
 CHEP03, UCSD La Jolla, California, March 24-28, 2003 1

THKT003

Serving Database Information Using a Flexible Server in a
Three Tier Architecture

Herbert Greenlee, Robert Illingworth, Jim Kowalkowski, Anil Kumar, Lee Lueking, Taka Yasuda,
Margherita Vittone, Stephen White
FNAL, Batavia, IL 60510, USA

The DØ experiment at Fermilab relies on a central Oracle database for storing all detector calibration information. Access to
this data is needed by hundreds of physics applications distributed worldwide. In order to meet the demands of these
applications from scarce resources, we have created a distributed system that isolates the user applications from the database
facilities. This system, known as the Database Application Network (DAN) operates as the middle tier in a three tier
architecture. A DAN server employs a hierarchical caching scheme and database connection management facility that limits
access to the database resource. The modular design allows for caching strategies and database access components to be
determined by runtime configuration. To solve scalability problems, a proxy database component allows for DAN servers to
be arranged in a hierarchy. Also included is an event based monitoring system that is currently being used to collect statistics
for performance analysis and problem diagnosis. DAN servers are currently implemented as a Python multithreaded program
using CORBA for network communications and interface specification. The requirement details, design, and implementation of
DAN are discussed along with operational experience and future plans.

1. INTRODUCTION
The DØ experiment employs a three tier architecture to

access information from a centralized database. This
arrangement has many desirable features, isolating the
client applications form the database server and schema.
The Database Application Network (DAN) is the result of
a project to build such a middle tier server, a second
generation system, based on experience gained from
operating DØ servers built for the Calibration and
SAM[1,2] projects. It is designed to supporting thousands
of repository accesses per hour for constants,
configuration, and dataset information, and deliver data to
all the client jobs in a timely fashion

1.1. Requirements
There are many requirements for the DAN server from the
performance and scalability to its configuration. Using the
middle tier removes any dependencies of applications to a
particular database vendor database API. It should
provide low latency for multiple simultaneous client
requests. It provides connection management and
controlled access to the database. The application clients
need little knowledge of the database schema and all
queries are centralized. It is possible to establish remote
proxy servers which maintain persistent caches and remain
operational even during network and central database
outages. The system should scale in a controlled fashion,
and be easily tuned, configured, and administered. It is
important to have detailed activity monitoring and error
handling. The system must be able to respond to and
provide information for all calibration data requests.

2. WHAT IS DAN?
The DAN system is a Python based server operating
between the database and the user applications. This server
performs database transactions on behalf of the user, and

provides an application-level protocol for accessing
detector calibrations. The hierarchical overview of the
system is depicted in Figure 1 with the central database
server shown at the top, and DAN servers deployed to
provide the needed functionality and performance for
many applications.

Figure 1: The hierarchical deployment of DAN servers
which enables the performance and functionality
required for all applications to access information from
the central databases .

2.1. Features
The system has several important features which enable

it to meet the requirements stated above. The layered
architecture of the DAN server itself is shown in Figure 2.
A user API provides connection to the client through a
CORBA[3] framework. It uses a multi-level cache
strategy which offers fast delivery of commonly used
objects and reduces the number of transactions to the
central database server. The type of information is Write
Once Read Many (WORM) and this caching avoids
coherency problems.

FERMILAB-Conf-03/204-E August 2003

2 CHEP03, UCSD La Jolla, California, March 24-28, 2003

THKT003

Figure 2: The DAN server architecture components.

Database connection pooling allows many clients to use
the same connection to the database, thus significantly
reducing the number of concurrent users the database
encounters. Requests for the same data are consolidated,
greatly reducing the transaction rate. The system provides
a code generator that uses the database schema to build the
backend which accesses the database, and the C++ header
files for the clients. The middle tier approach reduces
maintenance and allows us to capture common usage
patterns based on the statistics it provides.

Significant reduction in development time is afforded by
built in table-to-object transformation policies through
which calibrations are delivered in logical objects. Load
balancing is possible by selectively assigning servers to
heavy usage applications, and it is possible to manage the
number of connections each server has to the central
database and thus throttle the transactions when required.
A proxy mode of operation is supported under which the
middle tier servers can be chained together to provide
additional scalability and reliability for the system. The
server is multi-threaded further reducing latency and
allowing simultaneous object caching and database
querying.

2.2. Monitoring
To operate the system efficiently, and tune the
configuration, it is essential to collect extensive
monitoring statistics, and diagnostic information.
Monitoring resource usage and activity is performed
through a subscription service as illustrated in Figure 3.
Verbose recording of interesting events (errors,
informational, or debugging) is accomplished through a
compact XML format. Event thresholds are based on
asynchronous notifications providing a powerful problem
solving aid.

Figure 3: The DAN Monitoring configuration.

3. TESTING AND OPERATION

Simple testing was performed to confirm the basic
operation of the system, but it has been difficult to
schedule adequate resources for doing good load testing.
The calibration information accessed with the various
servers ranges from a few words per query to get magnet
polarities, to 800,000 rows of pedestals and gains for the
Silicon Micro Tracker (SMT) device. In testing, requests
for the SMT information were made from 50 client nodes.
The size of the information requested is about 25 MB,
although there is a large overhead for storing this in the
Python cache as CORBA objects requiring almost 300MB
of machine memory. The initial access from the database
requires about 6.5 minutes to complete, while accessing
the same information once it is cached is almost 4 times
faster. While these tests were underway less than 30% of
the CPU was being used for the DAN server on a dual
Athlon 1800 Linux server. The network delivery rate was
approximately 3.2MB/s.

3.1. Deployment
The initial deployment of the system is shown in Figure 4.
The calibration servers have been initially deployed on
two Linux nodes with a third reserved for failover as
shown in Figure 4. Each node has dual Pentium 868 MHz
processors and 1 GB of RAM and 2 GB of swap space.
The operating system is Fermi Linux which is based on
Red Hat Linux Kernal 2.4.9-31. Each production node is
designated for a specific user activity including analysis
and reconstruction.

 CHEP03, UCSD La Jolla, California, March 24-28, 2003 3

THKT003

Figure 4: The DØ DAN Deployment strategy includes
Linux servers for the reconstruction farm, and user
clients. A failover server box provides the required
24/7 level of service.

 In the event of a node failure, the servers will be auto-
started on the failover node with notification sent to the
supporting email list. This enables the system to be
employed for 24/7 operation and has functioned
effectively. There are certain modes of failure which have
not triggered the correct failover behavior and the system
is still being perfected.

Typical transaction rates vary from 300 to 3000 requests
per hour, with transaction size ranging from 1.8kb to
4.5kb, dependent on the table accessed in the data base, for
the server tested. We anticipate that the number of active,
high demand, servers operated at FNAL will be around 20,
with approximately 6 to 10 additional sites beyond
Fermilab which run high demand DAN proxy servers with
disk cache.

4. EVALUATION AND PLANS

4.1. CORBA, Python, and Other Packages
There are several areas where product or design choices

were made including the use of CORBA, Python, and
several third party software packages. CORBA was chosen
for historical reasons, it being widely used for distributed
object brokering in the DØ data management system.
However, it is not an optimal choice for calibration data
access which is not a very object oriented task, and
CORBA data representations are not very useful in this
application. Python is an excellent choice for rapid
development and scripting. It greatly simplifies third party
product integration, and because it is platform
independent, it provides ease of deployment.

Python, however, has several drawbacks that make it
less suitable for a production environment. Python has
very high memory requirements, and slower execution
speed than some other language choices. Although it
offers multi-threading this feature is limited to one CPU,
which is a severe restriction when using a dual processor

machine. The debugging tools for Python, in particular for
multi-threaded applications, are rather poor.

The DAN server employs several third party software
packages which have added to the ease of programming,
but have also introduced some problems. DC Oracle[4]
provides a Python API to Oracle has had poor backward
compatibility between versions introducing additional
debugging and support effort. OmniORBpy[5] is a python
CORBA implementation providing many nice features,
and a significant improvement over Fnorb previously used,
introduced random thread lockup problems which were
very difficult to locate.

One feature of the DAN product is code generation to
create the base classes needed to describe the table
structure in the database. This introduced a single edit
point for code changes to multiple classes, and is difficult
to understand and maintain.

4.2. Future Plans
The existing server is now being used with a C++ cache

management tandem component which reduces the
memory for one SMT run set from 300MB down to about
25MB. This significantly improves the performance and
allows 20 or more SMT run sets to be cached
simultaneously in memory without severely taxing the
server machine, or slowing the delivery to multiple
simultaneous clients. Distributing the code and
configuring the servers is complicated because of the
mixed-language mode of operation. Furthermore,
operation of the tandem servers is more complex than the
single python server. Nevertheless, this seems to be an
adequate solution to provide the experiments needs for the
next few months.

Re-writing the server completely in C++ is a viable
option which maintains the current client interface while
providing all the performance improvements of the tandem
solution, plus this solution provides additional robustness
and performance in the secondary disk cache and database
connection management. It is felt that most of the design
in the current Python server could be used and a C++
product would map almost class per class to the existing
Python code. Instead of DCOracle, now used in the Python
code as the database backend, we would need to use an
OCI or ODBC interface. What statistics are needed in a
C++ server and if the monitoring points be the same are
still open questions.

Another interesting alternative is to employ web
services to provide the needed functionality. DØ has been
using a system of flat files to distribute their SMT
calibration information before the SMT server was
deployed. This is somewhat awkward because all of the
calibration files need to be distributed to the reconstruction
processing machines. However, it has the distinct
advantage that because the data is well understood by the
experiment, it can be carefully packed into the files,
reducing the size to only about 1 MB per SMT set. It
would be very convenient to have a straightforward system
that would construct and deliver this information on

4 CHEP03, UCSD La Jolla, California, March 24-28, 2003

THKT003

demand from the database. We have discussed this option
and feel it would be quite straightforward to build such a
system to explore these ideas.

 In the coming months we will complete the statistics
gathering, remote monitoring, and controls package, as
well as provide additional graphs via the web. Features for
changing resource allocations or other configuration
parameters dynamically are being included which will
provide the ability to more easily tune the system in real
time. More extensive load testing will be performed to
further evaluate the performance of the system, and we
will observe the system in production on the
reconstruction farms and for user analysis.

Acknowledgments
Many people have contributed significantly to this

project. We thank Vicky White who initiated the project
with a set of carefully drafted requirements and significant
input to the design and planning. We thank those at DØ,
on the reconstruction farms and general users, who helped
evaluate the system and have accommodated many
problems while this project was being debugged. We owe
special thanks to Harry Melanson, Michael Diesburg, and

Slava Kulik who have worked with us to test and
commission the product. This work is sponsored by DOE
contract No. DE-AC02-76CH03000.

References
[1] The SAM team, A. Baranovski, L. Loebel

Carpenter, L. Lueking , W. Merritt, C. Moore, I.
Terekhov, J. Trumbo, S. Veseli, S. White,
http://d0db.fnal.gov/sam .

[2] Baranovski, et. al., “SAM Managed Cache and
Processing for Clusters in a Worldwide Grid-
Enabled System”, FERMILAB-TN-2175, May
2002, http://d0db.fnal.gov/sam_talks/talks
/20021021-cluster/ClusterComputing2002.pdf .

[3] The Object Management Group’s CORBA
website, http://www.corba.org/ .

[4] The DCOracle web page,
http://www.zope.org/Products/DCOracle .

[5] The OmniORB web page,
http://omniorb.sourceforge.net .

