NuTeV Structure Function Measurement

The NuTeV Collaboration

1 Columbia University, New York, NY, 2 University of Cincinnati, Cincinnati, OH, 3 Fermi National Accelerator Laboratory, Batavia, IL, 4 Kansas State University, Manhattan, KS, 5 Northwestern University, Evanston, IL, 6 University of Oregon, Eugene, OR, 7 University of Pittsburgh, Pittsburgh, PA, 8 University of Rochester, Rochester, NY.

The NuTeV experiment obtained high statistics samples of neutrino and antineutrino charged current events during the 1996-1997 Fermilab fixed target run. The experiment combines sign-selected neutrino and antineutrino beams and the upgraded CCFR iron-scintillator neutrino detector. A precision continuous calibration beam was used to determine the muon and hadron energy scales to a precision of 0.7% and 0.43% respectively. The structure functions $F_2(x, Q^2)$ and $xF_3(x, Q^2)$ obtained by fitting the y-dependence of the sum and the difference of the ν and $\bar{\nu}$ differential cross sections are presented.

Keywords: nuetev; structure function.

Neutrino-nucleon deep inelastic scattering (DIS) probes the structure of the nucleon and QCD. 1 The NuTeV experiment is a high-energy fixed target νN scattering experiment, which combines two new features: Separate high-purity neutrino and antineutrino beams, used to tag the primary lepton in charged-current interactions, and a continuous precision calibration beam which improves the experiment's knowledge of the absolute energy scale for hadrons and muons produced in neutrino interactions. 2 $8.6 \times 10^5 \nu$ and $2.3 \times 10^5 \bar{\nu}$ charged-current (CC) interactions passing analysis cuts were collected during NuTeV's data taking run.

1. ν-Fe CC Differential Cross Section

The differential cross section is determined from

$$\frac{d^2\sigma^{\nu}(E)}{d\Omega d\phi} = \frac{1}{\Phi(E)} \frac{d^2N^{\nu}(E)}{d\phi d\theta}.$$

(1)
where $\Phi(E)$ is the $\nu(\bar{\nu})$ flux in energy bins. The cross section event sample is required to pass fiducial volume cuts, μ track reconstruction quality cuts, and minimum energy thresholds of $E_{\mu} > 15$ GeV, hadronic energy, $E_{HAD} > 10$ GeV, and neutrino energy, $E_\nu > 30$ GeV. Selected events are binned in x, y, and E_ν bins, and corrected for acceptance and smearing using a fast detector simulation. $Q^2 > 1$ GeV2 is required to minimize the non-perturbative contribution to the cross section. NuTeV data ranges from 10^{-3} to 0.95 in x, 0.05 to 0.95 in y, and from 30 GeV to 300 GeV in E_ν.

The flux is determined from data with $E_{HAD} < 20$ GeV using the "fixed ν_μ" relative flux extraction method. 1 The integrated number of events in this sample as $y = \frac{E_{HAD}}{E_\nu} \rightarrow 0$ is proportional to the flux. Corrections, determined from the data sample, up to order y^2 are applied to determine the relative flux to about the 1% level. Flux is normalized using the world average ν-Fe cross section $\sigma_{\nu Fe} = 0.677 \times 10^{-38}$ cm2/GeV. 3

The fast detector simulation, which takes into account acceptance and resolution effects, uses an empirically determined set of PDFs extracted by fitting the differential cross section. 4 The procedure is then iterated until convergence is achieved (within 3 iterations). Detector response functions are parameterized from the NuTeV calibration beam data samples. 2

2. Structure Functions

The structure function $F_2(x, Q^2)$ is determined from a fit to the y-dependence of the sum of the $\nu, \bar{\nu}$ differential cross sections:

$$\left(\frac{d^2\sigma}{dx dy} + \frac{d^2\sigma}{dx dy} \right) = \frac{G^2_{\nu e} \frac{M E}{\pi}}{x} \left[2 \left(1 - y - \frac{M x y}{E} \right) + \frac{y^2 + 4M^2 x^2/Q^2}{1 + R_L} \right] F_2 + \frac{y}{2} \Delta x F_3, \tag{2}$$

where $F_2 = \frac{x F_2^\nu + x F_2^\bar{\nu}}{2}$, $R_L(x, Q^2)$ is the ratio of the cross section for scattering from longitudinally to transversely polarized W-bosons where, $2x F_1 = F_2^\nu (1 + R_L(x, Q^2))$.

Cross sections are corrected for QED radiative effects and for 5.67% excess of neutrons over protons in our iron target before the sum is formed. 5 To extract $F_2(x, Q^2)$ we use $\Delta x F_3$ from a NLO QCD model as input (TRVFS). 6 The input value of $R_L(x, Q^2)$ comes from a fit to the world's measurements. 7 NuTeV $F_2(x, Q^2)$ for neutrino scattering on iron is shown on Fig. 1 (left) compared with previous ν-Fe scattering measurements (CDHSW, 8 CCFR). 9 NuTeV F_2 is in agreement with CDHSW and CCFR for medium $x \,(0.03 < x < 0.4)$. At high x NuTeV result agrees in level with CDHSW, but not in shape. NuTeV F_2 is systematically above CCFR for $x > 0.4$: 5% at $x = 0.45$, 10% at $x = 0.55$, 20% at $x = 0.65$.

Similarly the structure function $xF_3(x, Q^2)$ is determined from a fit to the y-dependence of the difference of the $\nu, \bar{\nu}$ differential cross sections:

$$\left[\frac{d^2\sigma}{dx dy} - \frac{d^2\sigma}{dx dy} \right] = \frac{2G^2_{\nu e} \frac{M E}{\pi}}{x} \left(y - \frac{y^2}{2} \right) x F_3^{AV}(x, Q^2) \tag{3}$$
Fig. 1. Preliminary NuTeV F_2 (left) and xF_3 (right) in comparison with previous ν-Fe scattering experiments

where $xF_3^{AVG} = \frac{1}{2}(xF_3^p + xF_3^n)$. $F_2^n(x, Q^2) \approx F_2^p(x, Q^2)$ are nearly identical so no additional model input is required. Cross sections are corrected for QED radiative effects and for 5.67% excess of neutrons over protons in our iron target before the difference is formed. \(^5\) Fig. 1 (right) shows the NuTeV measurement of $xF_3(x, Q^2)$ from fits to the cross section difference. NuTeV xF_3 agrees with CCFR and CDHSW for $0.03 < x < 0.4$. For $x > 0.4$ NuTeV result agrees in level, but not in shape with CDHSW, and is systematically higher than CCFR(97). \(^6\)

3. Conclusions

In conclusion, we have measured F_2 and xF_3 structure functions. NuTeV result is in good agreement with previous ν-Fe results over the intermediate x range ($0.03 < x < 0.4$). At high-x ($x > 0.4$) NuTeV result is systematically higher than CCFR result, it agrees in level with CDHSW, but not in shape.

References