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Sensitivity to �13 and Æ in the Decaying Astrophysical Neutrino Scenario
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We have previously shown that the decay of high-energy neutrinos from distant astrophysical
sources would be revealed by avor ratios that deviate strongly from the ��e : ��� : ��� = 1 : 1 : 1
expected from oscillations alone. Here we show that the deviations are signi�cantly larger when the
mixing angle �13 and the CP phase Æ are allowed to be nonzero. If neutrinos decay, this could allow
measurement of �13 and Æ in IceCube and other near-term neutrino telescopes.
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Traveling over cosmological distances, neutrino wave
packets decohere into mass eigenstates. The probability
to measure a neutrino avor � at Earth is therefore

P� =
X
�

w�

X
j

jU�jj
2 jU�j j

2 ; (1)

where U�j are elements of the neutrino mixing matrix,
and w� are the weights of the avors produced in the
astrophysical source. As is well-known, the weights from
a pion-muon decay chain, we : w� : w� = 1 : 2 : 0, lead
to avor ratios at Earth of ��e : ��� : ��� = 1 : 1 : 1 [1].
Variation of the mixing angles from the assumed ��� ��
symmetry limit (�23 = 45Æ and �13 = 0) leads to only
small (<� 20%) deviations.
We have recently shown that the expected avor ra-

tios would be dramatically altered if neutrinos decay [2].
The strongest lifetime limits, from solar neutrinos, are
too weak to restrict the possibility of astrophysical neu-
trino decay by a factor of about 107 [2, 3]. Other scenar-
ios, small-Æm2 active-sterile mixing in pseudo-Dirac [4]
or mirror models [5], or CPT violation [6], produce more
subtle deviations from the expected 1 : 1 : 1. While
neutrino decay can be tested with IceCube [7] and other
near-term detectors, the latter scenarios may require fu-
ture detectors [8].
The most interesting decay scenario is that in which

�3 and �2 decay (either into active �1 or sterile states),
but the lightest neutrino �1 is stable. In this case, the
beam contains just the single mass eigenstate �1, and the
avor ratios at Earth are simply

�e : �� : �� = jUe1j
2 : jU�1j

2 : jU�1j
2 : (2)

We present here further analysis of this scenario, taking
into account the broken �� � �� symmetry that arises
when Ue3 = sin �13e

�iÆ 6= 0. Even for small �13, we �nd
that the avor ratios are very sensitive to the CP phase Æ,
which was set to zero for simplicity in our earlier work [2].
We assume a normal neutrino mass hierarchy. For the

case of an inverted hierarchy (or no decay), varying �13
has little e�ect. Note that in this decay scenario, there
is no dependence on the initial astrophysical ux ratios,
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FIG. 1: Variation of the ratio �� =�� with jUe3j
2 = s213 in

the allowed range [9]. From bottom to top, the solid curves
correspond to Æ = (0; �=4; �=2; 3�=4; �), with the hatched re-
gion showing the full allowed range. The atmospheric angle
is �23 = 45Æ [10] and the solar angle is �12 = 32:5Æ [11].

and hence on the production mechanism of the ultra high
energy neutrinos, since the ux reaching Earth consists
only of the lightest neutrino �1.
Expressing the avor ratios in Eq. (2) in terms of the

mixing parameters (using the conventions of Ref. [12] and
cij � cos �ij , sij � sin �ij),

��
��

=
s212(1� cos 2�23) + s213c

2

12(1 + cos 2�23) � 4Ĵ

s2
12
(1 + cos 2�23) + s2

13
c2
12
(1� cos 2�23) + 4Ĵ

:

(3)
We have de�ned

Ĵ �
1

4
sin 2�12 sin 2�23 (s13 cos Æ) ; (4)

which is related to the Jarlskog invariant J according to
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FIG. 2: Same as Fig. 1, except for the ratio �e=��. As in
Fig. 1, the value expected in the no-decay case is 1; here the
e�ects of decay are always pronounced.

J = Ĵc2
13
tan Æ. It is known, and is evident in Eq. (3), that

either a nonzero cos 2�23 or s13 breaks ����� symmetry.
In Fig. 1, we show the ratio ��=�� as a function of jUe3j

2

(within the range allowed by reactor experiments [9]),
with �23 = �=4 �xed. Even a small �13 has a relatively
large e�ect, particularly when the CP phase Æ is allowed
to be nonzero. However, direct measurement of the ratio
��=�� is very diÆcult, since events which are unique to
�� (double-bang and lollipop events) have much lower
detection probabilities [8].
In contrast, the �e=�� ratio can be directly probed in

a detector like IceCube by comparing the rate of shower
events to muon events [8]. This avor ratio is

�e
��

=

�
jUe1j

2

1� jUe1j2

��
1 +

��
��

�
: (5)

The �e fraction in the �1 mass eigenstate is insensitive
to values of �13 in the allowed range, shown by the �rst
factor in Eq. (5), where jUe1j � (c12c13)2. However, the
broken ����� symmetry a�ects the �e=�� ratio through
the second factor in Eq. (5), and this is a large e�ect.
When cos Æ is negative (positive) it decreases (increases)
the �� fraction of �1 with respect to the �� fraction, re-
sulting in an enhanced (suppressed) �e=�� ratio. This is
shown in Fig. 2. The curve with Æ = 0 is as in Ref. [2],
though we have updated the solar angle �12. For nonzero
Æ, new to this work, the avor ratio is signi�cantly farther
from the no-decay value of 1.
Note that the dependence of Eqs. (3) and (5) on the

CP phase Æ occurs only through cos Æ, since this is a
CP-conserving observable. Therefore, it is not necessary
to separate astrophysical neutrinos and antineutrinos,
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FIG. 3: Upper panel: varying the solar angle, with �12 = 30Æ

(dashed), 32:5Æ (solid) and 35Æ (dotted). Lower panel: vary-
ing the atmospheric angle, with �23 = 40Æ (dashed), 45Æ

(solid) and 50Æ (dotted). The bottom and top curves cor-
respond to Æ = (0; �). As before, the region between the
curves is the allowed range, obtained for di�erent values of Æ.

which would be very diÆcult. The phase Æ is of crucial
importance in terrestrial long-baseline oscillation experi-
ments since CP-violating observables, based on the com-
parison of neutrino and antineutrino oscillation probabil-
ities, are proportional to sin Æ [13]. Farzan and Smirnov
have shown that a nonzero sin Æ may in principle also be
inferred by direct construction of the leptonic unitarity
triangle [14]. A key distinction is that the terrestrial ex-
periments use a beam of avor eigenstates, whereas neu-
trino decay can produce a pure mass eigenstate, allowing
for very large variation with Æ. Since measurement of
Æ in terrestrial experiments will be an extremely chal-
lenging task, it is intriguing to �nd an example where
the e�ect of varying Æ is huge. Finally, the avor ratios
are sensitive only to the \Dirac" phase Æ, and not the
\Majorana" phases; Majorana phases are relative phases
between mass eigenstates, and the beam consists of the
single mass eigenstate �1.

Variation of the atmospheric mixing angle �23 away
from 45Æ also breaks the �� � �� symmetry, as shown
in Eq. (3), and has a similar e�ect on the avor ratios.
Variation of the solar mixing angle changes the �e=��
ratio as it alters the �e fraction of �1. In Fig. 3, we
show how the variations of these angles within their one-
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sigma allowed ranges a�ects �e=��. Note that the size
of the variation due to uncertainties in the solar and at-
mospheric angles are quite similar. These uncertainties
will be reduced by existing or planned solar and long-
baseline experiments. The angle �13 may be measured
by future long baseline [13] or reactor [15] experiments,
and measuring Æ may require a neutrino factory.
To conclude, IceCube and other detectors have an ex-

cellent chance of detecting astrophysical neutrinos and
measuring their avor ratios in the next several years.
If neutrinos decay, the avor ratio �e=�� will be much
larger than its no-decay value of 1, and this e�ect is sig-

ni�cantly enhanced by nonzero �13 and Æ. Thus there
may be a new opportunity to measure the last unknown
values in the neutrino mixing matrix.
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