basic features of the system
which consists of two solenoidal rotation systems with a bend rotation system in between.
Starting with an initial vertical spin vector coming out of the damping ring, the final spin

vector at the exit of the full system is ~S [216],

~S =
↔
Ωtot ·




0
±1

0



 =




∓ sin φ1 cos φ2

± cos φ1 cos φ2

± sin φ2



 , (5.1)

where φ1 and φ2 are the spin rotations due to the first and second solenoidal rotation sys-
tems. From eq. (5.1), it is seen that any arbitrary orientation of the spin vector is possible
through a suitable choice of φ1 and φ2.
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Figure 5.12: Layout of the electron damping ring system showing the parallel spin rota-
tion beam lines for IR1 and IR2. A pair of kicker magnets is turned on between pulse
trains to deflect the beam to the spin rotation solenoids for IR2 [215].

Each solenoid system is made up of an initial solenoid followed by an optical transport
section which gives a unity transformation in the horizontal plane and a −1 transforma-
tion in the vertical plane, an optical reflection. The optical section is followed by a second
solenoid. Each solenoid is set to provide a spin rotation of half the total required for
the particular solenoidal system, φi. The optical reflection transport is required to avoid
transverse betatron coupling of the beam by cancelling the rotation due to the solenoids.

The bend section has a constant spin rotation contribution of π/2 in the horizontal-
longitudinal plane; the spin rotates about the longitudinal axis in the solenoids. Upstream
of the damping rings, emittance dilution is not of concern in the longitudinal to vertical
spin transformation. This system consists of a simple bend followed by a solenoid of
suitable strength.
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Figure 5.13: Layout of the positron damping ring system showing the parallel spin ro-
tation beam lines for randomly selecting the positron polarization direction. A pair of
kicker magnets is turned on between pulse trains to deflect the beam to the spin rota-
tion solenoids with negative B field [215]. This is obviously not necessary with electrons
whose polarization is switched at the source.

Solenoid System 1: ϕ1

ϕ1/2 ϕ1/2

Solenoid System 2: ϕ2

ϕ2/2 ϕ2/2

Bend System: ϕspin=π/2

 

ϕspin =              Σϕb
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1  0 
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1  0 
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Figure 5.14: Spin rotation system to rotate a vertical spin coming from the damping ring
to an arbitrary spin orientation. See text for explanation.
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5.5 Polarimetry at the ILC

The primary polarimeter measurement at the ILC will be performed by a Compton po-
larimeter. An accuracy of (∆Pe−/Pe−) = 0.25% should be achievable [53]. The polarime-
ters can be located upstream or downstream of the Interaction Point (IP) and it is desirable
to implement polarimeters at both locations. The downstream polarimeter may require
a large crossing angle at the IP; polarimetry is one of many issues to be considered in a
decision on the IR crossing angles.

Compton polarimetry is chosen as the primary polarimetry technique for several rea-
sons:

• The physics of the scattering process is well understood in QED, with radiative
corrections less than 0.1% [217];

• Detector backgrounds are easy to measure and correct for by using laser off pulses;

• Polarimetry data can be taken parasitic to physics data;

• The Compton scattering rate is high and small statistical errors can be achieved in a
short amount of time (sub-1% precision in one minute is feasible);

• The laser helicity can be selected on a pulse-by-pulse basis;

• The laser polarization is readily determined with 0.1% accuracy.

5.5.0.2 Møller and Bhabha polarimetry

A Møller or Bhabha scattering polarimeter can be considered as a cross check of the prin-
ciple high-energy Compton polarimetry, or at various intermediate stages of the accelera-
tion process. This well-known method has been applied in numerous experiments [218–
220] with energies ranging from MeVs to multi-GeVs. Møller type polarimeters have
in particular been used for many years in conjunction with fixed-target experiments at
SLAC [221–226] and elsewhere [227–230].

The application of this technique at linear collider beams appears to be generally in-
ferior, at least in its conventional incarnations, in comparison with laser-based Compton
polarimetry.

Møller polarimetry at a linear collider has currently still some disadvantages with
respect to Compton polarimetry:

1. low target polarization: only about 8% electron polarization is possible with ferro-
magnetic materials (to be compared with 100% laser polarization in Compton po-
larimetry) and it is not easy to calibrate this important quantity with great accuracy;

2. limited precision: only one single Møller polarimeter with rather exceptional prop-
erties has reported a precision ∆P/P = 0.5% [230, 231]. The typical performance of
more conventional devices has been only at the level of 2-5% or worse [221–229];

3. invasive: insertion of the target is invasive to the beam, i.e. such a polarimeter can
only operate in the dumpline of the beam, or only intermittently, if used upstream
of the collider interaction point.
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Additional issues that have to be considered are beam heating of the target and mul-
tiple event topologies [232].

Since all of the major drawbacks of the conventional Møller technique originate in the
ferromagnetic foil target, one may wonder if not a radically different target with nearly
100% electron polarization is possible, which furthermore should be thin enough to pre-
serve the pristine quality of the beam.

A polarized gas target with similar properties has in fact been in operation since sev-
eral years in the HERA storage ring at the HERMES experiment [233], and Møller and
Bhabha polarimetry has routinely been employed to diagnose the performance of the
spin-polarized target cell [234]. However, since the average e+/e− beam currents of HERA
are 1000× larger than those at the linear collider, it is doubtful if something like the HER-
MES gas target could be developed to be suitable for polarimetry at the ILC.

One could summarize that dedicated Møller/Bhabha beam polarimetry based on con-
ventional target technology is generally inferior to laser-based Compton polarimetry, but
may be useful in limited precision applications at intermediate energies. With an ad-
vanced target design, an ultimate precision ∆P/P = 0.5% may be achievable and useful
as an occasional crosscheck of the principle Compton results, but the general operational
drawbacks remain.

5.5.1 Compton scattering basics

One defines E0 and ω0 to be the incident energies of the electron and photon, and E and
ω to be the scattered energies of the electron and photon. The dimensionless x, y and r
scattering parameters are defined by:

x =
4E0ω0

m2
cos2(θ0/2) ≃ 4E0ω0

m2
(5.2)

y = 1− E

E0
=

ω

E0
(5.3)

r =
y

x(1− y)
(5.4)

where m is the mass of the electron and θ0 is the crossing angle between the electron
beam and the laser beam. For polarimeters with small crossing angles at the Compton IP,
cos2(θ0/2) ≃ 1.

The spin-dependent differential Compton cross section is given by:

(
dσ

dy

)

Compton

=

(
dσ

dy

)

unpol

[1 + PλAz(x, y)] (5.5)

(
dσ

dy

)

unpol

=
0.499barn

x

[
1

1− y
+ 1− y − 4r(1− r)

]
(5.6)

Az(x, y) = rx(1− 2r)(2− y) (5.7)

where P is the longitudinal polarization of the electron and λ is the circular polarization
of the laser photon. The Compton asymmetry analyzing power, Az(x, y), is maximal at
the kinematic endpoint, corresponding to 180◦ backscattering in the center-of-mass frame,
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Figure 5.15: Compton cross section for scattering of 532 nm photons with a 250 GeV
electron beam. The Jz=3/2 (Jz=1/2) cross section for electron and photon spins aligned
(anti-aligned) is shown in red (light green).

with

Emin = E0
1

1 + x
(5.8)

For a 250 GeV electron beam colliding with a 532-nm laser, the Compton-scattered elec-
trons have their kinematic endpoint at Emin = 25.1 GeV with an analyzing power Az =
98%. Figure 1 shows the resulting Jz=3/2 and Jz =1/2 Compton cross sections and ana-
lyzing power.

5.5.2 Upstream Compton polarimeter

The Compton Polarimeter upstream of the collider IP requires the Compton IP be just
upstream of the energy collimation region so that off-energy Compton electrons are not
lost in the Interaction Region. An additional requirement is that the beam trajectory at
the Compton IP be parallel to the trajectory at the collider IP. A polarimeter satisfying
these requirements was included in the TESLA design and we provide a brief description
here [235].

The Compton IP is located 630 meters upstream of the collider IP, see Fig. 5.16. The
Compton laser is pulsed with a pattern that matches the pulse and bunch structure of the
ILC. In this way it is possible to achieve high luminosity, typically six orders of magnitude
higher than with continuous lasers of comparable average power.

Compton electron detection in the multi-event (integrating) mode is the principal de-
tection method. Event rates and statistical errors have been calculated for different beam
energies and laser parameters [235]. Table 5.4 gives typical polarimeter parameters for√

s = 500 GeV. The performance is similar for other energy regimes. For much higher
or lower beam energies, it will be advantageous to change the wavelength of the laser
or to adapt a four magnet chicane around the Compton IP comparable to the one of the
downstream polarimeter, in order to retain maximum coverage of the electron detector
hodoscope.
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Figure 5.16: Upstream Compton polarimeter in the TESLA design.

Upstream Downstream
e+/e− beam laser beam laser beam

Energy 250 GeV 2.3 eV 2.3 eV
Charge or energy/bunch 2 · 1010 35 µJ 100 mJ
Bunches/sec 14100 14100 5
Bunch length σt 1.3 ps 10 ps 1 ns
Average current(power) 45 µA 0.5 W 0.5 W
σx · σy (µm) 10 · 1 upstream 50 · 50 100 · 100

30 · 60 downstream
Upstream Downstream

polarimeter polarimeter
Beam crossing angle 10 mrad 11.5 mrad
Luminosity 1.5 · 1032cm−2s−1 5 · 1030cm−2s−1

Event rate at 25-GeV Endpoint 300,000/GeV/sec 10,000/GeV/sec
∆P/P stat. error < 1% / sec < 1% / min
∆P/P syst. error 0.25% 0.25%

Table 5.4: Compton polarimeter parameters at 250 GeV.

5.5.3 Downstream Compton polarimeter

The design criteria for an extraction line polarimeter may prevent a downstream po-
larimeter if there is no crossing angle at the IP. The 20-mrad crossing angle design con-
sidered for NLC, however, permitted a downstream polarimeter and we give a brief de-
scription for it here with beam parameters appropriate for the ILC design.

The Compton IP is located approximately 60 meters downstream from the collider IP
(see Figure 5.17). [236] The Compton IP is at a secondary focus in the middle of a chicane
with 20 mm dispersion, but with no net bend angle with respect to the e+e− collision IP.
Beam losses in the extraction line are acceptable, both for machine protection and for ILC
detector backgrounds.

The Compton laser has a low repetition rate of 5-10 Hz, but has high power to give
good signal-to-background ratio in the more difficult downstream environment with dis-
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Figure 5.17: Compton polarimeter system in the extraction line.

rupted primary electrons and beamstrahlung photons present. The Compton laser pulses
collide with a small fraction of the 14 kHz electron bunch rate, but the timing of the
Compton laser pulses can be varied so as to sample systematically all electron bunches in
the train and determine any variation of the beam polarization along the train.

The primary Compton detector is envisioned to be a segmented electron detector op-
erating in the multi-electron (integrating) mode, sampling the electron flux at energies
near the Compton kinematic edge at 25.1 GeV (for 250 GeV primary electron energy and
532 nm laser photons). The Compton electron detector must discern between the Comp-
ton edge electrons and low energy disrupted primary electrons, and it must be located
outside a 0.75-mrad cone from the IP that contains the intense flux of beamstrahlung
photons. Figure 5.18 shows the y distribution of 25.1-GeV Compton-scattered electrons
at the detector located downstream of the polarimeter chicane magnets. The Compton-
edge electrons peak at ≈ 18 cm, well separated from the tails of the disrupted electron
beam. For polarimeter operation at electron beam energies other than 250 GeV, the chi-
cane dipoles should retain the same B field. This changes the dispersion at the Compton
IP, but since the Compton edge endpoint energy does not change quickly with incident
electron beam energy, the location of Compton-edge electrons at the Compton detector
plane will only shift slightly. The parameters for the downstream Compton polarime-
ter are summarized in Table 5.4. In that context one should note that due to the strong
fields significantly higher depolarization effects are expected at the possible multi-TeV
LC design [183], so that a downstream polarimeter might be indispensable in that case.
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Figure 5.18: Vertical distributions of disrupted beam and Compton-edge electrons at the
Compton detector plane a) with e+e− collisions and b) without collisions.

5.5.4 Luminosity-weighted polarization

The luminosity-weighted beam polarization will differ from the measured polarization
due to disruption and radiation in the beam-beam collision process. There are also effects
from polarization spread and spin transport.

The spin motion of a deflected electron or positron beam in a transverse magnetic field
follows from the familiar T-BMT expression

θspin = γ
g − 2

2
θorbit =

E0

0.44065 GeV
θorbit (5.9)

where θorbit and θspin are the orbit deflection and spin precession angles, E0 is the beam
energy, γ = E0/m, and (g − 2)/2 is the famous g-factor anomaly of the magnetic moment
of the electron.

The difference between the luminosity-weighted beam polarization and the polarime-
ter measurement is written as dP = P lum−wt

z − P CIP
z . To minimize dP , it is required that

the beam direction at the IP of the polarimeter (Compton IP) be aligned with the collision
axis at the e+e− IP to within 50µrad. We consider estimates of several contributions to
dP , assuming full longitudinal spin alignment at the polarimeter IP. The use of both an
upstream and a downstream polarimeter will assist in achieving the desired small dP and
estimating the associated systematic error [237].

The contributions to dP for the downstream polarimeter are considered first, using
estimates in the NLC design study [237]. Orbit misalignments between the polarimeter
IP and the collision IP are expected to be below 50 µrad, which would give dP = −0.04%.
Imperfect compensation for steering effects due to the angle between the beam trajec-
tory and the detector solenoid is expected to give an additional trajectory alignment
uncertainty of 30 µrad, and gives a contribution dP = −0.01%. The effect of Sokolov-
Ternov spin flips is expected to contribute dP = +0.3% (dP = −0.1%) for downstream
polarimeter measurements with (without) collisions. The angular divergence of the in-
coming beam is expected to contribute dP = −0.03%, while the angular divergence of
the outgoing beam is expected to contribute dP = +0.1% (dP = −0.25%) for downstream
polarimeter measurements with (without) collisions. Lastly, effects from chromatic aber-
rations, which were important at SLC, are expected to be negligible. Adding all these
contributions together, we expect a total difference dP = +0.32% (dP = −0.43%) for
downstream polarimeter measurements with (without) collisions.
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A similar compilation of these effects for an upstream polarimeter leads to dP =
−0.42% [237]. The systematic errors associated with dP should be substantially smaller
than the size of dP , and having independent information from 3 polarimeter measure-
ments (upstream, downstream with and without collisions) will be important in mini-
mizing this.

5.5.5 Transverse Polarimetry

The spin rotation system with two spin rotators following the Damping Ring can achieve
arbitrary spin orientation in the linac or at the IP as described in section 5.4. Eq. 5.1 de-
scribes the spin vector at the beginning of the main linac. A unitary spin transport matrix,
R, then describes spin transport from that location to the IP or polarimeters. To determine
R using the longitudinal Compton polarimeter one performs a 3-state measurement by
choosing appropriate spin rotator settings to align the electron spin along the x, y, or
z axis at the start of the main linac. The z-component of the spin transport matrix can
be measured with the Compton polarimeter, which measures the longitudinal electron
polarization,

P C
z = Rzx · P L

x + Rzy · P L
y + Rzz · P L

z . (5.10)

The three P C
z measurements for each x, y, or z spin orientations at the start of the main

linac determines the spin rotation matrix elements Rzx, Rzy, and Rzz. This is sufficient to
determine the full rotation matrix, which is described by three Euler angles. The matrix
R can be inverted to determine the required spin rotator settings for the desired spin
orientation at the IP.

When running transverse polarization at the IP, the longitudinal Compton polarime-
ter can monitor that the longitudinal beam polarization stays close to zero. Calibrations
of the beam polarization can be done periodically (perhaps every 1-2 days, depending
on stability and required precision) by changing the spin rotator settings to achieve lon-
gitudinal polarization. The ILC beam polarization is likely to be fairly stable and well
understood and this method should achieve a precision of about 1%. Another possibility
is to use the transverse asymmetries in µ+µ−-pair production.

5.5.6 Future design work

The beam delivery systems for each of 2 IRs at the ILC will be updated in the coming year.
The same is true for the extraction lines from the collider IPs to the beam dumps. Design
choices for the crossing angles of the IRs and linacs will impact polarimeter designs, as
will other design choices such as the optics and locations for the upstream energy colli-
mation. Polarimeter design studies need to be an integral part of the beam optics design
studies.

One wants to find optics solutions where the beam trajectories are parallel at the up-
stream and downstream polarimeter Compton IPs and the collider IP. For the upstream
polarimeter we need adequate energy collimation downstream of the Compton IP to mit-
igate against backgrounds from off-energy Compton-scattered electrons. For the down-
stream polarimeter, we need to evaluate its feasibility and expected performance for dif-
ferent IR crossing angle geometries. Extraction line optics for a downstream polarimeter
should also accommodate an energy spectrometer.
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Figure 5.19: Gain of a 2 m long cavity as a function of the difference between the laser and
cavity resonance frequencies. the values of the cavity mirror reflection and transmission
coefficients are those of the HERA cavity [238].

The designs of the laser systems of the Compton polarimeters will be re-evaluated
for optimizing the pulse energy, pulse length and pulse repetition rate, while achieving
a simple and robust laser system. This will include revisiting design criteria for the mea-
surement time needed to achieve 0.1% statistical precision and the time scale for moni-
toring dependence of polarization along the 1-ms train. It is also planned to evaluate a
recent proposal to implement a Fabry-Perot cavity for the laser beam around the Comp-
ton IP [238]. A commercial laser with ≈ 10 nJ/pulse and 3-5 MHz pulse frequency could
be used together with a high finesse cavity to reach in excess of ≈ 1 J/pulse inside the
cavity. In order to amplify laser beam power with a Fabry-Perot cavity one must keep
such a cavity at resonance, i.e. match the cavity length and laser beam frequency very
precisely. The cavity gain factor is shown in Figure 5.19. A fast feedback system would be
required to ensure these conditions. Such a device is used at the CEBAF accelerator [239]
and at HERA.

5.6 Polarization measurements with collider data

Polarization measurements with polarimeters are limited to a total precision around 0.25%.
In addition polarimeters measure either the polarization of the incoming beam that has
not been depolarized by the beam-beam interaction or the one of the outgoing beam
which has been depolarized three to four time as much as the interacting particles. On
the other hand there are several processes at a linear collider whose polarization struc-
ture is known and which might be used to measure the polarization directly from data.
The large luminosity of the linear collider offers the possibility to reach a precision much
better then the polarimeters.

One example is the sin2 θeff measurement with the Blondel scheme at GigaZ (see sec.
2.4) where the relevant observables can be extracted directly from the data without the use
of polarimeters. One has, however, to take into account that all methods using annihila-
tion data involve some physics assumptions that have to be considered in the framework
of the model in which the data are analysed. The data driven methods also cannot replace
completely the polarimeters. The data methods need a large luminosity to get to a precise
result while polarimeters are completely systematics limited and statistics is no problem.
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In any case polarimeters are thus needed for a fast machine tuning. In addition there are
some assumptions in the data-methods that have to be verified or corrected with the po-
larimeters. In all cases the data methods need the assumption that the absolute values of
the polarizations of the left and right handed states are the same. If electron and positron
polarization is available the effective polarizations, explained in sec. 1.2.3 and the for-
mulae to obtain the polarization involve linear and quadratic terms of the polarizations.
For these reasons any correlations between the two beam polarizations need to be known
from beam-beam simulations and polarimeters.

5.6.1 Measurements with electron polarization only

If only electron polarization is available not only the Lorenz structure of the used process
is needed but the exact helicity structure needs to be known. The only process fulfilling
this requirement is the V-A structure of the W -fermion couplings. This coupling can be
utilised in two processes at a linear collider, single W production and W -pair production.
As can be seen from figure 5.20 both processes have a cross section of several pb so that a
few million events are expected.
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Figure 5.20: Cross section for single W and W -pair production at a LC

W -pair production proceeds through the Feynman diagrams shown in fig. 2.5. In
general the process is a complicated mixture of the neutrino t-channel exchange, only
determined by the W -fermion couplings, and the γ and Z s-channel exchange that also
involve (anomalous) gauge couplings. However, as shown in fig. 5.21, the forward pole
is completely determined by the neutrino exchange and insensitive to the anomalous
couplings. For this reason it is possible to extract the polarization and the triple gauge
couplings [240] simultaneously from the W -pair data sample. The expected precision is
∆Pe−/Pe− = 0.1% for a luminosity of 500 fb−1 at

√
s = 340 GeV. The correlation with the
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anomalous gauge couplings is negligible and the only assumption involved is that no
right-handed W -fermion couplings appear. Experimental details of the analysis can be
found in [241].
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Figure 5.21: Left-right asymmetry of W -pair production as a function of the polar angle
in the Standard Model and with anomalous triple-gauge couplings.

If electron and positron polarization are available, both can be measured simultane-
ously from the W -pair sample. With equal luminosity at all four helicity combinations
and Pe− = 80%, Pe+ = 60% one gets ∆Pe−/Pe− ≈ 0.1% and ∆Pe+/Pe+ ≈ 0.2% and neg-
ligible correlations between the polarizations and between the polarization and the cou-
plings. If only 10% of the luminosity is spent on the equal helicities the polarization errors
increase by roughly a factor two with −50% correlation.

Single W production is dominated by the Feynman diagram shown in fig. 2.6. Since
this process involves the V-A coupling of the W to fermions a W− can only be produced
from a left-handed electron and a W+ from a right-handed positron. Measuring the W
charge, the polarization can thus be measured for electrons and positrons separately. The
outgoing electron usually disappears in the beampipe so that the W charge has to be
reconstructed from the W decay products. This means that only leptonic W -decays can be
used for the analysis for which no detailed simulation study exists yet. The experimental
signature is a single lepton in the detector which can be measured with high efficiency
and small background. Because of the usually small W energy also the interference with
W -pair production should be very small. Assuming

√
s = 500 GeV, L = 1ab−1 and 100%

efficiency for W− → e−, µ− an error of ∆Pe−/Pe− ∼ 0.15% is expected.

5.6.2 The Blondel scheme

If a process e+e− → f̄ f is mediated by pure s-channel vector-particle exchange the cross
section for the different polarization states with electron and positron polarization avail-
able can be written as

σ = σu [1− Pe+Pe− + ALR(Pe+ − Pe−)] , (5.11)

where Pe+ and Pe− are the longitudinal polarizations of the positrons and electrons mea-
sured in the direction of the particle’s velocity, σu denotes the unpolarized cross section
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and ALR the left-right asymmetry. If the signs of the two polarizations can be switched in-
dependently four cross sections can be measured to determine the four unknowns. From
these cross sections the polarizations can be obtained, if ALR 6= 0:

Pe± =

√
(σ+− + σ−+ − σ++ − σ−−)(∓σ−+ ± σ+− − σ++ + σ−−)

(σ−+ + σ+− + σ++ + σ−−)(∓σ−+ ± σ+− + σ++ − σ−−)

where in σij i denotes the sign of the positron and j the sign of the electron polarization.
A drawback of this method is that some luminosity needs to be spent with the same
helicities for both beams which is not very interesting for most physics processes.

To measure the polarization with this scheme two processes have been considered,

• e+e− → f̄f with
√

s′ ≈ √s;

• radiative return events (e+e− → Zγ → f̄fγ).

The cross section and left right asymmetry for the two processes at
√

s = 350 and 500 GeV
are given in table 5.5. Both cross sections scale approximately with 1/s. The high-energy

√
s σRR ALR(RR) σHE ALR(HE)

340 GeV 17 pb 0.19 5 pb 0.50
500 GeV 7 pb 0.19 2 pb 0.50

Table 5.5: Cross section and asymmetry for high-energy and radiative-return f̄f events.

events can be measured with high efficiency and almost no background. However the
analysis relies on the assumption of s-channel vector-exchange, so for analyses like the
search for R-parity-violating sneutrinos the results cannot be used.

On the contrary radiative return events contain on-shell Z-decays which are well un-
derstood from LEP’1 and SLD. In about 90% of the events the high-energy photon is
lost in the beampipe. These events can be reconstructed kinematically and most back-
grounds can be rejected. However, at ILC energies the cross section for the fusion process
e+e− → Ze+e− is of the same order as the signal. In those events one electron has almost
the beam energy and stays at low angle while the other is extremely soft and also often
lost in the beampipe resulting in a∼ 30% background of Zee events in the radiative return
sample. The only way Zee events can be rejected is to require a photon above 7◦ where
photons and electrons can be separated by the tracking detectors. Applying some addi-
tional event selection cuts on the hadronic mass and the balance of the event, about 9% of
the radiative return events are accepted with only a small Zee background. However in
these events the slow electron is seen in the detector, so that they can easily be rejected by
vetoing on an isolated electron.

Assuming |Pe−| = 80%, |Pe+| = 60%, an integrated luminosity of 500 fb−1 at
√

s =
340 GeV and 50% or 10% of the luminosity spent with both beam polarizations with the
same sign table 5.6 shows the obtainable errors on the two polarizations and their corre-
lation. Due to the scaling of the cross sections the errors are about a factor

√
2 larger at

500 GeV. It should be noted that the relative errors scale approximately with the product
of the polarizations.

Radiative corrections to the form of eq. (5.11) have been checked with the KK Monte
Carlo [242]. For the high-energy events and for the radiative-return events with a seen
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L±±/L = 0.5 L±±/L = 0.1
HE rr WW HE rr WW

∆Pe−/Pe− [%] 0.10 0.51 0.07 0.21 1.11 0.11
∆Pe+/Pe+ [%] 0.12 0.53 0.11 0.15 1.13 0.21

corr −0.49 −0.91 0 −0.56 −0.93 −0.52

Table 5.6: Relative polarization error using the Blondel scheme for
√

s = 340 GeV, L =
500 fb−1, |Pe− | = 80%, |Pe+ | = 60% (HE = High energy events, rr = radiative return, WW
= W -pair production).

photon they are negligible. For the radiative return events where the photon is lost in the
beampipe, which are not used in this analysis, the corrections are at the percent level.

Because of the high losses in the selection of the radiative-return events, the errors in
the single polarizations seem rather large. However the large negative correlation reduces
the error substantially for the effective polarizations needed in the analysis. Table 5.7
compares the errors on the effective polarizations for the setups shown in table 5.6 and for
polarimeter measurements assuming 0 or 50% correlation between the two polarimeters.

The effective polarizations considered are:

• Peff =
|Pe− |+|Pe+ |
1+|P

e−P
e+ | , relevant for ALR with s-channel vector exchange;

• |Pe−Pe+ |, relevant for the cross section suppression/enhancement with s-channel
vector exchange;

• |Pe−|+ |Pe+| − |Pe−Pe+ |, relevant for the cross section suppression/enhancement for
t-channel W -pair production.

Due to the high anti-correlation, even the results from the radiative-return analysis with
one tenth of the luminosity at the low cross sections are competitive with Compton po-
larimetry.

value Rel. error [%]
L±±/L = 0.5 L±±/L = 0.1 Polarimeter

HE rr WW HE rr WW ρ=0 ρ=0.5
(|Pe−|+|Pe+|)/(1+|Pe−Pe+ |) 0.95 0.02 0.08 0.02 0.05 0.17 0.02 0.13 0.16

|Pe−Pe+ | 0.48 0.11 0.22 0.13 0.18 0.42 0.18 0.71 0.87
|Pe−|+|Pe+|−|Pe−Pe+| 0.92 0.03 0.12 0.03 0.06 0.25 0.03 0.19 0.21

Table 5.7: Relative error on the effective polarizations for the discussed setups and
√

s =
340 GeV, L = 500 fb−1, |Pe− | = 80%, |Pe+ | = 60%. For the polarimeter a total error of
0.5% has been assumed. (HE = High energy events, rr = radiative return, WW = W -pair
production).

Additional information can be obtained from Bhabha scattering [243]. Elastic electron-
electron (Møller) and positron-electron (Bhabha) scattering processes have large and well-
known [244–247] spin asymmetries which can be exploited for polarimetry. However, in
contrast to weak interaction processes (such as single-W production) it is necessary that
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both colliding particles are polarized. If both beams in the collider are polarized, it is
therefore possible to determine the product of the beam polarizations relatively quickly
from the copious Bhabha events observed in the principal collider detector, even with-
out dedicated beam polarimeters. In this context it is worthwhile to mention that the
spin asymmetries for Bhabha scattering reach their maximum value of 7/9∗ for symmet-
ric pairs at θcm = 90◦ which guarantees excellent coverage in the collider detector.

A detailed study including Z-exchange remains to be done, however the pure QED
term constraints the two polarisations along the small axis of the error ellipse from the
Blondel scheme, so that the final gain is probably not very large.

5.6.3 Experimental aspects

Although the methods presented here measure the luminosity-weighted polarization di-
rectly from the annihilation data, some experimental assumptions are involved. In all
cases it is assumed that the absolute values of the polarization of the left- and right-
handed state are the same and possible corrections have to be obtained from polarimeters.
If the polarization is written as P = ±〈|P |〉 + δ P The shift in the measured polarization
using W s in the case of electron polarization only is given by ∆P/P = δP

Using the Blondel scheme with polarized electrons and positrons, the corresponding
errors are

∆Pe− = 1.0δPe− + 0.6δPe+

∆Pe+ = −0.5δPe− − 0.7δPe+

for the high-energy events and

∆Pe− = 2.4δPe− + 2.1δPe+

∆Pe+ = −1.7δPe− − 1.7δPe+

for the radiative-return sample.
The corresponding corrections have to be obtained from polarimeters. This is possible

in a Compton polarimeter where the laser polarization can be flipped easily. To assure
that the electron-laser luminosity does not depend on the laser polarization, or to correct
for such effects, one should have a multichannel polarimeter with a large lever arm in the
analysing power.

If electron and positron polarization is available, in the formulae for the effective po-
larizations and for the Blondel scheme products of the two polarizations appear so that
one has to understand the correlations between the electron and positron polarization.
In principle there can be a correlation due to the depolarization in the bunch. Studies
with CAIN [248], however, indicate that these correlations are small. Another source of
correlation can come from time dependences or spatial correlations due to the beam de-
livery system. If half of the luminosity is taken with a polarization 5% higher and the
other half 5% lower than average, the polarizations obtained with the Blondel scheme are

∗The maximum value of the Møller and Bhabha asymmetry is 7/9 for the case of longitudinal beam
polarizations, which is the case of principal interest. For transverse beam polarization, the maximum value
is only ±1/9 for parallel beam spins, with the sign depending on the azimuth angle between the spin
and the scattering plane. The asymmetry vanishes for transverse beam polarizations with orthogonal spin
directions. These properties are useful for transverse spin experiments, cf. section 5.5.5.
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off by around 0.25%, affecting the effective polarization by the same amount. Measur-
ing the polarization with polarimeters would only result in a 0.16% error in the effective
polarization.

Time correlations have to be tracked with polarimeters. Spatial correlations due to the
beam-delivery system have to be obtained from simulations and should be minimised
already in the design.
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Chapter 6

Concluding Remarks

Strong theoretical arguments and perhaps some experimental evidence indicate that the
Standard Model of elementary particles is not the final theory of everything, and a va-
riety of possible extensions have been proposed. Many of these envisage new building
blocks and new interactions near the Fermi scale, and perhaps at higher mass scales. The
choice among such scenarios, and hence the direction of new physics beyond the Stan-
dard Model, is of paramount importance. As the first machine to probe directly the TeV
scale, the LHC will surely provide new discoveries and valuable information in this re-
gard. However, it is generally agreed that the clean and precise environment of e+e−

collisions at the ILC is ideally suited to the search for new physics and for determining
precisely the underlying structure of the new interactions, whatever direction the LHC
results may favour.

As we have demonstrated here, polarized beams will be very powerful tools to help
reach these goals. The physics examples presented here have shown that having both
beams polarized simultaneously will provide high flexibility and a very efficient means
for the disentanglement of non-standard effects in various new physics scenarios, and
their positive identification, as well as having the capacity to observe surprises in pre-
cision tests of the Standard Model. Having two polarized beams available is crucial for
determining the properties and the quantum numbers of new particles, and to test funda-
mental model assumptions, as we have shown in the specific example of supersymmetry.

The larger number of observables accessible with two polarized beams provide better
tools for revealing the structure of the underlying physics and determining new physics
parameters in model-independent analyses. New signals may become accessible by max-
imizing the analyzing power using suitable beam polarizations combined with high lu-
minosity. In many cases, as we have shown, double beam polarization enables better
statistics to be obtained and the dominant systematical errors in indirect searches to be
reduced. This can give access to physics scales that may be far beyond the direct kine-
matical reach of accelerators.

To exploit fully high-precision tests of the Standard Model at GigaZ, both beams must
be polarized. To make full use of the extremely high statistics, the beam polarizations
must be known with high precision, which cannot be provided by conventional polarime-
try methods. However, the required precision can be achieved in the Blondel scheme,
where both electron and positron polarizations are needed.

Further, with both beams polarized, one has the possibility to exploit transversely-
polarized beams for physics studies. This option provides new and efficient observables
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for the detection of possible sources of CP violation. Additionally, it becomes easier to
observe the effects of massive gravitons and to distinguish between different models with
extra spatial dimensions, far below the threshold for the spin-2 excitations. One can test
specific triple-gauge-boson couplings which are not accessible otherwise. The power to
identify new physics with polarized beams would represent a step forward of the utmost
importance for our understanding of fundamental interactions.

An overview of the physics benefits coming from positron polarization has been given
in this report, also in comparison with the case of only polarized electrons. An overview
of the machine design for polarized beams at the ILC has also been given. SLAC experi-
ments established that reliable high-energy electron beams with a polarization of 85-90%
can be provided for an LC. The standard source for polarized electrons is a DC gun with a
strained superlattice photocathode. To obtain polarized positrons at an LC, two methods
are discussed:

a) Circularly-polarized photons from a helical undulator can be used to generate lon-
gitudinally-polarized positrons in a target via e± pair production;

b) Circularly-polarized photons can also be obtained by backscattering of laser light
off the electron beam.

A demonstration experiment for an undulator-based polarized positron source, E-166 at
SLAC, is currently running. Prototypes of both superconducting and permanent magnets
for helical undulators for the ILC with lengths of 10 or 20 periods are already under
construction at the Daresbury and Rutherford Laboratories. Meanwhile, the concept of
the laser-based positron source is being tested in an experiment at KEK.

As already emphasized, precise physics analyses at an LC require accurate beam po-
larization measurements. The primary polarimetry measurement at the ILC will be per-
formed with a Compton polarimeter, with an expected accuracy ∆Pe−/Pe− = 0.25%. The
polarimeters can be located upstream or downstream of the Interaction Point (IP), and
it would be desirable to implement polarimeters at both locations. A downstream po-
larimeter may require a large crossing angle at the IP.

Since polarimeters measure either the polarization of the incoming beam before it has
been depolarized by the beam-beam interaction, or that of the outgoing beam after depo-
larization in the interaction region, it is desirable to measure the polarization also directly
from the data via processes with precisely known polarization structures, such as WW
production. Alternatively, in the GigaZ option, one may apply the Blondel scheme, for
which polarized positrons are needed. Methods for measuring the polarization using an-
nihilation data involve physics assumptions that have to be considered in the framework
of the model in which the data are analysed. The data-driven methods therefore can-
not replace completely the polarimeters but provide an independent and complementary
measurement. The data methods offer the possibility to reach a precision even better than
the polarimeters, if the underlying physics is well understood.

In summary, it has been demonstrated that having simultaneously polarized e− and e+

beams is a very effective tool for direct as well as indirect searches for new physics. This
option provides ideal preparation even for unexpected new physics. Polarized positrons
are necessary for several specific physics issues, and enrich the physics potential consid-
erably. Techniques and engineering design for a polarized positron source are becoming
well advanced. Therefore, including a polarized positron source in the ILC baseline de-
sign can be considered.
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Appendix A

Tools for simulation studies: MC event
generators

The use of numerical programs based on Monte Carlo (MC) techniques has become es-
sential in performing any detailed experimental analysis in collider physics. In this Ap-
pendix the so-called event generators with inclusion of beam polarizations are briefly
described. These programs must be interfaced to both detector simulations and beam
energy spectra to give a complete picture of the actual physical process.

Most MC event generators fall into one of two classes:

a) general-purpose (or multi-purpose) event generators
which aim to perform the full simulation of the event starting with the initial-state
collider beams, proceeding through the parton-shower (wherein coloured particles
are perturbatively evolved from the hard scale of the collision to an infrared cut-off)
and hadronization (wherein partons left after the said perturbative evolution are
formed into the observed mesons and baryons) stages;

b) parton-level event generators
which typically perform the hard scattering part of the simulation only, perhaps
including decays, and rely on one of the general-purpose generators for the rest of
the simulation.

During the LEP-era the experiments relied on the general-purpose event generators for
the description of hadronic final states together with more accurate parton-level programs
interfaced to the former ones for specific processes, e.g., two- and four-fermion produc-
tion. At a future linear collider, as one wishes to study final states with higher multiplici-
ties, e. g. six or even eight particles, this combined approach will become more important
as these final states cannot be described by the general-purpose event generators.

General-purpose event generators

General-purpose event generators include HERWIG [249], ISAJET [250] and
PYTHIA [251], which use different phenomenological models and approximations.
The major differences between these programs are in the approximations used in the
parton shower evolution and the hadronisation stage. There are also major differences
between the generators in the treatment of spin correlation and polarization effects.
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Both ISAJET and HERWIG include longitudinal polarization effects in both SM and
supersymmetric (SUSY) production processes, while PYTHIA includes both longitudinal
and transverse polarizations in many processes.

Another important difference is in the treatment of the subsequent decay of any heavy
particle produced in the hard process. While HERWIG includes the full correlations in
any subsequent decays using the method described in [252], both ISAJET and PYTHIA
only include these effects in some processes, such as W -pair production. Including trans-
verse polarization also in the HERWIG production stage is certainly possible.

The only program currently available in C++ which is capable of generating physics
results is SHERPA (based on the APACIC++ [253] parton shower). Work is however
underway to rewrite both PYTHIA [254] and HERWIG [255] in C++. Given the new de-
sign and structure of these programs, the treatment of both spin correlation and polariza-
tion effects should be much better than in the current FORTRAN programs. HERWIG++
should include full polarization and correlation effects using the method of [252].

Parton-level event generators

There are a large number of programs available which calculate some set of hard pro-
cesses, and are interfaced to one of the general-purpose generators, most often PYTHIA.
Many of the two- [256] and four-fermion [257] generators were used by the LEP collab-
orations (see report of the LEP-II MC workshop for their detailed discussion). Some
programs are written for six-fermion processes, e.g., ref. LUSIFER [258], SIXFAP [259],
EETT6F [260] and SIXPHACT [261]. These generators usually include state-of-the-arts
calculations of the generated processes. Many of these codes use helicity-amplitude tech-
niques to calculate the matrix elements and therefore either already include polarization
effects or could easily be modified to do so.

There are a number of codes available, which are capable of calculating and integrat-
ing the matrix elements for large numbers of final-state particles automatically:
– AMEGIC++ [262] makes use of helicity amplitudes and is part of SHERPA.
– COMPHEP [263] uses the traditional trace techniques to evaluate the matrix elements;
therefore it is at present not suitable to investigate polarization/spin effects. However,
the conversion to the use of helicity amplitudes techniques is currently planned.
– GRACE [264] (with the packages BASES and SPRING) uses the calculation of matrix ele-
ments via helicity amplitude techniques.
– HELAC/PHEGAS calculates cross sections [265, 266].
– MADGRAPH/MADEVENT [267] uses helicity amplitude techniques for the matrix elements
to calculate cross sections (based on the HELAS [268] subroutines).
– WHIZARD [269] is an integration package which can use either COMPHEP, MADGRAPH or
O’MEGA∗ [271] to calculate the matrix elements. Transverse beam polarization is included.

The implementation of polarization and correlation effects differs between these pro-
grams. In general, apart from COMPHEP (as noted), these programs are all based on he-
licity amplitude techniques at some point in the calculation and therefore the inclusion
of both transverse and longitudinal beam polarization is possible even where it is not
currently implemented.

∗O’MEGA uses the approach of [270] to evaluate the matrix elements but does not yet include any QCD
processes.
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Event generators for supersymmetry

Polarization and spin correlation effects are particularly important in studying SUSY sce-
narios, in order to measure the fundamental parameters of the underlying model.

HERWIG, PYTHIA and ISAJET all include longitudinal polarization effects in SUSY
production processes. There is also a parton-level program SUSYGEN [272], interfaced to
PYTHIA, which includes these effects.

These programs also differ in the inclusion of the correlations in the subsequent decays
of the particles. While SUSYGEN includes these correlations using helicity amplitude
techniques and HERWIG uses the method of [252], these effects are generally not included
in either PYTHIA or ISAJET.

Among the parton-level programs, at present only COMPHEP and GRACE and AMEGIC++
include SUSY processes, limitedly to the MSSM (although extensions to non-minimal
SUSY models are now planned within COMPHEP). WHIZARD also supports the MSSM, op-
tionally with anomalous couplings, but model extensions or completely different models
can be added. Finally, MADGRAPH can be extended to add the additional SUSY interac-
tions that are needed, as (most of) the prototype subroutines for the latter already exist in
the HELAS library.
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Positron Helicity with Möller and Bhabha Scattering”, Phys. Rev. 122 (1961) 536.

[219] H. Frauenfelder and A. Rossi, in Methods of Experimental Physics, edited by L.C.L.
Yuan and C.S. Wu (Academic, New York, 1963) Vol. 5, part B, p. 214-274.

[220] F. Corriveau et al., Phys. Rev. D24 (1981) 2004.

[221] P.S. Cooper et al., Phys. Rev. Lett.34 (1975) 1589.

[222] C.Y. Prescott et al., Phys. Lett. B77 (1978) 347; Phys. Lett. B84 (1979) 524.

[223] G. Baum et al., Phys. Rev. Lett. 51 (1983) 1135.

[224] M. Swartz et al., Nucl. Instr. and Meth. A363 (1995) 526.

[225] H.R. Band et al., Nucl. Instr. and Meth. A400 (1997) 24.

[226] P. Steiner et al., Nucl. Instr. and Meth. A419 (1998) 105.

[227] B. Wagner et al., Nucl. Instr. and Meth. A294 (1990) 541.

[228] J. Arrington et al., Nucl. Instr. and Meth. A311 (1992) 39.

[229] D. Adams et al., Nucl. Instr. and Meth. A443 (2000) 1.

[230] M. Hauger et al., Nucl. Instr. and Meth. A462 (2001) 382.

[231] L.V. de Bever et al., Nucl. Instr. and Meth. A400 (1997) 379.

[232] G. Alexander, I. Cohen, Nucl. Instr. and Meth. A486 (2002) 552.

[233] A. Airapetian et al., Nucl. Instr. and Meth. A540 (2005) 68.

[234] Thomas Benisch, PhD-Thesis, University of Erlangen-Nürnberg, 1998.

[235] V. Gharibyan, N. Meyners and P. Schuler, LC-DET-2001-047;
see http://www.desy.de/˜lcnotes.

[236] M. Woods, K. C. Moffeit, T. O. Raubenheimer, A. Seryi, C. Sramek and A. Flori-
monte, SLAC-PUB-10353, 2004, arXiv:physics/0403037.

[237] M. Woods and K. C. Moffeit, SLAC-PUB-10669,SLAC IPBI TN-2004-3, 2004, Pre-
sented at International Conference on Linear Colliders (LCWS 04), Paris, France, 19-24 Apr
2004

[238] V. Brisson, R. Chiche, M. Jaquet-Lemire, S. Kurbasov, L. Losev, C. Pascaud, A. Re-
boux, V. Soskov, Z. Zhang, F. Zomer, Paris, August 2004.

[239] N. Falletto et al., Nucl. Instrum. Meth. A 459 (2001) 412.

[240] M. S. Bilenky, J. L. Kneur, F. M. Renard and D. Schildknecht, Nucl. Phys. B 409
(1993) 22.

147



[241] K. Monig, LC-PHSM-2000-059.

[242] S. Jadach, B. F. L. Ward and Z. Was, Comput. Phys. Commun. 130 (2000) 260
[arXiv:hep-ph/9912214].

[243] F. Cuypers and P. Gambino, Phys. Lett. B 388 (1996) 211 [hep-ph/9606391];

[244] A.M. Bincer, Phys. Rev. 107 (1957) 1434.

[245] G.W. Ford, C.J. Mullin, Phys. Rev.108 (1957) 477.

[246] A.A. Kresnin, L.N. Rozentsveig, Journ. Exp. Theor. Phys. 32 (1957) 353 [Soviet
Physics JETP 5 (1957) 288].

[247] G. Alexander, E. Reinherz-Aronis, Measurement of low energy longitudinal polarised
positron beams via a Bhabha polarimeter, TAUP-2791-05, hep-ex/0505001.

[248] P. Chen, T. Ohgaki, A. Spitkovsky, T. Takahashi and K. Yokoya, Nucl. Instrum.
Meth. A 397 (1997) 458 [arXiv:physics/9704012].

[249] G. Corcella et al., JHEP 0101 (2001) 010 [arXiv:hep-ph/0011363]; G. Corcella et al.,
arXiv:hep-ph/0210213.

[250] H. Baer, F. E. Paige, S. D. Protopopescu and X. Tata, arXiv:hep-ph/0001086.
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