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Abstract

We examine the decay modes�=�0 ! �+��
 within the context of the Hidden Local
Symmetry (HLS) Model. Using numerical information derived in previous fits toV P

andV e+e� decay modes in isolation and the� lineshape determined in a previous fit to
the pion form factor, we show that all aspects of these decays can be predicted with fair
accuracy. Releasing some parameters does not improve the picture. This is interpreted as a
strong evidence in favor of the box anomaly in the�=�0 decays, which occurs at precisely
the level expected. We also construct the set of equations defining the amplitudes for
�=�0 ! �+��
 and�=�0 ! 

 at the chiral limit, as predicted from the anomalous HLS
Lagrangian appropriately broken. This provides a set of four equations depending on only
one parameter, instead of three for the traditional set. This is also shown to match the (two–
angle, two–decay–constant)���0 mixing scheme recently proposed and is also fairly well
fulfilled by the data. The information returned from fits also matches expectations from
previously published fits to theV P
 decay modes in isolation.
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1 Introduction

Interactions and decays of light mesons fit well within the framework of Chiral Perturbation
Theory (ChPT) [1]. Strictly speaking, the ChPT framework applies to the octet members of the
pseudoscalar sector (�;K; �8) which behave as Goldstone bosons whose masses vanish at the
chiral limit. Relying on the largeNc limit of QCD, an extended ChPT framework (EChPT)
has been defined [2, 3] including the singlet�0 state which keeps a non–zero mass at the chiral
limit, but this vanishes in the largeNc limit. On the other hand, the decays�0=�=�0 ! 

,
are understood as proceeding from the so–called triangle anomaly. These are accounted for by
means of the Wess–Zumino–Witten (WZW) Lagrangian [4, 5] which is also normally incorpo-
rated into the ChPT Lagrangian [2, 3].

Other anomalous processes describing the(�0�+��
) vertex and the decay mode(� !
�+��
) have been identified long ago within the context of Current Algebra [6] ; they are
presently referred to as box anomalies. Triangle and box anomalies are now derived from
the WZW Lagrangian. The box anomaly part of the WZW Lagrangian predicts exactly the
values of the amplitudes for the couplings(�0�+��
), (��+��
) and(�0�+��
) at the chiral
limit ; however, the momentum dependence of the corresponding amplitudes is not predicted
and should be modelled. When dealing with experimental data, this momentum dependence is
naturally accounted for by vector meson contributions and, then, the question becomes whether
these alone account for the box anomalies or whether an additional contact term (possibly
simulating high mass resonances) is needed ; if this contact term (CT) is needed, it should
have a definite value in order to stay consistent with the rigorous predictions of the WZW
Lagrangian.

Therefore, from an experimental point of view, the question of the relevance of the box
anomaly phenomenon turns out to check the need for a well–defined contact term besides
the usual resonant contributions. This question is still awaiting a definite and unambiguous
signature.

In its simplest figure, the problem of the relevance of the box anomaly phenomenon is
adressed in the coupling(�0�+��
). The relevance of a possible contact term beside vec-
tor meson exchanges has been examined. A value for this coupling has been extracted from
experimental data [7] and found close to expectations1 (only 2� apart).

A cleaner environment could be provided by the decay modes�=�0 ! �+��
 which are
also accounted for in the WZW Lagrangian. Several information are available : the partial
widths [9] are known with an accuracy of the order 10% cross–checked by several means, the
� spectrum as function of the photon momentum has been measured long ago [10, 11] and
provides a usable information. Finally, measurements of the�0 spectrum as function of the
dipion invariant–mass have been performed twelve times, with various levels of precision, and
the corresponding data are published as papers from several Collaborations [13, 14, 15, 16,
17, 18] or are available as PhD theses [19, 20, 21, 22]. The latest measurements have been
performed recently by CERN Collaborations [23, 24].

This already represents a large amount of information covering all aspects of these decays.
This should allow a reasonably well founded analysis in a search for the box anomaly in the

1See, also, the discussion in [8].
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�=�0 system.

As stated above, predictions on box anomalies are given at the chiral point and�=�0 spectra
clearly extend in regions where accounting for the� exchange cannot be avoided in order to
match experimental information. The magnitude of the�=�0 ! �+��
 partial widths should
also be influenced by the� exchange. Stated otherwise, including momentum (invariant–mass)
dependence within their spectra is essential and should be done in a consistent way in order to
extract reliably information on the box anomaly from data.

Indeed, in these decays, two contributions are a priori competing : a contact term and
a (dominant) resonant one –the� exchange– with contributions of (sometime) very different
magnitudes. In order to detect reliably the former, the latter has to be known with enough accu-
racy and, possibly, fixed. The sharing in the anomalous amplitudes at the chiral limit between
the contact term and the resonant term might also have to be understood unambiguously.

Therefore, a global framework is needed where the vector meson degrees of freedom are
explicitly accounted for together with pseudoscalar mesons and the contact terms. Several
such frameworks implementing vector dominance (VMD) in effective Lagrangians have been
defined : Resonance Chiral Perturbation Theory [1, 25], massive Yang–Mills fields [26, 27,
28], Hidden Local Symmetry (HLS) Model [29, 30]. It was soon shown [31] that all these
approaches were physically equivalent. For convenience, we work within the HLS Model
context.

A second issue makes the difference between the�0 box anomaly and the�=�0 ones. The
former is practically insensitive to symmetry breaking effects (Isospin Symmetry breaking is a
small effect), the latter however sharply depends on how SU(3) Symmetry and Nonet Symme-
try breakings really take place. Therefore a reliable breaking scheme of the�=�0 sector should
also be defined and checked in the triangle and box anomaly sectors. It should also be validated
in all processes where it has to apply, likeV ! P
 andP ! V 
 decays. One has already
noted some confusion [32] in the meaning of the decay constants entering the amplitudes for
the� and�0 decays to two photons.

If one limits oneself to collecting some VMD term for the� contribution (even if motivated)
and simply adds it with a phase space term to be fit, one can be led to ambiguities [33, 34]
when solving the Chanowitz equations [35] which represent the traditional way of describing
the �=�0 mixing (see also [36]). Along the same line, if the breaking scheme generally used
[33, 35, 36, 37, 38] happens to be inappropriate in order to describe the�=�0 system, extracting
the box anomaly constant values from data becomes hazardeous.

A scheme for implementing SU(3) symmetry breaking in the full HLS Lagrangian has been
already defined [39, 40]. This scheme, referred to as BKY has been proved [32] to meet all
(E)ChPT requirements and allows a successfull account of a very large set of experimental
data [41, 42]. A brief global account of the full breaking scheme we advocate is summarized
in Appendix A to [43]. The non–anomalous sector has been used in pion form factor studies
providing also consistent results [44, 43].

Therefore, in this paper, we intend to extend the realm of the broken HLS model by study-
ing the decays�=�0 ! �+��
. The behaviour of the model can then be examined in a context
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where the box anomaly phenomenon is expected to be present. One can hope extracting unam-
biguously the information about the relevance of this phenomenon from experimental data.

The paper is organized as follows ; in Section 2 we remind the traditional expressions of
the decay amplitudes at the chiral limit for�=�0 ! 

 and�=�0 ! �+��
. In Section 3, we
outline the derivation of the full anomalous sector of the HLS Model, mostly refering to the
basic paper [30]. In Section 4 we remind shortly how the BKY breaking of SU(3) Symmetry
and the breaking of Nonet Symmetry has been performed and tested. In Section 5, we remind
the result of applying this to�=�0 ! 

 as it provides an unconventional set of expressions for
the amplitudes at the chiral limit.

In Section 6, we develop the structure predicted for the�=�0 ! �+��
 decay modes by
the broken HLS Model. We first show that the BKY breaking scheme provides also uncon-
ventional expressions for the box anomaly amplitudes at the chiral limit. We also show that all
information related with these decay modes (parameters and� meson lineshape) have been al-
ready derived numerically and functionally in other sectors of the low energy phenomenology.
It thus follows that all properties of the�=�0 ! �+��
 decay modes can be predicted without
any numerical or functional freedom. In Section 7, we examine the predictions of this model
for the�=�0 ! �+��
 partial widths and for their dipion invariant–mass spectra.

After reviewing shortly the status of the available experimental data on this subject in Sec-
tion 8, we devote Section 9 to comparing the predicted lineshapes with the published experi-
mental spectra. Section 10 is devoted to performing a global fit of the shape and yield informa-
tion for the�=�0 ! �+��
 modes in order to check precisely the relevance of the numerical
parameters which were all fixed from analysis of other independent data sets. In Section 11,
we propose, for comparison, fits of the anomalous amplitudes at the chiral limit, under various
conditions and show that the one (instead of three, usually) parameter dependence of these gets
a strong support from data.

Finally, Section 12 is devoted to a summary of the results obtained and to conclusions.

2 Radiative Decays of Neutral Pseudoscalar Mesons

Some interactions (or decay modes) of neutral pseudoscalar mesons (P = �0; �; �0) are
described by matrix elements having the wrong parity and are called anomalous. Anomalous
interactions were treated by Wess and Zumino [4] and then expounded upon by Witten [5] ;
they are given by the anomalous action, which we shall refer to as�WZW. For the purpose of
this paper, two pieces2 from �WZW are relevant :

2Here and in the following, we denote byV the (massive) vector field matrix, byA the electromagnetic field
and byP the pseudoscalar field matrix. The matrix normalization we use for these have defined in [29, 40, 32] ;
our normalization for the SU(3) flavor matrices differs from those in [8] by a factor of 2 :T a

Holstein = TWitten =
2 T a

HLS . Moreover, we indifferently useV P
 andAV P to name the corresponding coupling.

3



L

P = � Nce
2

4�2f�
�����@�A�@�A�Tr[Q

2P ]

L
PPP = � ieNc

3�2f 3�
�����A�Tr[Q@�P@�P@�P ]

(1)

with e2 = 4��, andf� = 92:42 MeV ; Q is the quark charge matrix given by3 Q = Diag(2/3,–
1/3,–1/3) ifNc = 3. A is the electromagnetic field andP is thebarepseudoscalar field matrix.
From there, amplitude intensities at the chiral point can be derived.

The first pieceL

P describes the decays�0=�=�0 ! 

. The second pieceL
PPP contains
an interaction term
 ! �+�0�� briefly discussed in the Introduction. This last piece contains
also terms which account for the anomalous decay modes�=�0 ! �+��
.

Without introducing symmetry breaking effects, the Lagrangian pieces in Eq. (1) can give
reliable predictions for processes involving only pions. In order to deal with interactions in-
volving � or �0 mesons, one has to feed these Lagrangians with SU(3) and Nonet Symmetry
breaking mechanisms. Usually these breaking mechanisms are considered to arise from the
naive replacement of the pseudoscalar decay constants [35, 36, 8, 37, 48]. Using obvious nota-
tions, the amplitudes at the chiral point derived from Eqs. (1) can be written :

T (X ! 

) = BX(0) �
�������

0
�k�k

0
�

T (X ! �+��
) = EX(0) �
������k�p

+
� p

�
�

(2)

(X = �; �0), where the coefficients are, assumingNc = 3 :

B�(0) = � �

�
p
3
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cos �P
f8

� 2
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2
sin �P
f0

#
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+ 2
p
2
cos �P
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#

E�(0) = � e

4�2
p
3

1

f 2�

"
cos �P
f8

�
p
2
sin �P
f0

#

E�0(0) = � e

4�2
p
3

1

f 2�

"
sin �P
f8

+
p
2
cos �P
f0

#
(3)

using the traditional one–angle mixing scheme. The procedure is thus obvious : one replaces
one power off� by the octet (f8) or singlet (f0) decay constant understood under their custom-
ary definitions in (Extended) ChPT. In the following, we refer toX ! 

 andX ! �+��

as triangle and box anomalies.

This implies several assumptions which are traditionally made in an implicit way [8, 37] :

3There is a tight connection between the charge of quarks and the value ofNc in the anomalous action [45, 46,
47].
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� the decay constantf8 andf0 are the (usual) decay constants of ChPT defined from current
expectation values :h0jJ8�j�8(q)i = if8q� andh0jJ0�j�0(q)i = if0q�,

� SU(3) and Nonet Symmetry Breakings act in exactly the same way for the triangle and
box anomalies.

These equations have been used in several ways and they underlie decades of phenomeno-
logical work on the�=�0 mixing. For instance, Refs. [36, 8, 37] consider the two–photon decay
widths of the� and�0 mesons and the ratiof8=f� ' 1:3 from ChPT [1] to derive�P ' �20Æ
andf0=f� ' 1:04 ; this meets ChPT expectations [2, 3] if one identifies�P with the presently
named�8. Comparable results [34, 38] are derived by using the four equations above, after ex-
tracting the box anomaly constants from the dipion mass spectra in�=�0 ! �+��
 decays. The
third Eq. (3) has also been used with accepted parameter values (f8=f� = 1:25, f0=f� = 1:04
and�P = �20:6Æ) inside the HLS Model to derive a successfull description of� ! �+��
 in
isolation [49].

The validity of the first two Eqs. (3) has been recently addressed and consistency of these
with the�=�0 breaking scheme derived from EChPT [2, 3] has been found doubtfull [32, 50,
51].

There is no currently known examination of the last two Eqs. (3) ; however, some remarks
on the renormalization of the WZW box term [40] tend to indicate that these are also doubtful.
Therefore, the phenomenological results derived from using Eqs. (3) have to be reexamined in
a consistent framework.

3 The Anomalous Sector in the HLS Model

The HLS Model originally describes the
 � V transitions, all couplings of the kindV PP
and possiblyAPP , if the specific parametera of the HLS model [29] is not fixed in order to
recover the traditional VMD formulation (a = 2). In this framework, the main decay mode
! ! �+�0�� of the! meson is, for instance, absent as clear from the explicit expression of
the HLS Lagrangian [40].

As seen above, anomalous interactions involving pseudoscalar mesons and photons are con-
tained in�WZW [4, 5]. These terms were included in the Hidden Local Symmetry Lagrangian
by Fujiwaraet al. [30], along with anomalous vector meson (V ) interactions in such a way
that the low energy anomalous processes (in the chiral limit wherem� = 0) 
 ! �+�0�� and
�0 ! 

 are solely predicted by�WZW. The construction of this HLS anomalous Lagrangian,
originally performed in [30], is discussed in detail in several excellent reviews [28, 39]. Here,
one limits oneself to a brief outline of its derivation, pointing out the motivation for some
important assumptions. The anomalous action has the form :

� = �WZW + �FKTUY

�FKTUY =
P4

i=1 ci
R
d4x Li

(4)
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where theci are entirely arbitrary constants. The LagrangiansLi are given in [30] and each of
them containsAPPP andAAP pieces which would contribute to the anomalous decays, but
are cancelled byAPV terms. These Lagrangians contain alsoV PPP andV V P pieces [30].

In view of extending the assumption of dominance of vector mesons (VMD) to the anoma-
lous sector, it was first shown that a set ofci in Eq. (4) can be defined in such a way that
�0 ! 

 occurs solely through�0 ! !�0 followed by the (non–anomalous) transitions! ! 

and�0 ! 
. The�0 width thus derived is identical to the Current Algebra prediction repro-
duced byL

P defined in the previous Section.

It was also shown [30] that complete vector dominance can be achieved, where the direct
termAPPP is converted toV PPP , with some other set ofci. In this framework, the decay
! ! �+�0�� occurs through! ! �0�0 (the V V P term) followed by�0 ! �+�� and
through the contact term (V PPP ) which gives a direct contribution! ! �+�0��. However,
it happens that theV V P contribution (which provides alone the correct! partial width) is
numerically reduced in a significant way by the contact term (V PPP ). In view of this, [30]
proposes another set ofci which provides an anomalous effective Lagrangian containing only
aV V P term and, besides, the standard WZW termAPPP in the following combination :

LFKUTY = �3g2

4�2
�����Tr[@�V�@�V�P ]� 1

2
L
PPP ; (5)

whereL
PPP is defined in Eqs. (1). One should note that the normalization affecting the WZW
part of this Lagrangian is a pure prediction of the HLS Model based on a definite extension of
the VMD concept to anomalous processes.

Focussing on decays like�=�0 ! �+��
, one readily sees from this expression that, in
order to recover the behaviour expected fromL
PPP alone, these two terms should contribute
to the box anomaly (i.e. the full amplitude at the chiral limit) in the following ratio :

VMD : CT = � 3 : 1 ;

at the chiral limit ; “VMD” names here the contribution generated by the first term in Eq. (5)
and “CT” (contact term) those generated from the second term. Thus, the “VMD” contribution,
generated by the triangle anomaly generalized toV V P couplings, is predicted dominant at the
chiral limit.

Within this framework, the main! decay mode proceeds only from! ! �0�0 followed by
�0 ! �+�� and�! �+���0 proceeds solely from!�� mixing. The experimental situation
concerning the decay mode�! �+���0 is conflicting. Indeed, a recent result from the SND
Collaboration [52] claims for no significant evidence in favor of a contact� ! �+���0 term
in their e+e� ! �+���0 data and provides a new upper bound much more stringent than
previous ones [9] ; however, using their own data on the same physical process, the KLOE
Collaboration [53] claims that a significant contact term is present in their data. Actually,
as there is currently no available analysis performed using consistenly a full VVP and VPPP
Lagrangian or a Lagrangian like in Eq. (5), no founded conclusion can really be drawn.

Processes like�0=�=�0 ! 

 occur solely through�0=�=�0 ! V V 0 followed byV; V 0 !

. However, transitions like
 ! �+�0�� or decays like�=�0 ! �+��
 receive contributions
from the contact term and from theV V P term (essentially through� meson exchange).
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TheV V P piece of this effective Lagrangian has been used successfully in several recent
studies [41, 42, 32, 55] and proved to predict (after implementing appropriate symmetry break-
ing mechanisms) up to 26 physics information with a number of free independent parameters
ranging from 6 to 9 (when Isospin Symmetry breaking is considered [55]).

4 The Extended BKY Symmetry Breaking Scheme

The study of SU(3) breaking of the HLS Model has been initiated by BKY [39] who pro-
posed a simple and elegant mechanism. However, the procedure was soon understood as break-
ing also Hermiticity of the derived Lagrangian, which was clearly an undesired feature. A
slight modification [40] of the original BKY procedure was shown to cure this problem and to
produce a quite acceptable broken Lagrangian (see Eq. (A5) in [40]). The way field renormal-
ization has to be performed turns out to define the renormalized field matrix (denotedP 0) in
terms of the bare field matrix (denotedP ) by :

P = X
�1=2
A P 0X�1=2

A ; (6)

where the breaking matrix isXA = Diag(1; 1; z), with z = [fK=f�]
2.

As such, the (original) BKY breaking scheme can only address a limited amount of physics
processes, as all information related with the� meson can only be treated crudely and the
properties of the�0 meson cannot be addressed.

In order to address physics information about the�=�0 system appropriately, the singlet
sector has first to be introduced in the original HLS Lagrangian. This has been done by using
[40] the U(3) symmetric field matrixP = P8+P0 instead of onlyP = P8 when constructing the
Lagrangian. This is found to provide the HLS Lagrangian with the canonical kinetic energy of
the singlet state (�0 field) while this does not modify the interaction Lagrangian [40] by adding
�0–dependent pieces.

The step further is to break the UA(1) symmetry by introducing determinant terms [56] into
the effective Lagrangian which becomes [32] :

L = LHLS � 1

2
�2�20 +

1

2
�@��0@

��0 (7)

By means of this (modified) BKY breaking scheme, the HLS Lagrangian can now address
the�=�0 system with a complete scheme of symmetry breaking (SU(3) and Nonet Symmetries).
A �0 mass term is generated and the kinetic energy term of the Lagrangian is modified in a
non–canonical way, which implies that a field transformation to renormalized fields has to be
performed. This can be done through the two–step renormalization procedure defined in [32]
and outlined in the Appendix. This transformation is well approximated [32] by :

P = X
�1=2
A [P 0

8 + xP 0
0]X

�1=2
A ; (8)

this has been shown to differ [32] from the exact field transformation only by terms of second
order in the breaking parameters ([z � 1], [x� 1]).
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This transformation4 was postulated (or fortunately anticipated) in [41] in order to study
the full set ofAV P radiative decays, especially the modes involving the�=�0 mesons. Using
this transformation has provided a fairly good description of the whole physics accessible to
this broken Lagrangian [41, 32, 42, 55] with only a small number of parameters, as already
noted.

Departures from Nonet Symmetry were observed [41] by extracting from datax = 0:90�
0:02, significantly different from 1. One may rise the question of the correspondance between
x in Eq. (8) and the basic Nonet Symmetry breaking parameter� of the Lagrangian in Eq. (7)
– which is [32] nothing but the�1 parameter of [2, 3]. One can write :

x =
1p

1 + h�
; h = 1 +O(z � 1) : (9)

Indeed, as shown in the Appendix,x absorbs a small influence of SU(3) symmetry breaking
(about 5% of its fitted value).

Comparison of all results of this broken HLS Lagrangian, especially decay constants and
mixing angles, with the available (E)ChPT estimates of the same parameters [2, 3, 50] was
done and appeared also fully satisfactory. It is worth remarking that the HLS phenomenology
was yielding an estimate for the (E)ChPT mixing angle�0 much smaller in magnitude than
the (E)ChPT leading order estimate (�0:05Æ � 0:99Æ in contrast with' �4Æ), but in fair cor-
respondence with a more recent EChPT next–to–leading order calculation [58] which yields
�0 = [�2:5Æ;+0:5Æ].

It is also worth remarking that the (full) breaking scheme just outined anticipated [41] the
branching fraction for� ! �0
 with a value twice smaller than its contemporary measure-
ment [54]. This predicted value coincides with all recent measurements performed with larger
statistics [9].

The quasi–vanishing of�0 has two interesting consequences. On the one hand, it allows
to relate the traditional wave–function mixing angle with the recently defined�8 mixing angle
[2, 3] by providing�8 ' 2�P (fulfilled at a few percent level) ; the derivation is given in the
Appendix for the exact field transformation.

On the other hand, the condition�0 = 0 relates the Nonet symmetry breaking parameterx
to �P :

tan �P =
p
2
(1� z)

2 + z
x (10)

This relation is fulfilled with a high degree of numerical accuracy [32] and only reflects
that the ChPT mixing angle�0 is not significantly affected by symmetry breaking effects. This
relation will be somewhat refined (See Section 11 and the Appendix).

4The motivation behind this postulate was that weighting differently the singlet and octet parts of theP and
V field matrices allows to derive the most general parametrization [57] of theV P
 coupling constants consistent
with only SU(3) symmetry in the vector and pseudoscalar sectors, while the corresponding U(3) symmetries are
both broken.
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It then follows that, from the three originally free breaking parameters associated with the
pseudoscalar sector (z, x, �P ), only one remains unconstrained. It could be either ofx or �P ;
however, it will be shown thatx might be prefered.

We do not go on discussing here symmetry breaking in the vector meson sector as it is not
in the stream of the present paper ; we refer interested readers to [39, 40, 41, 42] where this is
discussed in details.

Some remarks are of relevance. The combined Nonet Symmetry and SU(3) breaking
scheme of the HLS Lagrangian presented in this Section defines what we name the Extended
BKY breaking scheme. It restores the relevance of a one angle mixing scheme for the�=�0 sys-
tem. However, this does not give any support to the traditional breaking scheme as expressed
by Eqs. (3). In contrast, it matches fairly well all expectations of the two–angle, two–coupling
constant mixing scheme recently derived from EChPT [2, 3, 50, 51] at leading order in the
breaking parameters.

This full breaking scheme is also mathematically equivalent to the recently proposed [50,
51] breaking in the quark flavor basis framework ; it might be prefered as a definite concept
like Nonet Symmetry breaking, which underlies some Lagrangian pieces (L2) of EChPT, can
be implemented more clearly and tracing its effect in phenomenology is easier.

5 Two–Photon Decay Widths of the� and �0 mesons

The two–photon decay widths of the� and�0 mesons can be derived easily from the HLS
Lagrangian (theV V P part of Eq. (5)) supplemented by theV 
 transition amplitudes of the
non–anomalous HLS Lagrangian) after renormalizing to physical fields by Eq. (8). Applying
directly the same Eq. (8) to the WZW LagrangianL

P in Eq. (1) leads exactly to the same
result5 [32] :

G�(0) = � �

�
p
3f�

�
5z � 2

3z
cos �P �

p
2
5z + 1

3z
x sin �P

�
;

G�0(0) = � �

�
p
3f�

�
5z � 2

3z
sin �P +

p
2
5z + 1

3z
x cos �P

�
:

(11)

These expressions compare well with the corresponding quantities in Eqs. (3). However,
this correspondence is only formal as, definingf 8 andf 0 by :

f�
f8

=
5z � 2

3z
;

f�
f0

=
5z + 1

6z
x ; (12)

yieldsf8 = 0:82f� (andf 0 = 1:17f�), which has little to do with numerical expectations from
ChPT (extended or not). It was proved in [32] that these arenot the standard EChPT decay
constants. These can be derived from our broken Lagrangian, yielding information which
matches [32] fairly well EChPT expectations [2, 3].

5From now on, we assumeNc = 3.
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This proved the basic consistency of breaking scheme presented in the previous Section
with EChPT. The formulation given in Eq. (11) could look, at leading order, more tractable
than present standard expressions ; it makes indeed much clearer that the number of parameters
to be determined phenomenologically is limited.

Therefore, the first basic assumption which underlies the understanding of Eqs. (3) is not
fulfilled by the BKY breaking scheme [39, 40] and this is independent of whether Nonet Sym-
metry is broken.

Let us remind that Eqs. (11) give the two–photon radiative decay widths of the�=�0 mesons
with good accuracy. These can even be predicted by using solely the value ofx extracted from
fit to the (independent) set ofAV P decay modes of light mesons [32]. Fixingz = [fK=f�]

2

to its experimental value and assuming Eq. (10), Eqs. (11) become a constrained system
depending on only one parameter and can be solved providing results consistent with using,
instead, theAV P decay mode information.

Of course, the mixing angle�P entering Eqs. (11) does not coincide with�8 and is derived
[32] as�P = �10:32Æ � 0:20Æ when requiring the constraint Eq. (10) to hold exactly ; the
corresponding value for�8 ' �20Æ compares well to expectations [1, 2, 3]. One should note a
recent estimate of�P = �10Æ � 2Æ provided by lattice QCD computations [59] which strongly
supports this phenomenologically extracted value.

Therefore, the picture represented by Eqs. (11), which does not meet traditional expecta-
tions [8, 38, 58, 34], matches quite well all relevant information from ChPT and QCD, and, last
but not least, corresponds to a satisfactory description of the whole set of two–body radiative
decays of light mesons [41, 42, 32].

6 The HLS Model For �=�0 ! �+��
 Decay Modes

Using the effective Lagrangian in Eq. (5), the processes�=�0 ! �+��
 receive VMD
contributions from theV V P term and CT contributions from theL
PPP piece. The purpose
of this Section is to examine carefully these decay modes. These will also lead us to question
the last two (box) anomaly equations Eqs. (3).

6.1 Basic Lagrangians

Within the HLS Model, theV V P part of �=�0 ! �+��
 involves, beside the� meson,
the interplay of the! and� mesons to their decay mode to�� only6. However, these (isospin
violating) couplings are small enough to be safely neglected. Additionally, the� meson is
outside the decay phase space of both� and�0 mesons, and the accuracy of the data is far
from allowing any! effect to be significant or simply visible in the�0 dipion invariant–mass
spectrum.

6Indeed, the non–anomalous HLS Lagrangian, broken or not [40], contains no couplings like��V or �0�V .
Therefore, terms like�=�0 ! �V followed byV ! �
 do not contribute to the decays under examination.
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It can be shown [42], that theV P
 couplings following from the anomalous sector of HLS
model can be derived from the corresponding (V P
) piece of :

L = C�����Tr[@�(eQA� + gV�)@�(eQA� + gV�)X
�1=2
A (P 0

8 + xP 0
0)X

�1=2
A ] ; (13)

whereg is the universal vector coupling of the HLS Model [29]. The value forC = �3=(4�2f�)
is fixed by normalizing theAAP term in Eq. (13) to the corresponding WZW Lagrangian in
Eq. (1).

This equation could essentially be considered as a way to postulate VMD forV V P cou-
plings and it also gives the normalization shown in Eq. (5). Focussing on the piece of Eq. (13)
related with neutral pseudoscalar mesons, one gets :

L
�P 0 = � eg

4�2f�

2
41
2
�0 +

p
3

2
�8 + x

s
3

2
�0

3
5 �����@�A�@��

0
� ; (14)

with obvious notations. The� meson decay relevant for the present study is driven by :

L��� = i
ag

2
�0�

h
��@��+ � �+@���

i
(15)

which can be extracted from the non–anomalous (broken or not) HLS Lagrangian. The param-
etera is the specific HLS parameter expected such thata = 2 in traditional formulations of
VMD, but has always been fitted in the rangea = 2:3� 2:5 from radiative and leptonic decays
of light mesons [41, 42] and in pion form factor studies [44, 60]. We recall that the� mass in
the HLS Model is not free and is given by the (extended) KSFR relationm2

� = ag2f 2� which
does not coincide with traditional mass values [9] (' 830 MeV versus' 775 MeV) ; these
happen to be only a matter of definition [43]. Finally, the CT contributions are contained in the
following Lagrangian piece extracted from Eq. (5) –for the normalization– and Eq. (1) :

L
�+��P 0 = �i e

8�2f 3�
�����A�@��

+@��
�
2
4@��0 + 1p

3
@��8 + x

s
2

3
@��0

3
5 : (16)

Changing from�8; �0 to �; �0 is performed by a rotation involving the (wave–function)
mixing angle : 2

64 �

�0

3
75 =

2
64 cos �P � sin �P

sin �P cos �P

3
75
2
64 �8

�0

3
75 (17)

There is, obviously, no loss of generality in introducing this definition and, thus, the physi-
cal parameter�P which has to be fixed or fitted.

For all expressions in this Section, the fields which occur are the renormalized ones. It
should already be noted that all basic Lagrangian pieces involved in the considered�=�0 decays
do not depend at leading order on the SU(3) breaking mechanism (the parameterz = [fK=f�]

2

already met), at least in the limit of Isospin Symmetry where we stand. However SU(3) sym-
metry breaking is hidden inside�P (see Eq.(10)).
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6.2 Amplitudes and Chiral Limit Properties

With the information given just above, it is an easy task to compute the amplitudes for the
�=�0 decays considered. One finds :

T (X ! �+��
) = cX
ie

8
p
3�2f 3�

"
1 +

3m2
�

D�(s)

#
�������k�p

+
�p

�
� ; (18)

using obvious notations, withX = �; �0, m2
� = ag2f 2� ands being the dipion invariant–mass.

ThecX are given by :
c� = [cos �P � x

p
2 sin �P ] ;

c�0 = [sin �P + x
p
2 cos �P ] :

(19)

FinallyD�(s) is the inverse� propagator which can be written [43] :

D�(s) = s�m2
� � ���(s) ; (20)

in terms of the already defined (KSFR)�mass and of the� self–mass. The occurence of���(s)
permits to move the� pole off from the physical region [61, 43]. For the present purpose, one
has only to stress that the� self–mass can be chosen rigorously such that���(0) = 0 as
expected from current conservation [63].

Going to the chiral limit, Eq. (18) is nothing but the second Eq. (2) and has for coefficients :

E 0
�(0) = � ie

4
p
3�2f 3�

[cos �P � x
p
2 sin �P ]

E 0
�0(0) = � ie

4
p
3�2f 3�

[sin �P + x
p
2 cos �P ] :

(21)

These relations clearly meet expectations of Current Algebra ; they could not be derived
exactly if���(0) 6= 0. The single symmetry breaking parameter occuring manifestly isxwhich
essentially measures departures from Nonet Symmetry.

It should be noted that there is no obvious connection between the way symmetry breaking
occurs for the box anomaly (Eq. (21)) and for the triangle anomaly (see Eqs. (11)) within
the broken HLS Model. It is worth recalling once more, that the symmetry breaking scheme
defined in Section 4 was shown [32] to match perfectly all expectations of EChPT collected in
[2, 3, 50] and that no further piece has been added in order to derive Eqs. (21).

Therefore, the second assumption which underlies the traditional way of breaking symme-
tries for this set of equations (see the discussion after Eqs. (3)) is also not met by the BKY
breaking scheme [39, 40, 32].

Eqs. (21) are also interesting for other aspects : In order to recover the values expected
for bothE 0

X(0), the VMD (i.e. resonant) contribution happens to be 3 times larger than the
contact term (CT) contribution and carries an opposite sign ; this was expected when building
the anomalous HLS Lagrangian Eq. (5).

12



Eqs. (18) also show that fitting the�=�0 invariant–mass spectra with a constant term inter-
fering with a resonant term is indeed legitimate. However, it is also clear that the value of this
constant isnot the value of the full amplitude at origin and thus carries only a part of the box
anomaly value.

The triangle and box anomaly expressions in the broken HLS model are summarized by
Eqs. (11) and (21). We know from previous works [41, 32] that experimental data support this
in the triangle anomaly sector (AV P and�=�0 ! 

) ; the real issue is to test its validity in
processes where box anomalies are expected to occur.

6.3 The
�+���0 Amplitude

Even if outside the main stream of this paper, it is interesting to give the amplitude for
the 
�+���0 anomalous coupling. Using Eqs. (1) and (14) above, together with the piece
analogous to Eq. (15) for�� which can be found in [40], one gets :

T (
 ! �+���0) = A(s; t; u) �������p
+
� p

�
�p

0
� ; (22)

with :

A(s; t; u) =
e

8�2f 3�

"
1 +

m2
�

D�(s)
+

m2
�

D�(t)
+

m2
�

D�(u)

#
; (23)

wherem2
� = ag2f 2� andD� is given by Eq. (20) with the appropriate permutation of the

arguments to t andu. In this case, the symmetry breaking mechanism we have defined has no
influence. The momentum dependence of this expression differs from known ones (recalled by
Eqs. (39) and (40) in [8]) by its taking into account the� self–energy (see Eq. (20)). It gives
the expected value (�ie=4�2f 3�) at s = t = u = 0 and is worth to be checked on forthcoming
experimental data [64]. It might also be extracted frome+e� ! �+���0 annihilation with
data covering the low invariant–mass region.

6.4 Invariant–Mass Spectra And The Box Anomaly

From the amplitude in Eq (18), one derives the decay width :

d�(X ! �+��
)
d
p
s

=
c2X
36

�

[2�f�]6

�����1 + 3m2
�

D�(s)

�����
2

k3
q
3
� ; (24)

for each of the� and�0 mesons. We have definedk
 = (m2
X�s)=2mX , the photon momentum

in theX rest frame andq� =
q
s� 4m2

�=2, the pion momentum in the dipion rest frame.
The contact term generated by the second piece in Eq. (5), is represented in Eq. (24) by

the number 1 inside the modulus squared. On the other hand, as the normalization of the VMD
contribution can be fixed [41, 42] at the appropriate value by only normalizing to theP


amplitude in Eq. (13), checking the effect of this contact term by switching on/off this “1” in
Eq. (24) is indeed meaningfull. In this way, one can address the experimental relevance of Eq.
(5).
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Eq. (24) is interesting in many regards :

� The shape of the invariant–mass spectra depends on the�=�0 meson properties only
through a kinematical factor (k3
). Therefore, the shape of the invariant–mass spectra
does not carry anymanifestinformation on the box anomaly constantscX ,

� The lineshape of the invariant–mass spectra in�=�0 decays depends only on� meson
properties. However, the way this dependence occurs in�=�0 decays is different from the
one in the pion form factor [43], as the dressing of the�� 
 transition amplitude��
(s)
plays no role in the�=�0 decays,

� All information on the value ofc� andc�0 is carried by the partial width itself. It can be
algebraically derived ifD�(s) is known reliably from another source.

In order to perform a search for the box anomaly, one needs a functionD�(s) accurately
determined between the two–pion threshold and the� mass. In the physical region involved
in �=�0 decays, all coupled channels allowed by the HLS model contribute at one–loop order
[43]. However, except for�+��, each provides7 only logarithms, beside their influence on the
subtraction polynomial hidden inside the�0 self–mass���(s). This is their major effect, and
thus neglecting these loops while still considering a subtraction polynomial of the appropriate
degree is certainly motivated.

Reduced to only its coupling to�+�� (with or without accounting for kaon pairs), the�
propagator used here contributes to providing a fairly accurate numerical determination of the
pion form factor both in modulus[43, 61] and in phase [43] up to the�mass. Therefore, for the
purpose of studying the box anomaly, there no point in going beyond contributions from only
the non–anomalous HLS Lagrangian. In this case, the� self–energy can be written :

���(s) = g2���[`�(s) +
1

2z2
`K(s)] ; (25)

whereg��� = ag=2, while z has been already defined. We have denoted`�(s) and `K(s)
the pion and kaon loops amputated from their couplings to external legs (we neglect the mass
difference betweenK� andK0) ; these are given in closed form in [42].

These loops should be subtracted at least twice in order to make convergent the Dispersion
Integrals which define them as analytic functions ; this gives rise to a first degree polynomial
P�(s) with arbitrary coefficients to be determined by imposing explicit conditions or by fit.
However, as noted just above, anomalous loops force to perform, at least, three subtractions
[42, 43], which modifies the arbitrary polynomialP�(s) to (at least) second degree. It is the
reason whyP�(s) will be assumed of second degree, even if one limits oneself to pion and kaon
loops. This does not increase our parameter freedom, as will be seen shortly.

7And, to some extent, except also for the!�0 channel in the�0 decay ; however, the neglected effect is
concentrated in the region above 917 MeV, very close to the phase space boundary for�0 decay and far beyond in
the� decay.
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6.5 External Numerical Information

From what seen above, the conditionP�(0) = 0 on the subtraction polynomial is certainly
desirable, otherwise the Current Algebra expectations could not be derived exactly ; addition-
ally, this condition ensures masslessness of the photon after dressing by pion and kaon loops.
It thus remains 2 subtraction constants to be determined or chosen ; we shall fix them from the
fit performed [43] on the pion form factor from threshold to the� mass. Denoting���(s) the�
self–energy subtracted three times [42], we have :

���(s) = ���(s) + e1 s+ e2 s
2 : (26)

On the other hand, we can also fix the HLS parametersa, g (and thusm�) andx to their
values fitted in radiative and leptonic decays8 [41, 42]. Knowingz andx, one can derive the
value for�P from Eq. (10). The values fore1 ande2 are fixed from an appropriate fit to the
pion form factor [43], where the parametersa, g andx are fixed consistently withAV P and
(!=�)e+e� modes.

As we restrict the� coupling to only the�+�� andKK channels, these values fore1 and
e2 are certainly correlated with the chosen values fora andg ; they are not affected numerically
by the value forx.

Parameter Value
a 2:51� 0:03

g 5:65� 0:02

x 0:90� 0:02

z = [fK=f�]
2 1:51� 0:02

e1 0:222� 0:011

e2 �1:203� 0:017 GeV�2

Table 1: Parameter values fora, g, x ,z fixed from a global fit toV P
 andV ! e+e� decay
modes [41, 42, 55] ;e1 ande2 are fixed from a fit [43] to the pion form factor including only
�� andKK as channels coupling to�.

The values for these parameters are gathered in Table 1. As these parameters are supposed
universal in the realm of the HLS Model, one can fix their values from fit to data independent
of the�=�0 ! �+��
 decay modes. It is indeed the case for theV P
 or theV e+e� decay
modes and for the pion form factor. As commented on above, these fit values correspond to
a very good fit quality for the corresponding data. For instance, they allow topredict [32] the
two–photon decay widths as recalled in Table 2.

8Actually, the values forg andx are determined almost solely by theAV P radiative decays ; the value fora
is a consequence of these on theV ! e+e� decay modes, but mostly the! and� leptonic decays.
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Parameter PDG 2002 Prediction Significance (n �)
� ! 

 (keV) 0:46� 0:04 0:46� 0:03 0:0 �

�0 ! 

 (keV) 4:29� 0:15 4:41� 0:23 0:4 �

Table 2: Partial widths for�=�0 ! 

 as predicted using Eq. (11) with parameter values as
coming from a global (HLS) fit to onlyV P
 decay modes of light mesons [32].

Choosing the� propagator as it comes out of the HLS fit to the pion form factor [43] is also
fairly legitimate, as this� propagator should also be valid anywhere within the HLS framework.
As stated above, we consider for clarity only the case where the only open channels are�� and
KK. We have, nevertheless, checked that changing to various open channel subsets coupling
to the� meson (as done in [43] for the pion form factor), with correspondingly changinge1
ande2 to their fit values, does not produce any significant modification to the results presented
below.

To summarize, self–consistency implies that we can fix all parameters and functions from
their most reliable fit values and expressions, provided the data set is independent of the�=�0

decays considered here. This independent data sample coversV P
 andV e+e� couplings
[41, 42, 32] and the pion form factor [43]. It then follows that all information related with the
box anomalies can bepredictedwithout any parameter freedom.

7 Predictions For�=�0 ! �+��
 Decays

In this Section, we examine the predictions derived for the�=�0 ! �+��
 decay modes
for the partial widths and dipion invariant–mass distributions.

7.1 Partial Widths, Experimental Values and Predictions

Using Eq. (24) and numerical (and functional) information given in the previous Subsec-
tion, it is easy to check that we can write :

�(X ! �+��
) = AXc
2
X ; (27)

where :

AX =
1

36

�

[2�f�]6

Z mX

2m�

�����1 + 3m2
�

D�(s)

�����
2

k3
q
3
�d
p
s ; X = �; �0 : (28)

This integration can be done by Monte Carlo techniques and gives :

A� = 38:25� 1:07 ; eV A�0 = 42:16� 3:00 keV : (29)

For further concern, one should note that these integrals are not affected by the value for
x. Using the parameter values given in Table 1, Eqs. (19) and (10), one cancomputethe
partial widths and get the results collected in Table 3. We have performed the computation by
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switching on/off the contact term contribution9. We stress again that all results presented in
this Section do not depend on any free parameter and thus arepredictionsrelying on the rest of
the HLS phenomenology.

decay PDG 2002 Prediction with Prediction without
Box Anomaly box Anomaly

� ! �+��
 (eV) 55� 5 56:3� 1:7 100:9� 2:8

Significance (n �) 0:25 � 8 �

�0 ! �+��
 (keV) 60� 5 48:9� 3:9 57:5� 4:0

Significance (n �) 1:75 � 0:39 �

Table 3: �=�0 Partial widths as predicted by the HLS Model when switching on/off the box
anomaly contribution. Significance is computed using an error obtained by adding in quadra-
ture the experimental error and the relevant model error computed by Monte Carlo sampling
(using information in Table 1).

From Table 3, one clearly sees that thepredictedpartial width for�0 is not really sensitive
to the presence of the contact term. This can be well understood as, indeed, the value forA�0 is
sharply dominated by the� peak contribution provided by theV V P Lagrangian term and the
magnitude of the contact term is comparatively small.

In contrast, thepredictedpartial width for� is much more sensitive to the contact term
because this contribution has only to compete with the low mass tail of the� distribution ; the
bulk of the resonance contribution is indeed sharply suppressed because the available phase
space is small and located far outside the� peak.

Therefore, one can already conclude from Table 3 that the�=�0 partial widths values provide
a strong evidence in favor of the box anomaly. Unexpectly, this evidence is provided by the�
partial width alone. Additionally, the valuespredictedfor the box anomaly constantsc� ' 1:21
andc�0 ' 1:07 from the rest of the HLS phenomenology fits nicely the�=�0 partial widths,
which means, for instance, consistency with having�P = 10:30Æ � 0:20Æ.

Together with the results predicted for two–photon decay widths of the�=�0 system, this
also gives a strong support to the extended BKY breaking scheme summarized in Section 4 and
to Eqs. (11) and (21) for the amplitude expressions at the chiral limit.

7.2 Invariant–Mass Spectra With/Without The Contact Term

The shape of the dipion invariant–mass distributions are given in Figure 1, top for�0, mid
for �. These are proportional to yields (up to acceptance/efficiency effects). The distributions

9When switching off the contact term in Eq. (28), the numbers in Eq. (29) becomeA� = 57:51� 4:01 eV and
A�0 = 49:60� 2:98 keV, which is already conclusive.
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are displayed with having switched on/off the contact term ; in these two figures, the relative
magnitude of the twin distributions is respected.

Looking at the� distributions, one clearly understands the width results given in Table 3,
as the integrals corresponding to box anomaly on/off are clearly very different (actually by a
factor of about 2).

In the case of the� meson, lineshape differences between the case when the contact term
is activated and when it is dropped out are tiny as illustrated by Fig. 1, bottom. In this figure,
one displays the distribution obtained by removing the contact term and the one derived by
activating it, after rescaling it by' 1:8.

The lineshape, in the case of the�0, shows that the peak location when accounting for
the contact term is slightly higher mass (6 � 8 MeV) compared to the case when this (CT)
contribution is cancelled out. However, the main effect is that yields below the� peak location
are somewhat suppressed because of the contact term.

In this sort of situation, if one performs a fit of an�0 spectrum affected by CT with only
a resonance contribution and lets free the resonance parameters, the shape will be distorted.
Indeed, in order to average reasonably the rising wing of the� distribution, the peak has to be
shifted to higher mass and therefore the observed mass must be larger. This is a mechanical
effect connected with the minimization of a�2 for any appropriate function of one variable.
We come back to this point when comparing with experimental data.

8 Experimental Data on�=�0 ! �+��
 Decays

There are several sets of data available for the dipion mass spectrum of the�0 meson. Most
of them have been published only as figures [12, 13, 14, 15, 16, 17]. For these, however, it
happens that the information given in the body of the articles provides enough information in
order to recover the yields and derive the acceptance/efficiency function ; the redundency of
the information is fortunately such that consistency checks and cross checks can be performed
which validate the outcome of the procedure. This is described in details in Section 4 of [33]
together with the peculiarities of each of these data sets.

Other spectra were available directly to us [18] or as PhD theses [19, 20, 21, 22] published
only as preprints ; Here also the relevant information was either directly available or could be
reconstructed accurately, as for the references quoted above. One should note that the data of
[21] supersed the ARGUS results published in [14].

These former data samples carry widely spread statistics ; 474 events for the oldest data set
[12], 130 events from TASSO [13], 795 events from ARGUS [14] updated three years later to
2626 [21], 321 events in the TPC–

 sample [15], 195 events in the PLUTO data set [19], 586
in the CELLO data set [22], 401 for the data set of WA76 collected using the Omega Prime
Spectrometer at the CERN SPS [18] and, finally, 2491 (after acceptance corrections) for the
experiment performed at Serpukhov using the Lepton F facility [17].

The method used to extract the dipion invariant–mass spectra from data is of special con-
cern. These were derived from the data samples just listed in the following way : for each bin
of dipion invariant–mass, one plots the�+��
 invariant–mass spectrum and fits with a gaus-
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sian (plus a polynomial background) the number of�0 it contains. In this way, one get rid to
a large extent of the precise background10 parametrization, as the signal is a narrow gaussian
peak dominated by the experimental resolution.

Performing this way, spectra appear without any background and the influence of this in the
data sets only reflects in the magnitude of the errors on the yields per bin. It should be stressed
that this extraction method is obviously independent of any assumption on the lineshape of the
underlying� invariant–mass distribution.

For the data samples of [17, 18, 19], the acceptance/efficiency function was directly known,
but without information on its uncertainties. As the spectra of [18, 19] carry small statistics,
statistical errors are dominant and errors on the acceptance/efficiency function can be neglected.
For the data sample of [17], the acceptance/efficiency function is provided as a curve (see their
Fig. 3) ; as no information is reported about uncertainties affecting this function, these cannot
be accounted for when folding in this function with any model distribution.

For the other data samples reviewed above, uncertainties on the acceptance/efficiency func-
tions are also unknown, as these can only be derived by unfolding it from the fitting distribution.
This was always provided as a product of a well defined model function for the decay with this
acceptance/efficiency function. This is also of little importance for all data sets dominated by
statistiscal errors, but it also affects the large statistic sample of ARGUS we shall examine [21].

Neglecting this source of uncertainties when computing model errors certainly biases�2

estimates towards larger values (and smaller probabilities). However, it should not spoil quali-
tatively model descriptions.

The sample of MarkII [16] is also significant (' 1200 events), however, the mass spectrum
derived from this has been obtained in a different way : Selecting the events in some mass
interval around the�0 mass in theglobal �+��
 invariant–mass spectrum, the corresponding
events are plotted in bins of�+�� invariant–mass. This spectrum is then described as a su-
perposition of a� mass distribution plus some background, and a global fit to this spectrum
provides the signal (�) and background populations inside each bin. Therefore this method
assumes an accurate knowledge of all phenomena contributing to the background (and of its
parametrization) ; it also relies on the way the� lineshape is parametrized. This is also, basi-
cally, the method used to study the�0 mass distribution performed by the L3 Collaboration [24]
on a sample of2123 � 53 events ; this will be specifically discussed at the appropriate place
below, as it is the latest published data sample.

Some other papers published spectra without background subtraction (namely[62] and [20]
which carry actually the same data). In order to use these, one would have to model the back-
ground without any motivated knowledge of the data set and detector properties11 ; therefore,
this MarkII spectrum will not be examined here. This lack of background subtraction is also
the reason why the spectrum published by the L3 Collaboration is also skept.

10We have to make assumptions on the background shape across some small�+��
 mass interval while the
signal is a narrow gaussian (typically 20 to 30 MeV for its standard deviation). This is certainly much safer than
assumptions on the background shape over a 1 GeV invariant–mass interval with on top of this a signal as broad
as a� distribution.

11Indeed, beside extracting the yields, one needs to estimate the acceptance/efficiency function which might
well be different for signal and background events.
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Finally, the most reliable spectrum for the�0 decay is the one collected by the Crystal Barrel
Collaboration [23] which is also, by far, the largest data sample (7392 events). This spectrum
has been constructed using the method described at the beginning of this Section ; therefore, it
is independent of any assumption on the underlying� invariant–mass distribution and, thus, is
certainly free from any prejudice or bias. Additionally, this data sample is certainly the most
secure to be used as uncertainties on acceptance and efficiencies are already included into yield
errors and, thus, model comparison can be performed directly and reliably.

The corresponding spectra for the� decay, have been derived from�p! �n data collected
long ago by two experiments [10, 11] ; the published data are already background subtracted.
They both carry large statistics (7250 for [10] and 18150 for [11]). The relevant results have
been published only as figures. Yields per bin can be read off from these figures without any
difficulty together with their errors.

In [10], the acceptance/efficiency function is provided directly and also folded in with a well
defined model function. It is given superimposed to the case when the analysis is performed
with a simple gauge–invariant phase–space matrix element and with a� dominant one. The two
corresponding acceptance/efficiency functions are conflicting, essentially in the regionk
 =
90 � 110 MeV. However, this seems to reflect their dependence upon angular distributions.
It is therefore worth using the functional information associated with the� dominant matrix
element.

For the data of Layteret al. [11], the acceptance/efficiency function is not shown and should
be unfolded from the theoretical� (and phase–space) distribution(s). This information can be
extracted with some reliability ; in contrast with [10], this yields a function extracted from the
� distribution very close from those extracted from the simple phase space distribution. Actu-
ally, this data set should be considered with some care as extracting the acceptance/efficiency
function can only be performed by making some assumption on the� mass actually used in
this paper [11]. We have conservatively assumed that Layteret al. [11] used the same� mass
as Gormleyet al. [10], namelym� = 765 MeV ; this assumption is crucial and cannot be
ascertained. This makes more secure information derived from the Gormley spectrum.

Finally, for both� spectra, it is impossible to restore the accuracy on the acceptance/efficiency
function. These will be considered negligible in the present study.

9 Experimental Data Versus Predictions For�=�0 Spectra

As seen in Subsection 6.4, the HLS Model provides definite spectra for both�=�0 invariant–
mass distributions. These depend on parameters which can be fixed independently of the
�=�0 ! �+��
 spectra, likea, g, x (see Subsection 6.5), and of the� propagator which is
fitted elsewhere [43] with parameters values as determined in these fits (see Eq. (26) and Table
1). The model fairly predicts the absolute magnitude (the integral) of each spectrum as illus-
trated in Table 3. In this Section, we focus on comparing thepredictedlineshapes derived from
the model Eq.(24) with the data listed in Section 8.

As all data considered are binned, we have integrated the predicted function Eq. (24) (or
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Eq. (28)) over the bin size and normalized this function to the integral of the experimental
distribution. When relevant (i.e. all spectra except for the one of Crystal Barrel [23]), the
model function was folded in with the acceptance/efficiency function derived for each of the
above data samples.

The results are displayed in Figs. (2) to (4). One should note that all�0 spectra are given
as functions of the dipion invariant–mass, while� spectra are given as functions of the photon
momentum in the� rest frame.

In these figures, together with the specific experimental spectrum, we show the predicted
curve (computed just as defined just above) when keeping the contact term (full curve) and the
one derived by dropping out this contribution (dashed curve). These two cases will be referred
to as resp.CT andNCT. In these figures, we give the�2 corresponding to these two solutions
under the form�2(CT)=�2(NCT). The number of degrees of freedom can be easily read off
from the spectra as this is exactly the number of bins of the experimental histogram.

The curves shown have been computed at the central values of the parameters as given
in Table 1. The�2’s have been computed by folding in the experimental error in each bin
with a model error also computed bin per bin. These model errors have been computed by
sampling the parameters around their central values with standard deviations given by their
quoted errors (see Table 1). Except for Crystal Barrel [23], where it is irrelevant, uncertainties
on the acceptance/efficiency functions are not (cannot be) accounted for. The curves shown are
actually histograms which have been smoothed automatically by theHBOOK/PAW package.

Examination of Figs. (2) to (4) is quite interesting. First of all, the spectrum from TPC–


 is clearly the single one far away from predictions, indicating that something was not well
controlled when extracting it from data. All others match well, or quite well, the predictions ;
this clearly gives support to the model developped in the previous Sections and to the relevance
of the parameters given in Table 1.

In terms of probabilities (reflected by the�2=dof values given in the figures), the oldest data
set of [12] gives comparable probabilities to either of theCT/NCT assumptions, while maybe
slightly prefering theNCT assumption.CT/NCT descriptions are practically equivalent for the
ARGUS [21] and WA76 [18] spectra, while nevertheless slightly favoring theCT assumption.

The relatively low statistics spectra provided by TASSO [13] (�2 ratio of 0.6 in favor of the
CT assumption), CELLO [22] (0.7) and PLUTO [19] (0.7) somewhat prefer theCT assump-
tion.

Finally, the two largest statistics experiments Lepton F [17] and Crystal Barrel [23] sharply
favor both theCT assumption againstNCT ; the�2 distance is indeed better by more than a
factor of 2 .

To be more precise the Lepton F spectrum12 gives a 3% probability to theCT assumption
and a2 10�8 % probability to theNCT assumption. These relatively low probabilities should
be related with the lack of information on the acceptance/efficiency function which affects in a
same manner both solutions. Accounting for the corresponding errors would certainly increase

12The 8 lowest mass points of this spectrum contribute severely to the�2 for both (CT/NCT ) assumptions.
On the other hand, the sharp drop in acceptance [17] at largem�� might have been difficult to estimate reliably.
Qualitatively, however, the clear preference of this distribution for theCT assumption is obvious.
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both probabilities but hardly switch their ordering.
The corresponding probabilities for the Crystal Barrel data set are resp. 57.8% and 0.1 % ;

these values are certainly realistic as the model errors are reasonably well accounted for.
Among these two data sets which could be used as reference, the Crystal Barrel data (avail-

able in a directly usable form [23]) should clearly be prefered, as systematics are better con-
trolled all along the invariant–mass range. It also carries, by far, the largest statistics.

From�2 values, the shape of the� spectrum from Layteret al. [11] seems in better agree-
ment with theNCT assumption (77% probability) than with theCT assumption (3% probabil-
ity).

In contrast, the description of the� spectrum from Gormleyet al. [10] is simply perfect
and corresponds to resp. 97.7 % probability for theCT assumption and to 58.2 % probability
for theNCT assumption ; this reflects better the remark following from Fig. 1 (bottom) that
these lineshapes are very close together. The�2 values, however, indicate that the geometrical
distance (' p

�2) of this spectrum to theCT solution is significantly smaller than those to
NCT.

Fig. 5 gives the same information as in Fig. (4) but enlarged and binned. Here one sees that
a third of the�2 for the Layter spectrum [11] comes from only the bin covering the momentum
interval 60 � 80 MeV/c. Compared to the same result for the Gormley spectrum [10], the
Layter spectrum looks a little bit skewed. It is, however, impossible to decide whether this
comes from systematics affecting the acceptence/efficiency function as this (skewed) shape
happens to match nicely theNCT assumption13.

However, the� ! �+��
 partial width alone [9], certainly a more secure information, and
the Gormley spectrum undoubtfully favor theCT assumption against theNCT one. These two
aspects have to be balanced in a global fit accounting for lineshapes and partial widths.

10 A Global Fit to �=�0 Spectra and Widths

We have compared the data (lineshapes and partial widths) with the predictions of our
model fed with numerical and functional information coming from the rest of the phenomenol-
ogy accessible to the HLS framework, without any parameter freedom. The results obtained in
Section 7 and 9 considered together indicate that the model is valid and favors the the contact
term as a physically motivated contribution to decay processes. We remind that this contact
term isnot a free parameter, as widely discussed above.

In view of this, it looks worth performing a simultaneous fit of the� data sets with some
accurate�0 spectrum ; for reasons explained above, it is certainly worth choosing the Crystal
Barrel spectrum. As a clear conclusion should take into account all aspects of the available
experimental information, partial widths have been fed into the�2 to be minimized.

13This skewness might have been magnified unwillingly by the choice of them� value we performed in order
to extract the acceptance efficiency/function for the Layter spectrum. Any underestimation of this inputm� value
contributes to the skewness of this distribution. We are responsible for this uncertainty, but we did not find an
unbiased way out.
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In order to perform this fit one needs to release some of the parameters fixed as in Table 1 ;
as the main information for the present purpose is the peak location, it looks worth releasing the
parameters namede1 ande2 which mostly influence the� peak location. Comparing the values
returned from this fit to the corresponding values originally extracted from fitting the pion
form factor could contribute to clarify the conclusion, as one can consider the� propagator as
a universal function, as valid forF�(s) as for the the�=�0 spectra.

Indeed, we know that, in the pion form factor, the subtraction polynomials of���(s) and
��
(s) are somewhat competing and that some (small) correlation among the corresponding
polynomials exists [43] ; it is therefore motivated to attempt freeinge1 ande2 as these correla-
tions could have spoiled their central values by some (certainly) small amount. However, the
parameter values returned from fit must not be inconsistent with their partners derived from fit
to the pion form factor only14.

On the other hand, the other parameter values in Table 1 describing fairly well the full set
of V ! P
 andP ! V 
 decays would hardly accomodate a significant change of their values
without failing to fit theV P
 processes.

In order to avoid too much correlations which can hide clarity in the conclusions, we shall
test separately theCT and theNCT assumptions. Indeed, as the HLS Model predicts the
magnitude of the constant contact term (if any), it seems enough to check its precise relevance
and no attempt will be made to fit its value. Finally, for the present exercise, we neglect model
errors15 ; this mechanically makes the�2’s slightly more pessimistic than they really are.

We could have chosen to perform a simultaneous fit of the Crystal Barrel�0 data set [23]
together with both� data sets [11, 10] simultaneously. One could indeed imagine that the
systematics could compensate. We have, nevertheless, prefered performing the fits separately
for the Crystal Barrel�0 spectrum together with each of these� spectra in isolation. Using both
� spectra certainly leads to intermediate fit qualities.

Additionally, before lettinge1 ande2 vary, we have performed the “0 parameter fit” in order
to get the�2’s and probabilities when using directly the parameter values as given in Table 1. In
this way, we know the starting quality of the global description of these decay modes induced
by the rest of the HLS phenomenology ; we can also estimate what is gained by letting some
parameters to vary.

When using the data set of Layteret al. [11], while accounting for the�=�0 contact terms
at the expected level (assumptionCT), one clearly sees from Table 4 that the� lineshape
parameterse1 and e2 do not move farther than 2� from the values found when fitting the
pion form factor [43] (the present�’s are, however, much larger than found in fits toF�(s)
[43]). The gain in�2 got by releasing these parameters is modest (2.7) and the central values
for the partial widths get a little changed. This confirms that the parameter values in Table 1

14This actually means that a further test could be a simultaneous fit, within a consistent framework, of the
pion form factor and of the relevant�=�0 decay information. One does not expect neither a surprise nor hard
difficulties from such an attempt ; the present work indicates that this should not provide more insight than a
global probability.

15These are certainly present as the uncertainties ona, g andx contribute to model errors, even when releasing
any constraint one1 ande2.
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giving�2=dof = 37:88=35 (34% probability) are already close to optimum ; leaving them free,
essentially improves the� spectrum lineshape slightly, but at the expense of slightly degrading
the central values of the partial widths.

When dropping out the contact term contributions (assumptionNCT), the� lineshape pa-
rameterse1 ande2 change significantly with respect to their starting point, with much larger
errors than originally. Even then, the fitted values fore1 ande2 move by more than 6 (new)
� from expectations ; therefore, these fitted values can be considered inconsistent with their
values fitted in the pion form factor. Additionally, even if the gain is large (�2=dof is improved
from 140.65/35 to 60.88/33), it is not sufficient to push the probability (0.2%) to a reasonable
value. Therefore, the peculiar uncertainties affecting this spectrum does not prevent to reach a
clear global conclusion.

When using the data set of Gormleyet al. [10] together with the�0 data of Crystal Barrel,
the picture is unchanged, but looks much clearer. Fixing the parameters to their values in Table
1, gives already a remarkable fit quality (probability 85 %), when contact terms are accounted
for. In this case, letting freee1 ande2, the�2 improves a little (0.57 unit), but the fit probability
degrades to 80 %, because of the smaller number of degrees of freedom. The� parameters move
by about 1 (new)� from expectations and thus stay consistent with the� lineshape determined
when fitting the pion form factor [43] (the region of the minimum�2 seems flat).

When removing the contact term from our expressions (NCT assumption), the starting
values of the fit parameters provide a comparatively poor decription (1.6 % probability) and
the � partial width is far from expectations [9] (see also Table 4). Now, releasinge1 ande2
improves significantly the description, as we reach a 27 % probability after fit, with reasonable
central values for both partial widths. The price to be paid for this configuration is that the
parameterse1 ande2 change by more than 3 (new)� from expectations. Therefore, theNCT
assumption returns a� lineshape inconsistent with fits to the pion form factor.

From the previous Sections, we already knew that theCT assumption is certainly favored
in a global account of both shape and partial width for both the� and�0 meson simultaneously.
We also knew that theNCT assumption was disfavored under the same conditions.

What we have learnt in this Section is that, in order to accomodate the description of all
aspects of the�=�0 information, theNCT assumption gives up being consistent with the�
lineshape as found by fitting the pion form factor [43].

Therefore, we conclude that experimental data do provide a fair evidence in favor of the
box anomaly phenomenon at the expected level ; additionally, the sharing observed between
resonant and contact term contributions (�3 : 1) is well predicted by the FKTUY assumption
[30] leading to the Lagrangian in Eq. (5).

In Fig. (6), we show the description of the Crystal Barrel spectrum [23] using Eq. (24) (or
Eq. (28)) with the contact term considered and removed. In order to get this we performed fits
leaving freee1 ande2.

When accounting for the�0 contact term, the� peak location is found in the bin covering
the mass region from 725 to 750 MeV. When dropping it out, the (fit) mechanism described in
Subsection 7.2 makes the� peak shifting to the next bin which covers the mass interval from
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750 to 775 MeV. This trend was already observed by [17, 23] and also by most Collaborations
who have performed extraction of the�0 spectrum canonically ; sometime too much [15].

A real shift exists and is small (see Section 7.2). It is artificially increased by the fit pro-
cedure in order to get a better account of the low mass tail of the�0 invariant–mass spectrum.
However, this artificial large mass shift is indeed the signal of the box anomaly.

It is claimed in [24] that the L3 Collaboration does not observe a� peak shift. Several rea-
sons can be invoked. First, as remarked above, [24] did not perform the�0 spectrum extraction
canonically and, therefore, any conclusion about the underlying� lineshape in the�0 decay
becomes a delicate matter.

Among other reasons the most likely is their fitting of the� mass and width. The� (Breit–
Wigner) mass is thus found at values (766�2 MeV) normally obtained in only processes where
the dynamics is not really well under control (hadroproduction or photoproduction) [9].

If, for a moment, the L3 result were considered as reference in order to detect a� peak
shift, one might have instead to consider that a shift occurs ine+e� annihilations or� decays,
as these yield rather larger� (Breit–Wigner) masses (' 775 MeV) [9]. Under these conditions,
it is difficult to draw any conclusion from [24] about the existence (or absence) of a� peak
location shift in the�0 ! �+��
 decay.

11 Fits To The Four Anomaly Equations

From now on, we make the assumption that the correct set of equations defining the anoma-
lous amplitudes at the chiral limit are given by Eqs. (11) and (21) and no longer by Eqs. (3).
These have been derived using the approximate field transformation Eq.(8). We also examine,
for completeness, the case when the exact field transformation is used ; the way to modify our
anomaly equations to go from one case to the other is given in the Appendix.

In both cases, these equations actually depend on only one parameter (resp.x or �) ; this
can legitimately look like a severe constraint.

11.1 Fit Results With Approximate Field Transformation

These equations depend only onf� , z = [fK=f�]
2 and onx. In the present framework,�P

is no longer an independent parameter as it can be algebraically derived from Eq. (10).
One can consider legitimate to still fixf� to its experimental value (92.42 MeV) ; this

is also true forz (see Table 1). Therefore, our set of anomaly equations depends on only one
parameterx, we choosed previously to fix from fit results to radiative decays [41, 32]. Releasing
the constraint Eq. (10) would only add a comfortable (and useless) parameter freedom to the
fits presented just below.

Therefore, one considers here Eqs. (11) and (21) by themselves and attempt to fit them as
a constrained system of 4 equations with onlyoneunknown (x). The results are expected to
provide consistency with those obtained for the same parameters and physics quantities derived
elsewhere [41, 32] from fit toV P
 decay modes.
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The

 partial widths are related with the amplitudes given in Eqs. (11) by :

�(X ! 

) =
M3

X

64�
jGX(0)j2 (30)

On the other hand, the partial widths�(X ! �+��
) given by Eq. (27) where the coeffi-
cientsAX given by Eq. (29), depend only on� properties already derived in [43] by a fit to the
pion form factor. The errors onAX are taken into account in the fit as they are independent of
x.

One has performed a fit of these four partial widths keeping firstz fixed and allowingx to
vary. The results are summarized in Table 5.

It is clear that the fit is fairly successfull and represents the most constrained fit of the four
partial widths ever proposed. One should remark that the best fit returns a value forx perfectly
consistent with our previous fits to solely theV P
 radiative decays, as can be concluded by
comparing to its input value (see Table 1). The corresponding value for�P is not changed
compared to our previous estimates from fit toV P
 decay modes :�P = �10:48Æ � 0:18Æ.

We do not give the estimates for derived quantities (f0, f8, �0, �8) as they practically coin-
cide with the values given in [32] and are all in good correspondence with expectations. Con-
cerning partial widths, three out of four reach a significance much better than the 1� level ; the
worst case is�(�0 ! �+��
) for which the distance to the recommended value [9] is “only”
' 1:6 �.

The fit quality yielded (�2=dof = 2:66=3) is such that releasing alsoz can look like an aca-
demic exercise. It has nevertheless been performed as some correlation could spoil numerically
the connection betweenz and[fK=f�]2.

The fit returnedx = 0:908�0:021 andz = 1:488�0:054with�2=dof = 2:62=2, practically
unchanged, corresponding to a 27 % probability (the worse significance is due to having less
degrees of freedom). The correlation coefficient is+0:67, and the minimization does not spoil
the numerical values found elsewhere [41, 32] for the same parameters.

Therefore, this leads us to conclude that theV P
 decay modes on the one hand, and the four
standard anomalous�=�0 decay modes on the other hand, yield information fairly consistent
with each other. This also means that the anomaly equations we derived are consistent and that
the approximate field transformation (leading order in breaking parameters) on which they rely
match well the present level of accuracy of the data. This statement will be confirmed directly
shortly.

11.2 �P versusx

Eq. (10) corresponds to setting the EChPT decay constant [2, 3]F 0
� to zero. This is rigor-

ously expressed in the broken HLS model by :

tan �P =
h0jJ0�j�8(q)i
h0jJ0�j�0(q)i

=
b0
f0

(31)
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in term current matrix elements and of their expressions [32]. On the other hand, detailed
computation yields :

f0
f�

=
2 + z

3x
;

b0
f�

=

p
2

3
(1� z) x (32)

As clear from its expressionf0 keeps the first non–leading contribution in breaking pa-
rameters (x = 1 + [x � 1]) ; for b0 one has naturally chosen to replacex by 1 and this leads
to Eq. (10). However, one may be tempted to keep it and this leads to replacex by x2 in
the expression Eq. (10) fortan �P ; this is nothing but changing the existing term of order
O([z � 1][x� 1]) ' 0:05.

We have redone the fit just described with this change and yielded a slightly better fit quality
than the previous one (�2=dof = 2:61=3). This fit returns alsox = 0:902 � 0:017 (' 0:5 �
from its partner in Table 5, or also a one percent change) and no change at all for the partial
widths compared to what is displayed in Table 5.

Therefore the sensitivity in describing data is not sharply dependent on non–leading con-
tributions intan �P and using Eq. (10) withx or x2 gives undistinguishable results, while the
latter might be prefered.

11.3 Fit Results With Exact Field Transformation

In order to check the sensitivity of the model to some other details of the broken HLS model,
we have also attempted fits using the exact field transformation [32] instead of its leading order
approximation (see Eq. (8)) ; some details and formulae are given in the Appendix.

The main motivation was to figure out the sensitivity of the data to the approximation
performed on the field transformation.

In this last series of fits, we have keptz fixed ; therefore the fitting parameters are� (the
basic Nonet Symmetry breaking parameter, see Eq. (7)) and�P , the later being possibly fixed
by the constraint�0 = 0. The fit results and physics quantities of relevance (ChPT decay
constants, mixing angles and partial widths) are given in Table 6.

The first conclusion one can draw from this last Table is that the fit value for�0 departs by
less than 1� from zero and the consequences of this on derived physics quantities is simply
negligible. Stated otherwise, the present data are insensitive to releasing the constraint�0 = 0.
This constraint allows to extract a value for�8 = �18:2Æ with a very small statistical error
(' 0:25Æ) ; The value found forf0 andf8 are in the usual ballpark and nothing noticeable
appears compared to the case when the approximate field transform was used [32].

The partial widths are still quite consistent with those in Table 5, showing that the refine-
ments introduced by the exact transformation have no impact on the extracted width informa-
tion for �=�0 ! 

 and�=�0 ! �+��
.

One might maybe note that, in all our attempts, we never get a solution with the partial width
for �0 ! �+��
 larger than its recommended value [9] ; so, the observed 1.6� departure looks
like some small systematic effect. This could be due to having neglected some unidentified tiny
(higher order) contribution ; this might also indicate that the recommended value is slightly
overestimated.

27



On the other hand, we have also reconsidered the problem of which value for� ! 


should be prefered among the the recommended value [9] –recently confirmed by a direct
measurement of this branching fraction [65]–, the

 measurements and the (single) Primakoff
effect measurement. This was done already in [32], but with only the�=� ! 

 modes. In the
present framework extended to the�=�0 ! �+��
 decay modes, the conclusion is confirmed :
The recommended value is still clearly preferred ; fit quality indicates that it could be slightly
smaller (in the direction of the Primakoff measurement), but larger values (in direction of the


 measurements) are clearly disfavored.

12 Summary And Conclusion

The conclusions we get are of various kinds of concern. Therefore, we prefer segmenting
into Subsections.

Experimental Relevance Of The Box Anomaly

Concerning the analysis of a possible occurence of the box anomaly phenomenon in�=�0

decays, the main results reported in the present paper can be summarized as follows :

� There is a strong evidence in favor of a contact term contribution in the�=�0 decays to
�+��
. All aspects (invariant–mass spectra and partial widths) of the�=�0 ! �+��

decays can bepredictedwith fair accuracy using a few information coming from fits to
V P
 andV e+e� decay modes in isolation and from information coming from fit to the
pion form factor.

� The needed contact term is numerically at the precise value predicted for the box anomaly
contribution by the anomalous HLS Lagrangian. This plays a crucial role in yielding,
without any fit, the correct dipion invariant–mass spectra and the correct partial widths
for both the� and�0 mesons.

� If one lets free the parameters defining the� meson lineshape in the�=�0 spectra, they
stay very close to the values expected from (independent) fits to the pion form factor if
the predicted contact term is switched on.

In contrast, if one removes this from the amplitudes, the decription is poor and can only
be improved by letting the� lineshape becoming inconsistent with what is expected from
fits to the pion form factor.

� The fit value obtained for the single free parameter (x, accounting essentially for nonet
symmetry breaking) indicates undoubtfully that a global description of allV P
 modes
and of the four�=�0 decay modes examined here is derived with no additional free pa-
rameter.
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This leads us to conclude to a strong evidence in favor of the occurence of the box anomaly
phenomenon in�=�0 ! �+��
 decays at precisely the level expected from the HLS Model
and the WZW Lagrangian.

Anomaly Equations And Mixing Angles

On the other hand, we have been led to reexamine the validity of the one–angle traditional
equations giving the amplitudes for�=�0 ! 

 and�=�0 ! �+��
 at the chiral point, when
breaking flavor SU(3) and Nonet Symmetries ; resp. the triangle and box anomaly equations.

We have found that the broken HLS Model leads to one–angle (�P ) expressions for the
anomaly equations which match low energy QCD expectations as expressed by (E)ChPT, but
are in deep contradiction with the equations traditionally used.

Instead of depending on three unconstrained parameters, this set of (four) equations we get
depends on only one parameter, tightly associated with Nonet Symmetry breaking (calledx or
� in the body of the text) ; they also depend onz = [fK=f�]

2 which can hardly be considered
as a free parameter. They are proved to be easily fulfilled by the relevant�=�0 partial widths
with fair accuracy.

Relying on the condition�0 = 0, well accepted by the existing data, the broken HLS Model
leads to an expression of�P in terms ofz andx (or �) which can be approximated by a simple
formula. Additionally, under the same assumption, an equation leading to�8 ' 2�P can be
derived.

These equations have been derived from within the framework of the Hidden Local Sym-
metry Model appropriately broken. The phenomenological success of this mechanism implies
that the BKY SU(3) Symmetry breaking scheme, supplemented with Nonet Symmetry break-
ing can be considered as the relevant breaking mechanism.

This extended BKY breaking scheme forces to a field transformation which admits a reli-
able approximation valid at leading order in the breaking parameters ([z � 1], [x � 1]). The
refinements permitted by the exact transformation are found beyond the present accuracy of the
experimental data.

Perspectives

At the level of accuracy permitted by the exisiting data, the HLS Model (including its
anomalous sector) together with the extended BKY symetry breaking scheme, covers success-
fully all aspects of the experimental data examined sofar, certainly up to the� mass.

It would be interesting to have improved data in order to check up to which accuracy the
HLS framework is predictive. For this purpose, more and better data on the�=�0 sector would
be welcome.

These could come from tau–charm factories (CLEO–C and upgraded BESS) which, run-
ning at theJ= (1S), produce very large samples of�=�0 mesons under especially clean physics
conditions. For instance, in the run at theJ= (1S) foreseen by CLEO–C in 2005109 events
will be collected. This will provide 860 000� opposed to a single monoenergetic photon and
2 000 000 opposed to!=�. The corresponding�0 decay modes will provide samples of about
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4 300 000�0 opposed to a single photon and 500 000 opposed to!=�. This should allow an
exhaustive study of the�=�0 system and a much better understanding of low energy QCD.

Acknowledgements

We gratefully ackowledge V. L. Chernyak (Budker Institute, Novosibirsk) for a critical read-
ing of the manuscript and for valuable remarks and comments. We also ackowledge G. Shore
(Swansea University, UK) for useful correspondence and reading the manuscript. Fermilab is
operated by URA under DOE contract No. DE-AC02-76CH03000.

30



Appendix A

A1 : The Exact Field Transformation

As stated in Section 4, the field transformation given by Eq. (8) is an approximation of the
full transformation which has been derived in [32].

In order to bring the kinetic energy part of the U(3)/SU(3) broken HLS Lagrangian into
canonical form (see Eq. (7)), it is appropriate to perform the renormalization in two steps.
One first diagonalizes the standardLHLS piece using the field transformation Eq. (6). This
makes the Lagrangian canonical for the�=K sector, and one yields intermediate fields for the
isoscalar sector (double prime fields). In terms of bare fields, we have :

2
64 �008

�000

3
75 = zr

2
6664

cos � � sin �

� sin � cos � � 1p
2
sin�

3
7775
2
64 �8

�0

3
75 (A . 1 )

where, one has defined :

r =

q
(2z + 1)2 + 2(z � 1)2

3z
' 0:90 ; tan� =

p
2
z � 1

2z + 1
' 0:20 : (A . 2 )

This transformation brings the kinetic term in the following form [32] :

2 T = [@�008 ]
2 + [@�000 ]

2 + �r [sin� @�008 + cos � @�000 ]
2: (A . 3 )

The transformation to fully renormalized fields (primed fields) is performed with :
2
64 �08

�00

3
75 =

2
64 1 + v sin2 � v sin� cos �

v sin� cos � 1 + v cos2 �

3
75
2
64 �008

�000

3
75 (A . 4 )

wherev carries the real information about Nonet Symmetry breaking (see Eq. (7)) :

v =
p
1 + �r2 � 1 ' 0:10 (A . 5 )

That the transformation combining Eqs. (A . 1 ) and (A . 4 ) results, at leading order in the
breaking parameters[z� 1] and[x� 1], into a transformation as simple as Eq. (8), is a little bit
unexpected. As noted in the main text, there are several combinations involving� which are
equivalent tox at leading order ; they are all of the form exhibited by Eq. (9) which is typically
a good representation ofx in terms of�.

This remainder makes clear whyx is influenced by the SU(3) symmetry breaking. A typical
expression forx is :

x =
1p
1 + v

(A . 6 )
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A2 : The Anomalous Amplitudes At The Chiral Limit

The expressions for the anomalous amplitudes at the chiral limit, when using the exact
transformation, are easy to get. They amount to the following changes for the triangle anomaly
expressions in Eqs. (11) :

5z � 2

3z
=) 1

1 + v

"
5z � 2

3z
+
v cos �

rz

#
(octet)

p
2
5z + 1

3z
x =) 1

1 + v

"p
2
5z + 1

3z
� v sin�

rz

#
(singlet)

(A . 7 )

The octet and singlet combinations for the box anomalies can easily be identified by the
occurence of thex factor in Eqs. (19) and (21). The changes to be performed there are :

1 =) 1

1 + v

"
1 +

v cos �

rz

#
(octet)

x =) 1

1 + v

"
1� v sin�

rz
p
2

#
(singlet)

(A . 8 )

It is worth remarking that the exact field transformation changes the(�
�) and(�
�0) cou-
pling constants in such a way that thecX ’s –modified as just stated– still factor out from their
expression. Therefore, Eqs. (18) and (24) keep their structure and the decay invariant–mass
spectra for the�=�0 are the same as for the approximate field transformation.

A3 : Decay Constants And Mixing Angles

One can express easily the EChPT coupling constants (f0 andf8) and mixing angles (�0
and�8) in terms of the parameters mixing� and� defined in the previous Subsections.

The following matrix elements of axials currents can be defined in the broken HLS La-
grangian [32] :

h0J8�j�8(q)i = if8q� ; h0jJ0�j�0(q)i = if0q�

h0jJ8�j�0(q)i = ib8q� ; h0jJ0�j�8(q)i = ib0q� (A . 9 )

One can easily write down the currents and their matrix elements (see [32], Section 6) in the
case when the field transformation is not approximated by Eq. (8). Using the notations defined
in [32], one finds first :

f8
f�

=
rz

1 + v
[1 + v cos 2� ] cos �

b8
f�

= � rz

1 + v
[1� v cos 2� ] sin�

(A . 10 )
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Defining the following parameter combinations :

h1 = cos � � sin �p
2
' 0:90 ; h2 = � cos � � 1 + �p

2
sin � ' 0:03 (A . 11 )

one also yields :

f0
f�

=
rz

1 + v

h
h1(1 + �) + v(2 cos� + h2) sin

2 �
i

b0
f�

= � sin �
rz

1 + v
[ (1 + v cos 2�)� h1v cos � ]

(A . 12 )

A4 : The Condition �0 = 0

Phenomenology [32] as well as explicit EChPT computations [58] indicate that the mixing
angle�0 is very close to zero. Table 6 clearly illustrates that present data are statistically in-
sensitive to letting�0 departing from zero. Under such conditions, several interesting relations
show up.

The definition of the angles�0 and�8 can be expressed in terms of the parameters in Eq. (A
. 9 ) [32]. Using Eq. (A . 12 ), one can derive :

tan �8 = tan (�P + '8) ; tan �0 = � tan (�P � '0) (A . 13 )

wheretan'8 = b8=f8 andtan'0 = b0=f0 can be explicitly computed. The condition�0 = 0
strictly implies that�P = '0 which gives :

tan �P = � 1

1 + �

2
4 tan �

1� 1p
2
tan�

3
5 "

1 +
v tan�p

2
+ � � �

#
(A . 14 )

From Eq. (A . 6 ), the first term can be interpreted asx2 and the product of the first two
factors is just Eq. (10) fortan �P modified withx2. With the values forv and tan� we
have mentioned, the leading correction amounts to only1:5 10�2. If one keeps a1=

p
1 + �

(corresponding to havingx in Eq. (10)) in front of this expression, the correction term gets a
additional contribution��=2 ' 5: 10�2 which becomes dominant. Therefore :

tan �P =
p
2
(1� z)

2 + z
x2 (A . 15 )

could indeed be prefered to Eq. (10).
The second information which follows from�0 = 0 is an approximate relation between�8

and the wave–function mixing angle�P :

tan �8 = 2 tan �P

"
1� tan�

2
p
2
+ � � �

#
(A . 16 )

where the leading correction is' 7: 10�2.
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Layter [11]

e1 e2 �2=dof � �0

(GeV�2) (Prob.) P.W. (eV) P.W. (keV)

CT+ No Fit 0:222� 0:011 �1:203� 0:017 37:88=35 56.3 48.9
(34%)

CT+ Fit 0:339+0:105�0:056 � 1:395+0:143�0:160 35:16=33 53.3 46.2
(36.6%)

No CT+ No Fit 0:222� 0:011 �1:203� 0:017 140:65=35 100.9 57.5
(0 %)

No CT+ Fit 0:933+0:321�0:093 �2:355+0:180�0:200 60:88=33 75.3 40.0
(0.2 %)

Gormley [10]

e1 e2 �2=dof � �0

(GeV�2) (Prob.) P.W. (eV) P.W. (keV)

CT+ No Fit 0:222� 0:011 �1:203� 0:017 25:58=34 56.3 48.9
(85%)

CT+ Fit 0:269� 0:080 �1:275+0:135�0:155 25:01=32 54.6 47.7
(80.6 %)

No CT+ No Fit 0:222� 0:011 �1:203� 0:017 54:13=34 76.9 53.4
(1.6%)

No CT+ Fit 0:529� 0:090 �1:700+0:154�0:195 36:38=32 65.7 44.5
(27.2%)

Table 4: Simultaneous fits of the�=�0 distributions from [23, 11] on the one hand, and from
[23, 10] on the other hand. CT stand for the “contact terms” generated by the box part of the
WZW Lagrangian (see Eq.(5)). The values fore1 ande2 quoted in “No Fit” entries are taken
from Table 1 and not varied from their central values. The “ P.W.” entries are the central values
for the� and�0 partial widths in the appropriate units ; the recommended values for these [9]
are given in Table 3.
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PDG 2002 Fit Result Significance (n�)
x 0:911� 0:015

�2=dof 2:66=3

Probability 44.6 %

�(� ! 

) (keV) 0:46� 0:04 0:46� 0:01 0.00�

�(�0 ! 

) (keV) 4:29� 0:15 4:34� 0:14 0.24�

�(� ! �+��
) (eV) 55� 5 56:64� 1:71 0.31�

�(�0 ! �+��
) (keV) 60� 5 49:75� 3:88 1.62�

Table 5: Simultaneous fit of the four HLS anomaly equations (Eqs. (11)) and (21) with only
x free (Approximate Field Transformation). First data column gives the recommended values
[9].

PDG 2002 Fit Result Fit Result
�0 free �0 = 0

� 0:23� 0:06 0:21� 0:04

�P �10:85Æ � 1:27Æ �11:48Æ � 0:02Æ

�2=dof 2.93/2 3.20/3

Probability 23.1 % 36.5%

�0 �1:01Æ � 1:27Æ 0

�8 �19:37Æ � 1:29Æ �18:16Æ � 0:24Æ

f0 1:37� 0:03 1:36� 0:03

f8 1:34� 0:01 1:34� 0:02

�(� ! 

) (keV) 0:46� 0:04 0:45� 0:03 0:44� 0:01

�(�0 ! 

) (keV) 4:29� 0:15 4:37� 0:23 4:20� 0:17

�(� ! �+��
) (eV) 55� 5 55:38� 2:78 55:98� 1:76

�(�0 ! �+��
) (keV) 60� 5 49:40� 4:85 46:93� 4:00

Table 6: Simultaneous fit of the four HLS anomaly equations modified by using the exact field
transformation. The second data column reports on letting free� and�P , while in the third data
column only� is allowed to vary.
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Figure 1:
Predicted shapes for�0 (top) and� (mid) distributions as functions of the dipion invariant

mass. Full line histograms correspond to having the contact term in the amplitude, dotted
line histograms correspond to removing the contact term from the amplitude. All other
numerical parameters are at the same values (see Table 1). In the bottom figure, we plot
the prediction when accounting for the contact term (rescaled) superimposed with the
prediction derived by removing this contribution.
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Figure 2:
Invariant dipion mass Distributions for�0 decay. Experimental data sets with the pre-

dicted distributions without the contact term (dashed curve) and with this contribution
activated (full curve). The numbers given are�2(contact term)=�2(no contact term)
for the lineshapes only.
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Figure 3:
Invariant dipion mass Distributions for�0 decay. Experimental data sets with the pre-

dicted distributions without the contact term (dashed curve) and with this contribution
activated (full curve). The numbers given are�2(contact term)=�2(no contact term)
for the lineshapes only.
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Figure 4:
Invariant dipion mass Distributions for�0 decay and the single� decay (as a function

of the photon momentum in the� rest frame). Experimental data sets with the predicted
distributions without the contact term (dashed curve) and with this contribution activated
(full curve). The numbers given are�2(contact term)=�2(no contact term) for the line-
shapes only.
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Figure 5:
Photon momentum distribution in� decay Experimental data are from Layeret al. [11]

(top), and Gormleyet al. [10] (bottom) ; Experimental data sets with the predicted distri-
butions without the contact term (dashed curve) and with this contribution activated (full
curve). The numbers given are�2(contact term)=�2(no contact term) for the lineshapes
only.
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Figure 6:
Fit of the �0 invariant mass spectrum, top by including the contact term, bottom by

removing this term. Compare the peak locations.
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