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FOREWORD

Quantum Chromo-Dynamics (QCD), and more generally the physics of the Standard Model (SM), enter
in many ways in high energy processes at TeV Colliders, and especially in hadron colliders (the Tevatron
at Fermilab and the forthcoming LHC at CERN),

First of all, at hadron colliders, QCD controls the parton luminosity, which rules the production
rates of any particle or system with large invariant mass and/or large transverse momentum. Accurate
predictions for any signal of possible ‘New Physics’ sought at hadron colliders, as well as the corre-
sponding backgrounds, require an improvement in the control of uncertainties on the determination of
PDF and of the propagation of these uncertainties in the predictions. Furthermore, to fully exploit these
new types of PDF with uncertainties, uniform tools (computer interfaces, standardization of the PDF
evolution codes used by the various groups fitting PDF’s) need to be proposed and developed.

The dynamics of colour also affects, both in normalization and shape, various observables of the
signals of any possible ‘New Physics’ sought at the TeV scale, such as, e.g. the production rate, or
the distributions in transverse momentum of the Higgs boson. Last, but not least, QCD governs many
backgrounds to the searches for this ‘New Physics’. Large and important QCD corrections may come
from extra hard parton emission (and the corresponding virtual corrections), involving multi-leg and/or
multi-loop amplitudes. This requires complex higher order calculations, and new methods have to be
designed to compute the required multi-legs and/or multi-loop corrections in a tractable form. In the
case of semi-inclusive observables, logarithmically enhanced contributions coming from multiple soft
and collinear gluon emission require sophisticated QCD resummation techniques. Resummation is a
catch-all name for efforts to extend the predictive power of QCD by summing the large logarithmic
corrections to all orders in perturbation theory. In practice, the resummation formalism depends on the
observable at issue, through the type of logarithm to be resummed, and the resummation methods.

In parallel with this perturbative QCD-oriented working programme, the implementation of both
QCD/SM and New physics in Monte Carlo event generators is confronted with a number of issues which
deserve uniformization or improvements. The important issues are: 1) the problem of interfacing par-
tonic event generators to showering Monte-Carlos; 2) an implementation using this interface to calculate
backgrounds which are poorly simulated by the showering Monte-Carlos alone; 3) a comparison of the
HERWIGandPYTHIA parton shower models with the predictions of soft gluon resummation; 4) studies
of the underlying events at hadron colliders to check how well they are modeled by the Monte-Carlo
generators.

In this perspective, our Working Group devoted its activity to improvements of the various QCD/SM
ingredients relevant both for searches of ‘New Physics’ and estimates of the backgrounds to the latter at
TeV colliders. This report summarizes our work. Section 1 reports on the effort towards precision Parton
Distribution Functions (PDF’s). Section 2 presents the issues worked out along the two current frontiers
of Higher Order QCD calculations at colliders, namely the description of multiparton final states at Next-
to-Leading Order (NLO), and the extension of calculations for precison observables beyond this order.
Section 3 ‘resummariz&sa large variety of questions concerning the relevance of resummation for ob-
servables at TeV colliders. In parallel with these ‘general purpose tackling angles’, more specific studies,
dedicated to jet physics and improved cone algorithms, and to the QCD backgroufids:tg~, both
irreducible (isolated prompt photon pairs) and reducible (photon pion), are presented in section 4. Fi-
nally, section 5 summarizes the activities of the Intergroup on Monte Carlo issues, which are of practical
interest for all three Working Groups of the Workshop: HIGGS [1], BSM [2] and the present one.

E. Laenen®), all rights reserved.



1. PARTON DISTRIBUTION FUNCTIONS & §

The experimental uncertainties in current and future hadronic colliders are decreasing to a level where
more careful consideration has to be given to the uncertainties in the theoretical predictions. One im-
portant source of these uncertainties has its origin in Parton Distribution Functions (PDFs). The PDF
uncertainties in turn are a reflection of those in the experimental data used as an input to the PDF fits and
in the uncertainties of the theoretical calculations used to fit those data. As a consequence, sophisticated
statistical methods and approximations have to be developed to handle the propagation of uncertainties.
We will give a summary of the current status of several methods being pursued. To fully exploit these new
types of PDF fits a uniform computer interface has been defined and developed. This code provides easy
access to all the present and future fits. The code is available from the wedifSital.gov . Such

an interface is most efficient if the evolution codes of the various groups fiiting the PDFs are standardized
to a sufficient degree. For this purpose detailed and accurate reference tables for the PDF evolution are
provided at the end of this section.

1.1 Methods for estimating parton distribution function uncertainties
1.11 A mathematical framework

At first sight PDF fitting is rather straightforward. However, a more detailed look reveals many difficult
issues. As the PDF uncertainties will affect all areas of phenomenology at hadron colliders, a clear
mathematical framework of a PDF fit is essential [3]. From this formulation, all explicit methods can be
derived. Also, the mathematical description will make explicit all assumptions needed before one can
make a fit. These assumptions are crucial and do not find their origin in experimental results, but rather
in theoretical prejudice. Such assumptions are unavoidable as we fit a system with an infinite number of
degrees of freedom (the PDF functional) to a finite set of data points.

We want to calculate the probability density functiB]@f which reflects the uncertainty in predict-

ing the observabl® due to the PDF uncertainties. The functiBI@f(xe) gives the probability density
to measure a value. for observable).

To calculate the PDF probability density function for observaBleve have to integrate over
the functional space of all possible PDF$F). The integration is weighted by three probability den-
sity functions: the prior probability density functioR,, .., the experimental response function of the
observable S, and the probability density function of the fitted experimert§;?*. The resulting

formula is given by

Py () = / A F Pyriog(F) x PPU(F) x P (xc|z:(F)) . (1)
V(F)

erp erp

The prior probability density function contains theoretical constraints on the PDF functionals such
as sum rules and other potential fit constraints (e.g. an expli¢it/ ;) value). The most crucial prop-
erty of the prior function is that it defines the functional integral by imposing smoothness constraints
to make the number of degrees of freedom become finite. The simplest example is an explicit finite
parametrization of the PDF functionals

PO, (r,) = / AN d ... ANy Poio (1) x PI2U(IAY) % PO, (2o]en((N)) . )
V({ }h)

where the PDF parameters are given by the{list. Note that through the functional parametrization
choice we have restricted the integration to a specific subset of potential PDF functfon&lsch a

2Section coordinators: A. Vogt, W. Giele
SContributing authors: S. Alekhin, M. Botje, W. Giele, J. Pumplin, F. Olness, G. Salam, A. Vogt
4Contributing authors: S. Alekhin, M. Botje, W. Giele, J. Pumplin, F. Olness



choice is founded on physics assumptions withargriori justification. The resulting phenomenology
depends on this assumption.

The experimental response function forms the interface with the experimental measurement. It
gives the probability density to measure a valyegiven a prediction:;. The experimental response
functions contain all information about the experiment needed to analyze the measurement. The pre-
diction z; is an approximation using a perturbative estimate of the observable amended with relevant
nonperturbative corrections. A simple example would be

1 1
PO . - ——(2e — 2 52
el’p(x |$75) 5@ eXp( 2($ xl‘) / ’
where we have a Gaussian response function with a one sigma unceftalidye that the form of the
response function depends on the actual experiment under consideration. It is sometimes convenient
to get a result that is independent of an experiment and its particular detector: To obtain the theoretical
prediction for the probability density function of the observable, one can simply replace the experimental
response function by a delta function (i.e. assume a perfect detector)
PRy () = 0(we — )

Finally the probability function for the fitted experiments is simply a product of all the experimen-

tal response functions

Nemp

Pireut(F H 0 (@Dl (F)) (3)

wherex%) denotes the set of measurements provided by experiignfThis function measures the
probability density that the theory prediction based on PPldescribes the combined experimental
measurements.

Often the experimental uncertainties can be approximated by a Gaussian form of the experimental
reponse function, i.e. g description of the uncertainties:

Py (e )o</ dMd g .. dx, e 3 SoEE = (1) o o= mxbE = (A (4)
V({A)

where we have chosen a specific parametrization for the PDF functionals. This approximation leads to
a more traditional approach for determining PDFs with uncertainties. These methods are outlined in
sectiong T. 1;4 and 1'15. To go beyond the Gaussian approximation more elaborate methods are needed.
Sectiong 1 12 and’ 1 '13 describe techniques to accomplish this.

1.12 Random sampling method

This method attempts to calculate Ed. (1) without any approximations by using random sampling, i.e. a
Monte Carlo evaluation of the integral [3]. By generating a sufficiently large sample of PDFs Eq. (1) can
be approximated by

N
pdf Z pMOT’ X Pé;gut(f) X Pexp ($6|$t(‘7_—2)) . (5)

The simple implementation of Eqg.: (5) would lead to a highly inefficient random sampling and an
unreasonably large number of PDFs would be required. By using an optimization procedure, this problem



can be solved. The optimization procedure on the functional level of &q. (1) is simply redefining the
PDF F to F* such that the Jacobian of the transformation equals

dF"

input
d]: Ppmor(]:) x P (.7:) , (6)

erp

so that
! = i, “ 61’ Te|l N, “ . 7
pdf( ) / () p ( | 75( )) ( )

Applying this to the random sampling evaluation gives

pdf N Z exp $6|xt ‘7_—“)) (8)

In the random sampling approximation the redefined PIBFsare easily identified as the unweighted
PDFs with respect to the combined probability den&ify, (F) x Pirb (F). Thatis, the density of

is given by this combined probability density. As suelhch of the unweighted PDFs is equally likely.
This is reflected in Eq.7(8), as the probability density function of the observable is the average of the
response function over the unweighted PDFs. Finally, we have to generate {t#¢'$eOne method is

to use the Gaussian approximation for B¢. (6) simplifying the generation of tHe&&ét[4].

Another more general approach is to apply a Metropolis Algorithm on the combined probability
density functionP, ., (F) x Pib*"(F). This approach will handle any probability function. Further-
more, in a Metropolis Algorithm approach convergence does not depend on the number of parameters
used in the PDF parametrization. Also, complicated non-linear parameter subspaces which have con-
stant probability will be modelled correctly. These properties make it possible to use large number of
parameters and explore the issue of parametrization dependence of the PDFs.

Once the sef 7'} is generated we can predict the probability density function for any observable
by averaging over the experimental response function using Eq. (8).

1.13 Lagrange multiplier method

The values of the fit parameters that minimiZeprovide by definition the best fit to the global set of data.
The dependence aff on those parameters in the neighborhood of the minimum can be characterized in
guadratic approximation by the matrix of second derivatives, which is known as the Hessian matrix. The
inverse of the Hessian matrix is the error matrix, and it forms the basis for traditional estimates of the
uncertainties.

The traditional assumption of quadratic behaviokéfin all directions in parameter space is not
necessarily a very good one in the case of PDF fittiregalnise there are “flat directions” in whigh
changes very slowly, so large changes in certain combinations of parameters are not ruled out. This
difficulty is always present in the case of PDF fitting, because as more data become available to pin
down the PDFs better, more flexible parametrizations of them are introduced to allow ever-finer details
to be determined.

To some extent, the flat directions can be allowed for byitarative methodB, §], whereby
the eigenvector directions of the error matrix and their eigenvalues are found using a convergent series
of successive approximations. This iterative method is implemented as an extension to the standard
minimization programminuit . The result is a collection of PDFs (currently 40 in number) that probe
the allowed range of possibilities alomgch of the eigenvector directions. The PDF uncertainty on
any physical quantity—or on some feature of the PDFs themselves—can easily be computed after that
quantity is evaluated fazach of the eigenvector sets. This method has been applied, for example, to find
the uncertainty range for predictionsidf andZ cross sections and their correlatiofis [6].

6



To completely overcome the need to assume quadratic behavigt fas a function of the fitting
parameters, one can usd.agrange Multiplier methodg, i#] to directly examine how? varies as a
function of any particular variable that is of interest. The method is a classical mathematical technique
that is more fully called Lagrange’s “method of undetermined multipliers.” To explain it by example,
suppose we want to find the effect of PDF uncertainties on the prediction for the Higgs boson production
cross section. Instead of finding the PDF parameters that minigiige@hich measures the quality of fit
to the global data), one minimizag + Aoy, whereoy; is the predicted Higgs cross section—which is
of course also a function of the PDF parameters. The minimization is carried out for a variety of values
of the Lagrange Multiplier constant Each minimization provides one point on the curvecdfversus
predicteds;;. Once that curve has been mapped out, the uncertainty range is defined by the region for
which the increase ig? above its minimum value is acceptable.

The essential feature of the Lagrange Multiplier method is that it finds the largest possible range
for the predictions of a given physical quantity, suchras that are consistent with any given assumed
maximum increasé\ y? above the best-fit value of?. This method has been applied, for example, to
study the possible range of variation of the rapidity distributiorifoproduction, by extremizing various
moments of that distribution[5, 7].

1.14 Covariance matrix method

The covariance matrix method is based on the Bayesian approach to the treatment of the systematic
errors, when the latter are considered as a random fluctuation like the statistical errors. Having no place
for the detailed discussion of the advantages of this approach we refer to the introduction into this scope
given in Ref. {8]; the only point we would like to underline here is that application of the Bayesian
approach is especially justified in the analysis of the data sets with the numerous sources of independent
systematic errors, which is the case for the extraction of PDFs from existing experimental data.

Let the data sample have one common additive systematiciertarthis case following the
Bayesian approach the measured valyese given by

yi = [i + o + Asg, 9

where f;(6°) is the theoretical model describing the data- the fitted parameter of this modet, —
statistical errorss; — systematic errors for each poipt, and A — the independent random variables,

and the index runs through the data points from 1 8. The only assumption we make is that the
average and the dispersion of these variables are zero and unity respectively. It is natural to assume that
thep,; are Gaussian distributed when the data points are obtained from large statistical samples. Such an
assumption is often not justified for the distributionof

Within the covariance matrix approach the estimate of the fitted pararélétaobtained from a
minimization of the functional

N

X (0) = Z (fi(0) — yo) Eii (f;(0) — y5), (10)

2,7=1

where

1 D
B = —(52']‘ - ) ;
;0
is the inverse of the covariance matrix

Cij = 8;8; + (SZ']‘UZ'U]‘, (11)

We consider the case of one source of systematic errors, generalization on the many sources case is straightforward.



p is modulus of the vectgs with N components equal to; = s;/0; andd;; is the Kronecker symbol.
We underline that with the data model given by Eg. (9) one does not need to assume a specific form
for the distribution ofy; in order to obtain the central value of this estimate. In a linear approximation
for f;(6) one also does not need such assumptions to estimate the dispersion. In this approximation the
dispersion reads[9]
R 1 p222
Dc(0) = — 1+—1—|—p2(1—22) ,

where¢ is modulus of the vecto;E with N components equal o' = f!(6y)/a;, the symbol denotes
the derivative with respect ) and: is the cosine of the angle betwegand¢.

To obtain the distribution of one needs to know the complete set of its moments, which, in turn,
requires similar information for the momentspf At the same time from considerations similar to the
proof of the Central Limit theorem of statistics (see. Ref. [10]) one can conclude that the distribution
of 4 is Gaussian, if all independent systematic errors are comparable in value and their number is large
enough. More educated guesses of the form of the distribution can be performed with the help of the
general approach described in subsecfion 1.12.

(12)

The dispersion of fitted parameters obtained by the covariance method is different from the one
obtained by the offset method described in subsection 1.15. Indeed, the dispersion of the parameter
estimate obtained by the offset method applled to the anaIyS|s of the data set given'ly Eq. (9) i$ equal [9]

Do () = p (1—|—,0 7). (13)

One can see thddg is generally larger tha . The difference is especially visible for the cdges 1,
whenp > 1, if the systematic errors are not negligible as compared to the statistical ones. In this case
andifz # 1

A 1
DC(O) ~ ¢2(1 _ 22) ’ (14)
while
) 2.2
Do(f) ~ 2 q; . (15)

One can see that the standard deviation of the offset method estimator rises linearly with the increase of
the systematics, while the covariance matrix dispersion saturates and the difference between them may
be very large.

Some peculiarities arise in the case when the systematic errors are multiplicative, i.e. when the
s; in Eq. ¢11) are given by y;, wherer; are constants. As it was noted in Ref.1[11] in this case the
covariance matrix estimator may be biased. The manifestation of this bias is that the fitted curve lays
lower the data points on average, which is reflected by a distortion of the fitted parameters. In order to
minimize such bias one has to calculate the covariance matrix of Eq. (11) using the relationf; (9).
In this approach the covariance matrix depends on the fitted parameters and hence has to be iteratively
re-calculated during the fit. This certainly makes calculation more time-consuming and difficult, but in
this case the bias of the estimator is non-negligible as compared to the value of its standard deviation if
the systematic error on the fitted parameter is an order of magnitude larger than the statistical error [9].

1.15 Offset Method

With the offset method: [12], already mentioned above, the systematic errors are incorporated in the
model prediction

t(0,0) = fi(0) + Z M i (16)



where we allow for several sources of systematic efkdr The 2, to be minimized in a fit, is defined
as

SUREDY (%(“)) +D A (17)
! k

7

It can be shown'[7] that leaving bothand X free in the fit is mathematically equivalent to the covari-
ance method described in the previous section. However, there is also the choice to fix the systematic
parameters to their central valugs = 0 which results in minimizing

2
2 Yi — fz(e)
) = 1, 18
() Z ( > (18)
where only statistical errors are taken into account to get the best galtithe parameters. Because

systematic errors are ignored in tQé such a fit forces the theory prediction to be as close as possible to

the data.

The systematic errors ahare estimated from fits where each systematic parametées offset
by its assumed error{1) after which the resulting deviations# are added in quadrature. To first order
this lengthy procedure can be replaced by a calculation of two Hessian matfieesiC', defined by

2,2 2.2
W= %aaezgoj W= %aaoing ‘ (19)
The statistical covariance matrix of the fitted parameters is then given by
Viae =M1, (20)
while a systematic covariance matrix can be defined by [13]
Vie=M1cctM™, (21)

whereCT is the transpose af'.
Having obtained the best values and the covariance matrix of the parameters, the covariance of any

two functionsF'(#) andG () can be calculated with the standard formula for linear error propagation
JF(9) v dG(0)
20, 7 06;

Vi = (22)

1y

whereV? is the statistical, systematic or, if the total error is to be calculated, the sum of both covariance
matrices.

Comparing Egs. (17) and (18) it is clear that the parameter values obtained by the covariance and
offset methods will, in general, be different. This differencadsounted for by the difference in the
error estimates, those of the offset method being larger in most cases. In statistical language this means
that the parameter estimation of the offset method ieffatient The method has a further disadvantage
that the goodness of fit cannot be directly judged fromythevhich is calculated from statistical errors
only.

For a global QCD analysis of deep inelastic scattering data which uses the offset method to prop-
agate the systematic errors, we referitd [14] (stg://www.nikhef.nl/user/h24/gcdnum
for the corresponding PDF set with full error information).



1.2 The LHAPDF interface §
1.21 Introduction

The Les Houches Accord PDF (LHAPDF) interface package is designed to work with PDF sets. A PDF
set can consist of many individual member PDFs. While the interpretation of the member PDFs depends
on the particular set, the LHAPDF interface is designed to accommodate PDFs with uncertainties as
well as “central fit” PDFs. For PDFs with uncertainties the PDF set represents one “fit” to the data.
For instance, a random sampling PDF set would use Eq. (8). In other words for each PDF in the set
the observable is calculated. The set of resulting predictions of the observable build up the probability
density. The individual member PDFs of the set are needed to calculate the PDF uncertainty on the
observable. All PDF sets are defined through external files. This means that a new set can be added by
simply downloading its file while the LHAPDF interface code does not change. The evolution code is
not part of LHAPDF. The current default choice included and interfaced is QCDNUM [15]. Each group
that contributes PDF sets can provide their own evolution code; or they can employ QCDNUM, which is
available in the package.

1.22 The philosophy

The Les Houches Accord Parton Distribution Function interface was conceived at the Les Houches 2001
workshop in the PDF working group to enable the usage of Parton Distribution Functions with uncer-
tainties in a uniform manner. When PDFs with uncertainties are considered, a “fit” to the data no longer
is described by a single PDF. Instead in its most flexible implementation, a fit is represented by a PDF
set consisting of many individual PDF members. Calculating the observable for all the PDF members
enables one to reconstruct the uncertainty on the observable. The LHAPDF interface was made with this
in mind and manipulates PDF sets.

The LHAPDF interface can be viewed as a successor to PDFLIB and improvements were added.
To list some of the features:

e The handling of PDF sets to enable PDF fits that include uncertainties.

e The default evolution codes are benchmarked and compared for accuracy. Apart from accuracy an-
other important feature of the evolution code is speed. Currently the default for evolution program
is QCDNUM.

¢ All PDF sets are defined through external files in parametrized form. This means the files are
compact compared to storing the PDFs in a grid format. Also new PDF sets can be defined by
constructing the PDF defining files. The actual LHAPDF code does not have to be changed.

e The LHAPDF code is modular and default choices like the QCDNUM evolution code can be easily
altered.

Note that the current “best fit” PDFs can be viewed as PDF sets with one member PDF and can
be easily defined through the PDF set external file definition. Alternatively one can group these “fits” is
single sets (e.g. MRST98 set) as they often represent best fits given different model assumptions and as
such reflect theoretical modelling uncertainties.

The first version of the code is available in Fortran frbtip://pdf.fnal.gov

1.23 Interfacing with LHAPDF

The interface of LHAPDF with an external code is easy. We will describe the basic steps sufficient for
most applications. The web site contains more detailed information about additional function calls. The
function calls described here will be not be altered in any way in future versions. Including the LHAPDF

evolution code into a program involves three steps:

1. First one has to setup the LHAPDF interface code:

SContributing authors: S. Alekhin, W. Giele, J. Pumplin
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6|-5|-4]-3|-2|-1/0[1|2|3|4|5|6
Pl ¢t]| b e| s|ual|ldlg dluls|c|bl|t
P b w| d|gld|luls|e|b|t

Table 1: The flavor enumeration convention used in the LHAPDF interface. (Note: CTEQ code use a different labelling scheme
internally, with 1> 2 and -1« -2, but will adopt the above standard in the Les Houches interface.)

call InitPDFset( name
It is called only once at the beginning of the code. The string variadfeeis the file name of the
external PDF file that defines the PDF set. For the standard evolution code QCDNUM it will either
calculate or read from file the LO/NLO splitting function weights. The calculation of the weights
might take some time depending on the chosen grid size. However, after the first run a grid file
is created. Subsequent runs will use this file to read in the weights so that the lengthy calculation
of these weights is avoided. The file depends on the grid parameters and flavor thresholds. This
means different PDF sets can have different grid files. The name of the grid file is specified in the
PDF setup file.

2. To use aindividual PDF member it has to be initialized:
call InitPDF( mem)
The integememspecifies the member PDF number. This routine only needs to be called when
changing to a new PDF member. The time needed to setup depends on the evolution code used
For QCDNUM the grid size is the determining factor. Note tim&i=0 selects the “best fit” PDF.

3. Once the PDF member is initialized one can call the evolution codes which will use the selected
member.
The function call
function alphasPDF( Q)
returns the value ofis(()) at double precision scalg. Note that its value can change between
different PDF members.
The subroutine call
call evolvePDF(  X,Q.,)
returns the PDF momentum densitiggi.e. xx PDF number density) at double precision mo-
mentum fraction: and double precision scafg¢. The double precision arrdy-6:6) will contain
the momentum PDFs using the labelling convention of table 3. As long as the member PDF is
not changed (by theall InitPDF of step 2) the evolution calls will always use the same PDF
member.

A few additional calls can be useful:

e To get the number of PDF members in the set:
call numberPDF(  Nmen).
The integerNmemwill contain the number of PDF members (excluding the special “best fit”
member, i.e. the member numbers run from Qltoen).
e Optionally the different PDF members can have weights which are obtained by:
call weightPDF(  wagt) .
The double precision variablegtis for unweighted PDFs set t/ N mem such that the sum of
all PDF member weights is unity. For weighted sets the use of the weights has to be defined by the
method description.
e To get the evolution order of the PDFs:
call GetOrderPDF(  order) .
The integer variablerderis O for Leading Order, 1 for Next-to-Leading Order, etc.
e To get the evolution order afs:
call GetOrderAs(  order) .

11



The integer variablerderis O for Leading Order, 1 for Next-to-Leading Order, etc.

e It is possible that during the PDF fitting the renormalization scale was chosen different from the
factorization scale. The ratio of the renormalization scale over the factorization scale used in the
“fit” can be obtained by

call GetRenFac(muf)
The double precision variabieufcontains the ratio. Usualipufis equal to unity.
e To get a description of the PDF set:
call GetDesc()
This call will print the PDF description to the standard output stream
e The quark masses can be obtained by:
call GetQmass(nf,mass)
The massnasss returned for quark flavanf. The quark masses are used in theevolution.
e The flavor thresholds in the PDF evolution can be obtained by:
call GetThreshold(nf,Q)
The flavor threshold) is returned for flavonf. If Q=-1dO0 flavor is not in the evolution (e.g.
the top quark is usually not included in the evolution).Q£0dO flavor is parametrized at the
parametrization scale. For positive non-zero value® tfie value is set to the flavor threshold at
which the PDF starts to evolve.
e The call returns the number of flavors used in the PDF:
call GetNf(nfmax)
Usually the returned value farfmaxis equal to five as the top quark is usually not considered in
the PDFs.

1.24 Anexample

A very simple example is given below. It accesses all member PDFs in theypef.LHpdf and print
out theas (Myz) value and the gluon PDF at sevefal (7) points.

program example
implicit real*8(a-h,0-z)
character*32 name
real*8 f(-6:6)

name="mypdf.LHpdf
call InitPDFset(name)

QMZ=91.71d0
write(*,*)
call numberPDF(N)
do i=1,N
WItE(*,*)  "ommmmmmm e oo '
call InitPDF(i)
write(*,*) 'PDF set ',i
write(*,*)
a=alphasPDF(QMZ)
write(*,*) 'alphaS(Mz) = ’,a

write(*,*)
write(*,*) 'x*Gluon’
write(*,*) ' X Q=10 GeV Q=100 GeV Q=1000 GeV’

do x=0.01d0,0.095d0,0.01d0
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Q=10d0

call evolvePDF(x,Q,f)
g1=f(0)

Q=100d0

call evolvePDF(x,Q,f)
g2=f(0)

Q=1000d0

call evolvePDF(x,Q,f)
g3=f(0)

write(*,*) x,901,92,93

enddo
enddo

end

1.3 Reference results for the evolution of parton distribution$

In this section we provide a new set of benchmark tables for the evolution of unpolarized parton dis-
tributions of hadrons in perturbative QCD. Unlike the only comparable previous study [16], we include
results for unequal factorization and renormalization scakeg ..., and for the evolution with a variable
number of partonic flavourd’s. Besides the standard LO and NLO approximations, we also present the
evolution including the (still approximate) NNLO splitting functions and the corresponding non-trivial
second-order matching conditions at the heavy-quark thresholds. Our reference results are computed
using two entirely independent and conceptually different evolution programs which, however, agree to
better than 1 part in0® for momentum fraction$0~% < z < 0.9.

1.31 Evolution equations and their solutions
At N™LO the scale dependence (‘evolution’) of the parton distributifyis, 17) = p(z, 1), where

p=q, g ,gwWithi =1, ... Ng isgoverned by the N¢+1 coupled integro-differential equations
d fp(x Hf - 1+1 ( M%) 2
Qg = | ® f T, [ . (23)
dln qu ; H% P ( f)

Here® denotes the Mellin convolution in the fractional-momentum variabland summation over
is understood. The scale dependence of the strong coupliggy./(47) is given by

d ag “
Lo = Pamrolas) = - al e (24)

2
dln p? P

The general splitting function®() in Eq. (23) can be reduced to the simpler expressiiiyz) at
e = e Up to NNLO (= N? LO) the corresponding relations read

7)(0)<$7’u_§> = POy
2 2
p(1)<$7"_§> = PW(z) - BP0 () m% (25)

2 2 2
PO () = P~ {5 PO + 260020 0) b EE 4 PO ) 2 L

r r

"Contributing authors: G. Salam, A. Vogt
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The generalization to higher orders is straightforward but not required for the present calculations.

The LO and NLO coefficient, and 3, of the s-function in Eq. {24) and the corresponding
splitting functionsP®) (z) and PM) (z) in Eq. (25) have been known for a long time, see Rét. [17] and
references therein. In thdS scheme adopted here, the coefficignthas been calculated in Ref§.[18,
d9]. The NNLO quantities?®) () have not been computed so far, but approximate expressions have
been constructed [20=22] from the available partial resulis [23-31].

An obvious and widespread approach to kg (23) is the direct numerical solution by discretization
in bothz andy?. This method is also used by one of us (G.S.). The parton distributions are represented
on a grid withn points uniformly spaced itm 1/2. Their values at arbitrary are defined to be equal to
aptt order interpolation of neighbouring grid points. The splitting functions can then be represented as
sparse matrices acting on the vector of grid points. At initialization the program takes a set of subroutines
for the splitting functions and calculates the corresponding matrices with a Gaussian adaptive integrator.
At each value of:i} the derivatives of the parton distributions are calculated through matrix multiplication
and the evolution is carried out with a Runge-Kutta method. The algorithm has partial overlap with those
of Refs. [15; 32~34] and is described in more detail in Appendix F of Ref. [35].

For the reference tables presented below, the program has been ruifvagtter interpolation in
= and multiplez-grids: one forl0~® < z < 1 with 750 points, another fof.135 < = < 1 with 240
points and a third fof.6 < = < 1 with 180 points. A grid uniform inln ¢ has been used witk20
points in the rangg GeV? < u? < 10° GeV2. Halving the density of points in bothand? leaves the
results unchanged at the level of better thgrart in 10° in the rangel0—8 < 2 < 0.9 (except close to
sign-changes of parton distributions).

An important alternative to this direct numerical treatment of k£g. (23) is the Mallimoment
solution in terms of a power expansion. This method is employed by the second author (A.V.). Here
Eq. (23) is transformed t&/-space (reducing the convolution to a simple product)ghis replaced by
as as the independent variable, assuming tht:, is a fixed number. Expanding the resulting r.h.s. into
a power series ing, one arrives at

df (N7 aS) _ = -1
T ;:0@ RN fr(N, a,) (26)
with
RON) = = PO RrUZD — — pl) k ﬁ 27
w(N) = 5o By (V) o —5 IEDY : : (27)

=1
At N™LO only the coefficients$;<,, andP<™) are retained in Eqi {27). The solution of Ef.i(26) can
be expressed as an expansion around the LO result

-1

FN, ) = [1+Za UL (N ](a—o)_RO(N) [1+ia’aUk<N>] FNE) L (28)
k=1

wherep? , is the initial scale for the evolution, ang, = as(p?(¢f,)). It is understood in Eq. (28)

that the matrix structure is simplified by switching to the apprdpriate flavour singlet and non-singlet
combinations. For the explicit construction of the remairing2 matriceslU;. the reader is referred to
Section 5 of Ref..[36]. Finally the solutionfs(N, 1#) are transformed back to-space by

folz,puf) = l/0 dzlm{ gpmemzexplid) £ (N =c4zexp(id), u?) | . (29)

T

The Mellin inversions:i(29) can be performed with a sufficianturacy using a fixed chain of
Gauss quadratures. Hence the quantiig&V) andUy (N) in Eq. {28) have to the computed only once
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for the corresponding support points at the initialization of the program, rendering-8pace evolution
competitive in speed with fastspace codes. Except where the parton distributions become very small,
an accuracy of 1 part ih0® or better is achieved by including contributions ugkte: 15 in Eq. (28) and
using at most 18 eight-point Gauss quadratures with, 8,g,, = 70, ¢ = 2, ¢ = 37 /4 in Eq. (29).

The two methods for solving Eq. (23) discussed above are completely equivalent, i.e., they do
not differ even by terms beyond"™.O, provided that the couplings evolves exactly according to
Eq. {24). This condition is fulfilled in the present calculations. Thus the results of our two programs
can be compared directly, yielding a powerful check of the correctness and accuracy of the codes. Note
that the only previously published high-precision comparison of NLO evolution prograims [16] used the
truncated expansion ef (1, in terms of inverse powers dfi 2 /A% which does not exactly conform
to Eq. {24). Consequently such direct comparisons were not possible in Ref. [16].

Following Ref. [17], theV-space solution (28) has usually been subjected to a further expansion
in the coupling constants, retaining only the terms up to ordén the product of thé/-matrices. Only
the terms thus kept in Eq. (28) are free from contributions by the higher-order coeffigientsand
P>m) " and only these terms combine to factorization-scheme independent quantities when the parton
distributions are convoluted with theNLO partonic cross sections. Reference results for the truncated
solution will be presented elsewhere;[37].

1.32 Initial conditions and heavy-quark treatment

The following initial conditions for the reference results have been set up at the Les Houches meeting:
The evolution is started at

Roughly along the lines of the CTEQ5M parametrization [38], the input distributions are chosen as

fio) = 5.1072002°% (1 — x)°

fio) = 3.0643202°% (1 — x)*

v pfo) = 1.700000 2701 — 2)° (31)
pig) = 193987527 94(1 — 2)©

po) = (1—a)ad (e, i)

H% ) = wg(%#io) = 0-295(?14“{)(957#%,0)

where, as usual; , = ¢; — ¢;. The running couplings are specified via
as(ui=2GeV?) = 0.35 . (32)

For simplicity these initial conditions are employed regardless of the order of the evolution and the ratio
of the renormalization and factorization scales. At LO this ratio is fixed to unity, beyond LO we use

p: = ki, ke =05, 1, 2. (33)

For the evolution with a fixed numbéYy > 3 of quark flavours the quark distributions not spec-
ified in Eq. (31) are assumed to vanish@t,, and Eq.(32) is understood to refer to the chosen value
of Ny. For the evolution with a variabld; = 3...6, Egs. {31) and;(32) always refer to three flavours.
Nyt is then increased by one unit at the heavy-quark pole masses taken as

me = pgo, mp = 4.5 GeV?, my = 175 GeV? | (34)
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i.e., the evolution is performed as discussed in Se¢tion 1.31 between these thresholds, and the respective
matching conditions are invoked @f = mi, h = ¢, b, t. For the parton distributions these conditions
have been derived in Ref.’[39]. Up td"NLO they read

VY @om?) = 1N (@, m3) + 80 a2 AN (@) @ 1) (2, m) (35)

q9,h

wherel = ¢, gandi = 1,... N, and

g N @, mi) = g (@, mi) +

bz a2 [ 4515 (@) @ S @, md) + A5 @) 0 g N (@m}) | (36)

(h+0) N (@ md) = S0 [ATP () © 20D (@, m3) + A0 (@) @ g OV (0, md) |

with © (V0 = S~ (4 + ¢;) andh = h. The coefficientsi(?) can be found in Appendix B of ref. [39]

— due to our choice ofif = m} for the thresholds only the scale-independent parts of the expressions
are needed here — from where the notation for these coefficients has been taken over. The corresponding
N™ LO relation for the coupling constarit J40,41] is given by

(=0

The pole-mass coefficients ; in Eq. (37) can be inferred from Eq. (9) of Ref. [41], where 1)

expressed in terms dfa . Note that we uses(Nf+1)(k m?) on the r.h.s. of Eq. (36).

is

1.33 The benchmark results

We have compared the results of our two evolution programs, under the conditions specified in Section
1.32, at 500z-x¢ points covering the range0™® < 2 < 0.9 and2 GeV? < p? < 10° GeVE. A
representative subset of our resultgt= 10* GeV*, a scale relevant to high+ jets at TEVATRON and

close tomgy, m7 and, possiblyinfy, .., is presented in Tablgs 2-6. These results are given in terms of
the valence distributions, defined below Bd. (IL), = d + u, and the quark-antiquark sums = ¢—¢

for ¢ = s, c and, for the variabley; casep.

For compactness an abbreviated notation is employed throughout the tables, i.e., all muhibers
are written as:”. In the vast majority of the-x? points our results are found to agree to all five figures
displayed, except for the tiny NLO and NNLO sea-quark distributions=at0.9, in the tables. In fact,
the differences for < 0.9 are not larger thar:1 in the sixth digit, i.e, the offsets are smaller than 1 part
in 10°. Entries where these residual offsets lead to a different fifth digit after rounding are indicated by
the subscript+’. The number with the smaller modulus is then given in the tables, eig.]1 1. should
be read ag.11115 - 10! with an uncertainty of-1 in the last figure.

As mentioned in Sectiofi 1731, the three-loop (NNLO) splitting functiBfid(z) in Eq. (25) are
not yet exactly known. For the NNLO reference results in Taljles 5:and 6 we have resorted to the average
of the two extreme approximations constructed in Ref. [22]. The remaining uncertainties of these results
can be estimated by instead employing the extreme approximations itselves. Their relative effects are
illustrated, also at? = 10* GeV!, in Fig.il. The uncertainties of the NNLO evolution to this scale turn
out to be virtually negligible at > 0.05 and to amount to less thanl % down toz ~ 10~%.
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Table 2: Reference results for thé = 4 (FFN) and the variablé¥s (VFN) leading-order evolution for the initialonditions
(80) - {32), shown together with the input parton distributidng (31). The respective valueg fgr= 1if = 10* GeV*) read
0.117374 (FFN) and0.122306 (VFN). For the notation see the first two paragraphs of Sedzfi_aﬁ 1.33.

x H TUy xd, el _ el TS4 xeq ‘ xby ‘ xg

Input, uf = 2 GeV?

1077 || 1.28297° | 7.697276 | 9.7224~8 | 3.889010 | 7.7779! 0.010 0.010 | 8.52021°
1076 || 8.09437° | 4.8566° | 7.7227~7 | 3.08911Y | 6.1782~! 0.010 0.010 | 6.767810
1077 || 5.10707* | 3.0642%* | 6.134176 | 2.45361° | 4.9072~! 0.010 0.01% | 5.37561°
10741 3.221573 | 1.932773 | 4.8698 5 | 1.9478%9 | 3.8957! 0.010 0.010 | 4.268110
1073 |/ 2.027172 | 1.215172 | 3.8474~% | 1.538210 | 3.0764 ! 0.010 0.01°% | 3.37501°
1072 || 1.244871{ 7.393972 | 2.894672 | 1.15201° [ 2.3041~! 0.0 0.01° | 2.56231°
0.1 |/ 5.900871|3.186471|1.297972 | 4.93197! [ 9.863872 0.010 0.01% | 1.2638+10
0.3 ||6.6861~" | 2.8082~1 | 7.7227~3 | 8.7524~2 | 1.75052 0.010 0.010 | 3.22281
0.5 |[3.6666="|1.1000~" | 1.62433 | 9.7458 3 | 1.9492~3 0.010 0.019 | 5.69382
0.7 |/ 1.036671 | 1.86597% | 1.0259~* | 3.8103~* | 7.6207° 0.01Y 0.0TY | 4.281073
0.9 [/ 4.694473|2.8166~* | 1.7644=7 | 4.3129~7 | 8.6259~8 0.0 0.0t° | 1.7180~5

LO, Ny =4, u = 10* GeV*

1077 || 5.77227° | 3.43437° | 7.65277 | 9.9465T! | 4.8642F" | 4.7914F! 0.0t9 | 1.31621+3
1076/ 3.337374{ 1.9800~* | 5.01376 | 5.0259%1 | 2.4263F! | 2.3685F! 0.01° | 6.0008+2
1077 || 1.872473 [ 1.106572 | 3.1696 > | 2.4378%! | 1.1501F" | 1.10421! 0.0V | 2.541912
1074 || 1.005772 | 5.9076 72| 1.9071~* | 1.1323%! | 5.11641° | 4.7530T° 0.0t% | 9.73711!
1073 || 5.039272{2.9296=2 | 1.06183 | 5.03241° | 2.0918* | 1.80891° 0.010 | 3.2078+!
1072 |[2.195571 | 1.243371 [ 4.973173 | 2.043310 | 7.281471 | 5.3247~1 0.01% | 8.05461°
0.1 || 5.726771[2.841371 | 1.047072 | 4.083271 | 1.1698~1 | 5.8864 2 0.0TY | 8.8766~!
0.3 |[3.792571 | 1.418671 | 3.302973 | 4.01657% | 1.0516~2 | 4.1379.> 0.079 | 8.267672
0.5 || 1.34767! [ 3.536472 | 4.28157% | 2.862473 | 7.313874 | 2.6481~* 0.01° | 7.9240~3
0.7 |12.312372(3.594372 | 1.5868~° | 6.89617° | 1.77257° | 6.5549~° 0.0t%|3.73117*
0.9 || 4.344371]2.22877° | 1.104278 | 3.62937% | 1.01927% | 4.8893° 0.079 | 1.0918¢

LO, Ny =3...5, u? = 10* GeV?

1077 || 5.87717°( 3.49637° | 7.823377 | 1.018112 | 4.9815%1 | 4.9088%1 | 4.6070%! | 1.3272+3
107/ 3.39337% [ 2.01297% | 5.114276 | 5.118211 | 2.4725%! | 2.41481! | 2.223911 | 6.011712
1075 || 1.900672 | 1.122973 | 3.224975 | 2.46931! | 1.165911 | 1.12011 | 1.003711 | 2.528212
1074 || 1.018672 | 5.981973 | 1.9345~* | 1.14061! | 5.15837Y | 4.795310 | 4.122210 | 9.6048 1!
1073 || 5.089372{2.957672 | 1.0730~3 | 5.0424%° | 2.0973%0 | 1.8147%0 | 1.4582%0 | 3.1333F!
1072 | 2.208071 | 1.249771 | 4.998573 | 2.0381%° | 7.2625=1 | 5.3107' | 3.8106~" | 7.7728+10
0.1 ||5.71667" [ 2.833471 | 1.042872 | 4.0496~1 | 1.1596~! | 5.828872 | 3.50562 | 8.4358 !
0.3 ||3.759771 | 1.40447" | 3.262972 | 3.959272 | 1.036372 | 4.074073 | 2.2039~2 | 7.8026 2
0.5 || 1.328471 [ 3.480272 [ 4.2031* | 2.8066™3 | 7.1707~* | 2.5958 4 | 1.3522~4 | 7.471973
0.7 |[2.264372|3.513473 | 1.5468~% | 6.7201~° | 1.7278~> [ 6.3958 ¢ | 3.3996° | 3.5241~*
0.9 |14.20477%{2.15297° | 1.06357% | 3.4998~% | 9.83949 | 4.73307° | 2.890379 | 1.0307~¢
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Table 3: Reference results for thé = 4 next-to-leading-order evolution for the initiabnditions [-3_'()) —KC‘EZ). The correspond-
ing value of the strong coupling is. (17 = 10* GeV?) = 0.110902. As in the leading-order case, the valence distributions
andc, vanish for the input(31). The notation is explained in the first two paragraphs of Sgction 1.33.

NLO, Nt = 4, pf = 10* GeV?

x TUy xd, el _ el TS4 xeq xg

e = ui

1077 || 1.06167* | 6.23287° | 4.244076 | 1.359812 | 6.6913F' | 6.6195T" | 1.1483}3
1076 || 5417774 | 3.17197* | 1.92417° | 6.8396T1 | 3.3342+1 | 3.2771%! | 5.391112
107° || 2.687073 | 1.5677~2 | 8.3575=° | 3.2728+1 | 1.5685%! | 1.52311! | 2.3528%2
107 || 1.284172 | 7.455872 | 3.4911~* | 1.4746%! | 6.8355T0 |  6.4769%0 | 9.2872F!
1073 || 5.792672 | 3.333772 | 1.416273 | 6.1648]° | 2.66591° | 2.3878%0 | 3.15021!
1072 || 2.30267" | 1.2928~1 | 5.325173 | 2.2527%0 | 8.42207' | 6.52467" | 8.10667°
0.1 || 5.545271 | 2.73367! | 1.001172 | 3.9336~! | 1.1489=1 | 6.035172 | 8.9867!
0.3 || 3.53937" | 1.3158~" | 3.036273 | 3.584872 | 9.2030~3 | 3.38903 | 8.3451~2
0.5 || 1.227171 | 3.196772 | 3.826571 | 2.412672 | 5.8424=* | 1.6955~1 | 8.0473~3
0.7 || 2.042972 | 3.147373 | 1.37017° | 5.36227° | 1.23937° | 2.78077% | 3.8721~*
0.9 || 3.6096=% | 1.83177° | 8.92372 | 2.0927% | 4.0397° | —2.405710 | 1.2127°¢

py =2 i

1077 || 9.29607° | 5.46997° | 3.386176 | 1.221472 | 5.9987+! | 5.9265T | 1.091113
1076 || 4.8463% | 2.8440~%* | 1.58207° | 6.18317! | 3.0056T | 2.9483%! | 5.1456%12
1077 || 2457873 | 1.437473 | 7.12657° | 2.9845T1 | 1.4240*T1 | 1.37851! | 2.2580%12
1074 || 1.201872 | 6.99462 | 3.11117%* | 1.3618%! | 6.26907° | 5.9088%0 | 8.9753+!
1072 || 5.548372 | 3.200972 | 1.325473 | 5.8076TY | 2.4848*% | 2.20501° | 3.0729*!
1072 || 2.259571 | 1.272071 | 5.214173 | 2.18961° | 8.0746' | 6.1564~! | 8.018810
0.1 || 5.600771 | 2.76977! | 1.018072 | 3.9945~! | 1.1570~! | 5.966172 | 9.1201~!
0.3 || 3.647471 | 1.36127" | 3.1588=3 | 3.750172 | 9.6302=3 | 3.549973 | 8.6368~2
0.5 || 1.284371 | 3.361072 | 4.05107* | 2.5822723 | 6.3044~* | 1.8999~% | 8.41783
0.7 || 2.177972 | 3.372572 | 1.47987° | 5.91257° | 1.39617° | 3.559376 | 4.0836~*
0.9 || 3.98177% | 2.03217° | 9.98772 | 2.5557% | 5.5867? | 7.9307'° | 1.3008°

= 1/2 pif

1077 || 1.24387% | 7.28177° | 5.556876 | 1.4556%2 | 7.1706%! | 7.0990%! | 1.1468%3
1076 || 6.17597% | 3.6051~* | 2.43227° | 7.3406T! | 3.5851+1 | 3.5282F1 | 5.404112
1072 || 2.977072 | 1.731672 | 1.01217° | 3.5158F1 | 1.6903T | 1.6452%! | 2.366312
107 || 1.382072 | 7.999872 | 4.0093~* | 1.5795T1 | 7.36261° | 7.0057T° | 9.36401!
1073 || 6.058572 | 3.4766~2 | 1.53003 | 6.528410 | 2.8504%0 | 2.57401C | 3.1795F!
1072 || 2.342271 | 1.311471 | 5441173 | 2.3221%0 | 8.802271 | 6.92607! | 8.1613T°
0.1 || 5.4824~1 | 2.6954~" | 9.8435=2 | 3.8787~ | 1.1419~' | 6.09972 | 8.9361~!
0.3 || 3.442571 | 1.27607! | 2.931772 | 3.429472 | 8.759973 | 3.168172 | 8.2031~2
0.5 || 1.17947" | 3.061872 | 3.6454~* | 2.253073 | 5.3541~% | 1.4134=% | 7.859573
0.7 || 1.935672 | 2.969873 | 1.284775 | 4.83287° | 1.0666=° | 1.66687° | 3.7624*
0.9 || 3.3264=* | 1.68007° | 8.12472 | 1.5737% | 2.0247° | —1.87079 | 1.1647°
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Table 4: As Tablé_:?,, but for the variabl€é: evolution using Eqs:_-@4) { CG?). The corresponding values for the strong coupling
s (2 =10* GeVF) are given by.116461, 0.116032 and0.115663 for ui /uf = 0.5, 1 and2, respectively.

NLO, Ny =3 ...5, u = 10* GeV?

x TUy xd, el _ el TS4 xeq xby xg

e = nf
1077 || 1.0927-% | 6.41257° | 4.3925=% | 1.3787+2 | 6.7857+1 | 6.7139%! | 6.0071F! | 1.116713
1076 5.553371 | 3.249871| 1.982975 | 6.9157+! | 3.3723F1 | 3.3153%! | 2.88601! | 5.228912
1075 || 2.741973 | 1.5989=3 | 8.57017° | 3.299611 | 1.5819+" | 1.53671! | 1.289211 | 2.2753+12
107% || 1.303972 | 7.56642 | 3.55827| 1.4822%! | 6.87391° | 6.515610 | 5.19691° | 8.9513+!
1073 || 5.850772 | 3.365272 | 1.432973 | 6.177210 [ 2.67261Y | 2.3949%0 | 1.78011Y | 3.024511
1072 || 2.312871 | 1.2978 71 | 5.347273 | 2.25007° | 8.41617! | 6.523571 | 4.3894~1 | 7.74911°
0.1 [|5.5324=112.7252=119.97093 | 3.9099~" | 1.1425~! | 6.00712 | 3.5441~2 | 8.5586~"
0.3 {/3.512971 | 1.3046~" | 3.006172 | 3.546372 | 9.108472 | 3.359572 | 1.903972 | 7.9625~2
0.5 || 1.2130~" | 3.156472 | 3.7719~* | 2.3775~3 | 5.7606~* | 1.6761~*|1.0021~* | 7.7265~3
0.7 |[2.010172 [ 3.093273 | 1.34407° | 5.2605° | 1.2166™° | 2.74087%{2.00957° | 3.7574~%
0.9 [/3.5232;1 ] 1.78557° | 8.68077| 2.0287%| 3.89679 | —2.66671° | 5.819719 | 1.1954~6

=2 uf
1077 9.51547° | 5.59707° | 3.48697° | 1.230112 | 6.0424+1 | 5.9703*! | 5.39161! | 1.056813
1079 | 4.94337% | 2.8998 74 | 1.62297° | 6.2149%! [ 3.0215T' | 2.96431! [ 2.6100T" | 4.974412
1072 || 2.497473 | 1.460072 | 7.27767° | 2.99361! | 1.428611 | 1.38311! [ 1.17681! | 2.178312
1074 | 1.216172 | 7.075172 | 3.1597~*| 1.36317" | 6.27591° | 5.9160%° | 4.79971° | 8.637211!
1073 (] 5.590772 | 3.223972 | 1.33772 | 5.80201° | 2.48247° | 2.2029%° | 1.67011° | 2.9488+1
1072 2.267071 | 1.2756~1 | 5.230473 | 2.18401° | 8.0522=1 | 6.1376~! | 4.2146~! | 7.671310
0.1 |5.591571{2.7636=" | 1.015172 | 3.974471 | 1.15097' | 5.931872 | 3.54922 | 8.7075~!
0.3 [/ 3.6281~1 | 1.3530~" | 3.13673 | 3.7201~2 | 9.5529~2 | 3.52093 | 1.98693 | 8.26972
0.5 || 1.273971|3.331172 | 4.01027% [ 2.555272 | 6.23927% | 1.88157*|1.08427%|8.1131~3
0.7 || 2.15347213.3317-2 | 1.4600~° | 5.8333~° | 1.3778~> | 3.519376|2.29606 | 3.9788 4
0.9 {/3.91507*{1.99637°| 9.79772| 2.5027%| 5.4597%| 7.57471°| 1.00279|1.289576

e =1/2pf
1077 || 1.29377% | 7.56957° | 5.81617° | 1.4923%2 | 7.3543F1 | 7.2829%! | 6.4225%! | 1.123913
1076 | 6.3890=* | 3.7272=%| 2.53177° | 7.497311 | 3.6635T | 3.60681! | 3.08461! | 5.276312
1075 || 3.061572 | 1.779672 | 1.0470~* | 3.5762%1 | 1.7205%! | 1.67557! | 1.37561! | 2.3006%2
107 1.412072 | 8.167473 | 4.1155=1 | 1.5994F1 | 7.4628%° | 7.10641° | 5.52321° | 9.0599+!
1073 || 6.145872 | 3.523972 | 1.555773 | 6.57747Y | 2.875810 | 2.5999%0 | 1.877310 | 3.0589+!
1072 2.357471 | 1.318771 | 5.473973 | 2.325410 | 8.8301~' | 6.9613~! | 4.5587~1 | 7.799610
0.1 || 5.463071{2.6827~1]9.782873 | 3.8485~! | 1.13487 1| 6.082572 | 3.55242 | 8.4801 !
0.3 [/ 3.4035"1 | 1.2596~" | 2.88773 | 3.375272 | 8.63137% | 3.134573| 1.83083 | 7.78172
0.5 || 1.158971{3.003472 | 3.5665~% | 2.203272 | 5.2398=*| 1.3891=%9.23077° | 7.4943~3
0.7 || 1.888672]2.892373 | 1.2475~% | 4.6898~% | 1.0350~°> | 1.617976|1.70696 | 3.6221~4
0.9 |[3.205374[1.61557°| 7.78772| 1.48978| 1.848792| —1.88479|6.129711 |1.135376
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Table 5: Reference results for thé = 4 next-next-to-leading-order evolution for the initiabritions (30) —'(32). The
corresponding value of the strong couplingig ;i = 10* GeV?) = 0.110141. The valence distributions, andc, are equal
for the input 13_'&). The notation is explained in the first two paragraphs of S(%_cgic_;n 1.33.

NNLO, N =4, pf = 10* GeV?

x Ty, xd, zL_ xLy TSy TSt req xg

1 = ni

1077 || 1.442571 1 8.9516,° | 6.083676 | 1.3492%2 | 1.31167° | 6.6385%! | 6.56697" | 1.010513
1076 6.7325=% | 4.1192=* | 2.6060~° | 6.96367" | 4.86177° | 3.39651" | 3.33961! | 4.9543+2
1075 || 3.078272 | 1.851072 | 1.0652~* | 3.3826F! | 1.5280~*| 1.623671 | 1.5784T! | 2.240612
107% || 1.374672 | 8.097973 | 4.1608* | 1.5278+1 | 3.39737% | 7.10411° | 6.74681Y | 9.0854 1
1073 || 5.922272 | 3.413772 | 1.571873 | 6.324910 |  2.6800*| 2.7483%9 | 2.4713%Y | 3.1353*+!
1072 2.307471 | 1.292071 | 5.54613 | 2.27361° | —5.2053~* | 8.5420~! | 6.6542~! | 8.13411°
0.1 ||5.517871 | 2.716571 | 1.002472 [ 3.9020~! | —=3.0680~* | 1.1386~! | 5.978072 | 9.0567 "
0.3 |[3.50717" | 1.3025=" | 3.00983 | 3.5358 2 | —3.19057° | 9.0479~> | 3.3060~> | 8.4184~2
0.5 || 1.211771 | 3.152872 | 3.774371 | 2.3866 2 | —2.72077% | 5.7966=1 | 1.71717*| 8.11273
0.7 |/ 2.007872|3.088673 | 1.344275 | 5.4226~° | —1.0121~7 | 1.2936° | 3.5305=° | 3.8946~*
0.9 ||3.51117*|1.77837°| 8.8707?| 2.6307% | —1.450'0| 7.11572| 2.97379|1.2147°6

=2 uf

1077 | 1.28197% | 7.85607° | 5.23707% | 1.322972 | 8.86917° | 6.50701! | 6.43521! | 1.02961>
1076 (] 6.1508=* | 3.7250=* | 2.28975 | 6.7704F1 | 3.335875 | 3.2997t! | 3.242711 | 4.990712
1075 || 2.889172 | 1.724872 | 9.5768° | 3.2745% | 1.0595=* | 1.5694 %1 | 1.5241F" | 2.2382+2
1074 || 1.322372 | 7.764273 | 3.843774 | 1.480311 | 2.37447%|6.86471° | 6.50651Y | 9.0293 11
1073 || 5.809172 | 3.349472 | 1.497873 | 6.171610 | 1.8990~*| 2.67027° | 2.3924%0 [ 3.1117+!
1072 ] 2.292771 | 1.2858 71 | 5.4465.3 | 2.24811% | —3.6267~1 | 8.4001~! | 6.5031~! | 8.09641°
0.1 | 5.54297112.732671 | 1.007372 | 3.9298 1 | —2.16317% | 1.1440~" | 5.971872 | 9.0854 !
0.3 |[3.550171 | 1.320571 | 3.055672 | 3.60087% | —2.264275 | 9.222672 | 3.377072 | 8.5020; 2
0.5 || 1.23407" [ 3.216672 | 3.8590~* | 2.445873 | —1.94147% | 5.9487~% | 1.7699~* | 8.22943
0.7 |1 2.059772 | 3.175173 | 1.38547° | 5.57087° | —=7.272478 | 1.32447° | 3.53617° | 3.9686~*
0.9 |3.65277% | 1.854475| 9.20472| 2.616=%| —1.05771°| 6.70079 | 2.3647°|1.249776

;= 1/2 i

1077 | 1.6566™* | 1.05017*| 7.10037% | 1.318172 | 2.09967° | 6.48321! | 6.41171! | 9.458212
1076 || 7.452171 | 4.642871 | 2.97447° | 6.9457T1 | 7.65037° | 3.38771! | 3.33091! | 4.7543}2
1077 (| 3.287973 [ 2.004173 | 1.1872=* | 3.4193%F1 | 2.3809~* | 1.64211" | 1.59701! | 2.1922+2
1074 |1 1.422372 | 8.439672 | 4.5146~* | 1.5524F! | 5.27167*| 7.22817° | 6.8715%Y [ 9.0112*!
1073 || 5.988972 | 3.455372 | 1.654572 | 6.407310 |  4.142874|2.790810 | 2.51441° | 3.1340+!
10721 2.310071 | 1.29151 | 5.666373 | 2.28511% | —8.0979~1 | 8.6079~! | 6.7251~! | 8.15261°
0.1 || 5.50397"[2.7076~" | 1.003272 | 3.8851" | —4.7547~* | 1.1333~" | 5.9500~2 | 9.0801~"
0.3 | 3.489071 | 1.294971 | 2.994273 | 3.509072 | —4.9326~° | 8.9666 > | 3.266972 | 8.43072
0.5 || 1.202671 | 3.126972 | 3.74287%4 | 2.3728 3 | —4.196976 | 5.7784=4 | 1.7391~* | 8.1102~3
0.7 |[ 1.986772|3.053472 | 1.32857° | 5.4607~° | —1.5564~7 | 1.32752° | 3.99317% | 3.8822*
0.9 ||3.4524=4|1.7466=° | 8.82879| 2.93078 | —2.216710| 8.83779| 4.77779|1.2041~°
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Table 6: As Tablé_:S, but for the variablér evolution using Eqs:_-(_i4) { (-_87). The corresponding values for the strong coupling
s (p =10* GeV?) are given by0.115818, 0.115605 and0.115410 for 2 /u = 0.5, 1 and2, respectively. For brevity the
small, but non-vanishing valence distributions ¢, andb, are not displayed.

NNLO, Ny =3 ...5, uf = 10* GeV?

x TUy xd, el _ el TS4 xeq xby xg

e = ui

1077 || 1.50537%{9.3396° | 6.335076 | 1.423612 | 7.0107*" | 6.8526%" | 5.8645%1 | 1.010113
107 |/ 6.98007* [ 4.26927% | 2.70157° | 7.29051! | 3.56011" | 3.4447+! | 2.874911 | 4.9242+2
1072 || 3.169173 | 1.90482 | 1.0987~* | 3.5102*+! | 1.687511 | 1.60591! | 1.30111! | 2.212212
1074 || 1.404872 | 8.271172 | 4.26557* | 1.569411 | 7.312610 | 6.76237° | 5.279610 | 8.8987+1
1072 || 6.008572 | 3.461072 | 1.598873 | 6.419010 | 2.79631° | 2.4502%° | 1.8138%Y | 3.0407+!
1072 2.324071 | 1.3001~" | 5.58693 | 2.27621° | 8.5667~! | 6.6665~" | 4.5032~1 | 7.787310
0.1 [/ 5.4993712.70351{9.960472 | 3.85271 | 1.12317! | 6.447172 | 3.728372 | 8.5270!
0.3 | 3.4622711.28337112.957172 | 3.4600~2 | 8.84092 | 4.013173 | 2.10462 | 7.88962
0.5 || 1.186871 | 3.081172 | 3.6760~* | 2.319872 | 5.6309=* | 2.3748~*| 1.2003~* | 7.6399~3
0.7 || 1.948672 [ 2.990273 | 1.29647° | 5.23357° | 1.25047° | 5.601976 | 2.88836 | 3.7079~*
0.9 [/ 3.35227%|1.69337° | 8.42017? [ 2.5098% | 6.83787? | 4.31907° | 2.6761~9 | 1.1731°

py =2 i

1077 || 1.33057% | 8.15377° | 5.42857% | 1.377012 | 6.77767" | 6.6452F1 | 5.7708+! | 1.0172%3
1076 || 6.3465~% | 3.8427~% | 2.36387° | 7.00431! | 3.41671! | 3.3187+1 [ 2.81171! | 4.910212
1077 || 2.962273 | 1.767972 | 9.84157° | 3.364211 | 1.61441" | 1.543511 | 1.2685T1 | 2.191312
104 1.346972 | 7.90473 | 3.9275=* | 1.5088%1 | 7.0083%0 | 6.5145%0 | 5.1475%0 | 8.7878F!
1072 || 5.879372 | 3.387972 | 1.51957% | 6.233310 | 2.70181° | 2.3753%0 | 1.7742%° | 3.0063 1!
1072/ 2.30607" | 1.2923~1 | 5.479273 | 2.247810 | 8.4084~1 | 6.5026~" | 4.4324~1 | 7.74671°
0.1 |[5.528071]2.722271 | 1.0021;% | 3.88981 | 1.131371 [ 6.292172 | 3.7050~2 | 8.5900~!
0.3 |[3.51417" | 1.3051~1 | 3.0134~3 | 3.5398~2 | 9.0559~2 | 3.8724 73 | 2.0992~2 | 8.0225~2
0.5 || 1.21407" | 3.1590~2 | 3.7799~* | 2.391973 | 5.8148~* [ 2.2373~* | 1.1917~* | 7.8099 3
0.7 |12.012072{3.0955% | 1.34677° | 5.41827° | 1.28967° | 5.031676 | 2.814876 | 3.8098~*
0.9 |/3.52307*|1.78497>| 8.83572| 2.52378| 6.4997°| 3.37779| 2.4047°|1.219676

= 1/2 pif

1077 || 1.74627% | 1.1066™* | 7.46857° | 1.4238%F2 | 7.0121F" | 6.8041F" | 5.7115T" | 9.6557 12
1076 || 7.7945=4 | 4.854274 | 3.11117° | 7.4239%! | 3.62701! | 3.4778+! | 2.8492+1 | 4.813512
1077 || 3.409972 | 2.077572 | 1.2343~* | 3.61061" | 1.737911 | 1.635311 | 1.3052%1 | 2.197912
107% || 1.461972 | 8.669172 | 4.6591~* | 1.61611! | 7.54791° | 6.8868%" | 5.33317" | 8.9300*!
1072 6.101472 [ 3.517072 | 1.6915=2 | 6.55701° | 2.86691C | 2.48161 | 1.83601° | 3.0619;}"
1072 |1 2.332071 | 1.302471 | 5.722973 | 2.292410 | 8.6595~1 | 6.7561 1 | 4.5538 ! | 7.8182+10
0.1 || 5.479971|2.69057" | 9.948172 | 3.81937" | 1.1125~! | 6.7100~2 | 3.770272 | 8.4914~"
0.3 |[3.429171 ] 1.269371 | 2.923873 | 3.406972 | 8.6866 2 | 4.391873 | 2.143473 | 7.8107_2
0.5 || 1.169471 [ 3.031072 [ 3.61127% | 2.282773 | 5.5538 4 | 2.77377*| 1.24144 | 7.537373
0.7 || 1.907672]2.921773 | 1.26467° | 5.2035=° | 1.2677~° | 7.20557¢ | 3.0900~° | 3.6439.*
0.9 |3.24047%[1.63337>| 8.23172| 2.75278| 8.3807°| 6.76979| 3.2047°|1.1424°6
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Fig. 1: The relative effects of the present uncertainties of the NNLO splitting functions on the evolutionrqjmhéa':@) - iS:Q)

for ur = p¢, estimated by using the extreme approximations ‘A’ and ‘B’ of R:ef. [22] instead of their average.
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2. HIGHER ORDERS# 7,

In this report, we summarize the issues discussed and worked out during the "Working Group on Higher
Orders’. The two current frontiers of higher order QCD calculations at colliders are the description of
multiparton final states at next-to-leading order and the extension of calculations for precision observ-
ables beyond this order. Considerable progress has been made on both issues, with the highlights being
the first calculation of the Yukawa-model one-loop six-point amplitude and the two-loop corrections to
theete™ — 3 jets matrix element. Developments towards the construction of NNLO parton level Monte
Carlo programs are described for the example ofs ¢q. Finally, the first applications of two-loop ma-

trix elements to the improved description of the high energy limit of QCD are reported.

2.1 Introduction

Present and future collider experiments will confront us with large sets of data on multi—particle final
states. This is particularly true for the hadron colliders Tevatron and LHC, which will be the machines
operating at the highest attainable energies in the near future. Hence the comparison of jet observables
to theoretical predictions will become increasingly important.

Since the theoretical predictions based on leading order (LO) calculations are typically plagued by
large scale uncertainties, it becomes necessary to calculate the next-to-leading order (NLO) corrections
in order to make meaningful predictions which match the experimental precision. Indeedjéte
cross section in hadronic collisions is proportionaktd at leading order, which means that theoretical
uncertainties are actually amplified for growing

For processes with relatively few jets, such as dijet production, next-to-next-to-leading order
(NNLO) perturbative predictions will be needed to reduce the theoretical uncertainties and enable useful
physics to be extracted from the copious high-precision data.

In this report, we address issues connected with theoretical progress in calculating higher order
corrections both at NLO (in the context &f — 4 scattering processes) and at NNLO (in the context
of 2 — 2 processes). At present, making numerical predictions for these types of processes lies well
beyond our capabilities. However, there has been very rapid progress in the last two years and it is very
likely that the technical stumbling blocks will be removed.

Our report is structured as follows. First, we address the issue of NLO corrections to multi-particle
final states. The main technical problems associated with dimensionally regulated pentagon integrals
were solved some time ago [42] and the next-to-leading order matrix elemeBtsfc¥ processes have
become available in the recent years; [42-53]. However, the step-to4 or even higher processes
at NLO has not been made yet. The reason lies in the fact that the computation of the corresponding
amplitudes is highly nontrivial. Although the calculation techniques for amplitudes with an arbitrary
number of external legs are available |[54], it turns out that a brute force approach is not viable. In
order to avoid intractably large expressions in the calculation of six-point (or higher) amplitudes, it is
indispensable to understand better recombination and cancellation mechanisms at intermediate steps of
the calculation. Thisissue is addressed in §eg. 2.2, in the context of the Yukawa model, where all external
legs are massless scalars attached to a massless fermion loop.

In Sec. 2.3 we consider the NNLO corrections2to— 2 scattering processes. The rationale
for going beyond the next-to-leading order is reviewed in Sec! 2.31 while the various building blocks
necessary for such a calculation are discussed in $ecs. 2.32— 2.34. While the individual components
are in relatively good shape - the infrared limits are well studied, many two-loop matrix elements exist
and the NNLO evolution of parton distributions is almost under control — a systematic procedure for
combining them to give numerical predictions is not established. Therefore in Sec. 2.35 we examine the

8Section coordinator: E.W.N. Glover
9Contributing authors: T. Binoth, V. Del Duca, T. Gehrmann, A. Gehrmann-De Ridder, E.W.N. Glover, J.-Ph. Guillet and
G. Heinrich
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infrared singular structure of the various pieces~for— 2 jets which is one of the simplest non-trivial
processes at NNLO.

Sec.;2.4 contains a summary of the present status of the analytic structure of QCD amplitudes
in the limit of forward and backward scattering. In these high energy limits, the scattering process is
dominated by the exchange of a particle in théor u-)channel respectively. This may be the gluon or
the quark. In both cases, the amplitude reggeises and the large logarithms can be resummed to next-to-
leading-logarithmic accuracy by simple forms involving the reggeised particle exchange together with
modified vertex functions (or impact factors). We evaluate the gluon and quark Regge trajectories to
two-loop accuracy and show that they are strikingly similar: the gluon Regge trajectory can be obtained
from the quark trajectory by mappird, — C'.

A brief summary and outlook is given in Sec.'2.5.

2.2 NLO

For NLO amplitudes withV > 6 external particles, standard calculational methods are not adequate
because of the complexity of intermediate expressions.

In the last few years, methods either directly based on string perturbation theéiy |[55-57] or on
a world line formulation of field theory amplitudes [58] have been used to derive a number of “master
formulae” for one-loopN—point amplitudes. Those are generating functionals which yield, for any
N, a closed parameter integral expression for the amplitude. The resulting integral representations are
related to standard Feynman parameter integrals in a well-understood way [59]. Nevertheless, due to
their superior organisation they often allow one to exploit at the integral level properties of an amplitude
which normally would be seen only at later stages in a Feynman graph calculation; [60, 61].

Although the string inspired formalism allows for an elegant formulation of amplitudes in terms
of a manifest Lorentz structure, one is in general not at all dispensed from doing cumbersome algebraic
work. The complexity of doing tensor reduction in momentum space translates into the need to reduce
Feynman parameter integrals with nontrivial numerators to genvif@oint scalar integrals. These can
be expressed in terms of box, triangle and bubble scalar integrals. Substantial cancellations appear in
all these steps and progress in finding efficient calculational methods relies on a better understanding of
these mechanisms.

Here we will sketch the calculation of the six-point one-loop amplitude in the Yukawa model
where all external legs are massless scalars attached to a massless fermior} loop [62]. The interest of this
model is related to the fact that the appearance of tensor integrals can be completely avoided. This can
immediately be seen from the string inspired master formulas for oneAbggoint functions derived
in [6d]. In this way one can study the reduction mechanisms for scalar 6-point functions without the
additional complications arising from the tensor reduction. Having understood these mechanisms one
can proceed towards the computation of gauge theoryitdes.

2.21 Calculation of a hexagon amplitude in the Feynman diagrammatic approach

The amplitudel’y, can be written as a sum ovét permutations of the external momentum vectors
P1y-- -5 D6,

> AWry s Drys Prgs Pras P Prg)- (38)

6 9° 1
Fyuk[P17P27P37P47P57P6] = —(
7'['656

477)”/2 6

Each permutation corresponds to a single Feynman diagram. The amplitude for the trivial permutation
is given by,

dk tr(q1, 2, 43, 94, G5+ G6) (39)

22,2 2 ’

A(Pl P2,P3, P4, Ps P6) = /
e w2 GGG EE
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whereq; = k —r; = kK —p; — --- — p;. Working out the trace gives a sum of products of terms
qx - ¢; Which can be written as inverse propagators which cancel directly. This meaesathagraph can
simply be represented as a linear combination of scalar integrals. For the trivial permutation we find

2 A(p1, P2, P3, P4, D5, Ps) = 4 15 (P12, P3a; Pse) + 4 15 (P23, pas, Pe1)
+tr(pr, p2) 15 (p1, p2s P34, Pse) + tr(pe, p3) If (P2, P3, Pas, Pe1)
+tr(ps, pa) 11 (p3, Pas P56, P12) + t1(pay ps) If (4, s, Pe1, P23)
+tr(ps, pe) 15 (05, Pes P12, P3a) + t1(pe, 1) 1§ (6, D1, P23, Pas)
+tr(pr, pa) I3 (p1, P23, P4, Pse) + tr(p2, ps) 1§ (2, P34, D5, Pe1)

)1 )
)
)
)

PRIGEPEIEE Sy

+tr(ps; ps) 15 (p3, pas, Ps, P12

+tr(p1, p2, p3, pa) IS (D56, P1y P2, P3, Pa) + t1(D2, 3, pay ps) IS (P61, P2, D3, Pas D5

+tr(ps3, pa, ps, pe) IS (P12, 3, Pa, D5, Pe) + tr(pa, ps, pe, p1) 15 (P23, P4, Ps, Pe, 1

+tr(ps, pe, p1, p2) IS (P34, P, Pe, 1, P2) + tr(Pe, P1, P2, P3) IS (pas, Pe, P1, P2, P3
+tr(p1, P2, P3, P4, Ps, P6) 16 (P1s P2, P3, P4, D5, Pé)- (40)

The arguments of th& —point scalar integrals are the momenta of the external legs. We use the abbrevi-
ationp;;x... = p; + p; + pr + . ... The spinor traces can be expressed by Mandelstam variables defined
by the 9 cuts of the hexagon graph, but the form given above is not only most compact but also most
convenient to proceed.

We also note that the amplitude is free of infrared poles. This can be seen by power counting for
the soft and collinear poles.

To sketch the explicit calculation of the hexagon amplitude, we will draw special attention to
the cancellation mechanisms at work. First one has to reduce hexagon and pentagon integrals to box
integrals. Then the explicit expressions for the box integrals are inserted. Finally the coefficients of
different terms are combined and simplified by using linear relations for the reduction coefficients. We
note that in none of these steps the size of the expression will blow up, while this would surely be the
case in a brute force approach.

The reduction formula for the hexagon integral reads,

1

Ig(l)17p27p37p47p57p6) = m{

[tr(123456)tr(3456) — 2854545556tr(6123)] 12 (p12, ps, pa. Ps, o)
+[tr(123456)tr(4561) — 2s45856561tr(1234)] 12 (p2s, pa, Ps, Pe, P1)
+[tr(123456)tr(5612) — 2s56561512tr(2345)] 1L (psa, ps, Pe, P1, P2)

+ [tr(123456)tr(6123) — 2561 512523t (3456)] 1L (pas, pe. p1, P2, P3)
+[tr(123456)tr(1234) — 2512823834tr(4561)] 12 (pse. 1, P2, P3, Pa)
+ [tr(123456)tr(2345) — 2593534545t1(5612) | IZ (pe1, pa. 3, Pa. P5) | (41)

where the momenta inside the traces are represented by their indices only. The coefficients in front of the
5—pointintegrals are calléd (j € {1, ...,6})in the following. They are defined by the linear equation,

6
(S . b)]‘ =1 & b]‘ = ZS;} where Sk]‘ = (T‘k — T‘]‘)z (42)
k=1
det(S) = 4812823834845856861 - tI’(123456)2

The traces allow for a compact notation for the coefficiéntdhe Gram matrix7; = 2 r; -y, is related
to S by Sy = =G +ri +rf. ForN > 6 and 4-dimensional external momenta one hag(éet 0,
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which leads to a non-linear constraint between the Mandelstam variables. We note that this constraint is
representedinearly in terms of the coefficients;. One has,

det(G) =0 & > b =0. (43)

By solving eq. {42) with Cramer’s rule one sees that the constriaiht (43) relates sums of determinants of
5x5 matrices. In terms of Mandelstam variables these are huge expressions just representing zero. The
guideline to keep the sizes of expressions under control in calculations of multi—particle processes is thus
to use representations of amplitudes wherebthare kept manifestly and to use relations (42) dandl (43)

to perform cancellations as far as possible.

Applying the reduction formula (41) above to reduce the hexagon, we observe that the coefficients
of the hexagon and pentagon integrals in the amplitude combine in a nice way to form a resulting coef-
ficient for a given pentagon which is again proportionah toFor example, the resulting coefficient of

1§ (p12, p3, P4, s, ps) in (AQ) is
tf(3456) + tf(123456) bl = —2834845856 b4 s (44)
analogous for all cyclic permutations.

Now we reduce the pentagons to boxes using the reduction formula giver in [54]. We obtain,

2
A(p1, P2, P3, P4, D5, P6) = 3 I3 (p12, P34, Pse)

tr(14
512 L3 (1, P2 P3as Pso) + (4 )IE(P17P237P47P56)
b
+%{823834 [6r(1234) — 2512 (5234 — 523)] 1§ (D2, P3, P4, D361)
2

+S12893 [tI’(1234) — 2834 (8123 - 523)] (P17P27P37P456)
+tr(1234) Fo 1§ (p1, pas, pas Pse)
+s34 [—s123 tr(1234) — 2512503 (5123 — 556)] I (D3, P4, P56, P12)

»Jkgﬂk\‘g

+519 [—S234 t1(1234) — 2593534 (S234 — 556)] 14 (1, P2, P34, P56)
+ 5 cyclic permutations (45)

wherel; = sj938345 — S12545. TheL; for j > 1 are defined by cyclic permutation. Note that =
Ljys.

The amplitude is now expressed in terms of four functions: The triangle with all three legs off-
shell, box integrals with two off-shell legs at adjacent cornéfg ., p2, ps4, pss) and 5 permutations),
box integrals with two off-shell legs at opposite cornel®(p1, p2s, p4, ps¢) and 2 permutations), and
box integrals with one off-shell leg{ (p1, p2, ps, pass) @and 5 permutations).

We now collect and combine the coefficients of particular terms in the cyclic sum. Again nontrivial
cancellations happen. In particular, usﬁéz1 b; =0 andS-b = 1, the coefficients of the box integrals
with two off-shell legs at opposite corners add up to zero and all dilogarithms related to box functions
cancel! Hence the only terms which survive are the triangle graphs and some logarithmic terms stemming
from the finite parts of the box integrals, such that we finally obtain,

A(p1, pa2s p3, P4, s, ps) = G(p1, p2, ps, P4, s, pe) + 5 cyclic permutations (46)
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with,

2
G (p1, P2, P3: Pa, D5, P6) = 3 13 (p12, P34, Pse)

b b
—|— {E—l [tf(6123) — 2861 (8123 — 812)] —|— E_22 [tf(1234) — 2834(8123 — 823)]}

1
512 523
< log (_) log (_)
5123 5123
+ {—b1 + — [tr(1234) — 2534(S123 — S23)] +

6
— [tr(b612) — 2 —
28, 2F, [ I’( ) 856(8345 861)]}
X [log (—812 ) log (—856 ) + log (—834 ) log (—812>] .
5234 5234 5234 556

Note thatG/(p1, p2, ps, P4, Ps, Ps) has no spurious singularities. We checked that the numerator of ex-
pressioni(47) vanishes in the limits where its denominator vanishes.

Finally, the full amplitude is given by the sum over permutations of the funciipn

by

(47)

96

F;Suk[P17P27P37P47P57P6] = - (i)

> GPrys Py Prss Prgs Prss Prg)- (48)
TESg

2.22 Summary

The Yukawa model is a good testing ground to study nontrivial cancellations appearing in scalar inte-
gral reductions without additional complications due to a nontrivial tensor structure. Focusing on the
massless case and = 6 we sketched the explicit calculation of the amplitude. It has been outlined
how cancellations can be made manifest at each step of the calculation by using linear relations between
reduction coefficients. With the present method there is no explosion of terms typical for multi-leg cal-
culations. The final answer is surprisingly compact and contains — apart from 3-point functions with 3
off-shell legs — only some products of logarithms.

As a next step more realistic examples have to be considered including gauge bosons and a non-
trivial infrared structure. It is justified to speculate that the recombination of scalar integrals will work
similarly, such that efficient algorithms to calculate six-point amplitudes at one loop are in reach. Work
on this subjectis in preparation.

2.3 NNLO
2.31 Motivation

There are many reasons why extending perturbative calculations to NNLO is vital in reducing the theo-
retical uncertainty. In the following we list five of them.

Renormalisation scale uncertainty

In many cases, the uncertainty from the pdf’s and from the choice of the renormalisatiop gagle
uncertainties that are as big or bigger than the experimental errors. Of course, the theoretical prediction
should be independent pf;. However, a scale dependence is introduced by truncating the perturbative
series. The change due to varying the scale is formally higher order. If an obsef¥ahie known to

orderaY then,
N

8 1
m 20: An(pr)a (pr) = O (O‘iw ) :
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do /dE_T at E_T= 100 GeV

Fig. 2: Single jet inclusive distribution &1 = 100 GeV and0.1 < |n| < 0.7 at/s = 1800 GeV at LO (green), NLO (blue)
and NNLO (red). The solid and dashed lines how the NNLO predictiotpif= 0, A> = +A%/A, respectively. The same
pdf’s anda . are used throughout.

Often the uncertainty due to uncalculated higher orders is estimated by varying the renormalisation scale
upwards and downwards by a factor of two around a typical hard scale in the process. However, the
variation only produces copies of the lower order terms,

e.g. )
Obs = Agas(ir) + <A1 +boAo In (Z—fj)) ay (pr).
0
A1 will contain generally contain infrared logarithms and constants that are not presénaid there-
fore cannot be predictety varyingur. For example A, may contain infrared logarithms up to L2,
while A; would contain these logarithms up£d. ;. variation isonly an estimatef higher order terms
A large variation probably means thaedictablehigher order terms are large.

To illustrate the improvement in scale uncertainty that may occur at NNLO, let us consider the
production of a central jet ipp collisions. The renormalisation scale dependence is entirely predictable,

do
E = 04? (1Rr)Ao
+ al(pr) (A1 + 2boL Ao)
+ Oé;1 (,UR) <A2 + SboLAl + (3()31/2 + leL)Ao)

with L = log(ur/FE7). Ao and A; are the known LO and NLO coefficients whil, is not presently

known. Inspection of Fid. 2.81 shows that the scale dependence is systematically reduced by increasing
the number of terms in the perturbative expansion. At NLO, there is always a turning point where the
prediction is insenstitive to small changesiin. If this occurs at a scale far from the typically chosen
values ofup, the K-factor (defined adi’ = 1 + a;(ur)Ai/Ag) will be large. At NNLO the scale
dependence is clearly significantly reduced, although a more quantitative statement requires knowledge
of A,.

Factorisation scale dependence

Similar qualitative arguments can be applied to the factorisation scale inherent in perturbative predictions
for quantities with initial state hadrons. Including the NNLO contribution reduces the uncertainty due to
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Fig. 3: The average value ¢f — T") given by Eq[4_':9 showing the NLO prediction (dashed red), the NLO prediction with power
correction ofA = 1 GeV (solid blue) and an NNLO estimate with= 3 and a power correction of = 0.5 GeV (green dots).

the truncation of the perturbative series.

Jet algorithms

There is also a mismatch between the number of hadrons and the number of partons in the event. At LO
each parton has to model a jet and there is no sensitivity to the size of the jet cone. At NLO two partons
can combine to make a jet giving sensitivity to the shape and size of the jet cone. Perturbation theory is
starting to reconstruct the parton shower within the jet. This is further improved at NNLO where up to
three partons can form a single jet, or alternatively two of the jets may be formed by two partons. This
may lead to a better matching of the jet algorithm between theory and experiment.

Transverse momentum of the incoming partons

At LO, the incoming particles have no transverse momentum with respect to the beam so that the final
state is produced at rest in the transverse plane. At NLO, single hard radiation off one of the incoming
particles gives the final state a transverse momentum kick even if no additional jet is observed. In some
cases, this is insufficient to describe the data and one appeals to the intrinsic transverse motion of the
partons confined in the proton to explain the data. However, at NNLO, double radiation from one particle
or single radiation off each incoming particle gives more complicated transverse momentum to the final
state and may provide a better, and more theoretically motivated, description of the data.

Power correction€urrent comparisons of NLO predictions with experimental data generally reveal the
need for power corrections. For example, in electron-positron annihilation, the experimentally measured
average value of 1-Thrust lies well above the NLO predictions. The difference can be accounted for
by a1/@Q power correction. While the form of the power correction can be theoretically motivated, the
magnitude is generally extracted from data and, to some extent, can be attributed to uncalculated higher
orders. Including the NNLO may therefore reduce the size of the phenomenological power correction
needed to fit the data.

Before the calculation of the NNLO contribution it is not possible to make a more quantitative
statement. However to illustrate the qualitative point, let us take the simple example of an observable
like (1 — 7') which can be modelled by the simplified series,

(1 —=T) = 0.3305(Q) + 1.00,(Q)* + acs(Q)° + (49)

A
Q?
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with o, (Q) ~ 67/23/log(Q/A) andA = 200 MeV. Fig2.31 shows the NLO perturbative prediction

a = 0, A = 0 as well as the NLO prediction combined with a power correctioss 0, A = 1 GeV

which can be taken to model the data. If the NNLO coefficient turns out to be positive (which is by no
means guaranteed), then the size of the power correction needed to describe the data will be reduced. For
example, if we estimate the NNLO coefficientaas- 3, which is large but perhaps not unreasonable, then

the NLO prediction plus power correction can almost exactly be reproduced with a power correction of
the same form, bux = 0.6 GeV. We are effectively trading a contribution©f1/Q) for a contribution

of 1/log”(Q/A). At present the data is insufficient to distinguish between these two functional forms.

2.32 Parton densities at NNLO

Consistent NNLO predictions for processes involving hadrons in the initial state require not only the
NNLO hard scattering cross sections, but also parton distribution functions which are accurate to this
order.

The evolution of parton distributions is governed at NNLO by the three-loop splitting functions,
which are not fully known at present. However, using the available information on some of the lower
Mellin moments {2325] and on the asymptotic behaviour [26], as well as some exactly known terms [30],
it is possible to construct approximate expressions for these splitting functions [22]. These approxima-
tions (which are provided with an error band) can serve as a substitute until full results become avail-
able [63].

The determination of NNLO parton distributions requires a global fit to the available data on a
number of hard scattering observables, with all observables computed consistently at NNLO. At present,
the NNLO coefficient functions are available only for the inclusive Drell-Yan proce$s [64, 65] and for
deep inelastic structure functions [66]. These two observables are by themselves insufficient to fully
constrain all parton species. In the first NNLO analysis of parton distribution functions, which was
performed recentlyi[67], these processes were therefore accompanied by several other observables only
known to NLO. The resulting distributions [67] illustrate some important changes in size and shape of
the distribution functions in going from NLO to NNLO, visible in particular for the gluon distribution
function.

Itis clear that further progress on the determination of NNLO parton distributions requires a larger
number of processes (in particular jet observables) to be treated consistently at NNLO.

2.33 Infrared limits of one-loop and tree-level processes

For simplicity let us consider a process with no initial state partons andniplartons in the final state
at LO. The NNLO contribution to the cross section can be decomposed as

o NNLO :/ daRR—I-/ dO'VR—|—/ daV'V. (50)
m+2 m+1 m

Here [ denotes thei-particle final state, whiléo*"" denotes the fully differential cross section with
doubleradiationX'Y = RR), single radiation from one-loop graphs " = VV R) and the double virtual
contribution (XY = VV') thatincludes both the square of the one-loop graphs and the interference of tree
and two-loop diagrams. After renormalisation of the virtual matrix elements, each of the contributions
is UV finite. However, each of these terms is separately infrared divergent and this manifests itself as
poles ine. Nevertheless, the Kinoshita-Lee-Nauenberg theorem states that the infrared singularities must
cancel for sufficiently inclusive physical quantities. The problem is to isolate the infrared poles and
analytically cancel them before taking the— 0 limit. Establishing a strategy for doing this requires a
good understanding afo " anddo " in the infrared region where the additional radiated particle(s)

are unresolved.

Double unresolved limits of tree amplitudes
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The infrared singular regions of tree amplitudes can be divided into several categories,
1. three collinear particles,

2. two pairs of collinear particles,

3. two soft particles,

4. one soft and two collinear particles,

5. a soft quark-antiquark pair.
In each of these limits, the tree-level + 2 particle amplitudes factorise and yield an infrared singular
factor multiplying the tree-level:-particle amplitude. The various limits have been well studied.

The limit where a quark, gluon and photon simultaneously become collinear was first studied
in [68] and then extended for generic QCD processes in Ref. [69] by directly taking the limit of tree-
level matrix elements. These limits have been subsequently rederived using general gauge invariant
methods and extended to include azimuthal correlations between the patfitles [70-72].

When two independent pairs of particles are collinear, the singular limits can be treated indepen-
dently, and just lead to a trivial extension of the NLO result - the product of two single collinear splitting
functions.

The limit where the momenta of two of the gluons simultaneously become soft has also been stud-
ied [i73,74]. At the amplitude level, the singular behaviour factorises in terms of a process independent
soft two-gluon current[71] which is the generalisation of the one-gluon eikonal current.

The soft-collinear limit occurs when the momentum of one gluon becomes soft simultaneously
with two other partons becoming collinear. Factorisation formulae in this limit have been provided in
both the azimuthally averaged case [69] and including the angular correlationsi[70-72].

Finally, when the momentum of both quark and antiquark @f gair become soft, the tree-level
amplitude again factorises 71].

Taken together, these factorisation formulae describe all of the caseswipadons are resolved
in am + 2 parton final state. Techniques for isolating the divergences have not yet been established and
there is an on-going effort to develop a setl@dal subtraction counter-terms that can be analytically
integrated over the infrared regions.

Single unresolved limits of one-loop amplitudes

The soft- and collinear-limits of one-loop QCD amplitudes has also been extensively studied. In the
collinear limit, the one-loopn + 1 particle process factorises as a one-laoparticle amplitude mul-
tiplied by a tree splitting function together with a tree particle amplitude multiplied by a one-loop
splitting function. The explicit forms of the splitting amplitudes were first determine@(t8) [/5].
However, because the integral over the infrared phase space generatemalddoles, the splitting
functions have been determined to all orders ji#6-79]. Similarly, when a gluon becomes soft, there

is a factorisation of the one-loop amplitude in terms of the one-loop soft cugrént [76, 78, 80]. Because of
the similarity of the factorisation properties with the single unresolved particle limits of tree-amplitudes,
it is relatively straightforward to isolate the infrared poles through the construction of a smtabf
subtraction counter-terms. In Sec. 2.35, we illustrate how the infrared singularities from the single unre-
solved limits of one-loop amplitudes combine with the predictable infrared pole structure of the virtual
contribution for the explicit example af* — ¢4.

2.34 Two-loop matrix elements for scattering processes

In recent years, considerable progress has been made on the calculation of two-loop virtual corrections
to the multi-leg matrix elements relevant for jet physics, which describe €lther3 decay o2 — 2
scattering reactions. Much of this progress is due to a humber of important technical breakthroughs
related to the evaluation of the large number of different integrals appearing in the two-loop four-point
amplitudes.
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It should be recalled that perturbative corrections to many inclusivetigieasrhave been com-
puted to the two- and three-loop level already several years ago. From the technical point of view, these
inclusive calculations correspond to the computation of multi-loop two-point functions, for which many
elaborate calculational tools have been developed. Using dimensional regularization [81—-84%with
dimensions as regulator for ultraviolet and infrared divergences, the large number of different integrals
appearing in multi-loop two-point functions can be reduced to a small number of soHcelktdr inte-
grals by using integration-by-parts identities [84+86]. These identities exploit the fact that the integral
over the total derivative of any of the loop momenta vanishes in dimensional regularization.

Integration-by-parts identities can also be obtained for integrals appearing in amplitudes with more
than two external legs; for these amplitudes, another class of identities exists due to Lorentz invariance
of the amplitudes. These Lorentz invariance identities [87] rely on the fact that an infinitesimal Lorentz
transformation commutes with the loop integral, thus relating different integrals. Using integration-by-
parts and Lorentz invariance identities, all two-loop Feynman amplitudes-fer2 scattering ol — 3
decay processes can be expressed as linear combinations of a small number of master integrals, which
have to be computed by some different method. Explicit reduction formulae for on-shell two-loop four-
pointintegrals were derived in [88590]. Computer algorithms for the automatic reduction of all two-loop
four-point integrals were described in [87, 91].

A related development was the proof of the equivalence of integration-by-parts identities for inte-
grals with the same total number of external and loop momenta [92]. Consequently, much of the tools
developed for the computation of three-loop propagator integrals [93, 94] can be readily applied to two-
loop vertex functions. As a first application, the two-loop QCD corrections to Higgs boson production
in gluon-gluon fusion were computed [95] in the limit of large top quark mass. This result allowed the
complete NNLO descriptioni [65,96,197] of inclusive Higgs production at hadron colliders.

The master integrals relevant2o0— 2 scattering orl — 3 decay processes are massless, scalar
two-loop four-point functions with all legs on-shell or a single leg off-shell. Several techniques for
the computation of those functions have been proposed in the literature, such as the application of a
Both techniques rely on an explicit integration over the loop momenta, with differences mainly in the
representation used for the propagators. These techniques were used successfully to compute a number of
master integrals. Employing the Mellin-Barnes method, the on-shell planar double box integrali[98,102],
the on-shell non-planar double box integral[99] and two double box integrals with one leg off-sheell [103,
104] were computed. Most recently, the same method was used to derive the on-shell planar double box
integral [106] with one internal mass scale. The negative dimension approach has been apglied [100] to
compute the class of two-loop box integrals which correspond to a one-loop bubble insertion in one of
the propagators of the one-loop box.

A method for the analytic computation of master integrals avoiding the explicit integration over
the loop momenta is to derive differential equations in internal propagator masses or in external momenta
for the master integral, and to solve these with appropriate boundary conditions. This method has first
been suggested by Kotikov [106] to relate loop integrals with internal masses to massless loop integrals.
It has been elaborated in detail and generalized to differential equations in external moménta in [107];
first applications were presented in [iL08,109]. The computation of master integrals from differential
equations proceeds as follows. Carrying out the derivative with respect to an external invariant on the
master integral of a given topology, one obtains a linear combination of a number of more complicated
integrals, which can however be reduced to the master integral itself plus simpler integrals by applying
the reduction methods discussed above. As a result, one obtains an inhomogeneous linear first order
differential equation in each invariant for the master integral.

The inhomogeneous term in these differential equations contains only topologies simpler than the
topology under consideration, which are considered to be known if working in a bottom-up approach.
The master integral is then obtained by matching the general solution of its differential equation to an
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appropriate boundary condition. Quite in general, finding a boundary conditionis a simpler problem than
evaluating the whole integral, since it depends on a smaller number of kinematical variables. In some
cases, the boundary condition can even be determined from the differential equation itself.

Using the differential equation technique, one of the on-shell planar double box intégrals [110] as
well as the full set of planar and non-planar off-shell double box integrals {111, 112] were derived.

A strong check on all these computations of master integrals is given by the completely numerical
calucations ofiJ113], which are based on an iterated sector decomposition to isolate the infrared pole
structure. The methods af [1:13] were applied to confathof the above-mentioned calculations.

The two-loop four-point functions with all legs on-shell can be expressed in terms of Nielsen’s
with one leg off-shell contain two new classes of functions: harmonic polylogarithms:[118, 119] and
two-dimensional harmonic polylogarithms (2dHPL’) [120]. Accurate numerical implementations for
these functions [119,120] are available.

2 — 2 Processes with all legs on-shell

With the explicit solutions of the integration-by-parts and Lorentz-invariance identities for on-shell two-
loop four-point functionsi[§8-90] and the corresponding master integrals [98,99,102,110,121,122], all
necessary ingredients for the computation of two-loop correctiofs-to2 processes with all legs on-

shell are now available. In fact, only half a year elapsed between the completion of the full set of master
Subsequently, results were obtained for the two-loop QCD corrections to all parton-parton scattering
processes [124-127]. For gluon-gluon scattering, the two-loop helicity amplitudes have also been de-

in [L32], these results were extended to supersymmetric QED i [133].

It turns out that supersymmetry can provide strong checks on the consistency of the matrix ele-
ments. Calculations in this framework do however require modifications to the dimensional reguarization
scheme, which were discussed in detaikin [134].

At the same order in perturbation theory as the two-loop matrix elements (which are obtained
by contracting the two-loop and the tree level amplitudes), one also finds contributions from the square
of the one-loop amplitude. The evaluation of these contributions uses well-known one-loop techniques
and is straightforward. For parton-parton scattering, these one-loop self-interference contributions were

The results for the two-loop QED matrix element for Bhabha scattering [123] were used;in [137]
to extract the single logarithmic contributions to the Bhabha scattering cross section, thus improving
considerably on the accuracy of earlier [138] double logarithmic results.

2 — 2 Processes with one off-shell leg

point functions now available, it is possible to compute the two-loop corrections a numbbersof
decay an@ — 2 scattering reactions with one off-shell leg.

As a first result (and initiated during this workshop),iin [139], the two-loop QCD matrix element
for eTe~ — 3 jets and the corresponding one-loop self-interference matrix element were derived. The
three jet production rate in electron-positron collisions and related event shape observables are in fact the
most precisely measured jet observables at preserit [140]. They will also play an important role in future
QCD studiesi[141] at a the proposed high energy liréar collider.

It is worthwhile to note that besides its phenomenological importance, the three-jet rate has also
served as a theoretical testing ground for the development of new techniques for higher order calcula-
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tions in QCD: both the subtraction [142] and the phase-space slicing [143] methods for the extraction
of infrared singularities from NLO real radiation processes were developed in the context of the first
three-jet calculations. The systematic formulation of phase-space slicirig [144] as well as the dipole sub-
traction [145] method were also first demonstrated for three-jet observables, before being applied to other
processes. Itis very likely that similar techniques at higher orders will first be developed in the context
of jet production ine*e~ annihilation, which in contrast to hadron—hadron collisions or electron—proton
scattering does not pose the additional difficulty of the regularization of initial state singularities.

Processes related tde~ — 3 jets by crossing symmetry af@ + 1)-jet production in deep
inelasticep scattering and vector-boson-plus-jet production at hadron colliders. Crossing:ofethe-s
3 jets two-loop matrix element to the kinematic regions relevant for these scattering processes requires
the analytic continuation of 2dHPL’s outside their range of allowed arguments. This topic is currently
under investigation.

2.35 Infrared structure for* — 2 jets at NNLO

As an exercise in how to combine the various next-to-next-to-leading order contributions, we consider the
infrared singularity structure foy* — 2 jets at NNLO. This is the simplest process that we can imagine

at NNLO. It involves the one- and two-loop two parton amplitudes, the one-loop three parton amplitudes
and the tree-level four parton amplitudes. The aim is to symbolically identify the origins of the infrared
singularities of the single and double radiation graphs. Once this is achieved, it should be possible to
constructiocal counter terms that can be subtracted numerically from the three- and four-parton matrix
elements to give infrared finite contributions and analytically integrated and combined with the explicit
singularity structure of the two-parton contribution.

The one- and two-loop two parton contribution

The renormalized™* — ¢ amplitude can be written as

1
o o ' (51)

[ Myg) = Virae, [wé%(w) |M§?>+(M) MP) + 0(a?)

wherea denotes the electromagnetic coupling constapthe quark charge, and thﬂ/lé% are the
:-loop contributions to the renormalized amplitude. They are scalars in colour space.

The squared amplitude, summed over spins, colours and quark flavours, is denoted by
(Mgl Myg) = Z My = qq)|* = Ay - (52)

The perturbative expansion gf,; at renormalization scalg? = s;, reads,

2 21\ 2
A = 470 3 Nej (Léff )) A+ (LQ(Z )) AL+ 0(ad) (53)
whereN is the number of colours and where
AQ = MMy = 4(1 = )5, (54)
At(z?z’) = (M qq |qu> <M<(1<i |qu>
4 0 2 0
A = (MPIME) + M MmMDy + Mm@y (55)
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We see that the NLO paﬂlg? is proportional taC', while the NNLO contributionAg? containsC',
CrC, andCyTr Ny parts.

Catani [14B] has shown how to organize the infrared pole structure of the one- and two-loop
contributions renormalized in tRdS scheme in terms of the tree and renormalized one-loop amplitudes,
M7y and| ML) respectively by introducing two infrared operataf§,) () and H ) (c).

The form of I (¢) can be simply understood by considering the total cross sectighdq)

which is finite,

Taking soft and collinear limits of the real radiation graphs, and integrating over the unresolved phase
space, we see that,

Q + + finite
= 214 ( ) + finite. (61)

The symbol —e— represents the taking of the infrared limit and integrating over the infrared
phase space. This operation can be carried out in many ways. The most commonly used procedures
are the subtraction formalism [142], phase space slicing method [143], as well as systematic proce-
dures [144] and improved formulations of these methods, such as the dipole subtraction fortnalism [145].

In generalJ(l)(e) contains colour correlations. However, for this particular process, there is only
one colour structure present at tree level which is sindply Adding higher loops does not introduce
additional colour structures into the amplitude, ditl (¢) is therefore @ x 1 matrix in colour space. It
is proportional ta”' and is given by

W — 7 (203 (Y
(o) 2F(1—6)0F<62+6 s19 410/ (62)

with % = s15. The double pole is due to the soft gluon singularity while the single pole is derived from
the collinear quark-gluon splitting function. Inserting Bq. (61) into Eq. (60) yields the infrared singular
behaviour of the one-loop amplitude,

b o =IO @ e + finite. (63)

According to Catanii[149], the infrared behaviour of the square of the one-loop contribution is given by,

st v

whereI™ ()" is obtained from Eq: (62) by reversing the signiaf). The two-loop contribution can be

+ finite,  (64)
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decomposed as,

+ finite, (65)

with

_ T IR — T\, — —TpN,.
50 3 1 18 6 QTR F (66)

11C', — 4TrN, i (67 772> 10
6 Ca

We note that the first line of the RHS of Eq. (65) is proportionalfoand produces fourth order poles
in ¢, while the second line contains terms like (', andC' Tz N and generates third order polesin
The last term of Eq: (65) involvingl (?) (¢) produces only a single pole irand is given by

eV

EE— OV VIO VIO

<M(0)|H(2)(e)|/\/l(0)> —

where the constarff (?) is renormalization-scheme-dependent. As with the single pole paft$)¢¢),
the process-dependeHt(?) can be constructed by counting the number of radiating partons present in
the event. In our case, there is only a quark—antiquark pair present in the final state, so that

H® =21, (68)
where in theMS scheme
3 72 245 13 2372 25 7?2
(2) — 2 [ -2 _ jl _zo g
H, CF( 3 63 + 2>‘|‘CFCA (216 )-I—CFTRNF( 54-|-12> :
(69)

The singularities present in Egs. (64) and (65) must be cancelled against the infrared poles present in the
one-loop three parton and tree-level four parton contributions.

The one-loop three parton contributions

The renormalized™* — ¢gg amplitude can be written as

| qqg v dra 6q V |qug aS( )> |qug> + O(O&?) 9 (70)

where thd/\/qug>
The squared three-parton amplitude, summed over spins, colours and quark flavours, is denoted

are thei-loop contributions to the renormalized amplitude.

by
(Mygg|Mygq) = Z IM(Y* = qq9)|> = Aygy - (71)
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The perturbative expansion gf,;, at renormalization scalg? = s;, reads,

(P 2 Uy 2 :
Ay = 470 Y Ne2 +< 2(7’: )>Afj)g+< 2(5 )> AW L o) | (72)
q
where,
2 0 0
A = MO M) = e@o , 3
4 0 1 1 0
Ay = (MEIME) + (MG M)
f
= + — ?0 (74)
A% is proportional ta”', while Aéﬁ% containgC%, C.C', andC' . Tr N terms [142, 143].

The virtual unresolved contributions to two-jet final states at this order arise from the one-loop
corrections toy* — ¢gg in the limit where the gluon becomes either collinear or soft. In both these
limits, one observes a factorization of ttemormalizedmatrix element. In the collinear limit, the one-
loopn+1 parton amplitude factorises as a one-lagparton amplitude multiplied by a tree-level splitting
function plus a tree-level parton amplitude multiplied by a one-loop splitting function:[¥5—79]. In the
soft limit, one observes the factorization of the one-l@op 1 parton amplitude into the one-loop
parton amplitude times the leading order soft factor, plusithparton tree level amplitude multiplied
with the soft gluon factor at the one-loop level [76,:78,80]. This one-loop correction to the soft gluon
factor contains only the colour fact6t,. In the infrared limit, we therefore obtain the usual)(e)
factor multiplying the one-loop two-parton amplitude plus a new contribuﬁdﬁl)(e) multiplying the
tree-level contribution,

+ Q‘@ + Q‘@ + finite. (75)

The first term is proportional t6'2, while AI")(¢) contains terms proportional 6, multiplied by
double poles irr and terms proportional t@',. Altogether, the infrared structure from the one-loop

three parton contribution is given by,
Bo
0@@ + PR ©

o
= 2?]?[—2I(1)(6) e‘@ —2ATW(¢) Q‘@
S

—I—@I(l)(e) + finite. (76)
€
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When Eq.(76) is taken together with Egs.i(64) and (65) we see that the terms of the type
and

precisely cancel.

The tree-level four parton contributions

The renormalized™* — ¢q + 2 parton amplitudes can be written as

Maag) = Virae, (“L0) LM, + 0]

2
o
Maag) = Virae, (250 ) [IM) + 0], 77)
where thd/\/lg?pp> are thei-loop contributions to the renormalized amplitude fot ¢, q.

The squared four-parton amplitudes, summed over spins, colours and quark flavours, are denoted
by M,4,, and.M 4,4, Which have the perturbative expansions,

2 2
Aggop = A7 Y Ne? [ (%) AN rod), (78)
q

where,

AWy ©

9999

MDYy = T (79)

9999
20000999°

@‘@
A0 = <M;zzqw;zzq>= | (@)

N

The infrared singularity structure of these matrix elements is well documented in the double soft, triple
collinear and independent double collinear limitg [68§-72]. At present, itis not clear how to efficiently iso-
late these singularities. Up to now, the only calculation involving these elements was carried out for the
case of photon-plus-one-jet final states in electron—positron annihilatidn [68, 150], which was performed
in the hybrid subtraction method, which is an extension of the phase space slicing proced¢uré of [144].
These double unresolved factors have also been used to compute the general form of logarithmically-
enhanced contributions (up to next-to-next-to-leading logarithmic accuracy) of the transverse momentum

Summary

The infrared singular structure of the two-loop amplitudes is well documented. Concerning the singular
structure of the one-loop three parton amplitudes, it seems straightforward to evaluate and to construct
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counter terms. There is a precise cancellation with some of the singular terms in the one- and two-loop
two parton contributions. However, more work is required to disentangle the singular structure of the
tree-level four-parton contributions.

2.4 The high energy limit of gcd at two loops

In this section we give a summary of the present status of the analytic structure of QCD amplitudes in
the limit of forward and backward scattering. The gluon and quark Regge trajectories are evaluated at
two loop accuracy.

2.41 Forward Scattering

The scattering of two particles, with momeptas — psp4 in their centre-of-mass frame, is parametrised

by the invariants = (p1 + p2)?, t = (p2 — ps)? andu = (pz — p4)®. Sincet = —s(1 — cos§)/2, where

6 is the scattering angle, the kinematic region where the squared centre-of-mass energy is much greater
than the momentum transfer,> |¢|, defines the forward scattering. It has been known for a long time

that in thes >> |¢| limit the scattering amplitudes of a gauge theory take a simple analytic form. In fact,

in that limit a generic scattering process is dominated by the exchange of the particle of highest spin in
thet channel. That is a gluon in QCD (which we take as representatisé/¢fV) Yang-Mills theories),

a photon in QED, and a graviton in quantum gravity.

In the scattering of two partons in QCD in the limit > |¢|, the processes which yield the
largest contribution are quark-quark, quark-gluon and gluon-gluon scattering. The other processes, like
q § — g g, which do not feature gluon exchange in thehannel, are subleading in this limit. The
leading processes all have the same analytic form. In fact, the tree amplitude for parton-parton scattering
ta(p2) Jo(p1) — tar(p3) ju(pa), With 7, 5 either a quark or a gluon, may be written s [153]

aa'bb’ c 7 1 c /
M = 25 g (1) aar OO (b2, p3) | 5 |95 (1) CTO 1, )| (81)

wherea, o', b, b’ label the parton colours, andepresents either the fundamert&l) or the adjoint )
representations §U (N), with (T5) ., = i f* andtr(TETE) = §°!/2. The coefficient functiod*(*)

is process dependent; in helicity space it just contributes a phase factpr [72, 154]: its square is 1. By
removing the colour factor and replacing the strong with the electromagnetic coupling, Eq. (81) holds
also for the forward scattering of two charged leptons in QED with exchange of a photort ichitenel.

The amplitude:(81) constitutes the leading term of the BFKL theory [153; 155, 156], which models
strong-interaction processes with two large and disparate scales, by resumming the radiative corrections
to parton-parton scattering. This is achieved to leading logarithmic (LL) accuraley,sif¢|), through
the BFKL equationj.e. an integral equation obtained by computing the one-loop LL corrections to the
gluon exchange in thechannel. These corrections are: the emission of a gluon along the ladder [157],
and the one-loogluon Regge trajectorfsee Eq.i(88)). To see how the latter comes about, we generalise
Eq. (81) to include the virtual radiative corrections and write the high-energy amplitude for parton-parton
scattering, with exchange of a colour octet in tfeannel, as [158, 159]

Maa'bb'

11

— el | (5) " (5) b

+8bﬂﬁJW@@mw][(iyw—<i>w1bﬂﬁmwﬁ%va 82
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Fig. 4: Schematic one-loop expansion of the factorised form for the high energy limit of the parton-parton scattering amplitude.
The pairs of concentric circles represent the one-loop corrections to the coefficient function and Regge trajectory and the
individual diagrams represent terms that contribute at (a) leading and (b) next-to-leading logarithmic order.

c - raca’ c aca’ c c c ch -4 c
(16 Jaar = 1f (16 )awr =d Ty, =Tk Ti, =/ TTF- (83)

The first (second) line of Eq: (B2) corresponds to the exchange of a colour octetdirctia@nel, of
negative (positive) signature under-+ u exchange. The function(?) in Eq. (82) is the gluon Regge
trajectory. It has the perturbative expansion

with

a(t) = g2V + gl(H)a® + 0(59) (84)
while the coefficient function can be written as
Ch= O+ g2 4+ A P + 0(55) - (85)

In Egs. {84) and:(85), we rescaled the coupling

o o (BT 1 T4l (1-¢
320 =92 (%) e (36)

and used dimensional regularisationfia= 4 — 2¢ dimensions. Note that in multiplying Ed. (82) by the
tree amplitude, the second line of Ef.:(82) contributes only to quark-quark scattering, since the colour
factor f2@’ occurring in any tree amplitude with an external gluon, acts asarannel projector. Then
we write the projection of the amplitude (82) on the tree amplitude as an expangib()in
Maa’bb’M(O)aa’bb’ _ |M(0)aa'bb'|2 (1 ‘|‘g§(t) M(l)aa’bb’ +§g(t>M(2)aa/bb/ i O(gg)) : (87)

ij—ij Vi S djsig i g Tjig
with i, j = ¢, ¢. The one-loop coefficient of Eq. (87) is,
2

ApMaa’®’ ), (it) L i) i) ’% (1 + g - 4) alt), (88)

11 2
Nc

whereK = 1 for quark-quark scattering, and = 0 in the other cases. Schematically, this is illustrated

in Fig. 4. In Eqg. {88) we used the usual prescriptiofi-s) = In(s) — i7, for s > 0. The one-loop

gluon Regge trajectoryy(!) = 2C, /¢, Fig. 4(a), is independent of the type of parton undergoing the
scattering process (it isniversa). Conversely, the one-loop coefficient function$(!), Fig.i4(b), are

process and IR-scheme dependent (see Ref. [160] and references therein). They can be used to construct
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Fig. 5: Schematic two-loop expansion of the factorised form for the high energy limit of the parton-parton scattering amplitude.
The combinations of ovals and circles represent the one-loop and two-loop corrections to the coefficient function and Regge

trajectory and the individual diagrams represent terms that contribute at (a) leading, (b) next-to-leading and (c) next-to-next-to-
leading logarithmic order.

(b)

()

the next-to-leading order (NLO) impact factors, to be used in conjunction with the BFKL resummation at

next-to-leading-log (NLL) accuracy [28]. Note that Eq..(88) forms a system of three equations (given by

gluon-gluon, quark-quark and quark-gluon scattering) and only two unknowns: the one-loop coefficients
M andC1M), Thus, we can use two equations to deterntiti€") andC'?("), and the third to show

that high-energy factorisation holds to one-loop accuracy. Finally, note that in Eq. (88) the contribution

of the positive signature gluon appears in the imaginary part, thus it can contribute only to a next-to-next-
to-leading order (NNLO) calculation. The two-loop coefficient of Eq: (87) is,

(2)aa'bb' . 1 2 S
2

2) i) 4 Y 0 T AN =AY o)) 5

+ [04 —I—(C + )a 22 (1—|—K e )(a ) In —
2 2 _ 2

i(2) o (i(2) o ity iy _ T N AN (o

+ [G i L oit) ¢ 4<1+K R )(a )
N2Z_4 , 4

Sl (1—|—K = )[a<2>+(02<1>+cm>) o] . (89)

Schematically, this is illustrated in Fig. 5. The first line of Eq. (89) is just the exponentiation of the
one-loop trajectory (Fig. 5(a)). The second line of Eq: (89) allows to deteraiethe two-loop gluon
trajectory (the first diagram in Fig; 5(b)), which provides the virtual corrections to the NLL kernel of the
BFKL equation. The two-loop gluon trajectory is universal, and has been computed in Ref, [161-164].
Recently it was re-evaluated in a completely independent ivay [160], by taking the high energy limit of
the two-loop amplitudes for parton-parton scattering {124—127]. The (unrenormalised) two-loop gluon
Regge trajectory is

2 2 404 56
04(2):CA 506_2+I(Z+CA (7—263>+NF <_ﬁ>:| ’ (90)
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where

_ 2
50:M7 (:(g—ﬂ—>CA—§NF. (91)

Note that at two loop accuracy, the gluon trajectory vanishes in the Abelian dipit» 0. That is in
agreement with our expectations: in the forward scattering of two charged leptons in QED, a log of the
typeln(s/t) occurs for the first time at the three loop level. Thus we expect that orl{?irit occurs a

term which is independent 6f,. However, note that in QED there is no analog of Eq. (82), because the
photon does not reggeise [165].

The third and fourth lines of Eq. (89) are respectively the real (frig. 5(c)) and the imaginary parts
of the constant term. Note that the gluon of positive signature does not contribute to the BFKL resum-
mation at LL and NLL accuracy. In principle, the two-loop coefficient functi6i€) could be used
to construct the NNLO impact factors, if the BFKL resummation held to next-to-next-to-leading-log
(NNLL) accuracy. The real constant term of EQ.:(89) can be used to evaluate the two-loop coefficient
functionsC?(2) andC4(?). Like in Eq. {88), we have three equations (given by the two-loop amplitudes
for gluon-gluon, quark-quark and quark-gluon scattering:[124—127]) and only two unknowns. Thus we
can use two equations to evalugté® andC'?(?), and the third to check if high-energy factorisation
holds at NNLO accuracy. In fact, it was found that factorisation is violated [160]. That, in turn, voids the
evaluation ofC'9(2) andC'?(?), The source of the violation is not clear at present. It might be due to the
(yet unknown) exchange of three or more reggeised gluons in Eq. (82).

2.42 Backward scattering

In the scattering of two particles in their centre-of-mass frame, —s(1 + cos 8) /2, thus the kinematic

region wheres > |u| defines the backward scattering. In this limit, we consider a scattering process
with matter exchange, namely quark-gluon scattering, which proceeds via the exchange of a quark in
the crossed chanidl In this limit, the tree amplitude for quark-gluon scatteripdps) g5 (p1) —

7. (p3) g» (pa) can be written as

. S '
M), = =20 g2 (T)anCI 1, pa) | /== |95 (1) €9 (02, p1) | (92)

whereq, o’ (b, ) label the colour of the quarks (gluons). In helicity space, the coefficient funcfihs
just contribute a phase factor [166].

Generalising Eq: (92) to include virtual radiative corrections, it was shown that the quark reggeises
as well. In fact, in the limits > |«| the amplitude for quark-gluon scattering with exchange ini¢the
channel of a colour triplet, with positive signature unsles ¢ exchange, is [167]

S S —S

3(u) 3(u) )
ng—)gq = — gs (Tb)a’icgq(plvpiﬁ)} __u [(__u> + (__u> ] {gs (Tb )ia ng(p27p4)
(93)
The functiond (u) is thequark Regge trajectoryit has the perturbative expansion
5(u) = §2(w)dM) + gl(w)s®) + 0(58) , (94)

with §2 given in Eq. (8b). The coefficient functiafi has the same expansion@sin Eq. (8%), but for
replacingg?(t) with g%(u), and like in Eg. (87), we can write the interference of &q: (93) with the tree
amplitude {92) as an expansiongif «)

MM = MO (14 g2w) MO + gh M + 0@)) - (95)

9By crossing symmetry, this is equivalent to quark pair annihilation (or creation from) two gluons at small angles.
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The one-loop coefficient of Eq. (95) is

MO = 50, (_) 4200 T (96)

—U

The one-loop quark trajectory &) = 2C . /¢ [T67]. Note thas(!) does not vanish in the Abelian limit

functionC'(!) can be found in Ref!]166, 170]. The two-loop coefficient of Eq; (95) is

1 2 s T 2 s
@ = (W) 2= (2) W) _ ;2 (50 =
M = 2 () 1 () + | 20050 T (50) 1 ()

+ [ () - I (50" - i[5 420t (97)

The first term is just the exponentiation of the one-loop trajectory. Using the two-loop amplitude for
quark-gluon scattering [126], the second term of £g. (97) allows to detexftihehe (unrenormalised)
two-loop quark Regge trajectory [166]

2 2 404 56

=, s+ ko (B -2a) 80 (- 3) + @ -cotsa)] L 8)

with 5o and K" as in Eq. {911). Note that Ed. (98) has the remarkable feature that by mapping C,,

the two-loop gluon trajectory (B0) is obtained. Since the forward and backward scattering are seemingly
unrelated, there is presently no understanding of why that occurs.

The second line of Eqi (97) displays respectively the real and the imaginary parts of the constant
term. If Eq. {93) held at NNLO, by comparing the two-loop amplitude for quark-gluon scattering [126]
with the real part of the constant term of E{.;(97) one could derive the two-loop coefficient function
C' (). However, Eq.i(93) is not expected to hold at NNLO, because of possible unknown Regge cut
contributions.

2.43 Summary

In conclusion, we have given a summary of the present status of the analytic structure of QCD ampli-
tudes in the limit of forward and backward scattering. We have displayed the gluon and quark Regge
trajectories at two loop accuracy. They are strikingly similar: the gluon Regge trajectory can be obtained
from the quark trajectory by mappird, — C'.

2.5 CONCLUSION AND OUTLOOK

In this working group we addressed issues related to multiparticle states at NLO and precision observ-
ables at NNLO. The motivation for this is very straightforward: we need more accurate theoretical pre-
dictions in order to make a sensible comparison with experiment, either to establish the existence of new
physics or to make more precise determinations of the parameters of the theory. During the course of the
workshop there has been significant progress in this field. In particular, work initiated at the workshop
have yielded the following identifiable results,

e The first Feynman diagrammatic calculation of a hexagon amplitudle [62]. This was performed in
the Yukawa model where all external legs are massless scalars attached to a massless fermion loop.
This is a good model to study how the enormous cancellations in the scalar integral reductions
occur without the complications of tensor structures in the numerator. The next step is to apply
these methods to realistic examples including gauge bosons and a nontrivial infrared structure.
However, it is reasonable to expect that the recombination of scalar integrals will work similarly,
such that efficient algorithms to calculate six-point amplitudes at one loop are in reach.
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e The first evaluation of two-loop four point amplitudes with one off-shell feg [139] for the case
~* — qqg. This process is important in determining the strong coupling constant from hadronic
data in electron-positron annihilation. By analytical continuation it should be possible to extend
these results to describe processes in hadron-hadron colligiprs,V” + jet, and deep inelastic
scatteringy*p — (2 + 1) jets.

e The first determination of the two-loop quark Regge trajectory:[166] together with confirmation
of the two-loop gluon Regge trajectory [160]. These trajectories control the behaviour of the
scattering amplitudes in the high energy limit - or equivalently forward or backward scattering.

While the benefits of NLO calculations are generally well appreciated, there is some debate as
to the motivation for NNLO calculations. In Sec. 2.31 we give reasons why NNLO predictions should
qualitatively improve the agreement between theory and experiment, reduced renormalisation and fac-
torisation scale dependence, reduced phenomenological power correction, better matching between the
parton-level and hadron-level jet algorithm and a better description of the transverse momentum of the
final state.

The basic ingredients for computing NNLO corrections are by now either known or conceptually
understood. However a method of how to combine the individually infrared singular parts in a way
that allows the construction of general purpose NNLO parton level Monte Carlo programs has not been
established. This is clearly the next major task and requires considerable effort. During the workshop
some preparatory steps were made in this direction for the relatively simple case-ef¢g and the
general structure of the infrared singularities for this process is discussed |n Sgc. 2.35. We expect that by
the time of the next workshop, there will be significant progress to report.

Acknowledgements

We would like to thank the organizers of “Les Houches 2001” for creating a stimulating and productive
environment for the workshop. We would like to thank our many and various collaborators for many
stimulating and thought provoking discussions; T.B., J.-Ph.G. and G.H. thank C. Schubert, V.D.D and
E.W.N.G. thank V. Fadin and A. Bogdan and T.G. and E.W.N.G. thank L. Garland, A. Koukoutsakis and
E. Remiddi.

45



3. QCD RESUMMATION #% 13
3.1 Introduction

In our working group we investigated a variety of issues concerning the relevance of resummation for
observables at TeV colliders. Resummation is a catch-all name for efforts to extend the predictive power
of QCD by summing large (logarithmic) corrections to all orders in perturbation theory. In practice,
the resummation formalism depends on the observable at issue, through the type of logarithm to be
resummed, and the resummation methods.

A number of resummation formalisms (threshold resummatipn,or recoil resummation and
any renormalization-group resummation) have now matured to the point where one can employ them for
precision physics. It is known how to organize the associated logarithms to all orders and to any accu-
racy, at least in principle. Such resummation formalisms therefore constitute a systematically improvable
calculational scheme, like standard perturbation theory. It is also known how to consistently match these
resummations to finite order perturbation theory. In our working group, the full next-to-next-to-leading
logarithmic threshold an€)  resummation were performed for the inclusive Higgs production cross sec-
tion and its transverse momentum respectively. Further studies addressing the value of resummation for
precision physics were done for heavy quark production cross sections and fragmentation functions. The
applicability of joint resummation, the combination of threshold and recoil resummation, was examined
in detail for electroweak annihilation. The relation between sma#isummation, the DGLAP evolution
equation, and precision analysis of the deep-inelastic structure function at HERA was further explored.
Detailed application of these results to TeV colliders is still to come.

Resummed cross sections are inherently ambiguous because they require a prescription to handle
singularities due to very soft radiation. These ambiguities take the form of power corrections, about
which there is still much to learn. Our working group has studied the characteristics of various prescrip-
tions, and the power corrections that they imply.

Both within our working group, and in joint sessions with others, numerous fruitful discussions
took place based on short presentations by participants. These presentations and discussions addressed
both the topics mentioned and reported on below, as well as the issues of resummation and Monte Carlo
programs (by V. llyin) and next-to-next-leading logarithmic threshold resummation for Drell-Yan and
deep-inelastic scattering (by A. Vogt).

In general, the studies performed in the QCD resummation working group, whose reports now
follow, as well as the discussions held strengthen the view that QCD resummation does, must, and will
play an important part in the quantitative study of observables at TeV colliders.

3.2 Higgs boson transverse momentum at the LHES
3.21 Introduction

The underlying mechanism of the electroweak symmetry breaking (EWSB) is an uncovered sector of
the Standard Model (SM), thus the physical remnant of the spontaneous EWSB, the Higgs boson, is the
primary object of search at present and future colliders. At the CERN Large Hadron Collider (LHC), a
Standard Model (like) Higgs boson can mainly be produced in 14 TeV center of mass energy proton—
proton collisions by the partonic subprocess(via heavy quark loop}+ H X (see section A.1 of

ref. [1]). The extraction of the signal requires the accurate prediction of its production rate, as well as
the transverse momentui{) distribution of the Higgs boson and its decay products and backgrounds,
since the shape of these distributions can dictate the analysis strategies for theisearch [171]. To reliably

Hsection coordinator: E. Laenen

2Contributing authors: C. Ba¥s, R. Ball, M. Cacciari, S. Catani, D. de Florian, S. Forte, E. Gardi, M. Grazzini, N.
Kidonakis, E. Laenen, S. Moch, P. Nadolsky, P.Nason, A. Kulesza, L. Magnea, F. Olness, R. Scalise, G. Sterman, W. Vogelsang,
R. Vogt, C.-P. Yuan

BContributing authors: C. Baf's, D. de Florian, A. Kulesza
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predict these distributions, especially in the low to medi@mregion where the bulk of the rate is, the
effects of the multiple soft—gluon emission have to be included. This, and the need for the systematic
inclusion of the higher order QCD corrections require the extension of the standard hadronic factorization
theorem to the low) 1 region. With a smooth matching to the usual factorization formalism, itis possible

to obtain a sound prediction in the fdll;y range.

3.22 Low( 7 Factorization

In this section the low transverse momentum factorization formalism is summarized briefly. We consider
the case of the inclusive hard-scattering process where the final-state gyssgmnoduced by the col-

lision of the two hadron&; andh,. The final state/” is a generic system of non-strongly interacting
particles, such asneor morevector bosongy*, W, 7, . . .), Higgs particles /) and so forth.

When calculating fixed order QCD corrections to the cross section the hadronic factorization theo-
rem is invoked. While the transverse momentidmof the produced system s of the order of its invariant
mass(), this calculation is reliable. But the standard factorization fails whejthex (2, as a result of
multiple soft and collinear emission of gluons from the initial state. As an indication of this problem, the
ratio of the two very different scales appear in logarithmic corrections of the #@rf®? In™ Q*/Q3.

(1 < m < 2n — 1), which spoil the convergence of fixed-order calculation in thedpwregion. These
logarithmically-enhanced terms, not absorbed by the parton distribution functions, have to be evaluated
at higher perturbative orders, and possibly resummed to all orders in the QCD coupling canstant

To resolve the problem, the differential cross section is split into a part which contains all the
contribution from the logarithmic terms (res.), and into a regular term (fin.):

dop dop dop
_ S A 99
dQdQ%d¢ [deQQqub] res. - [deQQqub] fn. (99)

where¢ denotes the remaining independent kinematical variables of the final system. Since the second
term on the right hand side in Eq.(99) does not contain potentially large logs, it can be calculated using
the usual factorization. The first term has to be evaluated differently, keeping in mind that failure of the
standard factorization occurs because it neglects the transverse motion of the incoming partons in the
hard scattering.

In the Fourier conjugate transverse positiB)rs@ace the resummed component of the cross section
[L72]- [173] can be written as

Q* doy
dQ2*dQ%de

b b2 b2
=5 [ derdes vy o) s, (20.38) fgn, (5202 ) s WhGo10255Q.0,0)000)
a,b

Here, the resummed partonic cross sectiofj is

Whis:Q,b,0) = Zc/dzl dzy CF (g (b3/0%), 21) CL (as(b3/0%), 22) & (Q? — 21 225)

ot (@ 9)

G e (as(Q%).9) 5:Q.0) (101)
whereago) is the lowest order partonic cross-section &, b) the Sudakov form factor (with =
4,9)

o df]2 2 Q2 2
Se(Q,b) = exp _/52/172 = A (as(¢*)) In e + B. (as(¢%) | ¢ - (102)

In the usual CSS approach [174], the coefficient funcitbh does not appear (i.ell/ = 1), with
the consequence that both the coefficient functiés(«(b3/b%), z) and the Sudakov form factor
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S.(Q,b) become process dependent, a certainly unpleasent feature. As discussed in Ref. [175], the
inclusion of HX is sufficient to make the Sudakov form factéy((2, b) and the coefficient functions
Cap(as(b3/b%), 2) process-independent. In a similar way as it happens for parton densities, which have
to be defined by fixing a factorization scheme (e.g. Mh& scheme or the DIS scheme), there is an
ambiguity in the factors on the right-hand side of Eg. {101), which have to be defined by choosing a
‘resummation scheme’. Note that the choice of a ‘resummation scheme’ amounts to défihi(ay

C,») for asingleprocess. Having done that, the process-dependent fEctaand the universal factors

S. andC';, in Eq. (101) are unambiguously determined for any other process.

The resummation formula in Ed. (101) has a simple physical origin. When the final-state system
F is kinematically constrained to have a small transverse momentum, the emission of accompanying
radiation is strongly inhibited, so that mostly soft and collinear partons (i.e. partons with low transverse
momental)r) can be radiated in the final state. The process-dependent fétor, (%)) embodies
hard contributions produced by virtual corrections at transverse-momentum Qgales(). The form
factor S.(Q, b) contains real and virtual contributions due to soft (the functioiia) in Eq. (102))
and flavour-conserving collinear (the functiéh(«;) in Eq. {102)) radiation at scal€$ 2 Q7 2 1/b.
At very low momentum scale§)r < 1/b, only real and virtual contributions due to collinear radiation
remain (the coefficient functiors,, (s (b2/6?), 2)).

The A. and B, functions, as well as the coefficients, are free of large logarithmic corrections
and safely calculable perturbatively as expansions in the strong cougling

Afas) =3 (%2)" A%, Bufas) = 3 (%2)" B, a2 = 3 (22)" ciias, ),
(103)

n=1 n=1 n=0

with a similar expansion for the coefficient functiéfy’. More detailed expression for the coefficients
can be found inif181, 152, 173,176, 477]. The coefficients of the perturbative expariions3 ™
andCf;(”)(z) are the key of the resummation procedure since their knowledge allows to perform the
resummation to a givelogarithmicorder: A1) leads to the resummation of leading logarithmic (LL)
contributions { A(?), B} give the next-to-leading logarithmic (NLL) term$A®), B() ()} give
the next-to-next-to-leading logarithmic (NNLL) terms, and so f&ith

In particular, the coefficienB(2) has been recently computdd [151,1152] for bgitandgg chan-
nels allowing to extend the analysis to NNLL accuracy. Even though there is no analytical result available
for it, the coefficient4!”) has been extracted numerically with a very good precision in Ref, [178]. Af-
ter matching the resummed and fixed order cross sections, it is expected that the normalization of the
resummed cross section reproduces the fixed order total rate (at whieh theandC' functions are
evaluated), since when expanded and integrated@yethey deviates only in higher order terms. [179]

3.23 Higgs)r at the LHC using the CSS formalism

The low@)t factorization formalism, described in the previous section, is utilized to calculate the QCD
corrections to the production of Higgs bosons at the LHC. In thedgwregion this calculation takes

into account the effects of the multiple—soft gluon emission including the Sudakov experemd the
non—perturbative contributions, ;,. At the next-to-leading-logarithmic order (NLL) thé(:2), and

B(1:2) coefficients are included in the Sudakov exponent. The normalization changing effect of the
O(a) virtual corrections are also taken into account by including the coeﬁiﬂéﬁt which ensures
agreement with thé(a?) total rate. At the leading-logarithmic order (LL) the coefficierite), and

14A concensus has not been reached regarding the classification of the so-called LL, NLL, NNLL etc. terms, and their
corresponding3 contents. The above classification of subsgct.i3.22 is used in sul_3§e_'cts.3-;2_4 and 3.3. Another classification is

used in subseci. 3.23. The motivation for the latter is presented ifi sect.5.43.
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B andCég) are included. By matching to th@(a?) fixed order distributions a prediction is obtained
for the Higgs production cross section in the i} range which is valid up t@(«?). The expressions
for the includedA, B andC' coefficients and further details of this calculation are given in an earlier
work. [179] The analytic results are coded in the ResBos Monte Carlo event generator.

Fig. 6 compares the Higgs boson transverse momentum distributions at the LHC calculated by
ResBos (curves) and by PYTHIA (histograms from version 6.136). We use a Higgs mass of 125 GeV
and CTEQ5M parton distributions. The solid curve was calculated at NLL (including), B2,
and C'®1)). The dashed curve is LL (includet'V), B, andC(?). The shape of these curves are
quite similar reflecting the small uncertainty in the shape of the resummed prediction. The normalization
changes considerably after including the sub-leading tower of logs, since boft{thand theB(?)
coefficients receive contributions from tfi«?) virtual corrections, which are known to be large.

In the low and intermediat@ (< 100 GeV) region the shape of the default PYTHIA histogram
agrees better with the LL ResBos curve, justifying the similar physics that goes into PYTHIA and the
LL calculation. For highy 7, the PYTHIA prediction falls under the ResBos curve, since ResBos mostly
uses the exact fixed ordé¥(«) matrix elements in that region, while PYTHIA still relies on the multi—
parton radiation ansatz. PYTHIA can be tuned to agree with ResBos in théhigégion, by changing
the maximal virtuality a parton can acquire in the course of the shower (dashed histogram). Matrix
element corrections to this process in PYTHIA are expected to fix this discrepancy in the near future.
Since showering is attached to a process after the hard scattering takes place, and the parton shower
occurs with unit probability, it does not change the total cross section for Higgs boson production given
by the hard scattering rate. Thus, the total rate is given by PYTHtA(af,). Thus in Fig. 6 the dashed
PYTHIA histograms are plotted with their rate normalized to the NLL ResBos curve.

3.24 Higgs production to NNLL accuracy

As has been discussed in the introduction, the coefficients appearing in Eq. (101) (with the exception of
A() are dependent on the resummation scheme. Under a change from stheste the coefficients
are modified as

F

HF
1y !

— HC(S, ,
1
COs) > (e = CN) + Samo — =) (3" = ) |

BYY = B =B+ a0 (0" - 1Y) (104)

One possible scheme is the schef¢d 78], whereH, ;; = 1 and the coefficients agree with the corre-
sponding to the CSS formulation for this process. Another posibility consist intHescheme, where

B(®) s defined to be proportional to the coefficient of the — =) term in the two-loopyg splitting
function [175]. Based on the physical interpretation of the different pieces in the resummation formulae
in Eq. (101), it is possible to define the ‘collinear resummation scheme’, where only terms of collinear
origin (i.e. the ones originated from the— 4 component of the splitting functions, see [151,:152] )
remain in the coefficient functiofy'.

Even though the cross section for Higgs production is a physical observable and therefore inde-
pendent on the chosen scheme, the truncation of the perturbative expansion at the level of the resummed
coefficients introduces an explicit dependence on the scheme. We will use this scheme dependence as a
way to quantify the perturbative stability of the resummed result, estimating the size ofsdbeoumted
higher order terms as well as of the non-perturbative contributions. It follows frorh (104) that the scheme
dependence first enters at the NNLL level. In Fig. 7 we show preliminary results fQ)-titistribution
for Higgs production at LHCX/; = 150 GeV) at LL, NLL and NNLL, in the last case using the three
schemes discussed above.
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Fig. 6: Higgs boson transverse momentum distributions at the LHC calculated by ResBos (curves) and PYTHIA (histograms).
The solid curve was calculated at NE (including A2, B2 andC(®V). The dashed curve is LL (includes®, B®),
andC®). For PYTHIA, the original output with default input parameters rescaled by a factéf ef 2 (solid), and one
calculated by the altered input parameter valife,, = s (dashed) are shown. The lower portion, with a logarithmic scale,
also shows the higlyr region. In the last frame all are normalized to the solid curve.
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The results are obtained using the code developdd im [180], adapted for the case of inclusive Higgs
production in theyg channel (in the limit of infinite top quark mass) and to genuine NNLL accuracy, i.e.
including up toA®), B2) ¢ and (M),

Matching to the perturbative result has been performed only at LO, but this will not affect our
conclusions since we are mainly interested in thedpwregion where the resummed contribution com-
pletely dominates the cross section. The matching@t) can be performed by using the NLO cal-
culation of [18i]. Furthermore we have not included any non-perturbative contribution and the parton
distributions correspond to the CTEQ5M set. As can be observed, the NNLL corrections are rather large.

/>-\ 06 T T T T T T T T T T T T ‘ T T T T ‘ T T T T ‘ T T T T ‘ T T T T
S - sqrt(s)=14 TeV, M,=150 GeV, CTEQ5M
@ L i
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Fig. 7: Qr distribution for Higgs production at LHC to LL, NLL and NNLL accuracy. The three NNLL lines correspond to the
choice of different resummation schemes.

The main reason for that is the appearence oftHeé and # (1) coefficients, which contain the large vir-

tual (and soft) corrections for Higgs production, which are known to considerably increase (up to almost
a factor of two) the inclusive cross section. Higher order terms are expected to be smaller, at least from
the observation of the rather good perturbative stability concerning the dependence on the resummation
scheme at NNLL.

Acknowledgements: C.B. and D.de F. thank the organizers of the Les Houches conference for their
financial support. C.B. also thanks I. Puljak for the PYTHIA curves. A.K. would like to thank W. Vogel-
sang for many useful discussions. D.de F. thanks M. Grazzini for discussions.

3.3 Soft-gluon effects in Higgs boson production at hadron dbiders*?
The mostimportant mechanism for SM Higgs boson production at hadron colliders is gluon—gluon fusion

their effect increases the LO inclusive cross section by about 8%1008e NLO corrections are weakly
dependent on the magdd; of the top quark, thus justifying the evaluation of higher-order terms within

Contributing authors: S. Catani, D. de Florian, M. Grazzini and P. Nason
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the largeA; approximation. Recently, the calculation of the NNLO corrections in the |afgdimit

has been completed [65,95+97,185]. Their effect is moderate at the LHC: in the case of a light Higgs,
the K -factor is abou.3-2.4, corresponding to an increase of about2@ith respect to NLO. The
NNLO effect is more sizeable at the Tevatron whéfe~ 3, the increase being of abot®% with
respect to NLO. The bulk of the NNLO contributions is due to soft and collinear radiatibh 96, 97, 185],
the hard radiation: [65] giving only a small (typically 5§ correction. Multiple soft-gluon emission
beyond NNLO can thus be important, particularly at the Tevatron. Here we investigate the effects of

resummation of soft (Sudakov) emission to all orders. More details will be given elsewhere.

The cross sectiof,, for the partonic subprocegg — H + X at the centre—of-mass energy
§ = M} /= can be written as

&gg (§7 MI%I) = 0o % Ggg (Z) ) (105)

wherelM is the Higgs massyy is the Born-level cross section and,, is the perturbatively computable
coefficient function. Soft-gluon resummation has to be performed {Sek [186] and references therein) in
the Mellin (or N-moment) spaceX is the moment variable conjugate4p Theall-order resummation
formula for the coefficient functiotv,,, is [96,187]:

G = a2 (41h) Cglevs (), M1k M/ 1F) AR (g (1), M /h MB /i3 . (106)

whereur andur denote the renormalization and factorization scales, respectively. The fu@gtiom, )
contains all the terms that are constant in the laxgémit, produced by hard virtual contributions and
non-logarithmic soft corrections. It can be computed as a power series expansioasn

oo 2 n
o .
Contantih) M i M) =1+ Y (L) cpfidatisi) . o)

n=1

where the perturbative coefficiemgg) are closely related to those of thel — z) contribution to7;, (2).
The radiative facton X embodies the large logarithmic terms due to soft-gluon radiation. To implement
resummation, the radiative factor is expanded to a given logarithmic accuracy as

M? M? M? M?
AR = eXP{ In N g+ g <>‘7 H—QH% H—2H> + o () g <>‘7 H—QH% H—2H> + O( (asIn N)k)}7
R HF R ME

(108)

such that the functions(), ¢(2) and ¢(® respectively collect the leading logarithmic (LL), next-to-
leading logarithmic (NLL) and next-to-next-to-leading logarithmic (NNLL) terms with respect to the
expansion parameter= o, (p%) In N.

NLL resummation[96] is controlled by three perturbative coeﬁicieﬁé%?, A§2> andCﬁ). The
coefficientsA" andA{?, which appear in the functiong!) andg¢(®), are well known (ses [186] and
references therein). The coefficiefif}) in Eq. (107) is extracted from the NLO result.

At NNLL accuracy three new coefficients are needed [96]: the coefficiéftin Eq. {107) and
two coefficients,D(® and A\, which appear in the NNLL function®®. The functional form of(®)
was computed in Ref [178]. The coefficierté?) andC'?) are obtained:[d6] from the NNLO result.

The coefficienmf’) is not yet fully known: we use its exa@fﬁ-dependence’_[?;l] and the approximate
numerical estimate of Ref. [22].

Finally, to take into account the dominant collinear logarithmic terms, the coeffi@gﬁtin the
resummation formula can be modified as [96]

In N
cll) - i) 4240 v (109)
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In the following we present a preliminary study of the resummation effect at the Tevatron and the
LHC. The hadron-level cross section is obtained by convoluting the partonic cross sectioniin £q. (105)
with the parton distributions of the colliding hadrons. We use the MRST200¢ Sét [188], which includes
approximated NNLO parton distributions, withy consistently evaluated at one-loop, two-loop, three-
loop order for the LO, NLO (NLL), NNLO (NNLL) results, respectively. All the results correspond to
the choiceur = pr = My. The K-factors in Figst 8 and 9 are defined with respect to the LO cross
section. The resummed calculations are always matched to the corresponding fixed-order calculations,
i.e. we consider the full fixed-order result and include higher-order resummation effects. I Fig. 8 we

K [ MRSTZ000 I |
3+ LHC -+ .

—— NNLL (collinear)

—— NLL (collinear) --- NNLL (no collinear)
| --- NLL (no collinear) | --- NLL + ¢® and D®
b NLO F - NNLO
! ! ! ! ! ! ! !
200 400 600 800 200 400 600 800 1000
My (GeV) My (GeV)

Fig. 8: Resummed K-factors at the LHC.

plot the K-factors at the LHC, as a function of the Higgs mass. On the left-hand side we show the NLL
result, matched to NLO, with and without the inclusion of the collinear term in Eq; (109). The NLO
result is reported for comparison. On the right-hand side we show the NNLL results, again with and
without the inclusion of the collinear term. The matching is done to the NNLO régB6R]. We also

plot the resummed NLL result obtained by includiﬁéf,) and D® only. We see that the inclusion of

the collinear term is numerically not very relevant. Soft-gluon resummation atadicuracy increases

the NLO cross section by 13-20, the effect being more sizeable at higf;. Going from NNLO to

NNLL the effect is smaller, with an increase of 6-9% in the full range ofM;. Note also that NLL
resummation gives a good approximation of the complete NNLO calculation.

In Fig.'9 we report the analogous results at the Tevatron. Here the resummation effects are larger.
Going from NLO to NLL accuracy, the cross section increases by 26-3(NLL resummation increases
the NNLO cross section by 12-16% when My varies in the range 100-200 GeV. These results are not
unexpectedJ185], since at the Tevatron the Higgs boson is produced closer to threshold and the effect of
multiple soft-gluon emission is more important.

3.4 Joint resummation in electroweak productiortt

BMore precisely, we include all the soft and virtual contributions and the hard terms in the form:)™ up ton = 1.
Higher powers of 1 — z) give very small effect![65].
¥Contributing authors: A. Kulesza, G. Sterman, W. Vogelsang
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Fig. 9: Resummed K-factors at the Tevatron Run II.

3.41 Introduction

The hadronic annihilation cross sections for electroweak boson produgtiow( Z, H) provide impor-

tant test cases for resummation techniques in QCD. Soft-gluon emission leads to large logarithmic contri-
butions to perturbative cross sections, both near threshold, when the incoming partons have just enough
energy to produce the observed boson, and near measured boson transverse mamegtugh All-

order resummations of the leading and next-to-leading terms in such contributions have been achieved
separately for the threshold and sm@l- cases. Very recently, a formalism has been developed that
encompasses both. For electroweak annihilation as well as QCD cross sections, the necessary analysis
for this combination, which we refer to as joint resummation, has been carried duf in [189]. In this
brief report, we develop the application of the joint resummation formalism to the phenomenology of
electroweak annihilation.

The effects of resummation are closely bound to momentum conservation. The singular correc-
tions associated with soft gluon emission exponentiate in the corresponding spaces of moments, impact
parameter for transverse momentum, and Mellin (or ae@) moments in energy for threshold resum-
mation. The transforms relax momentum and energy conservation, while their inverses reimpose it. In
joint resummation, both transverse momentum and energy conservation are respected. This leads to
two separate transforms in the calculation, and we will discuss below how we invert these. This is a
non-trivial issue, since, taking into account nonleading logarithms and the running of the coupling, re-
summation leads in each case to a perturbative expression in which the scale of the coupling reflects the
value of the transform variable. Because of the singularity of the perturbative effective couglingmt
the resulting expressions are, strictly speaking, undefined. A closer look, however, shows that singular
contributions appear only at nonleading powers of momentum transfer. This is an example of how per-
turbative resummation can suggest the way nonperturbative dynamics is expressed in infrared safe hard
scattering functions. In effect, perturbation theory is ambiguous, and the resolution of its ambiguities is,
by definition, nonperturbative [10p—-192]. Each scheme for dealing with these ambiguities constitutes a
specification of perturbation theory, and implies a parameterization of nonperturbative effects. We hope
that a joint resummation affords a more general approach to this problem.
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3.42 Joint resummation method
In the framework of joint resummatiof [189], the cross section for electroweak annihilation is given as

dgfg . (0) dN _N d2b Z@Tg
dQ*dQ% ~ za:% /CN omi /(277)2 ‘
X Ca/A(Q7b7N7,u7,uF) exXp [EEJ(N7I)7Q7M)] Cd/B(vavaumuF) ’ (110)

wherer = (Q2/5, (Q denotes the invariant mass of produced boson,oé,?‘t)dis the Born cross section.
The flavour-diagonal Sudakov expondfjt. is given to next-to-leading logarithmic (NLL) accuracy by

Q) = — [ v a4 atetir) i (Z) 4 Baotken] - @1y

Q2/x? k% k%

It has the classic form of the Sudakov exponent in the recoil-resungmedistribution for electroweak
NLL, one only needs the second (first) order expansiod ¢f3) [[76]. The only difference between
the standard Sudakov exponent @ resummation and Eq. 111 comes from the lower limit of the
integrand, i.e. the functiog that organizes the logarithms &f andb in joint resummation:

o N _
N, b)y=b+ ——— b=0bQe™™ /2. 112

This choice fory(NV, b) fulfills the requirement of reproducing the LL and NLL termsNhandb when

N — oo (at fixedd) andb — oo (at fixed N'). Moreover, it also guarantees that in the lifit> N the

quantityZl 1 expanded up t@(«;) does not have any subleading terms with singular behavior different

from the one present in the fixed-order result.

The functiong’(Q, b, N, i, up) in EQ. (110)

Ca/H(vavaumuF) = an/j (N7 O‘s(:u)) g]k (NvQ/XmuF) fk/H(N7 ,uF) ) (113)
I,k

contain products of parton distribution functiofys; at scalg:» with an evolution operataf;; between
scalesur and(@/y. Furthermore, as familiar from both threshold apg resummation, they contain
hard coefficients”, ,;(IV, «;) that are again perturbative seriesipand have the first-order expansions

(1) _ Qs 3 2 2 _ A

Con (N as) = 1—|—47TCF< 8+ 7 + NG +1)> = Cy(Nyay) (114)
(1) — % 1 _ )

Copp (Noas) = S NIV T - Coy (N ) (115)

To be consistent with the NLL approximation for th& " part of the cross section, the evolution matrix

¢ is derived from the NLO solutions of standard evolution equatioris [17]. Inclusion of the full evolution

of parton densities (as opposed to keeping onlytha N part of the anomalous dimension that domi-
nates near threshold, see Ref. [194]) extends the joint formalism and leads to resummation of collinear
logarithms not all of which are associated with threshold corrections.

Owing to the presence of the Landau pole in the strong coupling, the jointly resummed cross
section {110) requires definitions for the inverse Mellin and Fourier transforms. In pure threshold resum-
mation, it was proposed to parameterize the inverse Mellin contour as [186]

N =C 4 ze* | (116)

55



where(' lies to the right of the singularities of the parton densities, but to the left of the Landau pole. This
is a natural definition of the contour since it decouples the Landau pole from any finite-order expansion
of the resummed cross section. For the jointly resummed cross section in Eq. (110}, ifitkgration

is carried out in the standard way over the real axis, one will inevitably reach the Landau pole. This is
well-known also from puré&)r resummation and led to the introduction of a (non-perturbative) upper
valueb,,.. for theb integral, along with a redefinitioh— b.. = b/+/1 + b2 /b2 .. To avoid introducing

a new parameter, we treat théntegral in a manner analogous to theintegral above,J195]: were the
Landau pole not present we could, instead of performing fhéegral along the real axis, use Cauchy’s
theorem and divert it into complexspace. Our prescription will be to use the diverted contour also in
the presence of the Landau pole. Technically, this can be achieved by writing

2 /OO dbb Jo(bQr) f(b) =7 /Oo dbb [hy (bQ, v) + ha(bQr, v)] f(b) (117)
0 0

where theh; are related to Hankel functions and distinguish positive and negative phases jn kq. (117).
We then can treat theintegral as the sum of two contours, the one associatedwith;) corresponding
to closing the contour in the upper (lower) haiplane [195].

3.43 Transverse momentum distribution #oproduction

A phenomenological application of the joint resummation formalism requires matching the resummed
distribution (110) to the fixed-order result*¢d, which we do as follows:

do dores do.exp(k) do.ﬁxed(k)
2 2 7 T 2 (118)
dQ2dQE ~ dQPAQ%  dQRQL | dQrdQY

with do*P(k) denoting the:-th order expansion of the resummed cross section. This way of matching in
the conjugaté N, b) space evidently avoids any type of double counting. Given the above prescription
we calculate th&); distribution for Z production at the Tevatron and compare it with the latest CDF
data [196] in Fig. 10 (dashed lines). We emphasize that the dashed lines are obtained without any
additional nonperturbative parameter. Towards @y, one expects perturbation theory (as defined in

our formalism) to fail without nonperturbative input. The expected form of such effects can be derived
exponent in the limit of small transverse momentum of soft radiation. The gross structure one finds is a
simple Gaussian functiongb? added to the Sudakov exponentiin(;110). A fit to the data gives a modest

g = 0.8 GeV2, similar to [198]. We finally note that, unlike standagd- resummation, our resummed
cross section, (118) stays positive even at very lageso that an extra switching between a matched
distribution and a fixed order result is not required here. We obtain a very good agreement between data
and the jointly resummed theoretical distribution even out to |§yge

3.5 Transverse momentum and threshold resummations in heavy quark productici¥

Theoretical analysis of QCD problems involving a single scale parameter is highly developed; however,
the problem becomes complex when more than one distinct scale is involved. Unfortunately, most of the
interesting experimental measurements fall in the multi-scale categorgcémtryears, powerful theo-
retical tools have been developed to describe such complex reactions. The fundamental problem with
the analysis of multi-scale regimes in the context of perturbation theory is that the truncated series in the
strong couplingv; may converge poorly due to the presence of large logarithms of dimensionless quanti-
ties. The “big bad logs” can appear in a number of guises. Logarithms of theddrm¥) In" (¢3./Q?),

m < 2n — 1 appear when calculating differential distributions in transverse momentum. Separately, we
encounter logarithms of the fora’[In" (1 — 2) /1 — 2]y, m < 2n— 1, with 2 = Q?/s, in the production

Dcontributing authors: N. Kidonakis, P.M. Nadolsky, F. Olness, R. Scalise, C.-P. Yuan
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Fig. 10: CDF data'jlée] on Z production, compared to joint resummation predictions (matchedx@itheresult according to

Eq. C_i_l-ﬁ)) without nonperturbative smearing (dashed) and with Gaussian smearing using the nonperturbative parairteter

GeV (solid). The normalizations of the curves (factor of 1.069) have been adjusted in order to give an optimal description. We
use CTEQS5M parton distribution functions with renormalization and factorization seateg » = Q.

of heavy quarks near threshold. The solution to the problemis to find all-order sums of large logarithmic
terms from first principles of the theory, such as gauge and renormalization group invariance.

The soft-gluon resummation formalism of Collins, Soper, Sterman (GSS) |[174, 199] sums large
logs of the formin™ (¢3./Q*); this formalism has enjoyed a number of theoretical advances in recent
years [20D]. Logarithms of the second type€} (1 — z), arise in the production of heavy quarks near

to handle both types of logs simultaneously [189].

In this study, we address the impactqf and threshold logarithms on the heavy quark produc-
tion. Our approach is to first examine thge and threshold resummation results separately, compare the
contributions in various kinematic regions, and finally consider the joint resummation. The dependence
of results on the mass! of the heavy quarks gives an additional dimension to this problem. Our work
on gy resummation is motivated, in part, by recently calculaf¥d;) cross sections for heavy quark
production in semi-inclusive deep-inelastic scattering (SID]S):[206], and by newly developed methods
for resummation of logarithms in massless SIDIS[2(Q7-209]. These results can be combined to obtain
improved description of differential heavy-quark distributions in a large range of collision energies.

Our calculations use the ACOT variable flavor number factorization schemg;]210, 211], which
itself is a resummation of logarithms involving the heavy quark mass via the DGLAP evolution equation.
This scheme is successfully applied to obtain accurate predictions for inclusivitigsda.g. the charm
structure functions (z, Q%)) both at asymptotically high energies>>> M? and near the threshold
s~ M?2.

For less inclusive observables, application of the ACOT scheme in a fixed-order calculation is often
not sufficient due to the presence of logarithms different ftad)?/A?). Fixed-order calculations,
such as the calculation it [206], have to combine subprocesses with different numbers of final-state
particles. This combination leads to unphysical “plus” and “delta-function” distributions; it also leaves
large logarithmic terms in the coefficient functions. The dynamical origin of this deficiency lies in the
intensive soft QCD radiation, which accompanies particle reactions near boundaries betveeeh
(n 4+ 1)-particle kinematics. In SIDIS, unphysical distributions appear in the current fragmentation
region, which in our notations corresponds to the ligjit< Q2. Note that this phenomenon occurs
when the hard scale of the reaction is much larger than the heavy-quarki.@ags, > M?2.
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The key result of the CSS resummation formalism is that all large logarithms due to the soft radia-
tion in the high-energy limit can be resummed into a Sudakov exponent. This result can be summarized
in the following master equatiof¥:

do o b
AQ*dg2 ~ ?0 /W T (CM e f)(CM @ d) e +oro — oasy - (119)
Hereb is the impact parametef, andd are parton distribution functions and fragmentation functions,
respectively('™™, C°"* contain perturbative corrections to contributions from the incoming and outgoing
hadronic jets, respectively. The factor® is the Sudakov exponential, which includes an all-order sum of
perturbative logarithmm™ ¢%./Q? atb < 1 GeV~! and nonperturbative contributionstap 1 GeV—*.
Finally, oro is the fixed-order expression for the considered cross section, avhile(asymptotic piece
is the perturbative expansion of thespace integral up to the same ordemngfas inoro. At smallgr,
where termsn” (¢3/Q?) are large,oro cancels well witheasy, so that the cross sectiop (119) is
approximated well by thé-space integral. Ay > @, where the logarithms are no longer dominant,
theb-space integral cancels with, sy, So that the cross section (119) is equatit@ up to higher order
corrections.

\1 "resummed"

99?:+>7_

Fixed
order, M~Q \+ 1 - =
I
a) b) c) d)
Resummed,
M~Q \+ ~_ ) ~ ) \
e) f) 9) h)
Resummed,
Q>>M + - = \
) ) k) 1)

Fig. 11: Balance of various terms in the ACOT scheme and resummed cross section. Graphs shmothez-axis and
do /dg3 on they-axis.

In extending the CSS resummation from the massless to the massive case, we observe that the
nor does it rely on the usage of tiid S scheme for Fédu_lér_ization of soft and collinear singularities.
Hence the reorganization of perturbative calculations as in}Eq. (119) is also justified for massive quarks.
Note, however, that nonvanishing quark masses regulate collinear singularities, so that at least some of
the logarithms are not dominant in the threshold region. On the other hand, the discussioniin Ref. [211]

2n such a short report, the equations presented can only be schematic; complete notations will be defined in our upcoming
publication; see alsé [207—209].
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suggests that masses can be set to zero for those heavy quarks that enter the hard scattering subprocess
directly from the proton.

This approximation, which differs from the complete mass-dependent cross section by higher-
order terms, significantly simplifies the analysis. We therefore drop heavy-quark masses in the hard
scattering subdiagrams with incoming heavy quark lines. This approximation leads to massless expres-
sions for the perturbative Sudakov factor ari€unctions for quark-initiated subprocesses, and mass-
dependen€’-functions for gluon-initiated subprocesses.

Figure:1i qualitatively illustrates the balance of various terms in the resummation formula in
various regions of phase space for the lowest-order contributions. First, consider a fixed-order calculation
in the simplified ACOT scheme near the threshold. In this region, the cross sdetjaig? is well
approximated by thé(«,) photon-gluon diagram (Fig- 11a). To this diagram, we add the lowest-order
~v*q term, which resums powers bf(Q?/M?) and contributes ajr = 0 (Fig.11b). We also subtract
the overlap between the two diagrams (Fig. 11c), which is approximately equal to, but not the same
as, they*¢ contribution. The resulting distribution (Fig.,11d) is close to the fixed-order result, but has
discontinuities in the smatl; region. These discontinuities are amplified wiigincreases.

In the resummed cross section, the fusion diagram still dominates near the threshold, but now
the resummed cross section and subtracted asymptotic piece are smooth functions, which cancel well at
all values ofq (Fig.:I1e-h). Hence, the distribution is physical in the whole ranggrofFinally, at
Q% > M? the smallgr region they*g fusion contribution is dominated by theg/¢? term (Fig.. 1ii).

Such singular terms are summed through all orders in-$ace integral corresponding to Rig. 11j and
are canceled in the fusion contribution by subtracting the asymptotic piece (Fig. 11k).

As mentioned above, threshold resummation organizes logs of thedfpjimi™ (1 — z)/1 — =],
qr and threshold resummation, an important consideration is whether there is an overlap in resummed
terms, which would result in double counting. While in a general context this delicate problem makes
the double resummation non-trivial, this is not an issue for the low order case we are examining here; for
this reason, we can compute the contributions separately and compare them without any complications.

Our analysis in this study will continue well past the time scale of the present workshop, and
detailed results will be described in a separate publication. New experimental measurements will contain
a wealth of information of high precision — if only we can extract and analyze it. Theoretical tools must
be refined to keep up with this progress. The resummation formalisms that we are studying here provide
an efficient way to go beyond low order perturbative calculations and describe the heavy quark data
accurately in a wide range of kinematical variables. With these new methods at hand, we will be well
prepared for examination of new detailed information from HERA, TEVATRON Run II, and the LHC.

3.6 Soft gluon resummation for fragmentation functiong?

When one is considering the issue of performing tests of perturbative QCD (pQCD) predictions and of
calculational techniques, production processes involving heavy quarks (i.e. ofimasa g p) can be
thought of as an ideal choice for at least two distinct reasons.

e The large mass of the quark acts as a cutoff for collinear singularities, allowing perturbative cal-
culations to give finite results without resorting to factorization into phenomenological functions,
hence allowing, at least in principle, direct comparisons to experimental data.

e When the quarks undergo a non-perturbative hadroniZstioefore being observed, say, as a
heavy-light meson liké or B, the extent to which this process modifies the perturbative predic-
tions can be expected to be of the order of magnitude of (powers of) the\ratip whereA is a
hadronic scale of the order of a few hundred MeV . One can therefore hope to be less dependent

22Contributing author: M. Cacciari
BThis is the case for charm and bottom, while the top quarks decay weakly before hadronizing.
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on the inclusion of non-perturbative parametrizations (for instance parton distribution and frag-
mentation function) which, by introducing additional phenomenological degrees of freedom, can
obscure the real predictive power of the underlying theoretical framework.

Such nice features do of course come at a price. Perturbative calculations, while finite, will how-
ever contain in higher order logarithms of the various physical scales entering the problem. For instance,
heavy quark hadroproduction at transverse momentgrar heavy quark fragmentation e~ colli-
sions at a center-of-mass ener@will display o2 (o log"® (pr/m)) or & log" (Q/m) (with 0 < k < n)
terms respectively. Whe@, pr > m such logarithms, remnants of the screening of the collinear singu-
larities, grow large, eventually spoiling the convergence of perturbation theory. Analogously, observing
the heavy quark close to a phase space boundary will constrain soft radiation and result in Sudakov
logarithms which can also grow very large.

Therefore, in order to really exploit the aforementioned possibly superior qualities of heavy quark
processes, one must first take care of properly and accurately evaluating the perturbative result. In par-
ticular, this means performing an all-order resummation of the large logarithms previously mentioned,
and matching to an exact fixed order result for recovering the non-leading terms.

Resummation of “collinear” large logarithms to next-to-leading log (Natguracy was first per-

formed in Ref. [212,213] foete~ collisions. Sudakov logarithms were also resummed to leading

logarithmic order (LL). Reference [2i14] extended the resummation of Sudakov logs to NLL level.

The papers previously mentioned only directly addressed heavy quark productibatincol-
lisions. Reference|[212,213] did however put forward convincing arguments about the existence of a
process-independeheavy quark fragmentation functioWaking use of this universality, NLL resum-
mation of collinear logs was first performed for hadron-hadron collisions il [215], and then extended to
(NLO) perturbative calculations J2:L8,219] to provide reliable results in the whole range of transverse
momenta.

The universality hasecently been fully exploited in Refi [220], where the heavy quark frag-
mentation function has been extracted by making no reference to any explicit production process. The
production cross section for a heavy quark of masat a scal&) (or pr) can therefore always be written
as a convolution of this process-independent functidhi(u, m) and a process dependent coefficient
functionC(Q, )%

o(Q,m) = C(Q, ur) @ D™ (up, m) + O((m/Q)") . (120)

The factorization scale separates the two functions, and Altarelli-Parisi evolution can be used to
resum the collinear logarithms ™ (1, m) by evolving from an initial scalgor ~ m up to the hard
scaleur ~ Q, so thatD™ (up, m) = E(ur, por) @ D™ (uop, m).

Making use of this factorization it has been possible to resum the Sudakov logarithms to NLL ac-
curacy forD™ (uox, m) andC'(Q, ur) separately. The resummed result fo¥ (10, m) is, of course,
also process independent (though factorization-scheme dependent), and its Mellin moments can be writ-
ten (we use th@lS factorization-scheme) in the forri [220]:

2 2 2
ini as(p)Cr | w 3 L
DS (0, (12): i, iy m?) = {1 + % [_F 1oyt t (1 - m) o —nfi?] }
X exp {ln N gi(nli)()‘o) + gi(ji)()‘ov m? /s m2/#(2JF)} : (121)

Explicit results for they)) andg!?) functions can be found in Ret.220].
Contrary to that of the “collinearlog(pr/m) terms, resummation of the Sudakov logs is not of
direct phenomenological importance for studying inclugivalistributions in heavy quark production at

2For simplicity we will not be showing parton indices and summation over them.
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the Tevatron or the LHC. Indeed, unless one gets very close to phase space limits, oMyrhoments
of D, aroundN ~ 5, are relevant [221]. Sudakov resummation, on the other hand, starts producing
visible effects aroundv ~ 10 [22d].

Having a reliable theoretical prediction fér" (o, m) (and, with the analogous NLL Sudakov
resummation of (@, ;) also performed in Refi [220], for the measurable single-inclusive heavy-quark
cross section irte™ collisions) is however useful when extracting from experimental data the non-
perturbative contributions which must complement the perturbative calculation in order to get a good
description of the data. A generic “hadron level” cross sectiofar D meson productioninte™ or
hadron collisions can be describedby

Uhad(Q7 m) = C(Q7 ,uF) ® Dini(:qu m) ® an(617 ey 671) . (122)

The functionD"P (¢4, ..., €,) can represent either a phenomenological parametrization or an attempt to
establish the form of such a contribution through the analysis of power corrections. It can be argued [222,
223] that it will be, at least to some reasonable accuracy level, as process independent as its perturbative
counterpar)™ (ux, m). In any case, it will depend on a set of parameters..., ¢,) which, pending a

full solution of non-perturbative QCD, can only be determined by comparison with the data.
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Fig. 12: ALEPH data for weakly-decaying mesons are fitted to a convolution of the perturbative prediction and a non-
perturbative function (see text). Solid line: = 27.45, fitted in V space, fixed by théxz ) (i.e. N = 2) point only. Dashed
line: o = 29.1, fitted as before, but no Sudakov resummation in the pQCD part. Dotteddiae17.7, fitted with resummation

and using all points in g space. The dot-dashed line is the purely perturbative contribution, as defined i?_f_leef. [220].

An example of such a determination is given in kig. 12. ALEPH~ data [224] for weakly-
decayingB meson production are fitted to the Kartvelishvili et 1. [225] non-perturbative, one-parameter
functior?® D"P(z; o) = (a + 1)(a + 2)2%(1 — =). The solid line is obtained by fitting Eg. 122 to the

BThe coefficient function”(Q, ;1) and the heavy quark functioBi“i(up, m) can of course be evaluated to different
levels of theoretical accuracy, for instance including NLL Sudakov resummation and matching to complete NLO calculations,
as in Ref. IZZO] Sudakov resummation for the coefficient func@ti@}, i r) is at present only available ferte~ colli-
sions. It is however less important for hadronic collisions, where phase space edges (and hernéelamgents), are rarely
experimentally probed (an exception to this might/beneson photoproduction data at HERA).

%Despite its simplicity, this function is knowrll [224] to provide one of the best fits to the experimental data. Alternatively,

one could use the form
wp (T = (=DF (A - DN
DY (A)—eXP{Z o — : (123)

k=1
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(zg) point only (the average energy fraction), M space. The dashed line is obtained by performing
the same kind of fit but excluding the Sudakov resummation of EG. 121. One can see this degrades the
result when comparing tog data in the right panel.

While giving in this particular example a worse resultzjn space, than the one obtained Hhiirfig
the 2 distribution itself (dotted line in Fig."12), the determination of the non-perturbative parameter(s)
from N space data is however theoretically more self-consistent. Non-perturbative effects increase in size
asxzp gets closer to one. Hence when fittingup space one is not only using many experimental points
to fix a single (or a few) parameter(s) while however not having the functional form on firm theoretical
grounds, but one is also adjusting the non-perturbative contribution to fit points where its weight greatly
differs. In N space, on the other hand, the non-perturbative contribution increased'witlting only
(z ) means using the point where it is smallest, and then one can still check if the shape of the curve in
x g is correctly predicted.

A theoretically sensible program for evaluating heavy meson cross sections at the Tevatron or the
LHC would therefore entail:

a) Analysing the structure of the process-independent fun@i®i{s, m), and trying to extract
information about its power corrections, which build the non-perturbative fundiithh Full
results for this step are at present not yet available in the literature, and work is in progress. Some
of the characteristics of the non-perturbative contribution are however well established. It is for

heavy quark mass anda hadronic scale of the order of a few hundred MeV.

b) Fitting the first few/N- moments ot "¢~ data, either with a theoretically motivated non-perturbative
function (see previous item) or simply with a given functional form, and extracting the phenomeno-
logical parameters. Ideally, one would fit only as many moments as the number of free parameters.

c) Checking the resulting shape:n; space against™ e~ data. Good agreement might not be nec-
essary if one is only interested in predicting hadronic cross seéfiobst it provides a good
guidance as to how sensible the chosen non-perturbative parametrization is.

d) Evaluating the hadronic cross sections at the Tevatron or the LHC using the fitted non-perturbative
form, together with the prop& D™ (10, m), and a specific coefficient function. A matched
approach like the one presented in Ref. [218] can also be used at this stage, to improve the result
at transverse momentum values of the order of the heavy quark mass or below.

3.7 Analytic resummation and power correction§?

A characteristic feature of resummations is the fact that they highlight the inherent limitations of pertur-
bation theory. In QCD, these limitations are particularly severe, reflecting the complex nonperturbative
structure of the theory: the perturbative expansion for any IR safe observable must be divergent, and
furthermore not summable evenla Borel, as a consequence of the presence of the Landau pole in the
infrared evolution of the running coupling. In the case of IR safe quantities, this ambiguity in the per-
turbative prediction can be shown to be suppressed by powers of the hard scale, and itis interpreted as a
signal of the occurence of nonperturbative corrections of the same parametric size.

Soft gluon resummations always lead to expressions in which the Landau pole appears explicitly.
On the other hand, it should be kept in mind that resummations at a fixed logarithmic accuracy do not

suggested by the structure of the Sudakov resummatioP¥5K: 7, m). Upon identyifinge with 2m /A, the results of the
two expressions are virtually indistinguishable, even when including only a few terms of the series.

2"\We pointed out before thal moments aroundV' ~ 5 are more important to this aim, and we can see from EF[g 12 that
fitting in » » space actually leads tooorerdescription of low”’ moment data. The magnitude of the discrepancy is in this
case of the order of 10%, in agreement with the observations made in Reéf. [221].

Bt is of course important that the perturbative terms included at this sta&ify: », m) match the ones employed when
fitting the non-perturbative contribution.

2Contributing author: L. Magnea
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in general yield correct estimates for the size of the relevant power correction. This was first shown
in Ref. [228] in the case of the inclusive Drell-Yan cross section. In that case, threshold resummation
carried out at NLL level suggests a power correction proportiond¥ to/Q), where N is the Mellin

variable conjugate to the soft gluon energy fraction in the CM frame; it turns out, however, that this power
correction is cancelled by the inclusion of nonlogarithmic terms, which can be exactly evaluated in the
largen limit. This observation lead the authors of Réf. [i186] to introduce the “minimal prescription”

for the evaluation of the partonic cross section in momentum space; with this prescription, the inverse
Mellin transform of the partonic cross section is evaluated picking a contour of integration located to
the left of the Landau pole: as a consequence, the presence of the pole does not affect the result, and
information about power corrections must be supplied independently.

It should be emphasized, however, that a more precise relationship between threshold resumma-
tions and power corrections can still be established, by fully exploiting the factorization properties of soft
and collinear radiation. The refactorization of the partonic cross section proposed in Ref. [229], in fact,
is valid up to corrections that are suppressed by powerg:athus if the functions involved are evalu-
ated maintaining this accuracy, one can expect that they should encode correctly at least the information
concerning power corrections of the for¥¥ (A /Q)™ for the leading values gf andm, while correc-
tions suppressed by extra powers)ofmight still be missed. This fact has been verified in Ref. [230],
where the cancellation of the leading power correction for the Drell-Yan cross section, established in
Ref. [228] in the large: - limit, was reproduced. In the more general setting of joint resummation, the
same result was obtained in Ref. [189], and yet a different approach to reproduce it is discussed in the
next section;[231].

One may wonder to what extent phenomenological results are affected by the inclusion of power
suppressed effects, or, in other words, by the choice of different methods to regulate the Landau sin-
gularity. The minimal prescription can be seen as one possible regulator, operating at the level of the
procedure is given simply by dimensional regularization: using a dimensionally continued version of the
running coupling, one may show that the Landau singularity moves away from the integration contour
for sufficiently large values off = 4 — 2e. Resummed expression are then analytic functions of the
coupling and o%, and the Landau singularity appears as a cut. To see how this comes about, recall that
ind = 4 — 2¢, theg function acquires dependence, so that

Jda

= ,u% = —2ea; + Blas) , (124)

Ble, as)
wheref(a,) = —bya?/(27) + O(a?). As a consequence, the running coupling also becomes dimension
dependent. At one loop,

7 (Ll ) = sl [(Z—) -2(1- (Z—)) o) T )

It is easy to see that the running coupling in &q. {125) has a qualitatively different behavior with respect
to its four dimensional counterpart. First of all, it vanishesuds— 0 for ¢ < 0, as appropriate for
infrared regularization. This is a consequence of the fact that the onglhotion, fore < 0, has two
distinct fixed points: the one at the origin in coupling space is now a Wilson—Fisher fixed point, whereas
the asymptotically free fixed pointis locatedeigt= —47¢/by. Furthermore, the location of the Landau
pole becomes dependent, and it is given by

2 A2 — 2 1 dme _1/6 126
pt=A"=Q +7b0a5(Q2) - (126)

The pole is not on the real axis in theé plane,i.e. not on the integration contour of typical resummed
formulas, provided < —boas(Q?)/(47). One may then perform the scale integrals, and get analytic
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expressions in which the ambiguity due to nonperturbative phenomena shows up as a cut originated by
the Landau pole in the integrand. This idea was applied in Ref. [232] to the resummed quark form factor,
which can be evaluated in terms of simple analytic functions since it is a function of a single scale.
Here we will briefly illustrate the application of the formalism to the simplest resummed partonic cross
sections (DIS and Drell-Yan), at the leading-log level {233].

3.71 Anexample: LL threshold resummation for DIS and Drell-Yan

Resummation of threshola (— 1) logarithms, both for DIS and Drell-Yan, was performed at NNL level

in [229,234]. A formulation closer to the present approach was later given'ih [235]. Applying the latter
formalism, one may express the Mellin transform of the DIS structure funétion, Q?/u?, as(1?), €),

at the LL level, as a simple exponential

2 C 1 N-1_ (1-2)Q? de? 2
Fy <N7%70¢5(H2)76> =5 (1) exp [7}7/0 dz%/o 552 a<€ L« (M2)76>] .

Integration of the running coupling aroudd = 0 generates the leading collinear divergences, which
can be factorized by subtracting the resummed parton distribution

Q o \_. . |CF /1 Nt /Q2 d¢? 52 2
¢<N7ﬁ7a5(u )76 — eXp 7 o dz 1_ & o 52 « 7 (:u )76 .
The IR and collinear finite resummed partonic DIS cross section is then defined by taking the ratio of
Egs. (3.71) and(3.71), &8 = I, /%

The integration over the renormalization scélis easily performed by means of the change of
variablesi¢ /€ = da/B (e, o), obtaining the compact expression

Q2 o AnCp (PN o1 feta((1-2)QY)
Fy (N, ﬁ&és(,uz)vﬁ) = I3 (1)exp [_ bo /0 1— » log ( €+ a(Q?) )] 7

wherea(u?) = boas(p?)/(47). Eq. (3:71) is manifestly finite, though ambiguous due to the cut, as
e — 0.

The expected power correction can now be evaluated by taking the limid with o, (Q?) fixed.
This limit depends on how the cut is approached, and the size of the ambiguity is easily evaluated. One
finds

SFy (N, (Q2)) aNg—Z <1+0< >+0<gz>> , (127)

as expected in DIS.

The resummed expression for the Drell-Yan partonic cross section, at the |éagliNndevel, is
very similar. One finds

N7 Q_227 s 2 ’
aDY (]\]7 Q_227 as(u2)7 6) . opy ( Z « (lu ) 6) , (128)
'u ¢2 ( bl 2 7&5(M2)76)

whereopy differs from F, because of a factor of two in the exponent (due to the presence of two
radiating quarks in the initial state for the DY process), aadduse phase space dictates that the upper
limit of the scale integration should & — 2)%2Q? instead of(1 — 2)@Q?. Thus one finds

§opy (N, as(Q%)) x N% (1 +0 ( ) +0 (g)) . (129)
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Eq. (129) is the result that must be expected from a LL resummation, in agreement with [190]. On the
other hand, one may note that the cancellation of this leading power ambiguity, in the context of the
refactorization formalism of Ref,[229], is of a purely kinematical nature: the non—logarithmic terms
needed for the cancellation arise by matching the kinematic variable used in compytinenergy
fraction in the CM frame) with the one used in defining the parton distributiiight—cone momentum
fraction). The cancellation then clearly survives dimensional continuation.

3.72 Directions for further work

Itis interesting to notice that Eq. (3:71) and its generalizations to the Drell-Yan process and to subleading
logarithms can be seen as the first ingredients of a prescription to handle the Landau pole in phenomeno-
logical applications, similar but not identical to the minimal prescription. Performing th&egration

for a fixed negative value af < —a(Q?) one finds an analytic function whose inverse Mellin transform

can be computed without having to worry about the Landau pole at all. To illustrate this fact, note that if
one introduces the well-known substitution [234]

1 N1_1 11/N 1
/Odz ) - / dtf(2) (130)

valid at LL level, the integration in the exponent can be performed analytically, even for dinA¢
LL level and in theM S scheme, for example, one finds that the exponent of the resummed partonic
Drell-Yan cross section reads

ATo 2
EpyY (N, o, (Q) = —% [logNlog (—@Nﬂ — clog? N (131)

_ %(Liz <1+@> — L (%))] '

Eq. (131) is essentially the dimensional continuation of the fungtiaf Ref. [234], in theM S scheme.

A similar expression can be derived in the DIS scheme, and slightly more cumbersome ones can be
written for the NLL functiong, in either scheme. It would be interesting to develop such a ‘dimensional
prescritpion’ in an actual phenomenological application.

To conclude, we have observed that dimensional continuation can be used to regulate in a gauge in-
variant way the Landau singularity, which characterizes resummed expressions for QCD amplitudes and
cross sections. Applying the formalism to the DIS and Drell-Yan cross sections reproduces the known
results for the expected power corrections, and the method may be turned into a practical prescription
to evaluate inverse Mellin transforms bypassing the Landau pole. Possible interesting generalizations
include applications to existing resummations for event shapesdn annihilation and for the produc-
tion of coloured final states in hadronic collisions. One may safely say that the relationship between
resummations and power corrections has not yet been fully explored. New approaches, such as the one
of Ref. }231], or a sharpening of old tools, may yet yield a deeper insight both in the theory and in the
phenomenology of perturbative QCD.

3.8 Threshold Resummation and Power Corrections in the Drell-Yan Process by Dressed Gluon
Exponentiation®d

The Drell-Yan (DY) process, where a lepton pair is produced in a hadronic collisiorh, — (71~ +

X, is a classical example where initial-state radiation determines the cross section. At the perturbative

level,

d 4 ED d id /
i:= (5" >Z o 2 o @) il @) (2,7, (132)

%0Contributing author: E. Gardi
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Here f,(z;, Q%) are the twist-two parton distribution functions;; (z, @?) is the partonic cross section
andz = Q%/(p + p)? wherep andp are the momenta of the incoming quark and antiquark.

We consider the threshold region where the invariant mass of the produced leptap?paip-
proaches the total center of mass enefgwo at the partonic level — 1. Consegently, the total
energy of QCD radiation in the final state is strongly constrained, the physical scale for gluon emis-
sion(1 — z)@ is low and that multiple emission has a significasier"Perturbatively, this implies that
fixed-order calculations are insufficient, and that large Sudakov logs,— =), must be resummed to
all orders 178,199, 225, 234-236]. It is clear that close enough to the threshold non-perturbative correc-
tions are enhanced as well [180,11:92,228, 23%,238]: they appear as powg(§¢f — z)) rather than as
powers ofl /@). Contrary to structure functions in deep inelastic scattering, the DY cross section does not
have an operator product expansion. The analysis of power correction must therefore rely on perturbative
tools, namely on renormalons. Infrared renormalons reflect the sensitivity of Feynman diargams to the
behaviour of the coupling in the infrared. This sensitivity manifests itself in the large order behaviour
of the perturbative expansion. Assuming that power corrections which are associated with renormalons
dominate, the form of the power corrections can be deduce from the lowers order Feynman diagrams
gluon [228] (or the leading term in the flavour expansion) reflects sensitivity of thefof@? (1 — 2)?).

The absence of a correctidii (Q(1 — z)) is very intriguing, particularly because such corrections do
appear in other QCD observables, e.g. in event-shape variables [241] which share with the DY case the
structure of leading and next-to-leading Sudakov logs. (In fact, the similarity is supetficial [231]. The
difference between the pattern of power corrections, as well as sub-leading Sudakov logs, originates in
the fact that in DY the radiation is from initial-state partons and the constrain is on the total energy,
whereas in event shapes the radiation is from final-state partons and the constrain is on the invariant mass
of the jet.). The main problem with the renormalon method, however, is that higher order Feynman dia-
grams, that are sub-leading in the flavour expansion may generate stronger correctjdis( 1 — z)).

The diagrams which might be relevant are purely non-Abelian [242]: the emission of a (dressed) gluon
off a virtual gluon, which is exchanged between the initial partons. Currently, this question remains open
and we do not address it here.

Since non-perturbative corrections, and particularly those associated with the running coupling,
cannot be unambiguously separated from the resummed perturbation theory, whenever power corrections
are non-negligible, renormalon resummation must be employed. Perturbative terms are alway parametri-
cally larger than the ambiguous power correction and they admit a different functional form. Therefore,
the resummation cannot be replaced by parametrization of power corrections, but only supplemented by
it. A most striking demonstration of this fact is provided [243+245] by the analysis of event shape vari-
ables, where not only the magnitude of the power correction but also the extracted valuerogially
depend on the resummation. In particular, in the calculation of differential cross sections, such as the
DY, in the threshold region, a fixed logarithmic accuracy is insufficient. Power accuracy can be reached
only if the Sudakov exponent itself is evaluated to such accuracy. This is the aim o, DGE [231,244,245].

Let us now briefly describe the application of DGE in the case of DYi[231]. The first stage is
to evaluate the cross section at the level of a single gluon emission. The gluon is assumed to be off-
shell. The gluon virtuality:*> = A\Q? provides the argument of the running coupling in the renormalon
calculation. Being interested in logarithmically enhanced terms, and since such terms originate in the
case under cosideration from the phase-space region \he@mponents of the gluon momentum are
small, the soft approximation can be used. The partonic cross section is,

N Crag B2 2
w(Z7Q2)‘off-shellgluon_ I /1 dﬁ [m] y (133)

wheres = ki /py = 2kp/2pp is the longitudinal momentum fraction of the gluon in the direction of
the emitting quark{ = (p4,0,0)) in the gauged. = 0, and the phase-space limits (s€e [231]) are
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Bia=(1—-2+AEA)/2,withA = /(1 - 2)2 = 2X\(1+ z) + A2,
The leading order result in Eqg. (133) is promoted to a resummed one by integrating over the
running coupling. The Borel representation of the Single Dressed Gluon (SDG) partonic cross section is

Craog sin wu

w(z,Qz)‘SDG: o /0 du exp (—uln QZ/AQ) Bspe(z, u) — Ap(u), (134)
whereAg(u) = 1 for the 1-loop running coupling, which is used below as an example, and
4 (1-7)*
Bese(z,1) = / P (135)
1-2z /;
(1=v2)*
+ / dh vt ! _ 4
0 V=22 =2\(1+2)+1 1-=z

The modification of the lower integration limit overfor the singularl /(1 — =) term corresponds to
factorization of gluons with virtuality smaller thap? into the parton distribution factors, , (z;, Q).

In Eq. (135) the phase-space limits are exact: the upper integration limit was deduced from the
condition; < 3y, yielding A (Apnax) = 0, and thereforé\,.x = (1 — v/z)?. Since the integration over
Aisrestricted to\ < 1 — z, one can replace the integration limit By, ~ (1 — z)%/4 and approximate
the A-dependent denominator in E¢J. (135) {§(1 — 2)2 — 4\. We thus find

ey = A1 [1_ N (1—,2)_2“]‘ (136

1—2zu F(%—u) 2

As was stressed in [228], a further approximation where also the4#iisineglected does not influence
the leading and next-to-leading Sudakov logs, however, since the integral in Eq. (135) exteggsto
(1 — 2)%/4, itis not legitimate for power correction analysis.

At the second step of the calculation, the SDG result is exponentiated: under the assumption of
independent emission, the cross section with any number of gluons can be written, in Matle) sp
w(N,Q?) = fol dz 2Nt w(z,Q?), as

In w(N,Qz)‘DGE = /01 dz (ZN_I — 1) w(z,Qz)‘SDG

= % /0 du exp (—uln Q*/A*) By (u) SH;_ZU Ap(u), (137)
where the Borel function is
! 4
By (u) = / dz (N7 — 1) Bope(z,u) = 2 (ezulnN — 1) I'(—u)* — —In N. (138)
0 U

Egs. {137) and (138) summarize our final result for the DGE of the DY cross section. It contains
both perturbative and non-perturbative information. At the perturbative level the exponent can be written
in the standard way, in terms of functions which sum all the contributions at a fixed logarithmic accuracy,

Cr N 404 f(A@QH N, (139)
k=1

In w(N,QZ)‘DGE: %

whereA(Q?) = a,(Q?)B/m and 1-loop running coupling was assumed. The first two functions

[i€) = 2(1-28) In(1-28) +4¢
(&) = —4yIn(l-2¢) (140)
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are well known [178, 199, 229, 234-236]. We stress that in spite of the fact that the actual calculation is
done in the large, limit, the DGE reuslt igxactto next-to-leading logarithmic accuracy, provided that
the 1 Ioop coupling is replaced by the 2- Ioop couplingin the “gluon bremsstrahlung” scherhg [231, 236,

f5E§; =4.00/(1 —2&)% - 19.48¢
(&) = 11.59/(1 = 2£)*
J7(€) = 48.42/(1 — 2&)° +91.56 ¢
f5(§) = 238.80/(1 - 2¢)°

fo(€) = 1438.66/(1 — 2&)7 — 527.14¢
Fio(€) = 10078.0/(1 — 2€)%.

We see that sub-leading logs are enhanced by factorially increasing coefficients as well as an increasing
singularity at¢ = 1/2. Therefore, truncation of this expansion has a significant impact on the result.
Such truncation would also induce renormalization scale dependence. When power accuracy is required
the sum, up to the minimal term, or alternatively the Borel integral in Eq (137) must be computed.

Of course, due to the renormalon singularities of the Borel funciior (138) the Borel integral (137),
as written, is ill-defined. A prescription must be given. Since the full, non-perturbative result is un-
ambiguous, power corrections can be deduced from this ambiguity. The first, crucial conclusion is that
the power corrections in the threshold region should exponentiate together with the perturbative sum,
so that the correction factorizes in Mellinage: w(N, Q*) — w(N, Q%) wxp(N,Q%). This is fully
consistent with the formulation of the resummation in terms of an evolution equation for a Wilson-line
operatori{192], where the non-perturbative correction appears the initial condition for the evolution. The
singularities of the Borel integrand are locatednaégervalues ofu. Equation {138) has double poles
at all integers, but thein(7u)/7u factor of in Eq. [137) leaves only simple poles. As observed in
Ref. [228], this singularity structure implies that the leading power correction at égfgand not too
largez) is 1/Q*(1 — z)%. Closer toz = 1 sub-leading power corrections of the folm(Q?(1 — 2)?)",
wheren is an integer, become important. The non-perturbative correction factor in Mellin space is [231],

n A2AT2\ "
wNP(N Q P {Z 5071 n')) (AQZX ) }7 (141)

wherew,, are non-perturbative parameters.
Acknowledgements:It a pleasure to thank Yuri Dokshitzer, Gregory Korchemsky and Douglas Ross for
very useful discussions.

3.9 NNLO expansions of threshold-resummed heavy quark cross sectici_’ﬁs

Long- and short-distance dynamics in QCD for inclusive hadronic hard-scattering cross sections are
factorized into universal, non-perturbative parton distribution functions and fragmentation functions,
and perturbatively calculable hard scattering functions. Remnants of long-distance dynamics in a hard
scattering function can become large in regions of phase space near partonic threshold and dominate
higher order corrections. Such Sudakov corrections assume the form of distributions that are singular at
partonic threshold. Threshold resummation organizes these double-logarithmic corrections to all orders,
thereby presumably extending the predictive power of QCD to these phase space regions. One use for
resummed cross sections is to provide, upon expansiag, iestimates of finite higher order corrections
that are not yet known exactly. Here we discuss next-to-next-to-leading order (NNLO) estimates for
double-differential heavy quark hadroproduction cross sections. These are based on expansions of their
next-to-leading logarithmic resummed versions [201, 202,1205, 2456, 247].

SlContributing authors: N. Kidonakis, E. Laenen, S. Moch, R. Vogt
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3.91 Kinematics and threshold-singular functions

The definition of the threshold depends on the observable to be resummed. For double-differential cross
sections various choices are possible. In one-particle inclusive (1PI) kinematics, in our case defined by
the partonic kinematics{ = ¢q, g9),

i(k1) + 7 (k2) = Q(p1) + X'[Q](p)) , (142)

and the corresponding invariants= 2k - ko, ty = —2ks - p1, uy = —2ky - p1, S4 = s+t + uy, the
threshold condition is

The singular functions organized by threshold resummation are the plus-distributions

) s
+

54
Pair-invariant mass (PIM) kinematics is defined by
i(k1) 4 j(k2) = QQ(Y) + X'(K) (145)

with the variableg’? = M? andcos 8, wheref is the polar scattering angle in the partonic c.m. frame.
The threshold is set by

1—MT251—2:0 (146)
with the corresponding singular functions
[L(l - Z)] . (147)
1—=z
At threshold,
t = —%2(1—5]\46080) ) = —%2(1+5MC080) ) (148)

2 2

with 5y = /1 —4m?/M?. We denote corrections as leading logarithmic (LLY i 2i 4+ 1 in

Egs. (144) and: (147) at ordér(a'*?), i = 0,1, ..., as next-to-leading logarithmic (NLL) if = 23,

etc. Threshold resummation is best performed in moment space, defined by the Laplace transform with
respect tavy,

FIN) = / dw eV flwg) (149)
0

wherewp; = 84/m~2 andwppy = 1 — z.In moment space the singular functions become linear
combinations ofn® (N) with & < [+ 1 andN = N exp(vzg).

The NNLO double-differential partonic cross sections for which we derived approximate results
are
d*c;j(s, M* cosb)

dM?dcosf

2 d2gij (th Uy, 84)

(1P1) = s dt, dur ,

(PM) : s

(150)
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We can only sketch the derivation here and refe} toi[247] for all details. The resummed double-differential
partonic cross section has the following functional form in moment space (here in 1PI kinematics, for
the PIM result use Eq; (148) and multiply the right hand sideky'2):

, 2G5 (ty, uy, N)
dtl du1

m/N / B _ m/N ;o
[ gy eon| seen | [ g 00)

= Tr{Hij(mz, m?) (151)

}

X exp (Ei(Nuv I HR)) exp (EJ(Nn I uR)) exp {2 / dﬂ—’f/ (%' (as(u)) + (as(u’))) } ;

HR

Xf’exp

m m

where anyt; andfu, dependence is suppressed. The indicated trace is in the space spanned by tensors
that can couple th8U (3) representations of the partons in (1142) to singletdimensional for the/g
and3-dimensional for thgg channel. P) P refers to (anti)-path-ordering jul. The two-loop expansion

of exp(F;) may be written schematically as
~ o Ny a2 [~
exp(Ei(Nuy pom)) 22 14 = (Z e 1n’“<Nu>) +(%) (Z i 1n’“<Nu>) +... (152)
k=0 k=0

The coefficientsO;’(”) are given in Ref..[247]. Similar expansions can be given for the oer
dependent factors in Ed. (251). Momentum space expressions to NNLL-NNLO are obtained by gather-
ing together all terms aP(a?) andO(a?), performing an inverse Laplace transform, and matching the
N-independent/;; andS;;(1) coefficients to known exad(«?) results. The resulting, approximate,
NNLO cross sections in Eq. (150) have NNLL accuracy in the sense stated beloiv Eq. (148). They are
rather long and are given explicitly in Ref. [247].

3.92 Numerical results

We have so far performed numerical studies of these results fanthesive partonic cross sections
o;j(s,m% u?). We must then attribute any differences in integrating either the PIM or 1PI results to an
ambiguity of our estimates. It is convenient to express these inclusive partonic cross sections in terms of

dimensionless scaling functiogf%k’l) that depend only op = s/4m? — 1, as follows:

k 2

sty = U0ST ama)t 3 ) ' (£5) (159
k=

m2
0 (=0

From our results for the double-differential cross section we have constructed LL, NLL, and NNLL
approximationstq‘i(k’l)(77) fork < 2, [ <k, and for both theg andgg channel. Fok = 1 exact results

are known ['2_7_'48!_—'_2'50]. For = 2 and/ = 1, 2 we have derived exact results using renormalization group
methods. Our best NNLO estimate consists of all exactly known scaling functions, together with the
NNLL estimate of /"),

We now show a few representative results. To exhibit the relevance of threshold approximations
we write the inclusive hadronic cross section as a pointwise produgcbinthe partonic cross section
and the parton flu®; ;

) log,o(S/4m?—1) n ) y
Thn, (S,m) = Y / dloglonmln(m) ®ii(n, 1) oij(n, m*, p°)(154)

1,J=4,9,9
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We use the two-loop expression af and the CTEQ5M parton distributions [38] at LO, NLO, and
NNLO.

As an example, in Fig. 13 we show thhg NLO scaling function to various accuracies and the
corresponding partonic flux fat production at the Tevatron, showing the valueg @fhere the integral
in Eq. (154) gets the most weight. The partonic results show that the NNLL approximation at NLO

0.15
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Fig. 13: (a) Thej-dependence of the scaling functiof%’o) (n), k = 0,1intheMS-scheme and 1PI kinematics. We show the
exact results fofég’o), k = 0,1 (solid lines), the LL approximation tgﬁ%’o) (dotted line), the NLL approximation tﬁ%o)
(dashed line) and the NNLL approximationféé’o) (dashed-dotted line). (b) Theg CTEQS5M parton flux fortz production

at the Tevatron (upper three curveés = 1.8 TeV andm = 175 GeV) and forbb production at HERA-B (lower three curves
VS = 41.6 GeV andm = 4.75 GeV). The curves correspondjio= m (solid curves)y = m/2 (dotted curves), and = 2m
(dashed curves).

approximates the exact result very well. In Ref. [247] we have studied the quality of the NNLL approxi-
mation more extensively and find this conclusion to hold to NNLO and for both channels. The other plot
in Fig..I3 shows that the flux selects partonic processes that are reasonably close to threshold, making
our approximations phenomenologically relevant.

While QCD corrections to the top quark inclusive cross section at the Tevatron are fairly modest,
our NNLO threshold estimates help to substantially reduce factorization scale dependence, as we show
in Fig. 14. The latter is expected on general groundsi [251, 252]. We have checked that using presently
available, almost NNLO densities [188] lead to very similar results. Based on our approximations we
provide, by averaging the results from PIM and 1P| kinematics, NNLL-NNLO estimates for the follow-
ing inclusive top cross sections

o,:(1.8TeV) = 5.8+ 0.4+0.1 pb, (155)

07(2.0 TeV) = 8.0+ 0.6 £ 0.1 pb. (156)
For the HERA-B bottom cross section, we find
05(41.6 GeV) = 30£8£10 nb. (157)

The first set of errors indicates the kinematics ambiguity while the second is an estimate of the scale
uncertainty. Note that the scale uncertainty for top production is how considerably smaller than the
kinematics uncertainty.

3.10 High energy resummatiof?

%2Contributing authors: R. Ball, S. Forte
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Fig. 14: Theu-dependence of the top quark cross section at the Tevatron/fite= 1.8 TeV andm = 175 GeV for the sum

of theqg andgg channels in tha1S scheme. We show the Born (upper solid line at smaih) and the exact NLO (lower solid

line at smalli:/m) cross sections, the 1Pl approximate NNLL-NNLO cross section (dashed line) and the 1PI NNLO estimate
with only 2 and};*’ NNLL approximate (dashed-dotted line). (b) The same as (a) in PIM kinematics.

3.101 Perturbative QCD at HERA

QCD has been tested at HERA [253,:254] over the last several years to an accuracy which is now com-
parable to that of tests of the electroweak sector at LEP: perturbative QCD turns out to provide an
embarrassingly successful description of the HERA data, even in kinematic regions where simple fixed—
order perturbative predictions should fail. This success is most strikingly demonstrated by the com-
parison with the data of the scaling violations of structure functions predicted by the QCD evolution

The significance of this sort of result is somewhat obscured by the need to fit the shape of parton
distributions at a reference scale, which might suggest that deviations from the predicted behaviour could
be accommodated by changing the shape of the parton distribution. However, this is not true because of
the predictive nature of the QCD result: given the shape of partons at one scale, there is no freedom left
to fit the data at other scales. This predictivity is particularly transparent in the smegion, where the
fixed—order QCD result actually becomes asymptotically independent of the parton distribution, apart

from an overall normalization. Indeed, the datalfor, plotted versus the variabte= In =2 In zggéi

are predicted to lie on a straight line, with universal sl@pe= 12/,/33 — 2n; (double asymptotic
s Y

fact, the data are now so accurate that one can see the change in slope when passimggheld, and
indeed double scaling is only manifest if one separates data in the regionsayhenes with/V; = 4

from those with\V; = 523 Equally good agreement with fixed—order perturbation theory is seen when
considering less inclusive observables.

This agreement of the data with fixed—order perturbative QCD computations is very surprising,
in that the perturbative expansion receives contributions of orglhr% so one would expect higher—
order corrections to be non-negligible whenewgin 1 < 1, i.e. in most of the HERA region. As is
well known, the resummation of Ieadirhg% (LLx) contributions to gluon—gluon scattering, and thus
to a wide class of hard processes, including smactaling violations of structure functions, is accom-

33Th_e_fact that the observed slope is somewhat smaller than the predicted one, gs_pecial@%\tibvzme to NLO correc-
tions [259] as well as corrections due to the “small” eigenvalue of perturbative evoli_Jthn [260].
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Fig. 15: Double asymptotic scaling of the H1 data [256]. The scaling variabteln (o /) In(a.(Q3)/a.(Q?)) is defined
with o = 0.1, Qo = 1 GeV; the rescaling factoRr is as in Ref.[257]. Only data with > 1, 0 > 1, Q* > 4 GeV?;
o < 0.03 are plotted. LeftQ? < m?; right: Q* > m?. The straight line is the asymptotic prediction.

seems to be unstable towards the inclusion of higher order correotidns [28]. Hence, the main problem
in understanding HERA physics, i.e. perturbative QCD at smallthat of establishing “consistency of

the BFKL approach with the more standard DGLAP 264, 265] evolution equatipns” [266], which em-
body the leadindgn Q? (LLQ?) resummation on which perturbative QCD is based. This problem is now

perturbation theory at smatl, and use it to explain the unexpected success of fixed—order calculations.

3.102 Duality

Let us for definiteness consider the prototype problem of the description of sreadling violations
of parton distributions. For simplicity, consider the case of a single parton distribtitiony?), which
can be thought of as the dominant eigenvector of perturbative evolution. Scaling violations are then
described by the Altarelli-Parisi equation satisfied®yr, Q?), and thus summarized by the Altarelli—
Parisi splitting function”(z, ;) [264].

The basic result which allows the study of scaling violations at smadl duality of perturba-
tive evolution [268, 270, 271], namely, the fact that, because the Alt®aisi equation is an integro—
differential equation in the two variablés= In ?/A% and¢ = 1/z, it can be equivalently cast in the
form of a differential equation insatisfied by the:—Mellin transform

G(N,t) = /Ooodge—Nf G(&,t), (158)
or a differential equation i satisfied by th&)?—Mellin transform
G, M) = /OO dt e M1 G(€, 1) (159)
of the parton distribution. The pair of dual evolution equations are
%G(N, t) = v(N,as) G(N,t) (160)
EGEA) = \OLay) G(e M), (161)

where Eq. {(160) is the standard renormalization—group equation, with anomalous dimef1sian,
and Eq. (161) is essentially the BFKL equation. Duality is the statement that the solutions of these two
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equations coincide to all perturbative orders, up to power suppressed corrections, provided their kernels
are related by

X(v(N, ag),as) = N. (162)

This means that the BFKL and Altarelli-Parisi equations describe the same physics: it is the choice
of the kernel to be used in the evolution equation which determines which is the large scale which is
resummed. We can then discuss the construction and resummation of the kernel irrespective of the
specific evolution equation where it is used, with the understanding that the kernel can be equivalently
viewed as ay (N, a;) or ax(M, ), the two being related by Ed. (162). Before doing this, we sketch
how duality can be proven order by order in perturbation theory.

3.103 Fixed coupling

Perturbative duality is most easy to prove when the coupling does not run, since in this case the two
scaleg and¢ appear in the Altarelli—Parisi equation in a completely symmetric way. It is convenient to
introduce the double—Mellin transfor@ (N, M) of the parton distribution. The solution to the Altarelli—
Parisi equation inV/, N space has the form (which can be e.g. obtained by performing/amellin
transform Eq.i(159) of the solution to the renormalization—-groupiEq. (160))

Go(N)

G M) = 3 Ny

(163)

whereG (V) is a boundary condition at a reference sgale

The inverse Mellin transform of Eq. (163) coincides with the residue of the simple pole i the
plane ofe™ (N, M), and thus its scale dependence is entirely determined by the location of the simple
pole of G(N, M) (163) , namely, the solution to the equation

M =~(N, o). (164)

The pole condition Eqi (164) can be equivalently viewed as an implicit equatiovi:fof = y (M, ),
wherey is related toy by Eq. {162). Hence, the function

Fo(N)

S Gy

(165)
corresponds to the samgt, ) as Eqs(183), because the location of the respective poles itf thiane
are the same, while the residues are also the same, provided the boundary conditions are matched by

_Foylay, N))
Vs V)

Eq. (16%) isimmediately recognized as thieMellin of the solution to the evolution equatign (161)
with boundary conditiori, (M) (at some reference = z(), which is what we set out to prove. In gen-
eral, the analytic continuation of the functiandefined by Eq.:(162) will be such that Eq. (164) has
more than one solution (i.e; is multivalued). In this case, poles further to the left in tHeplane cor-
respond to power—suppressed contributions, while poles to the right correspond to contributions beyond
perturbation theory (they do not contribute when the invérseMellin integral is computed along the
integration path which corresponds to the perturbative region).

It is easy to see that upon duality the leading—onder o o is mapped onto the leading singular
v = vs(as/N), and conversely the leading—order= o, is mapped onto the leading singubar=
xs(as/M). In general, the expansion gfin powers ofa; at fixed M is mapped onto the expansion of
~ in powers ofx, at fixeda, /N, and conversely. So in particular at LEQ is enough to considey, or
\s, and at LLx it is enough to consideg or xo. The running of the coupling is a LLbut NLLx effect,
so beyond LLx the discussion given so far is insufficient.

Go(N) = (166)
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3.104 Running coupling

The generalization of duality to the running coupling case is nontridahlose the running of the cou-
pling breaks the symmetry of the two scalesndt in the Altarelli-Parisi equation. Indeed, upon
M-Mellin transform {159) the usual one—loop running coupling becomes the differential operator

aS:Ld_F...’ (167)
1—50045m

whereda, /dt = —Bpa’.

Consider for simplicity the LLxe—evolution equation, i.e. Eq. (161) with = «a,xo(M), and
include running coupling effects by replacing with the differential operator Eq. (167). We can solve
the equation perturbatively by expanding the solution in powers, @t fixeda /N : the leading—order
solution is given by Eq.;(165), the next—to—leading order is obtained by substituting this back into the
equation and retaining terms up to ordgky,, and so on,j267]. We can then determine the associate
G/(N,t) by inverting theM —Mellin, and try to see whether this( .V, ¢) could be obtained as the solution
of a renormalization group (RG) equation (1160).

The inverse Mellin is again given by the residue of the pol€ YfG:( N, M) in the M—plane, where
G/(N, M) is now the perturbative solution. When trying to identify this with a solution to £q. (160) there
are two potential sources of trouble. The first is that now the perturbative solution aterdgi” has a
(2n + 1)—st order pole. Therefore, the scale—dependence of the inverse Mellin is now a function of both
as andt, whereas the solution of a RG equation depends anly through the running of;. Hence
it is not obvious that a dual anomalous dimension will exist at all. The second is that even ifa dual
does exist, it is not obvious that it will depend only prand not also on the boundary conditibg( M )
Eqg. {I65): in such case, the running of the coupling inghevolution equation would entail a breaking
of factorization.

However, explicit calculation shows that it is possible to match the anomalous dimension and the
boundary condition order by order in perturbation theory in such a way that both duality and factorization
are respected. Namely, the solution to the leading—twist running couptiegolution Eq. {(161) with
kernel@, o and boundary conditiof'o (M) is the same as that of the renormalization group Eq. (160)
with boundary conditions and anomalous dimension given by

Y (s (8), s (8 /N) = 75 (s (£)/N) 4 s (£) Bo Ayss (s (£) /N) +
(s (1) B0)* Asss (@ (1) /N) + O( s (1) o) (168)
Golas, N) = Go(N) + a, foAGo (V) + (0, 80)? AP G (N) + O, o), (169)

where the leading termg, andGo(N) are given by Eqs. (162) and (166) respectively. The subleading
corrections are

_XSXO

242
2/2F_ I NP
A(I)GO(N) _  zXo o XOQ(/gXo Xo o)7 (171)
Xo

Avss (170)

where all derivatives are with respect to the argumentg 08/ ) and F, (M), which are then evaluated
as functions ofy,(«;/N). The sub—subleading correction to the anomalous dimension is

3 2
215X = 16X G+ 3X0 Xg”
AP)/SSS = —Xo 15

24x4

, (172)

and we omit the very lengthy expression f8f?) o (V). The fact that duality and factorization hold up
to NNLLx is nontrivial, and suggests that they should hold to all orders. An all-order proof can be in
fact constructed [272].
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Once the corrections to duality EQ. (169) are determined, they can be formally re-interpreted as
additional contributions tq: namely, one can impose that the duality Eq. {162) be respected, in which
case the kernel to be used in itis an “effectig”obtained from the kernel of the-evolution Eq.:(161)
by adding to it running coupling corrections order by order in perturbation thegyywill be free of
such correctiony; will receive a correction

"
A = ok 2 DBOD
2 Xo (M)
and so forth. Applying duality to the known one—loop anomalous dimensiptiais gives us the resum-
mation of the all-order singular contributiogéa, /M) to this effectivey, which include the running
coupling correction Eqs (169) and its higher—order generalizations.

, (173)

3.105 Resummation

Because the first two orders of the expansiory @ powers ofa, at fixed M and of the expansion of

~ in powers ofa, at fixed N are known, it is possible to exploit duality of perturbative evolution to
combine this information into anomalous dimension which accomplish the simultaneous resummation
of leading and next—to—leading logsoaind@?. In fact, it turns out that both a small and a smallV
resummation of anomalous dimensions are necessary in order to obtain a stable perturbative expansion,
while unresummed anomalous dimensions lead to instabilities. Both sources of instability are generic
consequences of the structure of the perturbative expansion, and could have been predicted before the
actual explicit computation [28] of subleading smaltorrections.

3.106 SmallM

The perturbative expansion gfat fixed M is very badly behaved in the vicinity @ff ~ 0: at M = 0,
Yo has a simple poley; has a double pole and so on. In practice, this spoils the behaviguinahost
of the physical regiof < M < 1. Becausd /M* is the Mellin transform ofé‘g—zﬁ In*=1(Q?/A?), these
singularities correspond to logs §f which are left unresummed in a LLx or NLLx approa¢h [273].

The resummation of these contributions may be understood in terms of momentum conservation,
which implies thaty (1, a;) = 0 (note our definition of théV—Mellin transform{158), and also thais to
be identified with the large eigenvector of the anomalous dimension matrix). The duality Bq. (162) then
implies that a momentum—conserviggnust satisfyy (0, o) = 1. This, together with the requirement
thaty admits a perturbative expansion in powers@fimplies that in the vicinity o/ = 0, the generic

behaviour of the kernel is

Qg Qg a? o’

oot M M M TGt (174)
wherex is a numerical constant which turns out tobe- = /C' 4. Hence we understand that there must

be an alternating—sign series of polesiat= 0, which sums up to a regular behaviour. In fact, we can
systematically resum singular contributiongtto all orders inx, by including iny the termsy; (o, /M)

derived from the leading ordeg(/V), and similarly at next—to—leading order, and so on. Because the
usual anomalous dimension automatically respects momentum conservation order by erdeinin
order to remove the small/ instability of the expansion of at fixed M, it is sufficient to improve the
expansion by promoting it to a “double leading” expansion which combines the expansions in powers of
«, at fixedM and at fixechv, /M [268]. For example, at leading order= o, xo(M)+xs(as /M) —d.c.,

where the subtraction refers to the double—counting ofithié/ term which is present both in; y, and

in xs(as/M). This expansion of is dual Eq. (162) to an analogous expansior pivhere at leading
ordery = ayyo(M) + vs(as/M) — d.c., and so forth. Both expansions are well behaved at siiall

i.e. largeN. Atthis level, it is already clear that the impact of the inclusion of smatbrrections is
moderate: indeed, it turns out that the double—leading kernel is quite close to the usual two—loop kernel,
except at the smallest valuest i.e. in the neighbourhood of the minimum pf)M) [268].

Xs
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of the resummation parameteEq. C_if:?), for the two resummation prescriptions discussed in text. The fits are performed with
as(M.) = 0.119.

3.107 SmallN

The improved double—leading expansion of the anomalous dimension still requires resummation at small
N. This is because, even though the next—to—leading correction to the double—leading evolution kernel
is small for all fixedM, it is actually large ifV is fixed and small. This in turn follow from the fact that

the leadingy kernel has a minimum, so the small= y region corresponds by duality Eq. (162) to the
vicinity of the minimum where the kernel is almost parallel to the: M axis.

At small N, unlike at smallM, there is no principle like momentum conservation which may
provide a fixed point of the expansion and thus fix the all-order behaviour. The only way out is thus to
treat this all-order behaviour as a free parameter. Namely, we introduce a parameéieh is equal to
the value of the all-order kernglat its minimum, and then we expand about this all-order minimum.

In practice, this means that we reorganize the expansiqrastording to;[267]

X(M7 045) — asXO(M) + O‘?XI(M) +...
= a,No(M)+ aZxa (M) +..., (175)
where
asXo (M, a5) = agxo (M) + Y aitle,,  w(M) = xi(M) - ¢ (176)
n=1

and the constants are chosen in such a way that
A= 0455(0(%) = OésXO(%) + AN a77)

is the all-order minimum of. Of course, in practice phenomenological predictions will only be sensitive
to the value of\ in the region where very small values dfare probed, i.e. at very small

3.108 Phenomenology

Using duality and the resummation discussed above, one can construct resummed expressions for anoma-
lous dimensions and coefficient functions, and wind up with resummed expressions for physical observ-
ables which may be directly compared to the data. The need to resum theérhahaviour entails
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that phenomenological predictions will necessarily depend on the paramEter(17v). When the re-
summed double—leading expansion is constructed, a further ambiguity arises in the treatment of double—
counting terms. This ambiguity is related to the nature of the siMadingularities of the anomalous
dimension, which control the asymptotic smallbehaviour. Specifically, according to the way the
double—counting is treated, thé = 0 poles of the one— and two-loop result may survive in the re-
summed result (‘S—resummation’) or not (‘R-resummation’). Both alternatives are compatible with the
known low—order information on the evolution kernel, and can be taken as two extreme resummation
schemes which parametrize our ignorance of higher order perturbative terms. Since the resummed terms
also have a cut starting &t = A, whether or not these lowN-poles are present only makes a difference

if A turns out to be smally < 0.3.

The x? and starting gluon slope for a fit [271] to the recent H1 data:[256] for the deep—inelastic
cross section are shown in Fig. 16, as a functioh afd for the two different resummation prescriptions.

It is clear that if the perturbativ&/ = 0 poles do not survive the resummation (R resummation) then
only a fine—tuned value of ~ 0.2 is acceptable, whereas if they do survive (S resummation) essentially
any\ S 0 gives a good fit.

Figure:16 demonstrates that it is possible to accommodate the success of simple fixed—order ap-
proach within a fully resummed scheme, and in fact the resummed calculation is in somewhat better
agreement with the data than the fixed order one. Even though the effects of the resummation are nec-
essarily small (otherwise the success of the fixed order prediction could not be explained) they do have
a significant impact in the extraction of the parton distribution: the gluon comes out to be significantly
more valence-like than in an unresummed fit. Hence, the use of resummed perturbation theory is crucial
for the extraction of reliable parton distributions at small

From a theoretical point of view, we see that current data already pose very stringent constraints
on the unknown high—orders of the perturbative expansion: only a rather soft high—energy behaviour of
the deep-inelastic cross—section is compatible with the data. The resummed parton distributions may in
principle now be used to compute hadronic cross-sections at the Tevatron and LHC: the resummation of
hadronic heavy quark production is discussed in some detail in\Ref. [274].

Acknowledgments: A sizable part of this contribution is based on work done in collaboration with
G. Altarelli. This work was supportedin part by EU TMR contract FMRX-CT98-0194 (DG 12 - MIHT).
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4. PHOTONS, HADRONS AND JETS?4 5%

Many signatures of both Standard Model physics and physics that lies beyond the Standard Model re-
quire the reconstruction of photons and jets in the final state and the comparison of experimental data
to theoretical predictions from both Monte Carlos and from next-to-leading order (NLO) theory. There
were two contributions to the QCD/SM group dealing with these issues. The first contribution discusses
improvements to algorithms for the reconstruction of experimental jets both at the Tevatron and at the
LHC and comparisons to perturbative QCD predictions at NLO. In the second contribution, predictions
for diphoton and photom< production at the LHC from the Monte Carlo progr&THIA are com-

pared to those from the NLO progradlPHOX Distributions for kinematic variables of interest for
searches for a Higgs boson decaying into two photons are compared between the two programs.

4.1 On building better cone jet algorithms’®

An important facet of preparations [475, 276] for Run Il at the Tevatron, and for future data taking at the
LHC, has been the study of ways in which to improve jet algorithms. These algorithms are employed
to map final states, both in QCD perturbation theory and in the data, onto jets. The motivating idea
is that these jets are the surrogates for the underlying energetic partons. In principle, we can connect
the observed final states, in all of their complexity, with the perturbative final states, which are easier
to interpret and to analyze theoretically. Of necessity these jet algorithms should be robust under the
impact of both higher order perturbative and non-perturbative physics and the effects introduced by the
detectors themselves. The quantitative goal is a precision of order 1% in the mapping between theory
and experiment. In this note we will provide a brief summary of recent progress towards this goal. A
more complete discussion of our results will be provided elsewhere [277]. Here we will focus on cone
jet algorithms, which have formed the basis of jet studies at hadron colliders.

As a starting point we take the Snowmass Algorithm [278], which was defined by a collaboration
of theorists and experimentalists and formed the basis of the jet algorithms used by the CDF and D@
collaborations during Run | at the Tevatron. Clearly jets are to be composed of either hadrons or partons
that are, in some sense, nearby each other. The cone jet defines nearness in an intuitive geometric fashion:
jets are composed of hadrons or partons whose 3-momenta lie within a cone defined by a girclg.in
These are essentially the usual angular variables, wheteln (cot 6/2) is the pseudorapidity and
is the azimuthal angle. This idea of being nearby in angle can be contrasted with an algorithm based
has been widely used at e~ andep colliders. We also expect the jets to be aligned with the most
energetic particles in the final state. This expectation is realized in the Snowmass Algorithm by defining
an acceptable jet in terms of a “stable” cone such that the geometric center of the cone is identical to the
FEr weighted centroid. Thus, if we think of a sum over final state partons or hadrons defined by an index
k and in the directiorin, ¢x), a jet ¢/) of cone radiug? is defined by the following set of equations:

keJ:(r—ds)*+ (e —ns)? < R,

Er; = ZET,IW

ket
Eg i ¢
oy = Z o (178)
ey TV
B gy
o= Y
ey Era

4Section coordinators: J. Huston and E. Pilon
35Contributing authors: T. Binoth, S.D. Ellis, J.-Ph. Guillet, K. Lassila-Perini, J. Hustondvin&Smann and E. Tournefier
%Contributing authors: S.D. Ellis, J. Huston, Mofitiesmann
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In these expressionsy is the transverse energpp{| for a massless 4-vector). It is important to
recognize that jet algorithms involve two distinct steps. The first step is to identify the “members” of
the jet, i.e., the calorimeter towers or the partons that make up the stable cone that becomes the jet. The
second step involves constructing the kinematic properties that will characterize the jet, i.e., determine
into which bin the jet will be placed. In the original Snowmass Algorithm eweighted variables
defined in Eq.i(178) are used both to identify and bin the jet.

In a theoretical calculation one integrates over the phase space corresponding to parton configu-
rations that satisfy the stability conditions. In the experimental case one searches for sets of final state
perimental implementation of the cone algorithm has involved the use of various short cuts to minimize
the search time. In particular, Run | algorithms made use of seeds. Thus one looks for stable cones only
in the neighborhood of calorimeter cells, the seed cells, where the deposited energy exceeds a predefined
limit. Starting with such a seed cell, one makes a list of the particles (towers) within a digtasfdae
seed and calculates the centroid for the particles in the list (calculated as {n Eq. (178)). If the calculated
centroid is consistent with the initial cone center, a stable cone has been identified. If not, the calculated
centroid is used as the center of a new cone with a new list of particles inside and the calculation of the
centroid is repeated. This process is iterated, with the cone center migrating with eatforepmtil a
stable cone is identified or until the cone centroid has migrated out of the fiducial volume of the detec-
tor. When all of the stable cones in an event have been identified, there will typically be some overlap
between cones. This situation must be addressed by a splitting/merging routine in the jet algorithm. This
feature was not foreseen in the original Snowmass Algorithm. Normally this involves the definition of
a parametelfmerge, typically with values in the range.5 < freree < 0.75, such that, if the overlap
transverse energy fraction (the transverse energy in the overlap region divided by the smaller of the total
energies in the two overlapping cones) is greater thag.., the two cones are merged to make a single
jet. If this constraint is not met, the calorimeter towers/hadrons in the overlap region are individually
assigned to the cone whose center is closer. This situation yields 2 final jets.

The essential challenge in the use of jet algorithms is to understand the differences between the
experimentally applied algorithms and the theoretically applied ones and hence understand the uncer-
tainties. This is the primary concern of this paper. It has been known for some time that the use of seeds
in the experimental algorithms means that certain configurations kept by the theoretical algorithm are
likely to be missed by the experimental ome [282+284]. At higher orders in perturbation theory the seed
definition also introduces an undesirable (logarithmic) dependence on thé&'seed (the minimum~r
required to be treated as a seed cell) [285]. Various alternative algorithms are described.in Ref. [275]
for addressing this issue, including the Midpoint Algorithm and the Seedless Algorithm. In the last year
it has also been recognized that other final state configurations are likely to be missed in the data, com-
pared to the theoretical result. In this paper we will explain these new developments and present possible
solutions. To see that there is a problem, we apply representative jet algorithms to data sets that were
generated with the HERWIG Monte Carfo [286—288] and then run through a CDF detector simulation.
As a reference we include in our analysis the JetClu Algorithmi[289], which is the algorithm used by
CDF in Run 1. It employs both seeds and a property called “ratcheting”. This latter term labels the fact
that the Run | CDF algorithm (unlike the corresponding D@ algorithm) was defined so that calorimeter
towers initially found in a cone around a seed continue to be associated with that cone, even as the center
of the cone migrates due to the iteration of the cone algorithm. Thus the final “footprint” of the cone is
not necessarily a circle iy, ¢) (even before the effects of splitting/merging). Since the cone is “tied”
to the initial seed towers, this feature makes it unlikely that cones will migrate very far before becoming
stable. We describe results from JetClu both with and without this ratcheting feature. The second cone
algorithm studied is the Midpoint Algorithm that, like the JetClu Algorithm, starts with seeds to find
stable cones (but without ratcheting). The Midpoint Algorithm then adds a cone at the midp@jngin
between all identified pairs of stable cones separated by les@ fhamd iterates this cone to test for
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stability. This step is meant to ensure that no stable “mid-cones” are missed, compared to the theoretical
result, due to the use of seeds. Following the recommendation of the Run Il Workshop, we actually use
4-vector kinematics for the Midpoint Algorithm and place the cone at the midpoift, i), wherey

is the true rapidity. The third cone algorithm is the Seedless Algorithm that placegtiahtiial cone

at every point on a regular lattice {y, ¢), which is approximately as fine-grained as the detector. Itis

not so much that this algorithm lacks seeds, but rather that the algorithm puts seed cones “everywhere”.
The Seedless Algorithm can be streamlined by imposing the constraint that a given trial cone is removed
from the analysis if the center of the cone migrates outside of its original lattice cell during the iteration
process. The streamlined version still samples every lattice cell for stable cone locations, but is less
computationally intensive. Our experience with the streamlined version of this algorithm suggests that
there can be problems finding stable cones with centers located very close to cell boundaries. This tech-
nical difficulty is easily addressed by enlarging the distance that a trial cone must migrate before being
discarded. For example, if this distance is 60 % of the lattice cell width instead of the default value of
50 %, the problem essentially disappears with only a tiny impact on the required time for analysis. In the
JetClu Algorithm the valugi,c.ee = 0.75 was used (as in the Run | analyses), while for the other two
cone algorithms the valug,er.e = 0.5 was used as suggested in Ret. [275]. Finally, for completeness,
we include in our analysis a samgie Algorithm.

Starting with a sample of 250,000 events, which were generated with HERWIG 6.1 and run
through a CDF detector simulation and which were required to have at least 1 initial partofinvith
200 GeV, we applied the various algorithms to find jets with= 0.7 in the central region|{| < 1). We
then identified the corresponding jets from each algorithm by finding jet centers differiaddy 0.1.
The plots in Fig: 17 indicate the average differencé&infor these jets as a function of the jgt. (We
believe that some features of the indicated structure, in particular the “kneesFnear150 GeV, are
artifacts of the event selection process.)

From these results we can draw several conclusions. FirgtztAdgorithm identifies jets withF'r
values similar to those found by JetClu, finding slightly more energetic jets at #fahd somewhat
less energetic jets at larder. We will not discuss this algorithm further here except to note that D@ has
applied it in a study of Run | data[290] and in that analysisithélgorithm jets seem to exhibit slightly
larger F'r than expected from NLO perturbation theory. The cone algorithms, including the JetClu
Algorithm without ratcheting, which is labeled JetCIuNR, identify jets with approximately 0.5% to 1 %
smaller E'r values than those identified by the JetClu Algorithm (with ratcheting), with a corresponding
approximately 5% smaller jet cross section at a gikigrvalue. We believe that this systematic shortfall
can be understood as resulting from the smearing effects of perturbative showering and non-perturbative
hadronization.

To provide insight into the issues raised by Rig. 17 we now discuss a simple, but informative
analytic picture. It will serve to illustrate the impact of showering and hadronization on the operation
of jet algorithms. We consider the scalar functigii7) defined as a function of the 2-dimensional
variable 7 = (1, ¢) by the integral over the transverse energy distribution of either the partons or the
hadrons/calorimeter towers in the final state with the indicated weight function,

FP) = 5 [ @0 Br(7) - (B = (7= 7))-0 (B - (7 - 7)) (79)
= S B (B (77O (R (7 - 7))

The second expression arises from replacing the continuous energy distribution with a discrete
set,: = 1... N, of delta functions, representing the contributions of either a configuration of partons or
a set of calorimeter towers (and hadrons). Each parton direction or the location of the center of each
calorimeter tower is defined im, ¢ by p; = (n;, ¢;), while the parton/calorimeter cell has a transverse
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Fig. 17: Difference of2'r for matched jets found with various jet algorithms and compared to the JetClu CDF Run | algorithm.
The events studied were generated with HERWIG 6.1 and run through the CDF detector simulation.
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Fig. 18: 2-Parton distribution: a) transverse energy distribution; b) distribufignsand £ (r) in the perturbative limit of no
smearing.

energy (orkr) content given byrr ;. This function is clearly related to the energy in a cone of $ize
containing the towers whose centers lie within a circle of radiasound the point. More importantly

it carries information about the locations of “stable” cones. The points of equality betwedtirthe
weighted centroid and the geometric center of the cone correspond precisely to the makimaheaf
gradient of this function has the form (note that the delta function arising from the derivative of the theta
function cannot contribute as it is multiplied by a factor equal to its argument)

V()= Y B (7 - )0 (1~ (51 - 7)) (180)

This expression vanishes at points where the weighted centroid coincides with the geometric cen-
ter, i.e., at points of stability (and at minima 6%, points of extreme instability). The corresponding
expression for the energy in the cone centered’ds

Ec(T)=> Er:. 0 (R - (pf - T)7). (181)

To more easily develop our understanding of these equations consider a simplified scenario (con-
taining all of the interesting effects) involving 2 partons separated in just one angular dimgnsiem
(7 — r) with p, — p; = d. Itis sufficient to specify the energies of the 2 partons simply by their ratio,
z = Fy/F; < 1. Now we can study what sorts of 2 parton configurations yield stable cones in this 2-D
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Fig. 19: Perturbation Theory Structure: &)., = 2; b) R.., = 1.3.

phase space specifieddy = < 1,0 < d < 2R (beyon® R the 2 partons are surely in different cones).

As a specific example consider the case= 0, po = d = 1.0 andz = 0.7 with R = 0.7 (the typical

experimental value). The underlying energy distribution is illustrated iniFlg. 18a, representing a delta

function atp = 0 (with scaled weight 1) and anotherat= 1.0 (with scaled weight 0.7). This simple

distribution leads to the functions(r) and F(r) indicated in Fig: 1.8b. In going from the true energy

distribution to the distributiort’ () the energy is effectively smeared over a range giveRbin F'(r)

the distribution is further shaped by the quadratic fadtér— (p; — r)%. We see thaf’(r) exhibits 3

local maxima corresponding to the expected stable cones around the two original delta functiofs (

ro = 1), plus a third stable cone in the middig (= zd/(1 + z) = 0.41 in the current case). This middle

cone includes the contributions from both partons as indicated by the magnitude of the middle peak in

the functionf¢(r). Note further that the middle cone is found at a location where there is initially no

energy in Figi 18a, and thus no seeds. One naively expects that such a configuration is not identified as

a stable cone by the experimental implementations of the cone algorithm that use seeds simply because

they do not look for it. Note also that, since both partons are entirely within the center cone, the over-

lap fractions are unity and the usual merging/splitting routine will lead to a single jet containing all of

the initial energy { + z). This is precisely how this configuration was treated in the NLO perturbative

analysis of the Snowmass Algorithin[291-294], i.e., only the leading jet, the middle cone, was kept).
Similar reasoning leads to Fig.:19a, which indicates the various 2 parton configurations found by

the perturbative cone algorithm. R R one finds a single stable cone and a single jet containing both

partons. For? < d < (1 + z) R one finds 3 stable cones that merge to 1 jet, again with all of the energy.

Ford > (14 z) R we find 2 stable cones and 2 jets, each containing one parton, of scaled ehengies

z. Thus, except in the far right region of the graph, the 2 partons are always merged to form a single jet.

We expect that the impact of seeds in experimental algorithms can be (crudely) simulated in the
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are not allowed for partons separated dy> R,., - R. As a result cones are no longer merged in
this kinematic region. In the present language this situation is illustrated in Frig. 19b corresponding to
Rsep = 1.3, R+ Ry, = 0.91. This specific value forz,., was chosen,[282— 284] to yield reasonable
agreement with the Run | data. The conversion of much the “3 cendsjet” region to “2 cones—

2 jets” has the impact of lowering the averafje of the leading jet and hence the jet cross section at

a fixed E'r ;. Parton configurations that naively produced jets with energy characterized-bynow
correspond to jets of maximum energy 1. This is just the expected impact of a jet algorithm with seeds.
Note that with this value of2,., the specific parton configuration in Fig..18a will yield 2 jets (and not

1 merged jet) in the theoretical calculation. As mentioned earlier this issue is to be addressed by the
Midpoint and Seedless Algorithms in Run Il. However, as indicated iniFig. 17, neither of these two
algorithms reproduces the results of JetClu. Further, they both identify jets that are similar to JetClu
withoutratcheting. Thus we expect that there is more to this story.

As suggested earlier, a major difference between the perturbative level, with a small number of
partons, and the experimental level of multiple hadrons is the smearing that results from perturbative
showering and nonperturbative hadronization. For the present discussion the primary impact is that the
starting energy distribution will be smeared out in the variabléNe can simulate this effect in our
simple model using gaussian smearing, i.e., we replace the delta functions |n'kq. (179) with gaussians
of width ¢. (Since this corresponds to smearing in an angular variable, we would exgecbe a
decreasing function of’r, i.e., more energetic jets are narrower. We also note that this naive picture
does not include the expected color coherence in the products of the showering/hadronization process.)
The first impact of this smearing is that some of the energy initially associated with the partons now
lies outside of the cones centered on the partons. This effect, typically referred to as “splashout” in the
literature, is (exponentially) small in this model fer< E. Here we will focus on less well known but
phenomenologically more relevant impacts of splashout. The distributions corresponding:td Fig. 18b,
but now withe = 0.10 (instead ofr = 0), are exhibited in Fig. 20a.

With the initial energy distribution smeared bythe distribution'(r) is now even more smeared
and, in fact, we see that the middle stable cone (the maximum in the middle of Fig. 18b) has been washed
out by the increased smearing. Thus the cone algorithm applied to data (where such smearing is present)
may not find the middle cone that is present in perturbation theory, not only due to the use of seeds but
also due to this new variety of splashout correction, which renders this cone unstable. Since, as a result
of this splashout correction, the middle cone is not stable, this problemtiaddressed by either the
Midpoint Algorithm or the Seedless Algorithm. Both algorithms may look in the correct place, but they
look for stable cones. This point is presumably part of the explanation for why both of these algorithms
disagree with the JetClu results in Fig: 17.

Our studies also suggest a further impact of the smearing of showering/hadronization that was pre-
viously unappreciated. This new effect is illustrated in IFig. 20b, which sHows, still for » = 0.7 and
d = 1.0, but now fore = 0.25. With the increased smearing the second stable cone, corresponding to the
second parton, has now also been washed out, i.e., the right hand local maximum has also disappeared.
This situation is exhibited in the case of “data” by the lego plot in Fig. 21 indicating the jets found by
the Midpoint Algorithm in a specific Monte Carlo event. The Midpoint Algorithm does not identify the
energetic towers (shaded in black) to the right of the energetic central jet as either part of that jet or as
a separate jet, i.e., these obviously relevant towers are not found to be in a stable cone. The iteration of
any cone containing these towers invariably migrates to the nearby highewers.

In summary, we have found that the impact of smearing and splashoutis expected to be much more
important than simply the leaking of energy out of the cone. Certain stable cone configurations, present
at the perturbative level, can disappear from the analysis of real data due to the effects of showering and
hadronization. This situation leads to corrections to the final jet yields that are relevant to our goal of
1% precision in the mapping between perturbation theory and experiment. Compared to the perturbative
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analysis of the 2-parton configuration, both the middle stable cone and the stable cone centered on the
lower energy parton can be washed out by smearing. Further, this situation is not addressed by either the
Midpoint Algorithm or the Seedless Algorithm. One possibility for addressing the missing middle cone
would be to eliminate the stability requirement for the added midpoint cone in the Midpoint Algorithm.
However, if there is enough smearing to eliminate also the second (lower energy) cone, even this scenario
will not help, as we do not find two cones to put a third cone between. There is, in fact, a rather simple
“fix” that can be applied to the Midpoint Algorithm to address this latter form of the splashout correction.
We can simply use 2 values for the cone raditjsone during the search for the stable cones and the
second during the calculation of the jet properties. As a simple example, the 3rd curve in:Fig. 20b
corresponds to using/v/2 = 0.495 during the stable cone discovery phase @&hd= 0.7 in the jet
construction phase. Thus t&/+/2 value is used only during iteration; the cone size is sét tight after

the stable cones have been identified and the larger cone size is employed during the splitting/merging
phase. By comparing Figs..20b and 18b we see that the two outer stable cones in the perturbative case
are in essentially the same locations as in the smeared case using the smaller cone during discovery.
The improved agreement between the JetClu results and those of the Midpoint Algorithm with the last
“fix” (using the smallerk value during discovering but still requiring cones to be stable) are indicated in
Fig.i22.

Clearly most, but not all, of the differences between the jets found by the JetClu and Midpoint
Algorithms are removed in the fixed version of the latter. The sidfix” suggested for the Midpoint
Algorithm can also be employed for the Seedless Algorithm but, like the Midpoint Algorithm, it will still
miss the middle (now unstable) cone.

Before closing this brief summary of our results, we should say a few more words about the Run
| CDF algorithm that we used as a reference. In particular, while ratcheting is difficult to simulate in
perturbation theory, we can attempt to clarify how it fits into the current discussion. As noted above, the
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JetClu Algorithm is defined so that calorimeter towers initially found around a seed stay with that cone,
even as the center of the cone migrates due to the iteration of the cone algorithm. For the simple scenario
illustrated in Fig.: 18a we assume that the locations of the partons are identified as seeds, even when
smearing is present. To include both ratcheting and the way it influences the progress of the stable cone
search, we must define 2 scalar functions of the form of Eq: (179), one to simulate the search for a stable
cone starting ab = 0 and the second for the search starting at 1.0. The former function is defined

to include the energy within the range? < p < +R independent of the value of while the second
function is defined to always include the energy in the rahge- R < p < 1.0 + R. Analyzing the

two functions defined in this way suggests, as expected, that the search that begins at the higher energy
seed will always find a stable cone at the location of that seed, independent of the amount of smearing.
(If the smearing is small, there is also a stable cone at the middle location but the search will terminate
after finding the initial, nearby stable cone.) The more surprising result arises from analyzing the second
function, which characterizes the search for a stable cone seeded by the lower energy parton. In the
presence of a small amount of smearing this function indicates stable cones at both the location of the
lower energy parton and at the middle location. Thus the corresponding search finds a stable cone at the
position of the seed and again will terminate before finding the second stable cone. When the smearing
is large enough to wash out the stable cone at the second seed, the effect of ratcheting is to ensure that the
search still finds a stable cone at the middle location suggested by the perturbativesesulp,/(1+ z)

(with a precision given by - e~(#/9)%). This result suggests that the JetClu Algorithm with ratcheting
always identifies either stable cones at the location of the seeds or finds a stable cone in the middle that
can lead to merging (in the case of large smearing). It is presumably just these last configurations that
lead to the remaining difference between the JetClu Algorithm results and those of the “fixed” Midpoint
Algorithm illustrated in Fig; 22. We find that the jets found by the JetClu Algorithm have the largest
E7 values of any of the cone jet algorithms, although the JetClu Algorithm still does not address the full
range of splashout corrections.

In conclusion, we have found that the corrections due to the splashout effects of showering and
hadronization result in unexpected differences between cone jet algorithms applied to perturbative final
states and applied to (simulated) data. With a better understanding of these effects, we have defined steps
that serve to improve the experimental cone algorithms and minimize these corrections. Further studies
are required to meet the goal of 1% agreement between theoretical and experimental applications of
cone algorithms.

4.2 Comparison of PYTHIA and DIPHOX for ~~ and = productions #%

Photon pair production plays a prominent role in the search for a neutral Higgs boson at the LHC. In this
respect it is relevant to directly compare the extensively used code PYTHIA [295] with a recent next—
to—leading order (NLO) code DIPHOX [296]. DIPHOX is a computer code of partonic event generator
type, describing the production of pairs of particles in hadronic collisions at full Bic€dracy. PYTHIA

is a computer code of hadronic event generator type which fully describes an hadron-hadron collision
at leading—order (LO) accuracy. The comparisons performed for the productipn afd v are
presented in subsects. 4.21 and 4.22 respectivelly.

4.21 Comparison of PYTHIA and DIPHOX fofy production

Here, PYTHIA version 6.152 [295] is compared to DIPHOX for the production and K-factors are
extracted. The scales used for PYTHIA are the default ones, whereas for DIPHOX all the scales have
been chosen agpr., + pr-,.- Note that a K-factor depends, among other things, on the factorization
and renormalization scale chosen and must be used with care. In order to make easier the comparison,

the direct contribution of the~y production (c.f..[296]) has been split into two parts.
$7Contributing authors: T. Binoth, J.-Ph. Guillet, K. Lassila-Perini and E. Tournefier
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a) A first part, called“initial direct”, groups together terms which have no final state collinear singu-
larities. It contains the Born termp+ ¢ — v + ~, related higher order terjpp+ ¢ — v+ v+ ¢
and the box terng + g — v + 7.

b) A second part, called “Bremsstrahlung”, contains the left-over term of the direct contribution, i.e.
g+ 9 — v+ v+ qand the LO terms of the one fragmentation contributigr: ¢ — ~v + ¢,
q+ ¢ — v+ g where they /g fragments into a photon.

a) The initial direct contribution

al) Comparison of PYTHIA without ISR/FSR and hadronisation with DIPHOX at LO
For this comparison, the CTEQS5L partonic densitiesandt 1 loop are used. To start with, a symmetric
cut is applied on the transverse momentum of the two phqtgns> 20 GeV. Then more realistic cuts
(the H — ~+ selection cuts) have been appliégs| < 2.5, pr,, > 40 GeV, pr., > 25 GeV. As shown

in Table:7 PYTHIA and DIPHOX agree at the few percent level. The distributions of the varigples
pr~ andi,, also agree well.

pr > 20 GeV H — ~+ selection cuts
PYTHIA | DIPHOX || PYTHIA DIPHOX
Born 82.3 83.2 10.2 9.8
Box 82.3 83.2 5.7 5.6
Total 164.6 166.4 15.9 15.5

Table 7: Comparison of DIPHOX and PYTHIA cross sections (in pb) for the Born and the Box terms with minimal cuts
(pr~ > 20 GeV) and aftetH — v~ selection cuts.

a2) NLO corrections to Born
The K-factor Kyi,0/1.0 is defined as the ratio of the NLO to the LO cross sections obtained with
DIPHOX. The CTEQS5L pdf and; at 1 loop have been used to compute the LO cross section whereas
the CTEQ5M pdf andy, at 2 loops have been used to compute the NLO cross section. The Table 8 gives
the value of the cross sections and afil 1,0 for different stages of th&/ — v selection. The asym-

Cut LO | NLO KNLO/LO
pr > 20 GeV 83.2| 949 1.14
<25 325| 41.0| 1.26
+pry > 25 GeV 18.8| 23.6 1.26
+Max(p7, p7,)>40GeV| 57| 10.4] 1.83

Table 8: Comparison of LO and NLO cross section (in pb) for the Born term at different stage/éf-theyy selection.

metric cut results in an enhancement of the K-factor. The reason is the following: at LO the two photons
have the samgr whereas this is not the case at NLO becausethkalance is distorted. Therefore, at

LO, the cut Maxpr -, ,p7-,)>40 GeV is equivalent to a symmetric cut of 40 GeV on both photons. This
cut acts more efficiently on LO than on NLO contributions. After all selection cuts, and if one restricts
in addition toM.,, > 90 GeV, Kyr,0,1,0 isindependent ofZ,, and is equal to 1.57.

ATLAS and CMS have based their prediction on PYTHIA with ISR. In order to obtain the cor-

rection which has to be applied to their numbersy(K/sr) we have compared PYTHIA with ISR
to DIPHOX at NLO. The cross sections are given in Table 9. PYTHIA with ISR includes part of the
NLO corrections; therefore the effect of the asymmetric cuppn is reduced and ¥;,0,1sr is smaller
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than Kyi,o/1.0. Since there is no hard radiation in PYTHIA, the cross section in the qygtegion is
underestimated as is shown in Fig. 23.

Cut | PYTHIA with ISR | DIPHOX at NLO | Kxpo/1sm
pr, > 20GeV | 68.8 94.9 1.38
+ 1] <25 | 276 41.0 1.49
+pry > 25GeV | 16.0 23.6 1.48
+Max(pr~, ,p7-,)>40 GeV | 6.9 10.4 1.51

Table 9: Comparison of PYTHIA (CTEQ5L. at 1 loop) with ISR and DIPHOX NLO cross section (in pb) for the Born term
at different stage of th&/ — ~~ selection.

a3) The Box contribution
Since there is no higher order calculation for the Box contribution, we have studied the effect of switching
on ISR and of including the running af, at 2 loops. PYTHIA with ISR results in a cross section
larger by 400 after all selection cuts. This increase is again an effect of the asymmetric cuts. For
M., > 80 GeV the ratio is equal to 1.19. The inclusion®f at 2 loops decreases the cross section
by 23%. Therefore, the effect of including ISR in PYTHIA almost cancels the effect of the running of
as. Thus we keep the LO calculation with, at one loop for the DIPHOX 'NLO’ calculation in the
following.

a4) K-factor for the directy~ production
In this section, we compare the cross sections obtained by PYTHIA with ISR (which correspond to the
experiment’'s Monte—Carlo) to the NLO prediction from DIPHOX for the diregproduction (i.e. Born
plus Box). PYTHIA is used with CTEQS5L and; at 1 loop. The DIPHOX 'NLO’ contribution includes
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Born at NLO with CTEQ5M andv;, at 2 loops (as im2)) and Box at LO with CTEQS5L and;, at 1
loop (as ina3)). The cross sections are given in Table 10 and Fig. 24 showa/thedistribution after
all selection cuts for PYTHIA and DIPHOX.

Cut PYTHIA with ISR DIPHOX 'NLO’ KNLo/ISR
Box | Born | Total || Box | Born | Total

pr > 20 GeV 60.3| 68.8| 129.1|| 83.2| 94.9| 178.1 1.38

+n,| <25 414 27.6| 69.0| 56.3| 41.0| 97.3 1.41

+pry > 25 GeV 189 16.0| 34.9| 25.7| 23.6| 49.3 1.41

+ Max(pr -+, .p1+,)>40 GeV| 6.6 6.9 135| 4.7| 104| 151 1.12

+ M, > 80GeV 5.6 6.4 12.0| 4.7 95| 14.2 1.18

Table 10: Comparison of PYTHIA (CTEQ5L«. at 1 loop) with ISR and DIPHOX 'NLQO’ cross section (in pb) at different
stage of the? — ~~ selection for Born plus Box contributions. The K factor is the ratio of the total cross sections for PYTHIA
with ISR and DIPHOX 'NLO'.

b) The Bremsstrahlung contribution

In PYTHIA the Bremsstrahlung contribution is obtained with the procegsges: ¢v andqg — g~

with QCD ISR and FSR. The second photon is produced mainly by QED FSR. The cross sections are
summarized in Table 11. Note that the isolation cut reduces the cross section by less than a factor 2. All
the cross sections are obtained with CTEQ5L apdt 1 loop. ISR/FSR in PYTHIA does not produce as
highpr ., as DIPHOX NLO, therefore the cross section is smaller in PYTHIA. Moreover the asymmetric
cut onpr ., enhances this difference: since PYTHIA is a quask 2 generator it does not produce high

pr difference between the photons.

An isolation cut is defined by imposing thatk? > 0.4 or pr, < 10 GeV. For DIPHOX,pr, is

either thepr of the partonp produced with the photon pair or the transverse energy of the residue of
the fragmentation flowing along the photon directiahR is the smallest distance between the parton

p produced with the photon pair and the photgfsA R = Min((n, — 1y,,)% + (¢p — ¢+,,)?). FOr
PYTHIA, pr, = || >, Pr:|| where the sum runs on all the partons produced in the shower going with the
photon andA R is the smallest distance in rapidity-azimuthal angle plane between the parton produced
in the2 — 2 hard scattering and the photons. The isolation cut also slightly enhances the K-factor. It
might be due to the fact that the quark tends to be more collinear to the radiated photon in PYTHIA.
Figurei25 shows thér.,, distribution after all selection cuts and Figure 26 showsjthdistribution.

Cut PYTHIA (ISR/FSR) [ DIPHOX | KB, o pyrama
[,] < 2.5, pr, > 25 GeV 222 275 1.24
+ Max(p7, P +,)>40 GeV 14.9 24.7 1.66
+ M, > 80GeV 11.9 19.7 1.66
Ar > 040 pr, < 10 GeV 7.4 12.8 1.72

Table 11: Comparison of PYTHIA (CTEQ5La at 1 loop) with ISR/FSR and DIPHOX cross section (in pb) at different stage
ofthe H — ~~ selection for the Bremsstrahlung contribution.

Conclusion

The contribution of the two photon background for tHe— ~~ search at the LHC has been estimated

at NLO with DIPHOX and compared to PYTHIA Monte—Carlo. The K-factor has to be used with care
since it depends on the selection cuts notably on the isolation criteria. Note that the asymmetric cut on
pT~ IS responsible for an enhancement of the K-factor.

3|n the case of the two to two kinematics,R = 0
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Fig. 25: M distribution for PYTHIA and DIPHOX after all Fig. 26: @, distribution for PYTHIA and DIPHOX after all
selection cuts for the Bremsstrahlung contribution. selection cuts for the Bremsstrahlung contribution.

4.22 Comparison of PYTHIA and DIPHOX fof v production

Because of the huge jet rates at the LHC, any photonic observable is heavily contaminated by neutral
pions which appear as fake photons inside the electro-magnetic calorimeter. Thus, concerning the search
for a light neutral Higgs boson in the mass window between 80 to 140 GeV, a detailed understanding
of not only~~ but alsoy=® and=°#° rates is mandatory [28v—302]. The experimental studies for LHC
depend heavily on Monte—Carlo event generators like PYTHIA which treat QCD observables on the
leading order level along with the modelling of hadronization and radiation effects. A comparison with
theoretical results which include up-to-date knowledge is a way to test the reliability of these programs.
An adequate tool to do such a comparison is the DIPHOX code which is a partonic event generator
designed for the pair production of hadrons and/or photons in hadronic collisions at full next—to—leading

Here we present a comparisond¥y observables relevant for Higgs search, namely the invariant
mass M., and the transverse momentum distribution of the gairwith a special emphasis onisolation
criteria. Both distributions were calculated with PYTHIA 6.152 [295] and DIPHOX. In the former, in
order to allow a comparison, the multiple interactions within the p-p collision were switched off and
the pile-up effects from the collisions within the same bunch crossing were not takeacotont. The
comparisons were made with the initial and final state radiation allowed.

Two isolation criteria were implemented: the transverse energy flow isolation and the charged
track isolation. In the former, a threshold is set to the surgfof all particles in the isolation cone
AR = +/(An)? 4+ (A¢)?. In the latter, a threshold is set to the maximpimof any charged particle in
the isolation cone. The correlation between the two isolation criteria is plotted i Fig. 27. As DIPHOX
generates only partonic events with a subsequent collinear fragmentation of partons into pions, only the
transverse energy flow isolation can be implemented. From: Fig. 27 it can be inferred that the maximal
hadronic transverse energy inside a cone lies between 5 and 15 GeV in an experimentally realistic situa-
tion. As a reminder, this is the transverse energy stemming from the partonic reaction only and not from
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Fig. 27:Comparison between the cone isolation criterion vs. charged track isolation.

multiple interactions and/or pile-up. In this window, the partomiaation,gg — ¢, is by far dominant
in the cross section. This motivates us to focus on this case only. For the following plots we fixed the
isolation cone size to bAR = 0.4.

With PYTHIA the processy + ¢ — ¢ + v was generated and a requirement was made that the
photon candidates (real photon or a hafdrom the quark jet) havg; > 25, 40 GeV, and that they are
within the pseudo-rapidity range of| < 2.5. A invariant mass cut 80 GeV < M., < 140 GeV was
imposed. Furthermore, it was required that one of the photon candidates jstais rejecting events
were the second photon comes from the jet fragmentation. With DIPHOX the same reaction, includ-
ing next-to-leading corrections, was calculated. The next-to-leading order parton distribution functions
GRV94 [304] were used to compare with the PYTHIA default value. Only direct photons were consid-
ered in this study, since in the case of severe isolation, the contribution from fragmentation is suppressed
below the 10 per cent level. For the fragmentation scale we used theMglugs. This non-canonical
choice is dictated by the fact that in the case of isolation cuts the typical fragmentation scale should be
governed by values Er,,., [308].

In Fig..28 the comparison between PYTHIA and DIPHOX is shown for the invariant mass distribu-
tion of the pion photon pair. Good agreement is found for the case of very loose isolgatign, = 100
GeV and the more relevant value b, = 15 GeV. Note that the NLO prediction is plagued by
large scale uncertainties aroud0 to 40 per cent, as the hard experimental cuts spoil compensa-
tions of higher order terms with opposite signs. In the case of very strict isoldign,. = 5 GeV,
PYTHIA produces somewhat higher rates. The discrepancy has presumably three sources which have
to do with the small value ot'r,,,,.. Small F’1,,.. means that the fragmentation variablethe ra-
tio of transverse pion momentum to parent parton momentum, is pressed towards ¥ne,,;, =
PTmin/ (PTmin + ETmaz) ~ 0.8. In this regime, first of all, the available fragmentation functions
are not well constrained by experimental data [306] and there may be differences in the fragmenta-
tion/hadronization models for largeimplemented in PYTHIA and DIPHOX. Second, large logarithms
(~ log(1 — 2)?) are present in the next-to-leading order calculation which may render the perturbative
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contributions unreliable. Third, the above mentioned fact that the fragmentation scale choice should be
related toF'r,,..-, indeed, indicates that the fragmentation scale should be chosen smaller here, which in-
creases the DIPHOX prediction in the right way. With the valdie=M., . /16 the DIPHOX curve shifts
upwards by about 40 per cent leading to a better agreement. Altogether one can conclude that PYTHIA
and DIPHOX show a reasonable agreement in the invariant mass distribution apart from the regime of
very hard isolation which deserves further investigation from the theoretical;side [305]. In Fig. 29, the
qr spectrum is plotted for the same isolation criteria. Fat,,,., = 15,100 GeV good agreement is
found for the used scales for the first bins. The shape for these contributions is not quite the same, with
the PYTHIA prediction being slightly steeper. This is to be expected, as the NLO calculation encoded in
DIPHOX contain® — 3 matrix elements, enhancing the tail of the distribution. As a reminder, the tail

in PYTHIA is filled by a parton showering model which is not as reliable as explicit higher order matrix
elements. Still, the disagreement in shape for the releyamtomain seems not too alarming in the
plotted range. Note that in the case of hard isolation the PYTHIA prediction of the last 4 bins is plagued
by low statistics. The apparent overall discrepancy in the éasg,. = 5 GeV can be understood by

the same reasoning as given above forthg. spectrum.
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g ] > F o o 1
o
&
WE,,, = 100 GeV, R = 0.4 I 1 E
AE.= 15CeV,R=04 S

G Erme= 50CeV,R=0.4
ME,,, =100 GeV,R = 0.4
o AEip = 15CeV,R=04
¥ Ermee = 50CeV,R =04

10° - 0 L PYTHA

PYTHIA g v E
P DIPHOX NLO u=M=M,./2, M;=M,,/8 F DIPHOX NLO u=M=M,,/2, M=M,,/8 *—

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\7 o b b b b b b b b b
80 90 100 110 120 130 140 0 10 20 30 40 50 60 70 80 90 100

M, [ GeV] agr [ GeV]

Fig. 28: Comparison PYTHIA vs. DIPHOX: The invariantFig. 29: Comparison PYTHIA vs. DIPHOX: The transverse
ym-mass spectrum for different cone isolation criteria andnomentum spectrum ¢fr pairs for different cone isolation
standard LHC cuts. criteria and standard LHC cuts.

In conclusion, the comparison between PYTHIA and the NLO DIPHOX code shows a reasonable
agreement. Whereas infrared insensitive spectra, such as the invariant mass distribution, differ only
by an overall normalisation which can be accounted for by an adequate scale choice, infrared sensitive
observables like the transverse momentum distribution of the pair are typically steeper in PYTHIA due
to missing NLO matrix elements. In the case of very hard isolation an apparent difference between the
PYTHIA and DIPHOX predictions can be traced back to a different imgeof the production of high
pr pions, a too high fragmentation scale choice and/or subtleties in the interplay between higher order
corrections and severe experimental cuts. This will be extensively discussed elsewhere [305].

94



5. Monte Carlof? 9
5.1 Introduction

The Monte-Carlo intergroup focused on four main issues: the problem of interfacing partonic event
generators to showering Monte-Carlos, an implementation using this interface to calculate backgrounds
which are poorly simulated by the showering Monte-Carlos alone, a comparison BER&/1Gand
PYTHIA parton shower models with the predictions of a soft gluon resummation program (ResBos), and
studies of the underlying events at hadron colliders and how well they are modeled by the Monte-Carlo
generators.

Section 5.2 discusses a strategy whereby generic Fortran common blocks are presented for use by
High Energy Physics event generators for the transfer of event configurations from parton level generators
to showering and hadronization event generators.

Section 5.8 discusses theerMC Monte Carlo Event Generator which is dedicated to the gener-
ation of the Standard Model background processes &HC collisions. The program itself provides a
library of the massive matrix elements and phase space modules for the generation of selected processes:
qq — W (= (v)bb, qq — W (= (v)tt, gg,qq — Z/v*(— L0)bb, gg,qq — 7Z/v*(— (L, vv, bb)tt, the
QCDyy, qq — ttbband EWgg — (Z/W /~ —)ttbb. The hard process event, generated with these mod-
ules, can be completed by the initial and final state radiation, hadronizatioreaaglg] simulated with
either thePYTHIA or HERWIGMonte Carlo Event Generators. Interfaces to both these generators are
provided in the distribution version. ThecerMC also uses several other external librari@ERNLIB,
HELAS VEGAS

In Section, 54, predictions for ther distribution for a Higgs particle were generated using two
approaches: (1) a soft-gluon resummation technique, using the préggsiBos and (2) a parton shower
technique using the Monte Carlo prograriSRWIGandPYTHIA. An understanding of the kinematics of
the Higgs boson, or of any other Standard Model or non- Standard Model particle, and the characteristics
of any jets associated with its production, is of great interest for physics at the Tevatron, the LHC or any
future hadron colliders. The transverse momentum distribution of the Higgs boson depends primarily
on the details of the soft gluon emission from the initial state partons. The effects of these soft gluon
emissions can be described either by a resummation calculation or by a Monte Carlo parton shower
formalism. Comparisons between the two techniques for several different Higgs masses and for several
center-of-mass energies show relatively good agreement betweBesB®s predictions and those of
HERWIGand recent versions &fYTHIA.

In Section,5.5, the behavior of the “underlying event” in hard scattering proton-antiproton colli-
sions atl.8 TeV is studied and compared with the QCD Monte-Carlo models. The “hard scattering”
component consists of the outgoing two “jets” plus initial and final-state radiation. The “underlying
event” is everything except the two outgoing hard scattered “jets” and consists of the “beam-beam rem-
nants” plus possible contributions from the “hard scattering” arising from initial and final-state radiation.
In addition multiple parton scattering might contribute to the “underlying event”. The data indicate that
neitherlSAJET or HERWIGroduce enough charged particles (with> 0.5 GeV /c) from the “beam-
beam remnant” component and tH&AJET produces too many charged particles from initial-state
radiation. The “tuning” of SAJET andPYTHIA to fit the “underlying event” is explored.

In addition to these activities, discussions were held with the “standard model” and “beyond the
standard model” groups in order to assess their needs. Many of these needs are expressed in terms of the
desire to have new processes added to the showering Monte-Carlo event generators. The interface dis-
cussed in Section 5.2 should make this easier for users to implement the processes themselves, obviating

the need to have the Monte-Carlo authors do it. Among the important items mentioned are:

%9section coordinators: I. Hinchliffe, J. Huston

“°Contributing authors: C. Ba¥s, E. Boos, M. Dobbs, W. Giele, I. Hinchliffe, Rick Field, J. Huston, V. llyin, J. Kanzaki, B.
Kersevan, K. Kato, Y. Kurihara, L.drinblad, K. Mazumudar, M. Mangano, S. Mrenna, F. Paige, |. Puljak, E. Richter-Was, M.
Seymour, T. S)strand, M. Bhnesmann. B. Webber, D. Zeppenfeld
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The production o#V 7 final states should include the contributions from virtdaland~ as these
are vital for SUSY searches at the Tevatron

Resummation of théng (m g /my) andlog(my/p;) terms in thegg — Hbb process.
Radion phenomenology

A better understanding of thgy — H process and in particular the effect of a jet veto
Correctr polarization in Higgs decay.

5.2 Generic User Process Interface for Event Generators

Modularization of High Energy Particle Physics event generation is becoming increasingly useful as the
complexity of Monte Carlo programs grows. To accommodate this trend, several authors of popular
Monte Carlo and matrix element programs attendingRhgsics at TeV Colliders Workshap Les
Houches, 2001 have agreed on a generic format for the transfer of parton level event configurations from
matrix element event generators (MEG) to showering and hadronization event generators (SHG).

CompHEP [307]
Grace [308] HERWIGB09]
MadGraph [310] = ISAJET [311]!
VecBos [312] PYTHIA [313]

WbbGen [314]

Events generated this way are customarily called user (or user-defined) processes, to distinguish
them from the internal processes that come with the SHG. Specific solutions are already in use, including
an interface of WbhbGen withERWIG315] and an interface of CompHEP wiY THIA [316]—that
experience is exploited here.

Since the specification of the user process interface in May 2001 at Les Houches, the interface has
been (or is being) implemented in a number of MEG and SHG programs. An implementation has been
included inPYTHIA 6.2, described (with an example) in Ref. [317]. HERWIGmplementation is in
progress and will appear in Version 6.5. MEG implementations exist for the Madison Collection of User
Processes (MADCUP] [318], ALPGEN [314, 319], and CompHEP:[320] (to be available publicly soon).
An implementation in MadGraph is in preparation. Other MEG implementations include Refs. [321,
822].

The user process interface discussed here is not intended as a replacemeBPIBVT[323],
which is the standard Fortran common block for interface between generators and analysis/detector sim-
ulation. The user process common blocks address the communication between two event generators
only, a MEG one and a SHG one, and not the communication of event generators with the outside world.

In the course of a normal event generation run, this communication occurs at two stages: (1) at
initialization, to establish the basic parameters of the run as a whole and €domew event that is to
be transferred from the MEG to the SHG. Each of these two stages here corresponds to its own Fortran
common block* These common blocks are described in detail in the next two sections, followed by
some examples.

One can also foresee that each stage will be associated with its own subroutine, called from the
SHG, where information is put in the respective common block, based on output from the MEG. The
details of these subroutines are likely to be specific to a given MEG and may also be specific to a
given SHG. The subroutine nameg®INIT andUPEVNTeach with no arguments) were chosen for the
PYTHIA 6.2 implementation. They are intended to be generic (the Uddakefixes are omitted), and
only dummy versions are packaged with the program. It is recommended that other SHG authors use

1 An interface in C++ has been developed in R:§-1‘_.-[324] and contains similar information content as that discussed here.
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the same dummy routine names (with zero arguments) such that for simple cases which do not require
intervention ‘by hand’, MEG authors will be able to interface several SHGs with a single set of routines.
Example routines are presented in ER6THIA documentation [317].

In general, a user process run may consist of a number of subprocesses, each denoted by a unique
integer identifier. If the user wishes to have the SHG unweight events using acceptance-rejection and/or
mix together events from different processes, then the user process author will need to supply a subroutine
that is able to return an event of the requested subprocess type to the SHG on demand. The author may
choose to organize the subroutine to generate the event ‘on the fly’, or to read the event from a file
stream (with a separate file stream for each subprocess). The SHG will also need information about the
subprocess cross section and/or maximum event weight to select which process is generated next and for
acceptance-rejection. This information will need to be known from the onset (and could, for example,
be determined in advance from an initialization run). Alternatively, the user may already have a proper
mixture of subprocesses from the MEG and only wish the SHG to process events in the order they are
handed in. We therefore allow for several different event weight models.

If extra information is needed for a specific user implementation, then a implementation-specific
common block should be created. The meaning of the user process common block elements should not
be overloaded, as this would defeat the generic purpose.

The descriptions in this paper are intended for event generator authors and may appear complex—
most of the details will be transparent to the casual user.

5.21 ‘User Process’ Run Information

The run common block contains information which pertains to a collection of events.

In general this information is process dependent and it is impossible to include everything in a generic
common block. Instead only the most general information is included here, and it is expected that users
will have to intervene ‘by hand’ for many cases (i.e. a user may need to specify which cutoffs are used
to avoid singularities, which jet clustering algorithm has been used to recombine partons in a next-to-
leading-order calculation, the effective parton masses).

integer MAXPUP
parameter ( MAXPUP=100 )
integer IDBMUP, PDFGUP, PDFSUP, IDWTUP, NPRUP, LPRUP

double precision EBMUP, XSECUP, XERRUP, XMAXUP

common /HEPRUP/ IDBMUP(2), EBMUP(2), PDFGUP(2), PDFSUP(2),

+ IDWTUP, NPRUP, XSECUP(MAXPUP), XERRUP(MAXPUP),
+ XMAXUP(MAXPUP), LPRUP(MAXPUP)

HEPRUP ‘UserPRrRoCESS RuN COMMON BLOCK

e parameter MAXPUP=100: maximum number of different processes to be interfaced at one time
Beam Information
Beam particle 1 (2) is defined as traveling along the +Z (-Z) direction.

e integer_  IDBMUP(2) : ID of beam particle 1 and 2 according to the Particle Data Group conven-
tion [825]

e double EBMUP(2) : energy in GeV of beam particles 1 and 2

e integer ~ PDFGUP(2) : the author group for beam 1 and 2, according to the Cernlib PDHib [326]
specification

e integer PDFSUP(2) : the PDF set ID for beam 1 and 2, according to the Cernlib PDFlib specifica-
tion
Forete~ or when the SHG defaults are to be used, PDFGUP=-1, PDFSUP=-1 should be specified.
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The PDFlib enumeration of PDFs is sometimes out of date, but it is the only unique integer labels for PDFs
available. In the case where a PDF not included in PDFlib is being used, this information will have to be
passed ‘by hand’.
Process Information

e integer IDWTUP : master switch dictating how the event weights (XWGTUP) are interpreted
The user is expected to pick the most appropriate event weight model for a run, given the MEG input at
hand and the desired output. Normally the SHG should be able to handle all of the models.

A summary of the IDWTUP switches is presented in Table 12. _ ,
+1 Everits are weighted on input and the SHG is asked to produce events with weight +1 as output. XSE-

CUP and XERRUP need not be provided, but are calculated by the SHG. XWGTUP is a dimensional
guantity, in pb, with a mean value converging to the cross section of the process. The SHG selects
the next subprocess type to be generated, based on the relative size of the XMAXUP(i) values. The
user-supplied interface routine must return an event of the requested type on demand from the SHG,
and the maximum weight XMAXUP (or a reasonable approximation to it) must be known from the
onset. A given event is accepted with a praligbXWGTUP/XM AXUP(i). In case of rejection, a

new event type and a new event are selected. If XMAXUP(i) is chosen too low, such that XWGTUP
violates the XMAXUP(i), the SHG will issue a warning and update XMAXUP(i) with the new maxi-
mum weight value. If events of some types are already available unweighted, then a correct mixing of
these processes is ensured by putting XWGTUP =A%WP(i). In this option also the internal SHG
processes are available, and can be mixed with the external ones. All weights are positive definite.
k-factors may be included on an event by event basis by the user process interface by re-scaling the

XWGTUP for each event. ) . . ) .
—1 Same as above (IDWTUP=+1), but the event weights may be either positive or negative on input, and

the SHG will produce events with weight +1 or —1 as ouf{fu& given event would be accepted with

a probability XWGTUP|/|XMAXUP(i) | and assigned weiglsign (1,XWGTUP), where theign

function transfers the sign of XWGTUP onto 1. A physics process with alternating cross section sign
must be split in two IDPRUP typé_@l,based on the sign of the cross section, such that all events of a
particular IDPRUP have the same event weight sign. Also the XMAXUP(i) values must be available
for these two IDPRUP types separately, so {KaAXUP(i) | gives the relative mixing of event types,

with event acceptance based |(XrWGTUPwXMAXUP i% | ) )
+2 Events are weighted on input and the SHG is asked to produce events with weight +1 as output. The

SHG selects the next subprocess type to be generated, based on the relative size of the XSECUP(i)
values. The user-supplied interface routine must return an event of the requested type on demand from
the SHG. The cross sections XSECUP(i) must be known from the onset. A given event is accepted
with a probability XWGTUP/XNAXUP(i). In case of rejection, a new event of the same type would

be requested. In this scenario only the ratio XWGTUP/XMAXURP(i) is of significance. If events

of some types are already available unweighted, then a correct mixing of these processes is ensured
by putting XWGTUP = XMAXUP(i). A k-factor can be applied to each process by re-scaling the
respective XSECUP(i) value at the beginning of the run, but cannot be given individuakador

event. In this option also the internal SHG processes are available, and can be mixed with the user

rocesses.
-2 pSame as above (IDWTUP=+2), but the event weights may be either positive or negative on input, and

the SHG will produce events with weight +1 or —1 as output. A physics process with alternating cross
section sign must therefore be splitin two IDPRUP types, based on the sign of the cross section, such
that all events of a particular IDPRUP have the same event weight sign. Also the XSECUP(i) and
XMAXUP(i) values must be available for these two IDPRUP types separately, SOGBRCUP(i)

gives the relative mixing of event types, with event acceptance basXMé8 TUP|/|XMAXUP(i) |

“2Negative-weight events may occur e.g. in next-to-leading-order calculations. They should cancel against positive-weight
events in physical distributions. The details of this cancellation are rather subtle when considered in the context of showers
and hadronization, however, and a proper treatment would require more information than discussed here. The negative-weight
options should therefore be used with some caution, and the negative-weight events should be a reasonably small fraction of
the total event sample.

“3The motivation for this requirement is best understood with a simple example: imagine two subprocesses with the same
cross section. The first process includes events with both positive and negative event weights such that two events out of
three have weight +1 and the third —1. All events from the second process have positive weight +1. In this scenario these
two processes should be ‘mixed’ with proportions 3:1 to account for the cancellations that occur for the first process. The
proportions for the mixing are communicated to the SHG by supplying the positive and negative contributions to the cross
section separately.
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5.22

event selection control of XWGTUP

IDWTUP  accordingto  mixing/unweighting input output
+1 XMAXUP SHG + weighted +1
-1 XMAXUP SHG =+ weighted +1
+2 XSECUP SHG + weighted +1
-2 XSECUP SHG =+ weighted +1
+3 — user interface +1 +1
-3 — user interface +1 +1
+4 — user interface +weighted + weighted
-4 — userinterface  + weighted + weighted

Table 12: Summary of the options available for the master weight switch IDWTUP.

and the total cross section of the two IDPRUP types combined given by XSECUP i)+XSECUP(g.
+3 Events are unweighted on input such that all events come withunit weight X\WGTUP=+1. The SHG

will only ask for the next event. If any mixing or unweighting is desired, it will have to be performed
by the user process interface. The SHG will not reject any events (unlesitrgecs other kinds

of problems). If ak-factor is desired, it is the responsibility of the user process iaterf When
events are read sequentially from an already existing file, this would imply one coufaator for

all processes. In this option it is not Possible to mix with internal SHG processes. i )
—3 Same as above (IDWTUP=+3), but the event weights may be either +1 or —1 on input. A single

process identifierdlDPRUP) may include events with both positive and negative event weights.
+4 Same as (IDWTUP=+3), but events are weighted on input and the average of the evéent weights

(XWGTUP) is the cross section in pb. When histogramming results on analyzed events, these weights
would have to be used. The SHG will only ask for the next event and will not perform any mixing or
unweighting. Neither XSECUP nor XMAXUP needs to be known or supplied. In this option it is not

possible to mix with internal SHG processes. . . ) )
—4 Same as (IDWTUP=+4), but event weights may be either positive or negative on input and the average

of the event weights (XWGTUP) is the cross section. A single process identifier (IDPRUP) may

include events with both positive and negative event weights.
integer NPRUP: the number of different user subprocesses

i.e. LPRUP and other arrays will have NPRUP entries, LPRUP(1:NPRUP)
double XSECUP(J) : the cross section for process Jin pb
This entry is mandatory for IDWTUPRPE2.

double XERRUP(J) : the statistical error associated with the cross section of process J in pb

Itis not expected that this information will be used by the SHG, except perhaps for printouts.

double  XMAXUP(J) : the maximum XWGTUP for process J

For the case of weighted events (IDWTUPE42), this entry is mandatory—though it need not be specified

to a high degree of accuracy. If too small a number is specified, the SHG will issue a warning and increase
XMAXUP(J). This entry has no meaning for IDWTUR=3 +4.

integer LPRUP(J) :alisting of all user process IDs that can appear in IDPRUP &PEUP for this

run

When communicating between the user process and SHG, the LPRUP code will be used. Example: if
LPRUP(1)=1022, then the SHG will ask for an event of type 1022, not 1.

‘User Process’ Event Information

integer MAXNUP

parameter ( MAXNUP=500 )

integer NUP, IDPRUP, IDUP, ISTUP, MOTHUP, ICOLUP

double precision XWGTUP, SCALUP, AQEDUP, AQCDUP,

+ PUP, VTIMUP, SPINUP

common /HEPEUP/ NUP, IDPRUP, XWGTUP, SCALUP, AQEDUP, AQCDUP,
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+ IDUP(MAXNUP), ISTUP(MAXNUP), MOTHUP(2,MAXNUP),
ICOLUP(2,MAXNUP), PUP(5,MAXNUP), VTIMUP(MAXNUP),
+ SPINUP(MAXNUP)

+

HEPEUP ‘UserPrRocEs$ EVENT COMMON BLOCK

e parameter  MAXNUP=500: maximum number of particle entries

e integer NUP : number of particle entries in this event
An event with NUP=0 denotes the case where the user process is unable to provide an event of the type
requested by the SHG (i.e. if the user process is providing events to the SHG by reading them sequentially
from a file and the end of the file is reached).

e integer IDPRUP : ID of the process for this event
The process ID’s are not intended to be generic. The entry is a hook which the event generators can use
to translate into their own scheme, or use in print statements (e.g. so that cross section information can be
shown per process).
When IDWTUPR= +1, &2 the next process to be generated is selected by the SHG, and so IDPRUP is set
by the SHG. For IDWTUR 43, +4 the process is selected by the MEG, and IDPRUP is set by the MEG.

e double XWGTUP. event weight
weighted eventsif the user process supplies weighted events and the SHG is asked to produce unweighted
events, this number will be compared against XMAXUP in the run common block HEPRdEdeptance-
rejection.
unweighted eventsif the user process supplies events which have already been unweighted, this number
should be set to +1 (-1 for negative weight events in e.g. a NLO calculation).
The precise definition of XWGTUP depends on the master weight switch IDWTUP in the run common
block. More information is given there.

e double SCALUP : scale of the event in GeV, as used for calculation of PDFs
If the scale has not been defined, this should be denoted by setting the scale to —1.

e double  AQEDUP: the QED couplingvqep used for this event (e.gi5)

e double AQCDUP: the QCD couplingvgcp used for this event
Whenagrp and/oraqcep is not relevant for the process, or in the case where the user process prefers to let
the SHG use its defaults, AQEDUP=-1 and/or AQCDUP=-1 should be specified.
ID, Status, and Parent-Child History

e integer  IDUP(l) : particle ID according to Particle Data Group convention [325]
undefined (and possibly non-physical) “particles” should be assigned IDUP=0 (i@ thparticle in the
example given in the MOTHUP description below)

° intggerI ISTUP(I% : status code

ncoming particle i
+1 Outgoing final state particle o )
-2 Intermediate space-like propagator defining:amd(Q? which should be preserved
+2 Intermediate resonance, Mass should be preserved
+3 Intermediate resonance, for documentation gnly
-9 Incoming beam patrticles at time= —co o ) )
The recoll from a parton shower (including photon emission) needs to be absorbed by particles in the

event. Without special instructions, this can alter the mass of intermediate particles. The ISTUP flag +2
allows the user process to specify which intermediate states should have their masses preserved, i.e. for
ete™ — Z°h% — qqbb, the Z° andh® would be flagged with ISTUP=+2.

The primary application of the ISTUP=-2 status code is deep inelastic scattering (a negative number is
chosen for this status code because the propagator in some sense ltandbe 6f as incoming). See the
example below.

The status code ISTUP=-9 specifying incoming beams is not needed in most cases because the beam particle
energy and identity is contained in the HEPRUP run information common block. The primary application

of this status code will be non-collinear beams and/or runs for which the beam energy varies event by event
(note that using the -9 status code to vary the machine energy may produce problems if the SHG is asked
to combine separate processes). The use of ISTUP=-9 entries is optional, and is only necessary when

4 Treatment of ISTUP(1)=+3 entries may be generator dependent (in particular sez_e-ji:ef. [317] for the special treatment in
PYTHIA).
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the information in HEPRUP is insufficient. If entries with ISTUP=-9 are specified, this information will
over-ride any information in HEPRUP.

integer MOTHUP(2,l) :index of first and last mother

For decays, particles will normally have only one mother.

In this case either MOTHUP(2,1)=0 or MOTHUP(2,)=MOTHUP(1,1). Daughters Bf-a n process have

2 mothers. This scheme does not limit the number of mothers, but in practice there will likely never be more
than 2 mothers per particle.

The history (intermediate particles) will be used by the SHGs to decipher which combinations of particles
should have their masses fixed and which partieleags bould be “dressed” by the parton shower. Ex-
ample: forgg’ — W~Zg — [~viTl~g, intermediate “particlestV Z, W, andZ could be specified with
ISTUP=+2. Here théV 7 “particle” would have its own entry in the common block with IDUP=0. The
showering generator would preserve the invariant masses of these “particles” when absorbing the recoil of
the parton shower.

In a case likete~ — ptp~v proceeding via a* /Z°, where the matrix element contains an interference
term between initial and final-state emission, this ambiguity in the parent-child history gfiihe to be
resolved explicitly by the user process.

Color Flow

A specific choice of color flow for a particular event is often unphysical, due to interference effects. How-
ever, SHGs require a specific color state from which to begin the shower—it is the responsibility of the user
process to provide a sensible choice for the color flow of a particular event.

integer ICOLUP(L,l) :integer tag for the color flow line passing through the color of the particle
integer ICOLUP(2,I) :integer tag for the color flow line passing through the anti-color of the par-
ticle

The tags can be viewed as numbering the different color lines ivthe» oo limit. The color/anti-color of

a particle are defined with respect to the physical time order of the process so as to allow a unique definition
of color flow also through intermediate particles.

This scheme is chosen because it has the fewest aitibgyand when used with the history information, it
supports Baryon number violation (an example is given below).

To avoid confusion it is recommended that integer tags larger than MAXNUP (i.e. 500) are used. The actual
value of the tag has no meaning beyond distinguishing the lines in a given process.

Momentum and Position

double PUP(5,) : labframe momenturf?,, P,, P., E, M) of particle in GeV

The mass is the ‘generated mass’ for this partitfé,= 2 — |5]? (i.e. not necessarily equal to the on-shell
mass). The mass may be negative, which denotes negativéi.e. M = 2 implies M? = 4 whereas

M = —2impliesM? = —4).

Both £ and M are needed for numerical reasons, the user should explicitly calculate and praeidene.

double  VTIMUP(l) : invariant lifetimecr (distance from production to decay) in mm

Combined with the directional information from the momentum, this is enough to determine vertex loca-
tions. Note that this gives the distance of travel for the particle from birth to death, in this particular event,
and not its distance from the origin.

Spin / Helicity

double  SPINUP(I) : cosine of the angle between the spittor of particle | and the 3-momentum of

the decaying particle, specified in the lab frame

This scheme is neither general nor complete, but is chosen as the best compromise. The main foreseen
application isr’s with a specific helicity. Typically a relativistie= (r+) from aW = (W) has helicity

—1 (+1) (though this might be changed by the boost to the lab frame), so SPINUP(l)= -1 (+1). The use
of a floating point number allows for the extension to the non-relativistic case. Unknown or unpolarized
particles should be given SPINUP(1)=9. The lab frame is the frame in which the four-vectors are specified.
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Example: hadronic ¢t production

| ISTUP()) IDUP(1) MOTHUP(1,)  MOTHUP(2)  ICOLUP(Ll)  ICOLUP(2,)
T -1 21g) 0 0 501 502

2 -1 21 @) 0 0 503 501

3 +2 -6 ¢) 1 2 0 502

4 +2 6 () 1 2 503 0

5 +1 56) 3 3 0 502

6 +1 24V ) 3 3 0 0

7 +1 5@) 4 4 503 0

8 +1 24wWT) 4 4 0 0

Thet andt are given ISTUP=+2, which informs the SHG to preserve their invariant masses when
showering and hadronizing the event. An intermediate s-channel gluon has been drawn in the diagram,
but since this graph cannot be usefully distinguished from the one with a t-channel top exchange, an
entry has not been included for it in the event record.

The definition of a line as ‘color’ or ‘anti-color’ depends on the orientation of the graph. This
ambiguity is resolved by defining color and anti-color according to the physical time order. A quark will
always have its color tag ICOLUP(1,l) filled, but never its anti-color tag ICOLUP(2,1). The reverse is
true for an anti-quark, and a gluon will always have information in both ICOLUP(1,l) and ICOLUP(2,1)
tags.

Note the difference in the treatment by the parton shower of the above example, and an identical
final state, where the intermediate particles are not specified:

I ISTUP()) IDUP(1) MOTHUP(1,)  MOTHUP(2)  ICOLUP(Ll)  ICOLUP(2,)
T -1 21g) 0 0 501 502

2 -1 21 @) 0 0 503 501

3 +1 -56) 1 2 0 502

4 +1 24 W) 1 2 0 0

5 +1 5@) 1 2 503 0

6 +1 24 W) 1 2 0 0

In this case the parton shower will evolve theé without concern for the invariant mass of any pair
of particles. Thus the parton shower may alter the invariant mass diitheystem (which may be
undesirable if thdV'b was generated from a top decay).

Example: gg — gg

ISTUP() IDUP() MOTHUP(Ll) MOTHUP(2])  ICOLUP(l)  ICOLUP(2,)

|
1 -1 21g) 0 0 501 502
2 -1 21 ) 0 0 502 503
3 +1 21 ) 1 2 501 504
4 +1 21 ) 1 2 504 503

1 I ISTUP() IDUP()) MOTHUP(Ll)  MOTHUP(2)  ICOLUP(L))  ICOLUP(2,)
1 1 11e7) 0 0 0 0
2 -1 —-11¢t) 0 0 0 0
3 +2 23 @zY) 1 2 0 0
4 +2 ~1000002 %) 3 3 0 501
5 +2 1000002 %) 3 3 501 0
6 +1 1) 4 4 502 0
7 +1 1) 4 4 503 0
8 +1 -14) 5 5 0 504
9 +1 -14) 5 5 0 505

Three “dangling” color lines intersect at the vertex joining ﬁ)@, q (andft}7 q,q"), which corre-
sponds to a Baryon number source (sink) of +1 (-1), and will be recognizable to the SHGs.
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Example: Baryon number violation in production

I ISTUP() IDUP()) MOTHUP(Ll) MOTHUP@Il)  ICOLUP(Ll)  ICOLUP(2,I)
T 1 1) 0 0 501 0
2 -1 16) 0 0 502 0
3 +2 —1000002 %) 1 2 0 503
4 +1 2@) 3 3 0 503
~0
5 +1 1000022 % ) 3 3 0 0

Example: deep inelastic scattering

e e

1—>———>»——
3 | ISTUP() IDUP() MOTHUP(L) MOTHUP(2]l) ICOLUP(1l)  ICOLUP(2,)
Y o1 1 ] 11e) 0 0 0 0
< 5 2 -1 21 ) 0 0 503 501
v c 3 -2 22 ¢) 1 0 0 0
c 4 +1 11e7) 1 0 0 0
*—W 6 5 +1 -4@) 2 3 0 501
6 +1 4¢) 2 3 502 0
95 502 O 7 +1 21 (@) 2 3 503 502
2 m 556056555~ {
503 503

For DIS, thez and¢? of the v should not be altered by the parton shower, so-the given
ISTUP=-2. We have not specified the internal quark and gluon lines which will be dressed by the parton
shower, such that the partonic event configuration may be drawn as follows,

4

5 If information about the quark and gluon propagators is desired (i.e for
human readability), then those entries may be included with status code
6 1sTUP=+3.

5.3 The Monte Carlo Event Generator AcerMC

Despite the existence of a large repertoire of processes implemented in universal generators such as
PYTHIA or HERWIGa number of Standard Model background processes crucial for studying expected
physics potential of the LHC experiments are still missing. For some of these processes, the matrix ele-
ment expressions are rather lengthy and/or complex, and to achieve a reasonable generation efficiency, it
is necessary to tailor the phase-space selection procedure to the dynamics of the process. The practical
solution could therefore be to produce a choice of dedicated matrix-element-based generators with stan-
dardized interfaces (such as the one proposed in secfton 5.2) to the more general Monte Carlo programs
such aHERWIGor PYTHIA, which are then used to complete the event generation.

The AcerMC Monte Carlo Event Generatdyr [321] follows up on this idea. It is dedicated to the
simulation of Standard Model background processes in LHC collisions. The program itself provides a
library of the massive matrix elements and phase space modules for the generation of a fewzelected
4 processes. The hard process event, generated with these modules, can be completed by the addition of
initial and final state radiation, hadronization aretdys, simulated with eith@YTHIA 6.2 [317] or
HERWIG 6.3[309]

Interfaces ofAcerMC 1.0 to bothPYTHIA 6.2 andHERWIG 6.3 are prepared following
the standard proposed in Section 5.2, and are provided in the distribution versioAc@h4C 1.0
also uses several other external librari€ERNLIB, HELAS VEGAS The matrix element codes have
been derived with the help of tldADGRAPH/HELABackage. The typical efficiency achieved for the
generation of unweighted events is uB@, rather impressively high given the complicated topology
of the implemented processes.
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The very first version of this library was interfacedFtti(THIA 6.1 Within the standard of the
standard, the efficiencies have S|gn|f|cantly |mproved due to an additional optimization step in the phase
space generation. Also in the new version, the interface standard has been chandedTidiA 6.1
to PYTHIA 6.2 conventions, an interface to thdERWIG 6.3 generator was introduced, and the
nativeAcerMC 1.0 calculations of thevgrp andagcp couplings were coded to allow for consistent
benchmarking between results obtained VRTHIA 6.2 andHERWIG 6.3. We also added the
qq — W(— (v)tt andgg,qq — Z/v*(— ((,vv,bb)tt and electro-wealgg — (Z/W/y —)bbtt
processes, which have been implemented for the first time iA¢ckeMC 1.0 library presented here.

It is not necessarily the case that the the lowest order matrix element calculations for a given
topology represents the total expected background of a given type. This is particularly true concern-
ing the heavy flavour content of an event. The heavy flavour in a given event might occur in the hard
process of a much simpler topology, as the effect of including higher order QCD corrections via the
shower mechanism. This is the case, for example, for the presence of b-quarks in inclusive Z-boson
or W-boson production}¥bb or Zbb final states can be calculated through higher order radiative cor-
rections to inclusive W and Z production (through parton showering), or with the use of explbbit
and Zbb matrix elements. The matrix-element-based calculation itself is a very good reference point
to compare with parton shower approaches using different fragmentation/hadronization models. It also
helps to study matching procedures between calculations at adixeg order and parton shower ap-
proaches. For exclusively hard topologies matrix-element-based calculations usually represent a much
better approximation than the parton shower ones.

The physics processes implemented inderMC 1.0 library represent a set of important Stan-
dard Model background processes. These processes are all key backgrounds for discoveries in channels
characterized by the presence of heavy flavour jets and/or multiple isolated leptons [330]. The Higgs
boson searches, H, ZH, W H (with H — bb), gg — H with (H — ZZ* — 4(), andbbh/H /A (with
h/H/A — uu) are the most obvious examples of such channels. We will briefly discuss the physics
motivations for the processes of interest and the implementations that are available:

Z /v*(— ££)bb production has, over the last several years, has been recognized as one of the
most substantial backgrounds for several Standard Model (SM) and Minimal Supersymmetric Standard
Model (MSSM) Higgs boson decay modes, as well as for the obsiéityath SUSY particles. There is
a rather wide spectrum oégions of interesfor this background. In all cases, the lepto#ity* decay is
relevant; events with di-lepton invariant mass below, at, or above the Z-boson mass could be of interest.
This process enters an analysis either by the accompanying b-quarks being tagged as b-jets, or by the
presence of leptons from the b-quark semi-leptonic decays in these events.

A good understanding of those backgrounds and the availability of a credible Monte Carlo gen-
erator which allows the study of the expected acceptances for different final states topologies, is cru-
cial. Despite a large effort expended at the time of the Aachen Workshop [331], such well established
Monte Carlo generators were missing for several y8arRecently, the massless matrix elements for
the gg,qq — Zbb processes have been implemented in the general purpose Monte Carlo program
MCFM335]. In that implementation radiative corrections to this process have also been addressed.
The massive matrix elements, with an interfac®¥THIA 6.1 , became available in [328]. Thc-
erMC library discussed here includes an even more efficient implementation of the algorithm presented
in [328]. The same process is also implemented in the very recent verstiERONVIG (6.3) [309].

“® The matrix element for theg — Zbb — bbet production has been published |n [332] and, at the time of the Aachen
Workshop, implemented into theUROJETMonte Carlo [33:3] Since that generator did not allow for the palisilfor
having a fully generated hadronic event, with initial and final state radiation and hadronization, it was interfa¥ddté
5.6 f29§] Monte Carlo for the analyses presenteo{_m [334]._This program, however, is no longer supported. The same matrix
element has been directly implemented iR6THIA 5.7 [.'295] However, with this implementation the algorithm for the
phase space generation has never worked credibly and thus it was removeyfiétA 6.1 [817]
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Z /~v*(— ££,vv, bb)tt production at the LHC is an irreducible background to a Higgs search
in association with a top-quark pair [336]. With tbg~*(— bb) decay, it is also an irreducible resonant
background to a Higgs search in thegl production channel in which the Higgs boson decays to a
b-quark pair [3317].

W (— £v)bb production at the LHC is recognized as a substantial irreducible background
for both Standard Model (SM) and Minimal Supersymmetric Standard Model (MSSM) Higgs boson
searches, in the associated production middé, followed by the decay/ — bb. The massive matrix
element for theyg — Wg*(— bb) process has been calculated [338] and interfaced witIHERWIG
5.6 Monte Carlo {238,339, 340] several years ago. A more recent implementationiéfithe multi-
jet final states is available from [341]. Recently, the massless matrix element has been implemented in
the general purpose Monte Carlo progrsd@FM335], where the radiative corrections to this process
are also addressed. Yet another implementation ofighes W (— (v)g*(— bb) massive matrix ele-
ments, with an interface tBYTHIA 6.1 became available in [327]. Th&cerMC library discussed
here includes a more efficient implementation of the algorithm presented in [327].

W (— £v)tt production at the LHC, has, to our knowledge, not been implemented in any
publicly available code so far. It is of interd§tbecause it contributes an overwhelming background
[344] to the measurement of the Standard Model Higgs self-couplings at LHC in the most promising
channepp — HH — WWWW.

ttbb production at the LHC is a dominantirreducible background for both Standard Model (SM)
and Minimal Super-symmetric Standard Model (MSSM) Higgs boson searches in associated production,
ttH, followed by the decayd — bb. The potential for the observability of this channel has been
carefully studied and documented {n[330] ahd [337]. The proposed analysis requires identifying four
b-jets, reconstruction of both top-quarks in the hadronic and leptonic modes and the visibility of a peak
in the invariant mass distribution of the remaining b-jets. The irredueiiblebackground contributes
about 60-70% of the total background framevents {tbb, ttbj, t£55). In theAcerMC library, we have
implemented both QCD and EW processes leading tafihiefinal state, namelyg, ¢q¢ — ttbb and
g9 — (Z/W/y —)ttbb. The contribution from EW processes, never studied thus far, is surprisingly
important in the mass range of the b-quark system around 120 GeV, see [321]. It would seem that the
analyses documented in [330] and T337] might need revisiting.

These complete the list of the natideerMC 1.0 processes implemented so far (see Table 13).
Having all these different production processes implemented in a consistent framework, which can also
be directly used for generating stand®¥THIA or HERWIGprocesses, represents a very convenient
environment for several phenomenological studies related to LHC physics.

Table 13:Matrix-element-based processes implemented iA¢eeMC library.

6 We thank M. A. Mangano for bringing this process to our attention and for providing benchmark numbers for verifying
the total cross-section
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Process id Process specification | Efficiency for generatior]
of unweighted events
1 g+ g — tthd 20.2 %
2 q+ q— tthd 26.3%
3 g+ q— W(—(v)bb 33.0%
4 g+ q— W(—= )it 21.0 %
5 g+g— Z(— (0)bb 39.0%
6 q+q— Z(— (0)bb 3L.7%
7 g+ g — Z(— Ll vy, bb)tt 28.2 %
8 q+q— Z(— vy, bb)tt 34.6 %
9 g+ g9 — (Z/W/y —)bbtt 11.2%

5.31 Monte Carlo algorithm

AcerMC 1.0 produces unweighted events with colour flow information usingMIR&GRAPH/HELAS

[310] packagePDFLIB [326] and either the native ®PYTHIA 6.2 /HERWIG 6.3 coded running
couplingse; andaqgp (user’s choice), for matrix element calculation and native (multi-channel based)
phase space generation procedures. The generated events are then passed toRrethelithes.2 or
HERWIG 6.3 event generators, where the fragmentation and hadronization procedures, as well as the
initial and final state radiation, are added and final unweighted events are produced.

The Matrix Element Calculation

The FORTRAN-coded squared matrix elements of the processes were obtained by using the
MADGRAPH/HELAf810] package, taking properly into account the masses and helicity contributions
of the participating particles. The particle masses, charges and coupling values that were passed to
MADGRAPKere taken from the interfaced librarie®(THIA/HERWIG to preserve the internal con-
sistency of the event generation procedure. In addition, the (constant) coupling vatuearafaqrp
were replaced with the appropriate running functions that were either taken from the interfaced gen-
erators or provided by thAcerMC code according to usertiegs. In addition, a slightly modified
MADGRAPH/HELASode was used for obtaining the colour flow information of the implemented pro-
cesses.

The Four Fermion Phase Space Generation

The four-fermion phase space corresponding to the processes discussed was modeled using the
importance sampling technique based on the procedures implemented dhethesvent generators
FERMISV [343], EXCALIBUR [344] andNEXTCALIBUR[345]. For each implemented process, a
sequence of different kinematic diagranch&nnel} modeling the expected event topologies was con-
structed and the relative weights between the contributions of each sampling channel was subsequently
obtained by using a multi-channel self-optimising approach:[346]. Eventually, additional smoothing of
the phase space was obtained by using a modiftle@ASroutine to improve the generation efficiency.

The procedure of multi-channel importance sampling used in the event generation can briefly be
outlined as follows. An analytically integrable functigi®), which aims to approximate the peaking
behaviour of the differential cross-section dependence on various kinematic quantities, is introduced into
the differential cross-section equation as:

S 5(®) .. ..o
do = s(®)dd = @) - g(P) dd = w(P) g(P) d, (182)
whered® denotes the (four-)particle phase space aﬁzi) summarizes the matrix element, flux and
structure functions, all of which depend on the chosen phase space point. The fyiiétioa required

N
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to be unitary, i.e. a normalized probability density:

=

/ g(®)dd = 1. (183)

Since the peaking behaviour 9((13) can be very complex, due to the several possible topologies in-
troduced by a large number of coptributing Feynman diagrams, the fungtibnis composed of a
weighted sum of several channel$®), each of which is adapted to a certain event topology:

/ 9@ =Y i () (184)

The values of the relative weights are determined from a multi-channel self-optimization procedure
in order to minimize the variance of the weights(®) [346]. The phase space points are than sampled
from the functiory(cﬁ), first by randomly choosing a channiedccording to the relative frequencies

and then deriving the required four momenta from the ch@s(eiﬁ) using unitary algorithms.

The modeling of the kinematic channels has heavily relied on the procedures developed in the
NEXTCALIBURprogram [345]; nevertheless, many additions and improvements were made. The de-
tailed description of the implementations of the four-momenta sampling in all existing kinematic chan-
nels is omitted for the sake of brevity; an example of the extended/added procedures AisedM,
as given below, should serve as a representative illustration, For further details on the applied method
and unitary algorithms the reader is referred to the original papers(e.g: [343, 345]).

Example: Breit-Wigner Function with s-dependent Width

In some topologies of processes involvingt or Z° bosons, a bias of the matrix element towards
large values in the higkr;V/Z region is evident. This, in turn, means that a more accurate description of
the tail of thesj;, distributionis needed. Consequently, the Breit-Wigner sampling function was replaced

by:

S*
BW,(sly) = W , 185
(siw) (sjy — M) + My TGy (189

which is proportional to the (more accurate) Breit-Wigner function witlygndependent width (W in
the above formula denotes eitheWat or aZ" boson).
After some calculation the whole unitary procedure can thus be listed as follows:
e Introduce a new variablg = (s}, — M{,)/(Mw T'w). The integral of the above function thus
gives:

2

F(o) = {5 atan(n) + {3 {log(P + 1)), = ) + Fat) (186)

e Calculate the kinematic limitg,;, and”nax.
e Calculate thenormalisationfactorsAy = Fi(fmax) — 1 (Mmin)s A2 = F2(Mmax) — F2(Mmin)

andA; = Ay + Ay; the termA, can actually be negative and thus does not represent a proper
normalisation.

e Obtain a (pseudo-)random numbegt

o If p1 < Ay/A, then:
— Obtain a (pseudo-)random numbgr

— Constructy as:

X = Az-p2+ Fo(Dmin),
no= \/(er_l)v

which is the inverse of the (normalized) cumul@ht () — £5(7min) ) /A2.
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— Note that the conditiop; < Ay/A; can be fulfilled only ifA; > 0, which means thaj,.x

is positive and greater thap,in.
e Conversely, ifp; > Ay /A, then:
— Obtain a (1pseu o-)random number

— Constructy as:

X = Ay-p2+ Fi(Mmin),
My T
n = tan(M - X)
My,
which is the inverse of the (normalized) cumul@ht () — Fi (min)) /A1
If the obtainedy is less than zero then calculate the normalized probability densities:

1 M? 1
P o= — {—F. 5}
Ay "Mwlw 1409
1 M2 1
Poo= 5o Ayt )

Ay "MwTw 1T+72 7 1492
Obtain a (pseudo-)random number
If p3 > Ps/ P mapn — —1.
If the newn, falls outside the kinematic limiti$)in, 7max] the event is rejected.
Note also that the last mapping can only occur if the originaks negative, since; < P;
only in the region; < 0.
Calculate the value ofj;; using the inverse of definition:

sy = (Mw Uw) - n+ M3, (187)
The weight corresponding to the sampled vajug exactly:
(57 — Miy)* + Mj TSy

Ag - ”
Swr

: (188)

which is the (normalized) inverse of Equation ;185 as requested.

Using the above re-sampling procedure, the whole approach remains completely unitary, i.e. no
events are rejected when either there are no limits set on the valperaghey are symmetridsmin| =
Tmax- IN the contrary case, a small fraction of sampling values is rejected.

As it turns out in subsequent generator level studies, this generation procedure provides a much
better agreement with the differential distributions thanubkeal(width independent) Breit-Wigner; an
example obtained for thg; — Wbb process is shown in Figui€:30. The evident consequence is that the
unweighting efficiency is substantially improved due to the reduction of the event weights in the high
sy region.

Modified VEGASAIgorithm

Using the multi-channel approach previously described, the total generation (unweighting) effi-
ciency amounts to aboat— 10% depending on the complexity of the chosen process. In order to further
improve the efficiency, a set of modifidEGAS34#] routines was used as a (pseudo-)random number
generator for sampling the peaking quantitiee@eh kinematic channel. After training all the sampling
grids (of dimensions 4-7, depending on the kinematic channel), the generation efficiency increased to
values of above0%. The motivation for this approach is, that for unitary algorithms, only a very finite
set of simple sampling functions is available, since the functions have to have simple analytic integrals
for which an inverse function also exists. Consequently, the non-trivial kinematic distributions can not
be adequately described by simple functions in the whole sampling domain (exgdisteibution, c.f.
Figure:31) and some additional smoothing might be necessary.
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Fig. 30: Left Comparisons of the two functional terms contributing}@ . () given by Equatioﬁ_l-}éks. Note that the scaling
factor A is chosen in view of making the contributions more transparent; it is much too small compared to the real case of
W /z° bosons Right Comparison of the (normalized) distributions of differential cross-section for the progess Wbb

(dashed) and sampling functions (solid line) with respectto the variables obtained by importance sampling, as describedin the
text.
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Fig. 31: Comparison between the sampling distribution for the: §/s € [min, 1] variable before and after the application
of modified\/EGAS[{}Zj] smoothing procedure (see text).
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Fig. 32: The distribution of event weights using the Multid®nel approach only (dotted histogram) and after application of
the VEGAS(dashed histogram) anac-VEGAS (full histogram) algorithms in theg — (Z° —)ilbb process.

In addition, the random number distributions should, due to the applied importance sampling, have
a reasonably flat behaviour to be approached by an adaptive algorithm sUBIGAS". The principal
modification ofVEGAS besides adapting it to function as a (pseudo-)random number generator instead
of the usualintegrator, was based on the discussiotis [348,349] that in the case of event generation,
i.e.the unweighting of events to weight one, reducing the maximal value of event weights is in principle
of higher importance than achieving the minimal weight variance. Thus, the learning algorithm was
modified accordingly. By observing the distributions of the event weights before and after the inclusion
of the modifiedac-VEGAS algorithm (Fig. 32), it is evident thatc-VEGAS quite efficiently clusters
the weights at lower values.

Colour Flow Information

Before the generated events are passeBM®HIA/HERWIG for further treatment, additional
information on the colour flow/connection of the event has to be obtained. To provide an illustration, the
method of the colour flow determination is described for the procesgses tibb.

For the procesgg — ttbb six colour flow configurations are possible, as shown in Figure 33.
With 36 Feynman diagrams contributing to the process and at least half of them patrticipating in two or
more colour flow configurations, calculations by hand would prove to be very tedious. Consequently,
a slightly modified colour matrix summation procedure frtPADGRAPEB1(Q] was used to determine
the colour flow combinations of the diagrams and the corresponding colour factors. The derived squared
matrix elements for the separate colour flow combinatio¥is,..,|* were used as sampling weights on
an event-by-event basis to decide on a colour flow configuration of the event before it is passsed on
to PYTHIA/HERWIG for showering and fragmentation. The procedure was verified to give identical
results for the colour flow combinations and corresponding colour factors when applied to the processes
published in {35D].

47At this point a disadvantage of using the adaptive algorithms o¥/fB@ASype should be stressed, namely that these are
burdened with the need of training them on usually very large samples of events before committing them to event generation.
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Fig. 33: A diagrammatic representation of the six colour flow configurations in the pragess tZbb.

5.32 How to use the package

The AcerMC 1.0 package consists of the library of the matrix-element-based generators for the se-
lected processes, interfaces tofMéTHIA 6.2 andHERWIG 6.3generators, and two main programs:
demo_hw.f anddemo_py.f . The makefiles provided allow the user to build executables with either
of these generatorsiemo_hw.exe or demo_py.exe .

There are two steering input filesun.card  andacermc.card , which have the same form
for both executables. Thin.card file provides switches for modifying the generated process, the
number of events, the structure functions, and predefined option for hadronisation/fragmentation, random
number, etc.. Thacermc.card file provides switches for modifying more specialized settings for
the AcerMC 1.0 library itself. Once the user decides on the setup for the generated process, only the
run.card  very likely needs to be modified for the job submission.

The same executables can be also used for generating staPdardlA 6.2 /[HERWIG 6.3
processes. Examples of how to run such jobs are provided as well, in respedéwetyhw.f and
demo_py.f . If the user requires that thecerMC library is not usedtt H production will be generated
with demo_py.exe , and theHERWIG 6.3 implementation of theZbb production will be generated
with demo_hw.exe . Only in this case will theun.card file be read, so the user should implemente
her/his steering there or create another xxx.card file, and add the respective coddeimaivex.f

TheAcerMC 1.0 matrix-element-based generators are very highly optimized, using multi-channel
optimization and additional improvement with th&GASgrid. The generation modules require three
kinds of the input data to perform the generation of unweighted evéhi# file containing the list of
the values of relative channel weights obtained by the multi-channel optimizé#ipA.file containing
the pre-traineWEGASyrid. (3) A file containing the maximum weighit .., ¢-cutoff maximum weight
wts, . and the 100 events with the highest weights. This means that in the case of changing the default
running conditions, such as the structure functions or centre-of-mass energy, in order to recover the initial
efficiency for event generation, the user should repeat the process of preparation of the internal data files
with the inputs for the phase-space generator modules. Pre-trained data sets obtaine6 using
TeV, PYTHIA defaultas (Q?) andagrp (Q*) and the CTEQSL (parametrized) structure function set are
already provided for each implemented process.

The number of required input files might at first glance seem large, considering that many event
generators do not require any input files for operation; the difference is not so much in the complexity
of the phase space generation as in the fact that many event generators repringirgg runinstead.

That is, before the generation of unweighted events is performed a certain number of weighted events
(typically of the order ofl0?) is generated in order to obtain the relative multi-channel weights (in case
multi-channel phase space generation is used) and/or the optiMiE8ASgrid and/or an estimate of

the maximal weight. Such an approach can have an advantage when event generation is very fast and
the phase space regions with the highest weights are well known (as done forth2 processes in
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PYTHIA); on the other hand, when the phase space topology of the process is more complex and the
event generation is comparatively slow, generating a relatively small number afié weighted events

every timea generator is started can become CPU wasteful and/or inaccurate in terms of maximum
weight estimation.

Reasonably accurate estimation of the latter is mostly crucial for correct event unweighting; event
generators using thearming-upmethod for maximal weight search often find still higher weights during
the normal run and reset the maximal weight accordingly. In this case however, the statistically correct
approach would be to reject all events generated beforehand and start the event generation anew. This is
almost never implemented due to the CPU consumption and the possibility of hitting a weak singularity.
With a small pre-sampled set the generator can, however, badly under-estimate the maximum weight
and a large number of events can be accepted with a too-high plithakhe only hope of obtaining
correct results in such cases is that the weggdateauwill be hit sufficiently early in the event generation
process. Consequently, such an approach can be very dangerous when generating small numbers of
event§s,

In contrast to thevarming-upapproach, we have decided that using separate training runs with
large numbers of weighted events to obtain the optimized grids and maximum weight estimates is prefer-
able. In case the user wants to produce data sets for non-default settings, this can easily be done by
configuring the switches in thecermc.card

5.33 Outlook and conclusions

We have presented here tAeerMC 1.0 Monte Carlo Event Generator,which is based on a library of
matrix-element-based generators and an interface to the universal event geR¥EtHA 6.2 and
HERWIG 6.3. The interface is based on the standard proposed in sectjon 5.2.

The presented library fulfils following goals:

¢ Itprovides a possibility to generate a few Standard Model background processes which were recog-
nised as being very dangerous for searchebléw Physicat LHC, and for which generation was
either unavailable or not straightforward thus far.

e Althoughthe hard process event is generated with a matrix-element-based generator, the provided
interface allows a complete event to be generated with eRIYarHIA 6.2 or HERWIG 6.3
initial and final state radiation, multiple interaction, hadronization, fragmentation ecayd.

e The interface can be also used for studying systematic differences beRYS&IA 6.2 or
HERWIG 6.3 predictions for the underlying QCD processes.

These complete the list of the natikeerMC processes implemented so fargg:— W (— (v)bb,
99,99 — Z/v*(— ()bb, QCDygg, qq — ttbb and EWgg — (Z/W/y* —)ttbb, qq — W (— (v)tt and
99,99 — Z/v*(— (L, vv, bb)tt. We plan to extend this crucial list of processes, gradually in the near
future.

5.4 Comparisons of Higgs Boson Properties with Soft Gluon Emission: Analytic and Parton
Showering Methods

In the near future, experiments at the Tevatron and the LHC will search for evidence of both the Higgs bo-
son and new phenomena that supersede the Standard Model. Important among the tools that will be used
in these searches are event generators based on parton showering (PS-EG’s). The most versatile and pop-

ular of these are the Monte CarldERWIG236;309, 339,340]SAJET [311], andPYTHIA [813,317].

PS-EG's are useful because they accurately describe the emissiortiplersoft gluons (which is, in
effect, an all orders problem in QCD) and also allow a direct connection with non—perturbative models

“8Smallis a somewhat relative quantifier, since the size of an representative sample should depend on the phase space
dimension, i.e. the number of particles in the final state. For example, with 4 particles in the final®tateents can still be
considered relatively small statistics.
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of hadronization. In the parton shower, energy—momentum is conserved at every step, and realistic pre-
dictions can be made for arbitrary physical quantities. However, the prediction of the total cross section
is only accurate to leading order accuracy, and, thus, can demonstrate a sizable dependence on the choice
of scale used for the parton distribution functions (PDF’s) or coupling constants (particuarkxlso,

in general, they do not accurately describe kinematic configurations where a hard partdtted am

a large angle with respect to other partons. In distinction to PS-EG’s are certain analytic calculations
which account for multiple soft gluon emission and higher order corrections to the hard scattering simul-
taneously using resummation. The resummation technique systematically includes towers of logarithms
which are formally of the same order using the renormalization group. These calculations, however, in-
tegrate over the kinematics of the soft gluons, and, thus, are limited in their predictive power. They can,
for example, describe the kinematics of a heavy gauge boson produced in hadron collision, but cannot
predict the number or distribution of jets that accompany it.

Much recent work has focused on correcting the parton shower predictions to reproduce the hard
emission limit, where the exact leading order matrix element gives an accurate description, with work
proceeding on extending this correction to next-to-leading ordet [351-354]. In order to match this preci-
sion, it is also important to verify that the PS-EG programs correctly reproduce the expected logarithmic
structure in their simulation of multiple, soft gluon emission. The best approximation we have of the
expected logarithmic structure is represented by resummation calculations.

Since Standard Model Higgs boson production is a primary focus of the physics program at the
Tevatron and the LHC, and since several PS-EG and analytic resummation predictions exist, we have
chosengg — H production as a benchmark for evaluating the consistency and accuracy of these
two approaches. In particular, the transverse momentum of the Higgs i@éatepends primarily
on the details of the soft gluon emission from the initial state partons. gghnitial state is particu-
larly interesting, since the large color charge may emphasize any differences that might exist in parton
shower/resummation implementations. Furthermore, forgthinduced process, the details of non—
perturbative physics (e.g. intrinsig) are less important [171, 276].

To this end, we have compared Higgs production usitRWIG PYTHIA (several recent ver-
sions) and ResBos$ [179] for Higgs masses of 125 and 500 GeV at center-of-mass energies of 1.96 TeV
(pp), 14 and 40 TeVtp). The two different masses and three different center of mass energies provide
a wide variation of kinematics that test the showering/resummation processes. This work extends our
results published i [276,355], [356] and [171].

5.41 Parton Showers

PS-EG's are based on the factorization theosem [357], which, roughly, states that physical observables in
any sensible gauge theory are the product of short—distance functions and long—distance functions. The
short—distance functions are calculable in perturbation theory. The long—distance functions are fit at a

scale, but their evolution to any other scale is also calculable in perturbation theory.

A standard application of the factorization theorem is to describe heavy boson production at a
hadron collider to a fixed order in;. The production cross section is obtained by convoluting the
partonic subprocesses evaluated at the sgaléth the PDF’s evaluated &. The partons involved in
the hard collision must be sufficiently virtual to be resolved inside the proton, and a natural choice for
the scale) is the mass of the heavy bos@n]358]. Prior to the hard collision, however, the partons are not
resolvable in the proton (i.e. the proton is intact) and have virtualities at a much lowertkgcalehe
order of 1 GeV. The connection between the partons at the low €gadad those at the high scalkis
important kinematic configurations of the splittings» b¢, wherea, b andc represent different types of
partons in the hadrom(g, etc.). Starting from a measurement of the PDF’s at a low €ggl@ solution
of the DGLAP equations yields the PDF’s at the hard s¢€aleEquivalently, starting with a parton
involved in a hard collision, it is also possible to determine probabilistically which splittings generated
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c. In the process of de—evolving parteback to the valence quarks in the proton, a number of spectator
partons (e.g. partohin the branching: — bc) are resolved. These partons constitute a shower of soft
jets that accompany the heavy boson, and influence its kinematics.

The shower described above occurs with unit probability and does not change the total cross
section for heavy boson production calculated at the $g4861]. The showering can be attached to the
hard—scattering process based on a probability distribatiten the hard scattering has been selected.
Once kinematic cuts are applied, the transverse momentum and rapidity of the heavy boson populate
regions never accessed by the differential partonic cross section calculated at a fixed order. This is
consistent, since the fixed—order calculation was inclusive and was never intended to describe the detailed
kinematics of the heavy boson. The parton shower, in effect, resolves the structure of the inclusive state
of partons denoted a§. In practice, the fixed order partonic cross section (without showering) can still
be used to describe properties of the decay leptons as long as the measurable is not highly correlated with
the heavy boson kinematics.

Here, we review parton showering schematically. More details can be found, for example, in
Ref. [362]. First, for simplicity, consider the case of final state or forward showering, where the parton
virtuality ¢) evolves forward to the low scalg,. The basis for developing a probabilistic picture of final
state showering is the DGLAP equation for the fragmentation functions:

J e d abcl <~ >
QppDia@) = [ EEED L Dya/0)

~

1—¢

_Da(wa)/ alzwpa_ﬂ)c(z)7 (189)
z ™

wherePHbc is an unregularized splitting function,;. is the coupling times color factor, anrds a

cutoff. The equation can be rewritten as

J ! ﬁaabc(27Q)
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or, after integrating both sides of the expression,

dz A(t) agpe(z,t") ~
Da(z,t) = Dy(z / / at' = - NG 0”’2(7"; By () Dyl ), (190)

wheret = In ()2, with similar definitions fort’ andt”. The function

t pl—c be AR
A(t') = exp (—/ / dt”dz%]?a_}bc(z)) (191)
to €

is called the Sudakov form factor, and gives the probability of evolving from the gtabet, with

no resolvable branchings, whefigis a cutoff scale for the showering. The Sudakb{t’) contains

all the information necessary to reconstruct a shower, since it encodes the change in virtuality of a
parton until a resolvable showering occurs. Showering is reduced to iterative solutions of the equation
r=A(t")/A(t"), wherer is arandom number uniformly distributed in the interf@all], until a solution

for t" is found which is below the cutoff,.

For the case of initial state radiation, several modifications aeessary. The fragmentation
function is replaced by a parton distribution function, and the evolution proceeds backwards from a large,
negative scale-|Q?| to a small, negative cutoff scale|@Q2|. There are two equivalent formulations of
backwards showering based on the probabilities

e (= [ [ ara 2 p TR (192
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[863], and

A falz,t")
folz, ) A(t")
[864]. After choosing the change in virtuality, a particular backwards branching is selected from the

probability function based on their relative weights (a summation over all possible branehings is
implied these expressions), and the splitting variable is a solution to the equation

(193)

z/x! dz - - g- .
/E fpa—ﬂ)c(z)f(x/z7 t/) = r/ﬁ gpa—ﬂ)c(z)f(x/zv t/)v (194)

wherer is a random number. The details of how a full shower is reconstructed TiHIA, for example,

can be found in Ref,[295]. The structure of the shower can be complex: the transverse momentum of
the heavy boson is built up from the whole series of splittings and boosts, and is known only at the end
of the shower, after the final boost.

The PS-EG formulation outlined above is fairly independent of the hard scattering process con-
sidered. Only the initial choice of partons and possibly the high scale differs. Therefore, this formalism
can be applied universally to many different scattering problems. In effect, soft gluons are not sensitive
to the specifics of the hard scattering, only the color charge of the incoming partons. This statement is
true to leading logarithm.

The parton showering dPYTHIA obeys a strict ordering in virtuality: the parton that initiates
a hard scattering has a larger (negative for initial state showers) virtuality than any other parton in the
shower. Parton showers HERWIGproceed via a coherent branching process in which a strict angular
ordering is imposed on sequential gluon emissions: the evolution variable is not virtuality, but a gener-
alized virtuality¢. For an initial state shower, with parton splitting— ba, and where: has the largest
virtuality, the variable = (p; - p.)/(EbE.). Atall values ofz, the coherent branching algorithm cor-
rectly sums the leading logarithmic contributions. At large 1, it also sums the next-to-leading order
contributions [236], with an appropriate definition of the splitting kernel. (The exact definition of LL
and NLL will be given later.) Because of the demonstrated importance of coherence éH¢éttdlA
includes an additional veto on showers which are not also angular—ordered. Note, however, that this does
not make the two schemes equivalent — some late emissionslERWIGshower can have virtuality
larger than previous emissions.

5.42 Analytic results

At hadron colliders, the partonic cross sections for heavy boson productioeaeing substantial cor-
rections at higher orders im;. This affects not only the total production rate, but also the kinematics

of the heavy boson. At leading order, the heavy boson h§%)3) distribution inQ%. At next—to—
leading order, the real emission of a single gluon generates a contributidmy/ti)?. that behaves
as@Q7’as(Q3) andQ7*as(Q%) In(Q?/Q%) while the soft, and virtual corrections are proportional to
—5(Q3%). At higher orders, the most singular terms follow the pattern’tf2) 3>~ In™ (Q?/Q%)

= a7 L = V™. The logarithms arise from the incomplete cancellation of the virtual and real QCD correc-
tions. This cancellation becomes complete for the integrated spectrum, where the real gluon can become
arbitrarily soft and/or collinear to other partons. The pattern of singular terms suggest that perturbation
theory should be performed in powerslof instead oi??. This reorganization of the perturbative series

is called resummation.

The first studies of soft gluon emission resummed the leading logarithinis [365, 366], leading to a
suppression of the cross section at smial. The suppression underlines the importance of including
sub—leading logarithmg [367]. The most rigorous approach to the problem of multiple gluon emission
is the Collins—Soper—Sterman (CSS) formalism for transverse momentum resumrhation [368], which
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resums all of the important logarithms. This is achieved after a Fourier transformation with respect to
@7 in the transverse coordinaieso that the series involving the delta function and tevmssimplifies

to the form of an exponential. Hence, the soft gluon emission is resummed or exponentiated in this
b—space formalism. The Fourier transformation is the result of expressing the transverse—momentum
conserving delta function8? (Qr — 3" kr.) in their Fourier representation. Also, the exponentiation is
accomplished through the application of the renormalization group equation. Despite the successes of the
b—space formalism, there are several drawbacks. Most notable for the present study is that it integrates
out the soft gluon dynamics and does not have a simple physical interpretation.

The CSS formalism was used by its authors to predict both the total cross section to NLO and the
kinematic distributions of the heavy boson to resummed NLL order [174] at hadron colliders. A similar
treatment was presented using the AEGM formalismi[369], that does not involve a Fourier transform,
but is evaluated directly in transverse momentimspace. When expandedaq, the two formalisms
are equivalent to the NNNL order, and agree with the NLO fixed order calculation of the total cross
section {37D]. A more detailed numerical comparison of the two predictions can be found if Ref. [371].
The AEGM formalism has been reinvestigated, and an approximation te-sipace formalism has been
developed irQr—space which retains much of its predictive featufes:[372].

In theb—space formalism, the differential cross section of the heavy boson produced in association
with soft gluonsis:

dolhuhy 5 BUX) _ 1 [ o g
dQZ dQZ. dy = (%)z/d be " TW (b, Q, x1,79) + Y (Qr,Q, 71, T2). (195)

whereQ, Q1 andy describe the kinematics of the off-shell heavy bo&dt. The functiony’ is free
of In(Q?/Q%) and corrects for the soft gluon approximation in the higghregion. The functionV has
the form:

W(b,Q,x1,29) = e 0@ (Cyy @ Jiym) (@1,0) (Ci @ fiyny) (22, 0)Hij(Q y), (196)
where
C3Q% g2 CQQQ B B
5(.Q.CC) = [ L (S5 ) Afwt@) + Blam)| . as)
and
1
(le®f1/h1) (9617,u) = %le (%7017027M:C3/b> fl/h1 (517,“:03/(’)- (198)

In these expressions;;, Cs and(C’s are renormalization scale#, is a function that describes the hard
scattering, andi, B andC' are calculated perturbatively in powerscaf.

{A,B} = i_oj (@)n (AM, BONY and ;= i (Mycw

s
n=0

The functions” (") are mostly responsible for the change in the total production cross section at higher
orders. In fact(C' @ f) is simply a redefinition of the parton distribution function obtained by convo-
luting the standard ones with an ultraviolet—safe function. These generalized parton distributions encode
both the longitudinal momentum fraction and the transverse recoil of the initial state parton.

We removeC, C; andC’3 from these expressions by choosing their canonical vajues [368], which
also removes large logarithms from the expansion of the resummed expression. At leading Ofgler in
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the resummed part of the expression for the production of an on—shell heavy boson simplifies consider-
ably to:

do(hihy —>B(*)X) _ 0/ (dzb eii;,Q‘T —5(5,Q) J(x1,0) f(22,0) (199)

Q2. P EA F(1,Q) f(72,Q)

where
d
0o = H/ xillf($17Q)f($27Q)7

andx contains physical constants. The expression contains two factors, the total cross section at leading
orderoo, and a cumulative probability function i3 that describes the transverse momentum of the

heavy boson (the total integral ov@#. transforms=>47 to 5(2)(5)). Except for the complication of the
Fourier transform, the term>/2 f(x,b)/ f(x, Q) is analogous ta\ (Q) f(z, Q") /A(Q') f (z, Q) of the
PS-EG of Eq.i(193).

Equation {195), which is formulated i-space, has a similar structurey—space. This is
surprising, since thé-space result depends critically on the conservation of total transverse momentum.
To NNNL accuracy, however, th@r space expression agrees exactly withithgpace expression, and
has the formi[37.2]:

do(hihy — BYX)  d
dQ*dQ7 dy dQ3

Again ignoringY’, we can rewrite this expression as:

dO'(hth — B(*)X) — d e_S(QT7Q) (C & f) (thT) (C® f) (x27QT)
107 = (d@% [ CoN@nQ) Cof) (2.Q) D - (@0

W(QT7Q7£17$2)‘|’Y(QT7Q7$17$2)- (200)

dx
=r [ THCO @08 f) 2,0
The factoro, is the total cross section to a fixed order, while the rest of the function yields the probability
that the heavy boson has a transverse momefigm

5.43 Methodology for comparison

To make a comparison between the distributions from analytic and parton showering calculations, we
must quantify the differences in theoretical input and identify what approximations have been made in
each one. ¢From the discussion of the analytic resummation calculations, we see that the emission of
multiple soft gluons is described best by perturbation theory not in termag ,abut in powers ofo;

times logarithms of large numbers. Typically, the logarithms are classified according to the orders of

and the power of logarithms ift) the Sudakov exponent, or if:) the perturbative expansion of the
resummed,) 7 distribution.

In classification(i)™, it is argued that terms witd (") are leading compared to terms witH")
because the former are enhanced by a large logarithm. Al%0 is leading compared t& (**+1) because
the latter is suppressed lay for X = A, B or C'. The comparison of' to A and B is somewhatd
hog becaus€’ does not appear in the Sudakov in all resummation schemes. In this approach, the lowest
order resummed result (LL) has on#if") andC'(®). Additionally, the next order (NLL) hag(?), B(1)
andC'(9), because the first two are suppressed byvaand the last by the inverse of a large logarithm
when compared to the leading terms. This is an elegant and simple classification scheme, because it

“See also sec}. 3.22
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relies only on the structure of the Sudakov exponent. On the other hand, it hdshacmixing «; and
log~'—suppressed terms, and depends on the resummation scheme in dealifi§With

In classification(i¢), the resummed cross section is expanded and reorganized in towers of loga-
rithms as

do O%(L? N 3
dQQ ~ as(LQ +L2) —I_ (202)
UV SEY S T R

where L; are various linear combinations of(Q)/Qr). Remarkably, each column of logs receives
contribution only fromA(”, B() andC("~1) (n numbers the columns). Sincé(™) and X ("*+1) are
clearly ordered byv, (X = A, B, (), the first column is called the leading tower of logs, i.e. LL, the
next NLL, etc. This is a more—involved classification, but closer to the spirit of the resummation, and
more precise. In the rest of this work, we use the naming convefitibwhen comparing to the analytic
resummation. Thus, when we say that the coherent branching algoritHERWVICGcorrectly sums the
leading logarithmic contributions, we are referring to tié) and B(!) terms.

0 20 40 60 80 100
<> 12757 7 T ]
O pp > HX (0) |
> S VS =14 TeV, m, =125 GeV, CTEQ5M |

0.8 : -
A A™D, B gnd CO
g 0.6 ;:." SRR A(‘-Z), B2 gnd 9 = NLL i
N o4 I N AP, B® and € = LL b
S I TN e A and C© ]
02 i & el ]
0 F o ]
1 T T T T T T T T T T
- ® 1L ©
0.8 j:’ . As above, except all ] . As above, except |
06 \ normalized to NLL A f logarithmic scale |
i ] -1
0.4 1. 410
0.2 J
0 5‘ NI BRI L \_.\ L L L | L
0 25 50 75 100 50 100 150
Q‘r (Ge\/)

Fig. 34: (top) Absolutel)r distribution of the Higgs boson from an analytic resummation calculation to different orders of
accuracy in perturbation theory; (left, bottom) Same as (top), but normalized to the same total cross section; (right, bottom)
Same as (left,bottom), but on a logarithmic scale. All curves are for the production of a 125 GeV Higgs boson at the LHC based
on the CTEQ4M parton distribution functions.

Figure:34 demonstrates the different predictions for different choices of organizing the perturbative
expansion. The top frame shows the absolute distributiorig’bfwhen the perturbative coefficients
include: A(12) B(1:2)  ¢(0.1) (splid red), A(12), B(1) andC'(®1) (long-dashed blue)d™), B and
C'© (solid light blue), and onlyt(") andC(®) (short-dashed black). The change from LL to NLL results
in an increase of the normalization of the cross section as well as a slight shift of the peak towards higher
transverse momentum, but the shapes are very similar. The lower left frame shows the same distributions,
but all normalized to the same production rate. This eliminates the normalization dependence and focuses
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on the variation of the shape. The lower right frame, shown in logarithmic scale, amplifies the differences
at high@r'’s.

5.44 Numerical comparisons

In the following plots, we show several numerical comparisons of RedBERWIGand three versions

of PYTHIA. Why three versions dPYTHIA? This reflects the evolution of the program. The version
PYTHIA-5.7 was used for almost all LHC Monte Carlo analyses for Higgs production. The showering
in PYTHIA-5.7, as described earlier, is virtuality ordered, with an additional requirement of angular
ordering. No other kinematic restrictions are imposed. In later versions, beginnind¥ithlIA-6,

each parton emission was required to match the kinematic constraints of the NLO process, i.e. for the
first emission in the parton shower accompanyjgg— H, the kinematic constraints+ ¢ + i = M},

must be satisfied. Sincéandi are the two variables of the virtuality—ordered shower, a cution
restricts their range. The plots labeled BY THIA6.1 demonstrate the effect of thiecut. Finally, in
PYTHIA-6.2, an additional hard matrix element correction was applied to the parton shower. In this
approach, the maximum virtuality of the shower is increased from its nominal vafle=atny up to

the largest kinematically allowed value. Furthermore, each parton emission is corrected by the ratio of
the exact matrix element squared at NLO to the approximate matrix element squared given by the parton
shower approximation. Thus, showers generated UB¥igHIA-6.2 should have a closer agreement to

the ResBos predictions at hight! (where ResBos relies on the NLO prediction). In contrast, showers
induced iNHERWIQwill still have a cutoff set by ;. Note, however, that theYTHIA prediction still

has the LO normalization, and a full rescaling is necessary. This may be appropriatdsif-taetor
correction to the LO prediction is the same as the one for the NLO emission.

Figures 35 and 36 show the predict@g distributions for production of a Standard Model Higgs
boson with mass:;; = 125 GeV at collider energies of 1.96, and 14 TeV. For all plots, the distributions
have been normalized to the same cross section (ResBos NLL); without this normalization, the PS-EG
predictions would be about a factor of 2 lower than the ResBos curves. Two ResBos curves are shown:
LL (including A, BM andC(®) and NLL (also includingi(®, B(®) andC'(") ). The inclusion of the
NLL terms leads to a slightly hardé} distribution, as discussed previously. The ResBos curves appear
close to theHERWIGpredictions, and somewhat less close to the predictiofsydHIA (versions 6.1
and after).

In general, the PS-EG predictions are in fair agreement with the analytic resummation ones for
low @)1, where multiple, soft gluon emission is the most important. The agreemétERWIGwith the
ResBos curves becomes even better if the shape comparison are made by normalizing the cross sections
in the low @t region alone, away from the effects of the exact matrix element for Higgs plus jet. This
is illustrated in Figures 36. ThRYTHIA-6+ predictions peak at a noticeably lower valugf than
either ResBos o0HERWIG A striking feature of the plots is the change induce®¥iTHIA-6.1 relative
to PYTHIA-5.7, indicating the importance of kinematic constraints. Note also that the average Higgs
transverse momentum increases with increasing center-of-mass energy, due to the increasing phase space
available for gluon emission. At highr, the exact matrix element for Higgs plus jet, present both in the
most recent version d?YTHIA as well as ResBos, correctly describes Higgs production at transverse
momenta on the order of the Higgs mass or larger, while a pure parton showering description of the high
QT end isinadequate. The change observed in 6.2, only visible at large valijes afthe result of the
matrix element (Higgs + jet) corrections to the parton shower.

The final comparison plot, Figuie 37, shows tQe distributions for a 500 GeV Higgs boson
generated througfy fusion at 14 TeV (pp) and 40 TeV (pp). Comparisons are made of the ResBos(LL
and NLL), PYTHIA and HERWIGpredictions. As in Figures 35 arid:36 the distributions have been
scaled to have the same total cross section. The average transverse momentum for a 500 GeV Higgs is
noticeably larger than that for a 125 GeV Higgs in all of the predictions, as expected, since the hard scale
for the process isvyr. The agreement between tHERWIGversion 6.1 and later) predictions and the
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Fig. 35: Transverse momentu@r distributions of a 125 GeV Higgs boson produced at the TevatromMERWIG different
versions oPYTHIA and different perturbative orders of ResBos. The bottom plot is for an exp@&nhdeange. All curves are
normalized to the same total cross section.

ResBos curves is better than for the predictions with a 125 GeV mass Higgs. The agreement between
HERWIGand the ResBos curves remains very good. For ki)jgh the PYTHIA 6.2 prediction, with
matrix element corrections, agrees with the ResBos prediction.

5.45 Properties of showers

In the previous section, there were notable differences in the predictiéhéTdflA andHERWIGwith
HERWIGgiving a superior description of the Higgs boson properties fordgv. Therefore, we have
investigated several basic properties of the parton emissions to determine the cause of this discrepancy. It
is already known that thdERWIGshower is of the coherent kind, wherd26THIA is virtuality ordered

with approximate angular ordering superimposed. On the other hand, the same wa®¥Ya&liA5.7,

but closer agreement withHERWIGs obtained after making th&cut. Perhaps a more careful analysis

of theHERWIGinematics will result in even better agreement.

Figure'38 shows a comparison of showering properties for light Higgs boson production at the
Tevatron. For the purpose of these plots, the matrix element correctidh§TiKIA have been turned
off. The leftmost plot shows the transverse momentum of the Higgs boson and the first parton emission
for PYTHIA (red) andHERWIGgreen). Note that the leading emission describes the Higgs igson
from the full shower very well down to fairly low values 10 GeV. The main discrepancy between
PYTHIA and HERWIGoccurs in the same kinematic region, exactly where the properties of several
emissions become important.

The rightmost plot shows the largest (negative) virtuality of a parton in the shower. The blue curve
shows the effect of having n@cut, as in the older version &fYTHIA. Clearly,PYTHIA without thea
cut does not have th@ =2 behavior expected from the derivative of the Sudakov. While the agreement
betweenPYTHIA-6.2 andHERWIGis markedly improvedPYTHIA still has a residual enhancement
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Fig. 36: Comparison of light Higgs boson production at the LHC. The right hand plots RAHIA 5.7, 6.1 andHERWIG
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Fig. 37: Comparison of Higgs boson production at the LHC and 40 ey = 500 GeV.



near the upper scalg = my; in this example. This requires further investigation.
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Fig. 38: Comparison of showering properties for light Higgs boson production at the Tevatron. The leftmost plot shows the
transverse momentum of the Higgs boson and the first parton emissiBNTd#lA (red) andHERWIGgreen). The rightmost
plot shows the largest (negative) virtuality of parton in the shower. The blue curve shows the effect of havaug.no

To summarize:-

e The differences between ResBos LL and NLL are in the direction expected and are relatively
subtle.

e The two newer versions ®#YTHIA andHERWIGhoth approximately agree with the predictions
of ResBos LL/NLL, with theHERWIGshape agreement being somewhat better in the(dgw
region.

e The agreement tiIERWIGwith ResBos becomes better &8) the center of mass energy increases
and(b) the Higgs mass increases the agreement seems to be better with LL.

5.5 Studies of underlying events using CDF data

Fig.:39 illustrates the way QCD Monte-Carlo models simulate a proton-antiproton collision in which a
"hard” 2-to-2 parton scattering with transverse momentpm(hard), has occurred. The resulting event
contains particles that originate from the two outgoing partphss(initial and final-state radiatioyand
particles that come from the breakup of the proton and antiproten‘peam-beam remnants”). The
“hard scattering” component consists of the outgoing two “jets” plus initial and final-state radiation. The
“underlying event” is everything except the two outgoing hard scattered “jets” and consists of the “beam-
beam remnants” plus possible contributions from the “hard scattering” arising from initial and final-state
radiation.

The “beam-beam remnants” are what is left over after a parton is knocked out of each dfighe in
two beam hadrons. It is the reason hadron-hadron collisions are more “messy” than electron-positron
annihilations and no one really knows how it should be modeled. For the QCD Monte-Carlo models the
“beam-beam remnants” are an important component of the “underlying event”. Also, it is possible that
multiple parton scattering contributes to the “underlying eveRYTHIA [313] models the “underlying
event” in proton-antiproton collision by including multiple parton interactions. In addition to the hard
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Fig. 39: lllustration of the way the QCD Monte-Carlo models simulate a proton-antiproton collision in which aZhtrd

parton scattering with transverse momentym(hard), has occurred. The resulting event contains particles that originate
from the two outgoing partons (plus initial afidal-state radiation) and particles that come from the breakup of the proton and
antiproton (“beam-beam remnants”). The “hard scattering” component consists of the outgoing two “jets” ptisd and
final-state radiation. The “underlying event” is everything except the two outgoing hard scattered “jets” and consists of the
“beam-beam remnants” plus possible contributions from the "hard scattering” arising fratiairand final-state radiation.

2-t0-2 parton-parton scattering and the “beam-beam remnants”, sometimes there is a second “semi-hard”
2-t0-2 parton-parton scattering that contributes particles to the “underlying event”.

Of course, from a certain point of view there is no such thing as an “underlying event” in a
proton-antiproton collision. There is only an “event” and one cannot say where a given particle in
the event originated. On the other hand, hard scattering collider “jet” events have a distinct topology.
On the average, the outgoing hadrons “remember” the underlyirgsthe hard scattering subprocess.

An average hard scattering event consists of a collection (or burst) of hadrons traveling roughly in the
direction of the initial beam particles and two collections of hadraes (jets”) with large transverse
momentum. The two large transverse momentum “jets” are roughly back to back in azimuthal angle. One
can use the topological structure of hadron-hadron collisions to study the “underlying event’ [373-375].
The ultimate goal is to understand the physics of the “underlying event”, but since it is very complicated
and involves both non-perturbative as well as perturbative QCD it seems unlikely that this will happen
soon. In the mean time, we would like to tune the QCD Monte-Carlo models to do a better job fitting the
“underlying event”. The “underlying event” is an unavoidable background to most collider observables.
To find “new” physics at a collider it is crucial to have Monte-Carlo models that simaletarately
“ordinary” hard-scattering collider events. This report will compare collider observables that are sensitive
to the “underlying event” with the QCD Monte-Carlo model prediction®MTHIA 6.115 [313], /tt
HERWIG 5.9 [23b, 339, 340], anAJET 7.32 [376] and discuss the tuningl&AJET andPYTHIA.

5.51 The “Transverse” Region

In a proton-antiproton collision large transverse momentum outgoing partons manifest themselves, in the
laboratory, as a clusters of particld®th charged and neutratraveling in roughly the same direction.

These clusters are referred to as “jets”. In this analysis we examine only the charged particle component
of “jets”. Our philosophy in comparing the QCD Monte-Carlo models with data is to select a region
where the data is very “clean” so that “what you see is what you gétigs). Hence, we consider only
charged particles measured by the CDF central tracking chamber (CTC) in the pegio®.5 GeV /c

and|n| < 1, where the track finding efficiency is high and uniform (estimated té25¢ efficient) and

we restrict ourselves to charged particle jets with transverse momentum lesg)iial /c. The data
presented here are uncorrected. Instead the theoretical Monte-Carlo models are corrected for the track
finding efficiency by removing, on the avera@gé; of the charged particles. The theory curves have an
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Fig. 40: lllustrations of correlations in azimuthal angl&¢ relative to the direction of the leading charged jet in the event,
chgjet#l. The anglé\¢ = ¢ — dcngjerz1 IS the relative azimuthal angle between charged particles and the direction of
chgjet#1. The“toward” region is defined ByA¢| < 60° and|n| < 1, while the “away” region is|A¢| > 120° and|n| < 1.

The “transverse” region is defined B0° < |A¢| < 120° and|n| < 1. Each region has an area i-¢ space oftz/3. On

an event by event basis, we define “transMAX (“transMIN”) to be the maximum (minimum) of the two “transverse” pieces,
60° < A¢ < 120° and|n| < 1, and60° < —A¢ < 120° and|n| < 1. “TransMAX” and “transMIN” each have an area in

n-¢ space o= /3. The sum of “TransMAX" and “transMIN” is the total “transverse” region with arelar /3.

error (statistical plus systemajiof about5%. Thus, to withinl0% “what you see is what you get”.

Charged particle “jets” are defined as clusters of charged partigles (.5 GeV /¢, || < 1) in
“circular regions” ofyn-¢ space with radiug? = 0.7. Every charged particle in the event is assigned
to a “jet”, with the possibility that some jets might consist of just one charged particle. The transverse
momentum of a charged jef)r(chgjet), is thescalar p; sum of the particles in the jet. We use the
direction of the leading charged particle jet to define correlations in azimuthal akgle The angle
Ap = ¢ — dangjerz1 IS the relative azimuthal angle between a charged particle and the direction of
chgjet#1. The“toward” region is defined bk ¢| < 60° and|y| < 1, while the “away” region igA¢| >
120° and|n| < 1. The “transverse” region is defined 6Y° < |A¢| < 120° and|n| < 1. The three
regions “toward”, “transverse”, and “away” are shown in kig. 40. Each region has an ajeaspace
of 47 /3. As illustrated in Fig: 40, the “toward” region contains the leading charged particle jet, while the
“away” region, on the average, contains the “away-side” jet. The “transverse” region is perpendicular to
the plane of the har?l-to-2 scattering and is therefore very sensitive to the “underlying event”.

Fig. 41 and Fig: 42 compare the “transverg¥,,) and the “transverse{Prsum), respectively,
with the QCD Monte-Carlo predictions HIERWIGISAJET , andPYTHIA 6.115 with their default
parameters ang{hard) > 3 GeV/c. The solid points are Min-Bias data and the open points are
the JET20 data. The JET20 data connect smoothly to the Min-Bias data and allow us to study ob-
servables over the randeb < Pr(chgjet#1) < 50 GeV /c. The average number of charged parti-
cles in the “transverse” region doubles in going frdta(chgjet#1)= 1.5 GeV/c to 2.5 GeV /c and
then forms an approximately constant “plateau” f&i{chgjet#1)> 5 GeV /c. If we suppose that the
“underlying event” is uniform in azimuthal angte and pseudo-rapidity;, the observe@.3 charged
particles atP;{chgjet#1)= 20 GeV /c translates t@.8 charged particles per unit pseudo-rapidity with
pr>0.5 GeV /c (multiply by 3 to get360°, divide by?2 for the two units of pseudo-rapidity, multiply by
1.09 to correct for the track finding efficiency). We know that if we includegll > 50 MeV/c there
are, on the average, about four charged patrticles per unit rapidity in a “soft” proton-antiproton collision
at 1.8 TeV [377]. The data in Fiy. 41 imply that in the “underlying event” of a hard scattering there are,
on the average, abo8t8 charged particles per unit rapidity wigh- > 0.5 GeV /c! Assuming a charged
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Fig. 41: Data on the average number of charged particles ¢ 0.5 GeV /c, |n| < 1) in the “transverse” region defined in

Fig. @Q as a function of transverse momentum of the leading charged jet compared with the QCD Monte-Carlo predictions of
HERWIG 5.9, ISAJET 7.32, andPYTHIA 6.115 with their default parameters and wijth(hard) > 3 GeV /c. Each point
corresponds to théVee) in a1 GeV /c bin. The solid (open) points are the Min-Bias (JET20) data. The theory curves are
corrected for the track finding efficiency and have an error (statistical plus systematic) of aftund
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Fig. 42: As for Fig'41 except that the average scaRr is shown.
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Fig. 43: Data from Fig.::4]1 compared with the QCD Monte-Carlo predictiond®AJET 7.32 (default parameters and
pr(hard) > 3 GeV/c). The predictions ofSAJET are divided into two categories: charged particles that arise from the
break-up of the beam and target (beam-beam remnants), and charged particles that result from the outgoing jetgbplus in
and final-state radiation (hard scattering component). The theory curves are corrected for the track finding efficiency and have
an error (statistical plus systematic) of arous.
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Fig. 44: The “hard scattering” component (outgoing jets plustial and final-state radiation) of the number of charged
particles pr > 0.5 GeV/c, || < 1) in the “transverse” region defined in Fig-_. :40 as a function of the transverse momentum
of the leading charged jet from the QCD Monte-Carlo predictionslBRWIG 5.9, ISAJET 7.32, andPYTHIA 6.115 with

their default parameters and wili(hard) > 3 GeV /c. The curves are corrected for the track finding efficiency and have an
error (statistical plus systematic) of arourél.

particle py distribution ofe =27 (see Fig. 52) implies that there are roughly charged particles per

unit pseudo-rapidity witlpr > 0 in the “underlying event” (factor of €). Since we examine only those
charge particles with7 > 0.5 GeV /¢, we cannot accurately extrapolate to lpw, however, it is clear

that the “underlying event” has a charge particle density that is at least a factor of two larger than the four
charged particles per unit rapidity seen in “soft” proton-antiproton collisions at this energy.

The Min-Bias data were collected with a very “loose” trigger. The CDF Min-Bias trigger require-
ment removes elastic scattering and most of the single and double diffraction events, but keeps essentially
all the “hard-scattering” events. In comparing with the QCD Monte-Carlo models we do require that the
models satisfy the CDF Min-Bias trigger, however, ff(chgjet#1)> 5 GeV /c essentially all the gen-
erated events satisfy the Min-Bias triggee( the Min-Bias trigger is unbiased for large “jets”). If
we had enough Min-Bias events we would not need the JET20 data, but because of the fast fall-off of
the cross section we run out of statistics at arotip@hgjet#1)= 20 GeV /c (that is why the Min-Bias
data errors get large at arouR@lGeV /c). The JET20 data were collected by requiring at IegteV
of energy €¢harged plus neutralin a cluster of calorimeter cells. We do not use the calorimeter infor-
mation, but instead look only at the charged particles measured in the CTC in the same way we do for
the Min-Bias data. The JET20 data is, of course, biased foplpjets and we do not show the JET20
data belowPr{chgjet#1) around20 GeV /c. At large Pr(chgjet#1) values the JET20 data becomes
unbiased and, in fact, we know this occurs at aro2iéieV /c because it is here that it agrees with the
(unbiasedl Min-Bias data.

We expect the “transverse” region to be composed predominately of particles that arise from the
break-up of the beam and target and from initial and final-state radiation. This is clearly the case for
the QCD Monte-Carlo models as can be seen in Figs. 7-9, where the predictions for the “transverse”
region are divided into two categories: charged particles that arise from the break-up of the beam and
target beam-beam remnantsand charged particles that result from the outgoing jets plus initial and
final-state radiationhard scattering componentFor PYTHIA the “beam-beam remnant” contribution
includes contributions from multiple parton scattering. It is interesting to see that in the QCD Monte-
Carlo models it is the “beam-beam remnants” that are producing the approximately constant “plateau”.
The contributions from initial-state and final-state radiation increag&@sigjet#1) increases. In fact,
for ISAJET it is the sharp rise in the initial-state radiation component that is causing the disagreement
with the data forPr{chgjet#1)> 20 GeV /c. The hard scattering componentERWIGandPYTHIA
does not rise nearly as fast as the hard scattering COmponkSAJET .
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Fig. 45: Data on the average number of “transMAX” and “transMIN” charged particlges (> 0.5 GeV /c, |p| < 1) as a
function of the transverse momentum of the leading charged jet compared with the QCD Monte-Carlo predietBR$\IG

5.9 ,ISAJET 7.32, andPYTHIA 6.115 with their default parameters and withi(hard) > 3 GeV /c. The solid (open) points

are the Min-Bias (JET20) data. The theory curves are corrected for the track finding efficiency and have an error (statistical
plus systematic) of arounis.

There are two reasons why the hard scattering compondS2dfET is different fromHERWIG
andPYTHIA. The first is due to different fragmentation schem&8AJET uses independent fragmenta-
tion, which produces too many soft hadrons when partons begin to overlap. The second difference arises
from the way the QCD Monte-Carlos produce “parton showdSAJET uses a leading-log picture in
which the partons within the shower are ordered according to their invariant mass. Kinematics requires
that the invariant mass of daughter partons be less than the invariant mass of the lg&RWIGand
PYTHIA modify the leading-log picture to include “color coherence effects” which leads to “angle or-
dering” within the parton shower. Angle ordering produces less higtadiation within a parton shower
which is what is seen in Fig. 44.

Of course, the origin of an outgoing particle (“beam-beam remnant” or “hard-scattering”) is not an
experimental observable. Experimentally one cannot say where a given particle comes from. However,
we do know the origins of particles generated by the QCD Monte-Carlo models and Figs. 7-9 show the
composition of the “transverse” region as predicted®4JET , HERWIGandPYTHIA.

5.52 Maximum and Minimum “Transverse” Regions

We now break up the “transverse” region into two pieces. ilsstrated in Fig.i4D, on an event by
event basis, we define “transMAX” (“transMIN”) to be the maximum (minimum) of the two “trans-
verse” piecesp0® < A¢ < 120°, || < 1, and60° < —A¢ < 120°, || < 1. Each has an area ip¢

space of2r /3 and what we previously referred to as the “transverse” region is the sum of “transMAX”
and “transMIN”. One expects that “transMAX” will pick up more of the initial and final state radiation
while “transMIN” should be more sensitive to the “beam-beam remnant” component of the “underly-
ing event”. Furthermore, one expects that the “beam-beam remnant” component will nearly cancel in
the difference, “transMAX” minus “transMIN”. If this is true then the difference, “transMAX” minus
“transMIN”, would be more sensitive to the “hard scattering” componiees (nitial and final-state ra-
diation). | believe that this idea was first proposed by Bryan Webber and then implemented in a paper

by Jon Pumplini[378] and then investigated in CDF by V. Tanoi[375]. . iFig. 45 show the data on the

(Neng for the“transMAX” and “transMIN” region as a function of ther(chgjet#1) compared with
QCD Monte-Carlo predictions dIERWIGISAJET , andPYTHIA with their default parameters and
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Fig. 46: Data on the average number of “transMAX” charged patrticles (> 0.5 GeV /c, || < 1) as a function of the
transverse momentum of the leading charged jet compared with the QCD Monte-Carlo predicttERWIG 5.9 (default
parameters anghr(hard) > 3GeV/c). The predictions oHERWIGare divided into two categories: charged particles that

arise from the break-up of the beam and target (beam-beam remnants), and charged particles that result from the outgoing
jets plus initial andfinal-state radiation (hard scattering component). The theory curves are corrected for the track finding
efficiency and have an error (statistical plus systematic) of ardifad
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Fig. 47:As for Fig:_zl;é except that “transMIN” is shown.
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Fig. 48: Data on the transverse momentum distribution of charged partigles<(0.5 GeV /c, |n| < 1) in the “transverse”
region for Pr{chgjet#1)> 2 GeV /c, 5 GeV /c, and30 GeV /c, where chgjet#1 is the leading charged particle jet. Each point
correspondstelN.,4/dpr and the integral of the distribution gives the average number of charged particles in the transverse
region,{ N.n4(transverse)). The data are compared with the QCD Monte-Carlo model predictioftERWIG 5.9 (default
parameters anghr(hard) > 3 GeV/c). The theory curves are corrected for the track finding efficiency and have an error
(statistical plus systematic) of aroustfs. Right plot is compared with the QCD Monte-Carlo model predictionS8JET

7.32

pr(hard) > 3 GeV /c. The data of{ Prsum), show similar behaviour. Fig. 46 and Fig: 47, show the data
on (Nehg for “transMAX”, and “transMIN”, compared with QCD Monte-Carlo predictionsHERWIG

The predictions oHERWIGare divided into two categories: charged particles that arise from the break-
up of the beam and targdbdam-beam remnanisand charged particles that result from the outgoing
jets plus initial and final-state radiatiohdrd scattering componentlt is clear from these plots that in

the QCD Monte-Carlo models the “transMAX” is more sensitive to the “hard scattering component” of
the “underlying event” while “transMIN” is more sensitive to the “beam-beam remnants”, especially at
large values of’r{chgjet#1). For example, foHERWIGat Pr(chgjet#1)= 40 GeV /c the hard scat-
tering component makes 2% of the “transMAX” (Na,g With 38% coming from the “beam-beam
remnants”. On the other hand, the hard scattering component makes u26hlyf the “transMIN”

(Neng With 58% coming from the “beam-beam remnants”Bg(chgjet#1)= 40 GeV /c. Taking dif-
ference between “tansMAX” and “transMIN” does not completely remove the “beam-beam remnant”
component, but reduces it to only abdati at Pr{chgjet#1)= 40 GeV /c.

5.53 The Transverse Momentum Distribution in the “Transverse” Region

Fig.48 shows the data on the transverse momentum distribution of charged particles in the “transverse”
region for Pr(chgjet#1)> 2 GeV/c, 5 GeV /¢, and30 GeV /c. Each point corresponds tbVchg/dpr

and the integral of the distribution gives the average number of charged particles in the “transverse”
region, (Nehg), Shown in Figs 4. Fig. 41 shows only mean values, while Fig. 17 shows the distribution
from which the mean is computed. In Fig, 48 the data are compared with the QCD hard scattering Monte-
Carlo models predictiorsSERWIGNdISAJET Since these distributions fall off sharplygsincreases,

it is essentially only the first few points at low- that determine the mean. The approximately constant
plateau seen in Fig. 41 is a result of the Ipw points in Fig.148 not changing much &%{(chgjet#1)
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Fig. 49: The data from Fig[és folPr{chgjet#1)> 5 GeV /c compared with the QCD Monte-Carlo model predictions of
HERWIG 5.9 (left) andISAJET (right) (default parameters angr(hard) > 3 GeV /c).
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Fig. 50: Data from Fig.E4:8 forPr{chgjet#1)> 30 GeV /c compared with the QCD Monte-Carlo model predictionslBRWIG

5.9 (default parameters anglr(hard) > 3 GeV /c). The theory curves are corrected for the track finding efficiency and have
an error (statistical plus systematic) of aroufih. The solid curve is the total (“hard scattering” plus “beam-beam remnants”)
and the dashed curve shows the contribution arising from the break-up of the beam particles (“beam-beam remnants”).
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Fig. 51: On the left is shown data on the average scalarsum of charged particlep¢ > 0.4 GeV /c, |n| < 1) within the
maximum (MAX) and minimum (MIN) “transverse cones” versus the transverse energy of the leading (hightestiorime-

ter jet” compared with the QCD Monte-Carlo model prediction$t#RWIGandPYTHIA.On the right is shown the difference
(MAX-MIN) for each event.

changes. However, the high- points do increase considerably &g chgjet#1) increases. This effect
cannot be seen by simply examining the average number of “transverse” particles., Fig. 48 shows the

growth of the “hard scattering component” at laggein the "transverse region’.g., three or more hard
scattering jets).

For the QCD Monte-Carlo models thpg distribution in the “transverse” region, at low values of
Pr(chgjet#1), is dominated by the “beam-beam remnant” contribution with very little “hard scattering”
component. This can be seen in kig. 49 which shows both the “beam-beam remnant” component together
with the total overall predictions IERWIGandISAJET , respectively, for{(chgjet#1)> 5 GeV /c.

For the QCD Monte-Carlo models the- distribution in the “transverse” region, at low values of
Pr(chgjet#1), measures directly thg; distribution of the “beam-beam remnants”. BAd®AJET
andHERWIGhave the wrongr dependence in the “transverse” region due to a “beam-beam remnant”
component that falls off too rapidly as- increases. It is, of course, understandable that the Monte-Carlo
models might be slightly off on the parameterization of the “beam-beam remnants”. This component
cannot be calculated from perturbation theory and must be determined from data.

Fig. 50 shows both the “beam-beam remnant” component together with the overall prediction of
HERWIJor PT(Cthet#1)> 30 GeV /c. Here the QCD Monte-Carlo models predict a large “hard scat-
tering” component corresponding to the production of more than two jargets. HERWIGISAJET ,
andPYTHIA all do well at describing the highy tail of this distribution. However, Fig. 48 shows that
ISAJET produces too many charged particles at lewwwhich comes from an overabundance of soft
particles produced in the hard scattering. kig. 48 shows that the large rise in the transverse charged mul-
tiplicity from the hard scattering componenti&AJET seen in Fig: 43 comes from soft particles. This
is to be expected from a model that employs independent fragmentation si®AJ&S . Independent
fragmentation does not differ much from color string or cluster fragmentation for the hard particles, but
independent fragmentation produces too many soft particles.

Note that the transverse momentum distribution of the “beam-beam remnant” component for both
HERWIGand ISAJET does not change in going frof(chgjet#1)> 5 GeV /c to Pr(chgjet#1)>
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Fig. 52: Data from Fig.£4:8 for Pr{chgjet#1)> 5 GeV/c compared with the QCD Monte-Carlo model predictions of a
“tuned” version of ISAJET 7.32 (CUTJE® 12 GeV /¢, pr(hard) > 3 GeV /c). For the “tuned” version o SAJET thepr
distribution of the “beam-beam remnants” is generated according 7, whereb = 2/( GeV /c). The theory curves are
corrected for the track finding efficiency and have an error (statistical plus systematic) of aséundhe solid curve is the

total (“hard scattering” plus “beam-beam remnants”) and the dashed curve shows the contribution arising from the break-up
of the beam particles (“beam-beam remnants”).
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30 GeV /.

5.54 *“Transverse Regions” Versus “Transverse Cones”

In a complementary CDF analysis, Valeria Taho [375] has studied the “underlying event” in hard scat-
tering processes by defining “transverse cones” instead of “transverse regions”. The “transverse cones”
(with radius inn-¢ space ofR = 0.7) are located at the same pseudo-rapidity as the leading jet but
with azimuthal angleA¢ = +90° andA¢ = —90° relative to the leading “jet”. In the cone analysis

the “jet” is a “calorimeter jet” ¢harged plus neutrajslefined using the standard CDF cluster algorithm.
Maximum (MAX) and minimum (MIN) “transverse” cones are determined, on an event-by-event basis,
similar to the “transMAX” and “transMIN” regions described in Section Ill. Each “transverse cone” has
an area in-¢ space ofr R? = 0.497 (compared with).67r). Fig.i51 shows data at8 TeV on the
averagescalarpr sum of charged particlegf > 0.4 GeV /c, || < 1) within the MAX and MIN “trans-

verse cones” and the value of MAX-MIN for each event versus the transverse energy of the leading
(highestFE7) “calorimeter jet”. (A similar analysis has been carried out at 630 GeV and a publica-
tion reporting the results from both energies is in preparation.) The data is compared with QCD hard
scattering Monte-Carlo models predictions fretBRWIGANdPYTHIA. The “transverse cone” analysis
covers the rangg0 < Er(calorimeter jet#1) < 300 GeV, while the “transverse region” analysis ex-
amines only charged particles and covers the réngé’(chgjet#1)< 50 GeV /c. One cannot directly
compare the two analysis, but if one scales the Ion(jet#1) points in Fig. 51 by the ratio of areas
0.677/0.497 = 1.36, one gets approximate agreement with the higgtchgjet#1) points. Fig. 51 in-
dicates that bothlERWIGandPYTHIA correctly describe the MIN cone distributions but tRATHIA
generates too much energy for the MAX cone. Both analyses together provide a good handle on the
“underlying event” in hard scattering processes.

5.55 Tuning the Models to Fit the “Underlying Event”
5.56 TuningSAJET

ISAJET generates thgr distribution of the “beam-beam remnants” according the power-law distribu-
tion 1/(1 4+ P#/b)*, whereb is chosen to give a megny of primary particlesi(e., before decay) of

450 MeV /c. Fig.49 indicates that this yieldsya distribution that falls off too rapidly. Since one does
not know a priori how to parameterize the distribution of the “beam-beam remnants”, it is interesting

to see if we can modifySAJET to do a better job at fitting the data. Fig: 52 showshedistribution

of the “beam-beam remnant” component together with the total overall predictions of a “tuned” version
ISAJET . For the “tuned” versionlSAJET is modified to generate ther distribution of the “beam-
beam remnants” according to an exponential distribution of the fortf”, whereb = 2/( GeV /c).

Also, for the tuned version dSAJET the parameter CUTJET is increased from its default value of

6 GeV /cto 12 GeV /cin order to reduce the amount of initial-state radiation.

Fig. 53 compares the data on the average number of charged particles in the “transverse” region
with the “tuned” version ofSAJET , where the predictions for the “transverse region are divided into
two categories: charged particles that arise from the break-up of the beam andheggetiieam rem-
nantg, and charged particles that result from the outgoing jets plus initial and final-state radmetidn (
scattering componeptlf one compares Fig. 53 with Fig. 43 one sees that the tuned versi@AGET
has a larger “beam-beam remnant” plateau and less particles from the “hard-scattering” comiponent (
initial-state radiation). The “tuned” version 88AJET does a much better job fitting the “underlying
event” as can be seen by comparing Fig. 52 with Fi. 48. However Fig. 53 shows that there are still too
many charged particles in the “transverse” region at ldtgehgjet#1) values.
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Fig. 53: Data on the average number of charged particles & 0.5 GeV /c, || < 1) in the “transverse” region defined in

Fig. @Q as a function of the transverse momentum of the leading charged jet compared with the QCD Monte-Carlo predictions
of a “tuned” version ofISAJET 7.32 (CUTJEE 12 GeV/c, pr(hard) > 3 GeV /c). For the “tuned” version ofiISAJET

the pr distribution of the “beam-beam remnants” is generated according 7, whereb = 2/( GeV /c). The predictions

are divided into two categories: charged particles that arise from the break-up of the beam and target (beam-beam remnants),
and charged particles that result from the outgoing jets plus initial indl-state radiation (hard scattering component).

Table 14:PYTHIA multiple parton scattering parameters.
| Parameter | Value | Description |

MSTP(81) 0 Multiple-Parton Scattering off

1 Multiple-Parton Scattering on

MSTP(82) 1 Multiple interactions assuming the same probability,

with an abrupt cut-off’ymin=PARP(81)

3 Multiple interactions assuming a varying impact parameter

and a hadronic matter overlap consistent with a

single Gaussian matter distribution, with a smooth turnfoff=PARP(82)
4 Multiple interactions assuming a varying impact parameter

and a hadronic matter overlap consistent with a

double Gaussian matter distribution (governed by PARP(83) and PARP(84))
with a smooth turn-oft’r(=PARP(82)

5.57 TuningPYTHIA

Now that we have constructed collider observables that are sensitive to the “underlying event” we would
like to tune the multiple parton interaction parameterB¥THIA to fit the data. There are many tunable
parameters. Here we consider only the parameters given in Table 1. The default values of the parameters
are given in Table 2. Note that tfRYTHIA default values sometimes change as the version ch&fges

Fig.i54 shows data on the average number of charged particles in the “transverse” region compared
with the QCD Monte-Carlo predictions &Y THIA 6.115 with different structure functions and different
multiple parton interaction parameters and witdhard) > 0GeV/c. For PYTHIA the amount of
multiple parton scattering depends on the parton distribution functiengiie structure functions) and
hence the number of particles produced in the “transverse” reg@yrifie “underlying event”) changes if
one changes the structure functioRERWIGandISAJET do not include multiple parton scattering and

50 The latest versions of PYTHIA (6.120 and higher) include additional parameters that allow one to adjust the energy
dependence of multiple parton interactions.
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Table 15:Default values for some of the multiple parton scattering parametdP¥aHIA.
| Parameter | PYTHIA 6.115| PYTHIA 6.125 |

MSTP(81) 1 1
MSTP(82) 1 1
PARP(81) 1.4 GeV/c 1.9GeV/c
PARP(82) | 1.55GeV/c 2.1GeV/c
PARP(83) 0.5 0.5
PARP(84) 0.2 0.2
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Fig. 54:Data on the average number of charged particles £ 0.5 GeV /c, |n| < 1) in the “transverse” region as a function of
the transverse momentum of the leading charged jet compared with the QCD Monte-Carlo predicByi$ibA 6.115 with
different structure functions and different multiple parton interaction parameters andpwiittard) > 0 GeV /c. The theory
curves are corrected for the track finding efficiency and have an error (statistical plus systematic) of a¥6und
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Fig. 55: Data on the average number of “transMAX” and “transMIN” charged particles (> 0.5 GeV /c, |p| < 1) as a

function of the transverse momentum of the leading charged jet defined compared with the QCD Monte-Carlo predictions of
PYTHIA 6.115 (tuned version, CTEQA4L, MSTP(82) = 4, PARP(82)4GeV /¢, pr(hard) > 0 GeV /c). The theory curves

are corrected for the track finding efficiency and have an error (statistical plus systematic) of a'@und
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Fig. 56: Data on the average scala#r sum of “transMAX” and “transMIN” charged particlesgr > 0.5 GeV/c, || < 1) as

a function of the transverse momentum of the leading charged jet defined compared with the QCD Monte-Carlo predictions of
PYTHIA 6.115 (tuned version, CTEQA4L, MSTP(82) = 4, PARP(82)4GeV /c, pr(hard) > 0 GeV /c). The theory curves

are corrected for the track finding efficiency and have an error (statistical plus systematic) of a'gund

for them the number of particles in the “transverse” is essentially independent of the choice of structure
functions.

Figs.i55r57 show the results of a “tuned” versionR¥THIA 6.115 with MSTP(82) =t and
PARP(82) =2.4 GeV /c using the CTEQA4L structure functions. One must first choose a structure func-
tion and then tune the multiple parton scattering parameters for that structure function. In generating
the PYTHIA curves in Figs. 30-35 we have takgp(hard) > 0GeV/c. In general the perturbative
2-to-2 parton scattering subprocesses diverggsdbard) goes to zeroPYTHIA regulates these diver-
gences using the same cut-off parameters that are used to regulate the multiple parton scattering cross
section (see Table 1). This allows for the possibility of udMgrHIA to simultaneously describe both
“soft” and “hard” collisions. Most of the CDF Min-Bias events are “soft”, with less tB&h of the
events having’(chgjet#1)> 5 GeV/c. There is no clear separation between “soft” and “hard” col-
lisions, but roughly speakingr(chgjet#1)< 2 GeV /c corresponds to “soft” Min-Bias collisions and
demandingPr(chgjet#1)> 5 GeV/c assures a “hard” collision. Figs.;55r56 show that the “tuned”
version of PYTHIA with pr{hard) > 0 GeV /c describes fairly well the transition between “soft” and
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Fig. 57: Data from Fig.:_zl_é compared with the QCD Monte-Carlo model predictiof®OfHIA 6.115 (tuned version, CTEQA4L,
MSTP(82) = 4, PARP(82) .4 GeV /c, pr(hard) > 0 GeV /c). The theory curves are corrected for the track finding efficiency
and have an error (statistical plus systematic) of arowfiel

“hard” collisions. The QCD Monte-Carlo models wigh{hard) > 3 GeV /c cannot describe the data for
Pr(chgjet#1)< 3 GeV /c (see Figi 41 and Fig. 42), where@¥THIA with pr{(hard) > 0 GeV /c seems

to do a good job on the “transverse” observable®gshgjet#1) goes to zero. Fig. 57 shows the data
on the transverse momentum distribution of charged particles in the “transverse” region compared with
the “tuned” version oPYTHIA 6.115 (CTEQA4L, MSTP(82) 2, PARP(82) =2.4 GeV /c). The fit is not
perfect, but it is much better than thEERWIGprediction shown in Fig. 48. Multiple parton scattering
produces more larger particles in the “transverse” region, which is what is needed to fit the data. The
pr distribution in the “transverse” region, at low valuesBf(chgjet#1), for the “tuned” version of
PYTHIA is also dominated by the “beam-beam remnant” contribution as is the caBERWIG(see
Fig.49). However, foPYTHIA the “beam-beam remnant” component includes contributions from mul-
tiple parton scattering, which results in a less steeglistribution. Also, unlikdSAJET andHERWIG

for PYTHIA the “beam-beam remnant” component increasd3/ashgjet#1) increases due to multiple
parton scattering.

5.58 TuningHERWIG

The latest version dIERWIGncludes a multiple-parton scattering opti¢n [379], which Jon Butterworth
has tuned to fit some of the data presented hierg [380].

5.59 Summary

The “underlying event” in a hard scattering process is a complicated and interesting object which in-
volves aspects of both non-perturbative and perturbative QCD. Studying the “transMAX” and “trans-
MIN” pieces of the “transverse” region provides ditthal information not contained in the sum. In the
QCD Monte-Carlo models the various components that make up the “underlying event” are weighted dif-
ferently in “transMAX” and “transMIN” terms. The “transMAX” term preferentially selects the “hard
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component” of the “underlying eventb(tgoing jets plus initial and final-state radiatipmhile the
“transMIN” term preferentially selects the “beam-beam remnant” component. Unfortunately one cannot
cleanly isolate a single component of the “underlying event” since all components contribute to both
“transMAX”, “transMIN”, and to the difference. However, requiring the Monte-Carlo models to fit both
“transMAX” and “transMIN” (or the sum and difference) puts additional constraints on the way the
generators model the “underlying event”.

ISAJET (with independent fragmentatipproduces too manys6fi) particles in the “underlying
event” with the wrong dependence éh{chgjet#1). HERWIGand PYTHIA modify the leading-log
picture to include “color coherence effects” which leads to “angle ordering” within the parton shower
and they do a better job describing the “underlying event”. BB®WJET andHERWIGhave the too
steep of a7 dependence of the “beam-beam remnant” component of the “underlying event” and hence
do not have enough “beam-beam remnants” with> 0.5 GeV /c. A modified version oiSAJET
in which the “beam-beam remnants” are generated with an exponential distribution of the farm
whereb = 2/( GeV /c) improves the fit to the dateRYTHIA with multiple parton scattering does the
best job at fitting the data.

The increased activity in the “underlying event” of a hard scattering over that observed in “soft”
collisions cannot be explained solely by initial-state radiation. Multiple parton interactions provide a
natural way of explaining the increased activity in the “underlying event” in a hard scattering. A hard
scattering is more likely to occur when the “hard cores” of the beam hadrons overlap and this is also when
the probability of a multiple parton interaction is greatest. For a soft grazing collision the probability of
a multiple parton interaction is small. However, multiple parton interactions are very sensitive to the
parton structure functions (PDF). You must first decide on a particular PDF and then tune the multiple
parton interactions to fit the data.

One should not take the “tuned” version®YTHIA 6.115 (CTEQA4L, MSTP(82) #, PARP(82)
=2.4 GeV /c) presented here too seriously. It is encouraging that it describes fairly well the "transverse”
region over the rangé < Pr(chgjet#1)< 50 GeV /c including the transition from “soft” to “hard”
collisions. However, itis still not quite right. For example, it does not reproduce very well the multiplicity
distribution of “soft” collisions. More work needs to be done in tuning the Monte-Carlo models. In
addition, more work needs to be done before one can say for sure that the multiple parton interaction
approach is correctHERWIGwithout multiple parton scattering is not that far off the data. Maybe we
simply need to change and improve the way the Monte-Carlo models handle the “beam-beam remnant”
component.

Acknowledgments

Work (ERW) supported in part by the European Community’s Human Potential Programme under con-
tract HPRN-CT-2000-00149 Physics at Colliders. The work was supported in part by the Director, Office
of Energy

Research, Office of High Energy and Nuclear Physics of the U.S. Department of Energy under
Contracts DE-AC03-76SF00098 (IH) and DE-AC02-98CH10886 (FP). Accordingly, the U.S. Govern-
ment retains a nonexclusive, royalty-free license to publish or reproduce the published form of this
contribution, or allow others to do so, for U.S. Government purposes.

138



References
[1] D. Cavalli et al. hep-ph/0203056.

[2] G. Azuelos et al. hep-ph/0204031.

[3] W. Giele, S. Keller, and D. Kosower. hep-ph/0104052.

[4] W. Giele and S. KellerPhys. Rey.D58:094023, 1998.

[5] J. Pumplin, D. Stump, and W. Tun&hys. Rey.D65:014011, 2002.
[6] J. Pumplin et alPhys. Rey.D65:014013, 2002.

[7] D. Stump et al. hep-ph/010105Rhys. Rey.D65:014012, 2002.
[8] G. D’Agostini. hep-ph/9512295.

[9] S. Alekhin. hep-ex/0005042.

[10] W. Eadie, D. Drijard, F. James, M. Roos, and B. Sadoulet. Statistical Methods in Experimental
Physics, North Holland, 1971.

[11] G. D’Agostini. Nucl. Instrum. Meth.A346:306—-311, 1994.

[12] M. Botje. hep-ph/0110123.

[13] C. Pascaud and F. Zomer. preprint LAL-95-05.

[14] M. Botje. Eur. Phys. J.C14:285-297, 2000.

[15] M. Botje. Zeus Note 97-066.

[16] J. Blimlein et al. hep-ph/9609400.

[17] W. Furmanski and R. Petronzid. Phys, C11:293, 1982.

[18] O.V. Tarasov, A.A. Vladimirov, and A.Yu. Zharko®hys. Lett.B93:429, 1980.
[19] S.A. Larin and J.A.M. Vermasereihys. Lett.B303:334, 1993.

[20] W. L. van Neerven and A. VogtNucl. Phys.B568:263, 2000.

[21] W. L. van Neerven and A. VogtNucl. Phys.B588:345, 2000.

[22] W. L. van Neerven and A. VogPhys. Lett.B490:111, 2000.

[23] S.A. Larin, T. van Ritbergen, and J.A.M. Vermaserbiucl. Phys.B427:41, 1994.
[24] S.A. Larin, P. Nogueira, T. van Ritbergen, and J.A.M. VermaseXertl. Phys.B492:338, 1997.
[25] A. Retey and J. A. M. Vermaserehucl. Phys.B604:281, 2001.

[26] S. Catani and F. F. HautmanNucl. Phys.B427:475, 1994.

[27] J. Blimlein and A. Vogt.Phys. Lett.B370:149, 1996.

[28] V.S. Fadin and L.N. Lipatowhys. Lett.B429:127, 1998.

[29] M. Ciafaloni and G. CamiciPhys. Lett.B430:349, 1998.

139



[30] J.A. GraceyPhys. Lett.B322:141, 1994.

[31] J.F Bennett and J.A. GraceMucl. Phys.B517:241, 1998.

[32] Pietro Santorelli and Egidio ScrimieriRhys. Lett.B459:599, 1999.

[33] P. G. Ratcliffe.Phys. Rey.D63:116004, 2001.

[34] C. Pascaud and F. Zomer. Preprint. hep-ph/0104013.

[35] M. Dasguptaand G. P. Salam. hep-ph/0110213.

[36] J. Blumlein and A. VogtPhys. Rey.D58:014020, 1998.

[37] G. P. Salam and A. Vogt. in preparation.

[38] H. L. Laietal.Eur. Phys. J.C12:375, 2000.

[39] M. Buza, Y. Matiounine, J. Smith, and W. L. van Neervé&ur. Phys. J.C1:301, 1998.
[40] S. A. Larin, T. van Ritbergen, and J. A. M. Vermaserbiucl. Phys.B438:278, 1995.
[41] K. G. Chetyrkin, B. A. Kniehl, and M. Steinhauséthys. Rev. Le(t79:2184, 1997.
[42] Z.Bern, L. J. Dixon, and D. A. KosoweNucl. Phys.B412:751-816, 1994.

[43] Z. Bern, L. J. Dixon, and D. A. KosowePhys. Lett.B302:299-308, 1993.

[44] Z. Kunszt, A. Signer, and Z. Trocsanyhys. Lett.B336:529-536, 1994.

[45] A. Signer.Phys. Lett.B357:204—-210, 1995.

[46] Z.Bern, L. J. Dixon, D. A. Kosower, and S. WeinzieNucl. Phys.B489:3-23, 1997.
[47] Z. Bern, L. J. Dixon, and D. A. KosoweNucl. Phys.B513:3-86, 1998.

[48] J. M. Campbell, E. W. N. Glover, and D. J. Milldehys. Lett.B409:503-508, 1997.
[49] E. W. N. Glover and D. J. MillerPhys. Lett.B396:257-263, 1997.

[50] V. Del Duca, W. B. Kilgore, and F. MaltonNucl. Phys.B566:252-274, 2000.

[51] W. Beenakker et alPhys. Rev. Lett87:201805, 2001.

[52] L. Reina, S. Dawson, and D. Wackerotthys. Rey.D65:053017, 2002.

[53] V. Del Duca, W.B. Kilgore, C. Oleari, C. Schmidt, and D. Zeppenfditlicl. Phys.B616:367—
399, 2001.

[54] T.Binoth, J. P. Guillet, and G. HeinriciNucl. Phys.B572:361-386, 2000.
[55] Z. Bernand D. A. Kosoweucl. Phys.B379:451-561, 1992.

[56] Z. Bernand D. A. Kosoweucl. Phys.B362:389-448, 1991.

[57] Z. Bern, D. C. Dunbar, and T. Shimadahys. Lett.B312:277-284, 1993.
[58] M. J. StrasslerNucl. Phys.B385:145-184, 1992.

[59] Z. Bernand D. C. DunbaiNucl. Phys.B379:562—-601, 1992.

140



[60] C. SchubertPhys. Rept.355:73—-234, 2001.

[61] A. Frizzo, L. Magnea, and R. RussNucl. Phys.B604:92—-120, 2001.

[62] T.Binoth, J. P. Guillet, G. Heinrich, and C. Schubttcl. Phys.B615:385-401, 2001.
[63] S. Moch, J. A. M. Vermaseren, and M. Zhcwep-ph/0108033

[64] R. Hamberg, W. L. van Neerven, and T. MatsuuxaLcl. Phys.B359:343-405, 1991.
[65] R.V. Harlander and W.B. Kilgorenep-ph/0201206

[66] E. B. Zijlstraand W. L. van NeerverNucl. Phys.B383:525-574, 1992.

[67] A. D. Martin, R. G. Roberts, W. J. Stirling, and R. S. Thorhep-ph/0201127

[68] A. Gehrmann-De Ridder and E. W. N. Glovétucl. Phys.B517:269-323, 1998.
[69] J. M. Campbell and E. W. N. GloveNucl. Phys.B527:264—-288, 1998.

[70] S. Catani and M. GrazzinPhys. Lett.B446:143-152, 1999.

[71] S. Catani and M. GrazzinNucl. Phys.B570:287-325, 2000.

[72] V. Del Duca, A. Frizzo, and F. MaltonNucl. Phys.B568:211-262, 2000.

[73] F. A. Berends and W. T. Gielé&ucl. Phys.B313:595, 1989.

[74] S. Catani. 1992. in Proceedings of the workshop on New techngiues for Calculating Higher Order
QCD Caorrections, report ETH-TH/93-01, Zurich (1992).

[75] Z.Bern, L. J. Dixon, D. C. Dunbar, and D. A. Kosow&tucl. Phys.B425:217-260, 1994.
[76] Z. Bern, V. Del Duca, and C. R. Schmid®hys. Lett.B445:168-177, 1998.

[77] D. A. Kosower.Nucl. Phys.B552:319-336, 1999.

[78] Z. Bern, V. Del Duca, W. B. Kilgore, and C. R. Schmidihys. Rey.D60:116001, 1999.
[79] D. A. Kosower and P. UweiNucl. Phys.B563:477-505, 1999.

[80] S. Catani and M. GrazzinNucl. Phys.B591:435-454, 2000.

[81] C. G. Bolliniand J. J. GiambiagNuovo Cim,B12:20-25, 1972.

[82] J. F. AshmoreLett. Nuovo Cim.4:289-290, 1972.

[83] G. M. Cicuta and E. MontaldiNuovo Cim. Lett.4:329-332,1972.

[84] G. 'tHooftand M. J. G. VeltmanNucl. Phys.B44:189-213,1972.

[85] F. V. Tkachov.Phys. Lett.B100:65—-68, 1981.

[86] K. G. Chetyrkin and F. V. TkachoWucl. Phys.B192:159-204, 1981.

[87] T. Gehrmann and E. Remiddiucl. Phys.B580:485-518, 2000.

[88] V. A. Smirnov and O. L. VeretinNucl. Phys.B566:469-485, 2000.

[89] C. Anastasiou, E. W. N. Glover, and C. Oleaiucl. Phys.B575:416-436, 2000. Erratum: B585,
763, 2000.

141



[90] C. Anastasiou, T. Gehrmann, C. Oleari, E. Remiddi, and J. B. Tals&l. Phys.B580:577-601,
2000.

[91] S. Laporta.nt. J. Mod. Phys.A15:5087-5159, 2000.
[92] P. A. Baikov and V. A. SmirnovPhys. Lett.B477:367—-372, 2000.

[93] S. G. Gorishnii, S. A. Larin, L. R. Surguladze, and F. V. Tkach@omput. Phys. Commun.
55:381-408, 1989.

[94] K. G. Chetyrkin, J. H. Kuhn, and A. KwiatkowskPhys. Rept.277:189-281, 1996.

[95] R.V. HarlanderPhys. Lett.B492:74-80, 2000.

[96] S. Catani, D. de Florian, and M. GrazzidHEP, 05:025, 2001.

[97] R.V. Harlander and W.B. KilgoreP?hys. Rey.D64:013015, 2001.

[98] V. A. Smirnov. Phys. Lett.B460:397-404, 1999.

[99] J. B. TauskPhys. Lett.B469:225-234, 1999.
[100] C. Anastasiou, E. W. N. Glover, and C. Oleafiucl. Phys.B565:445-467, 2000.
[101] A. T. Suzukiand A. G. M. Schmidtl. Phys, A35:151-164, 2002.

[102] C. Anastasiou, J. B. Tausk, and M. E. Tejeda-Yeomahscl. Phys. Proc. Suppl89:262—-267,
2000.

[103] V. A. Smirnov. Phys. Lett.B491:130-136, 2000.

[104] V. A. Smirnov. Phys. Lett.B500:330-337, 2001.

[105] V. A. Smirnov. Phys. Lett.B524:129-136, 2002.

[106] A. V. Kotikov. Phys. Lett.B267:123-127,1991.

[107] E. Remiddi.Nuovo Cim,A110:1435-1452,1997.

[108] M. Caffo, H. Czyz, S. Laporta, and E. Remidtliuovo Cim,.A111:365-389, 1998.
[109] M. Caffo, H. Czyz, and E. RemiddNucl. Phys.B581:274-294, 2000.

[110] T. Gehrmann and E. Remiddilucl. Phys. Proc. Suppl89:251-255, 2000.
[111] T. Gehrmann and E. Remiddilucl. Phys.B601:248-286, 2001.

[112] T. Gehrmann and E. Remiddilucl. Phys.B601:287-317, 2001.

[113] T. Binoth and G. HeinrichNucl. Phys.B585:741-759, 2000.

[114] N. Nielsen.Nova Acta Leopoldina (Hallg)90:123, 1909.

[115] L. Lewin. Polylogarithms and Associated Functions, North Holland (1981).
[116] K. S. Kolbig. SIAM J. Math. Anal.17:1232-1258, 1986.

[117] K. S. Kolbig, J.A. Mignaco, and E. RemiddBIT, 10:38, 1970.

[118] E. Remiddi and J. A. M. Vermasereimt. J. Mod. Phys.A15:725-754, 2000.

142



[119] T. Gehrmann and E. Remiddtomput. Phys. Commuyri41:296-312, 2001.
[120] T. Gehrmann and E. Remiddtomput. Phys. Commuyri44:200-223, 2002.
[121] R. J. Gonsalve?hys. Rey.D28:1542, 1983.

[122] G. Kramer and B. Lampel. Math. Phys.28:945, 1987.

[123] Z. Bern, L. J. Dixon, and A. Ghinculowhys. Rey.D63:053007, 2001.

[124] C. Anastasiou, E. W. N. Glover, C. Oleari, and M. E. Tejeda-Yeomahgl. Phys. B601:318—
340, 2001.

[125] C. Anastasiou, E. W. N. Glover, C. Oleari, and M. E. Tejeda-Yeomahgl. Phys.B601:341—
360, 2001.

[126] C. Anastasiou, E. W. N. Glover, C. Oleari, and M. E. Tejeda-Yeomahgl. Phys. B605:486—
516, 2001.

[127] E. W. N. Glover, C. Oleari, and M. E. Tejeda-YeomaNsi.cl. Phys.B605:467-485, 2001.
[128] Z. Bern, L. J. Dixon, and D. A. KosowedHEP, 01:027, 2000.

[129] Z. Bern, A. De Freitas, and L.J. Dixohep-ph/0201161

[130] Z. Bern, A. De Freitas, and L. J. DixodHEP, 09:037, 2001.

[131] C. Anastasiou, E. W. N. Glover, and M. E. Tejeda-Yeomémep-ph/0201274

[132] Z. Bern, A. De Freitas, L. J. Dixon, A. Ghinculov, and H. L. Wod¢dEP, 11:031, 2001.
[133] T. Binoth, E. W. N. Glover, P. Marquard, and J. J. van der Béip-ph/0202266

[134] Z. Bern, A. De Freitas, L. Dixon, and H. L. Wonbep-ph/020227.1

[135] C. Anastasiou, E. W. N. Glover, C. Oleari, and M. E. Tejeda-YeomBhys. Lett. B506:59-67,
2001.

[136] E. W. N. Glover and M. E. Tejeda-Yeomar¥iEP, 05:010, 2001.
[137] E. W. N. Glover, J. B. Tausk, and J. J. Van der Bihys. Lett.B516:33-38, 2001.

[138] A. B. Arbuzov, V.S. Fadin, E.A. Kuraev, L.N. Lipatov, N.P. Merenkov, and L. Trentad\igcl.
Phys, B485:457-502, 1997.

[139] L. W. Garland, T. Gehrmann, E. W. N. Glover, A. Koukoutsakis, and E. Remiddcl. Phys,
B627:107-188, 2002.

[140] S. Bethkeld. Phys, G26:R27, 2000.

[141] J. A. Aguilar-Saavedra et ahep-ph/0106315

[142] R. K. Ellis, D. A. Ross, and A. E. Terrandlucl. Phys.B178:421, 1981.

[143] K. Fabricius, I. Schmitt, G. Kramer, and G. Schierhdeit. Phys.C11:315, 1981.

[144] W.T. Giele and E. W. N. GlovePhys. Rey.D46:1980-2010, 1992.

[145] S. Catani and M. H. SeymouXucl. Phys.B485:291-419, 1997. Erratum: B510, 503, 1997.

143



[146] G. Kramer and B. Lampe&Z. Phys, C34:497, 1987. Erratum: C42, 504, 1989.
[147] T. Matsuura and W. L. van Neerven. Phys, C38:623, 1988.

[148] T. Matsuura, S. C. van der Marck, and W. L. van Neenhucl. Phys.B319:570, 1989.
[149] S. CataniPhys. Lett.B427:161-171, 1998.

[150] A. Gehrmann-De Ridder, T. Gehrmann, and E. W. N. GloRéwys. Lett. B414:354—-361, 1997.
[151] D. de Florian and M. GrazzinPhys. Rev. Lett85:4678-4681, 2000.

[152] D. de Florian and M. GrazzinNucl. Phys.B616:247-285, 2001.

[153] E. A. Kuraeyv, L. N. Lipatov, and V. S. Fadisov. Phys. JETR14:443-450, 1976.
[154] V. Del Duca.Phys. Rey.D52:1527-1534, 1995.

[155] E. A. Kuraey, L. N. Lipatov, and V. S. Fadisov. Phys. JETR5:199-204, 1977.
[156] I. I. Balitsky and L. N. Lipatov.Sov. J. Nucl. Phys28:822-829, 1978.

[157] L. N. Lipatov. Sov. J. Nucl. Phys23:338-345, 1976.

[158] V. S. Fadin and L. N. LipatoWNucl. Phys.B406:259-292, 1993.

[159] L. N. Lipatov. Adv. Ser. Direct. High Energy Phy%, 1989.

[160] V. Del Duca and E. W. N. GlovedHEP, 10:035, 2001.

[161] V. S. Fadin, M. I. Kotsky, and R. Fioré&hys. Lett.B359:181-188, 1995.

[162] V. S. Fadin, R. Fiore, and M. I. Kotskfhys. Lett.B387:593-602, 1996.

[163] V. Fadin, R. Fiore, and A. QuartarolBhys. Rey.D53:2729-2741, 1996.

[164] J. Blumlein, V. Ravindran, and W. L. van Neervédthys. Rey.D58:091502, 1998.
[165] S. MandelstamPhys. Rey.137:B949, 1965.

[166] A.V.Bogdan, V. Del Duca, V. S. Fadin, and E. W. N. Glovieep-ph/0201240
[167] V. S. Fadin and V. E. Sherma#h. Eksp. Teor. Fiz72:1640-1658, 1977.

[168] M.L. Gell-Mann, M.and Goldberger, F.E. Low, E. Marx, and F. Zachariaséthys. Rey.
133:B145, 1964.

[169] B. M. McCoy and T. T. WuPhys. Rey.D13:484-507, 1976.

[170] V. S. Fadin and R. Fioré?hys. Rey.D64:114012, 2001.

[171] C. Balazs, J. Huston, and I. PuljaRhys. Rey.D63:014021, 2001.

[172] Y.L. Dokshitzer, D. Diakonov, and S. |. TroiaRhys. Rept.58:269, 1980.
[173] C. T. H. Davies and W.J. StirlindNucl. Phys.B244:337, 1984.

[174] J.C. Collins, D.E. Soper, and G. Stermé&tucl. Phys.B250:199, 1985.
[175] S. Catani, D. de Florian, and M. Grazziiucl. Phys.B596:299, 2001.

144



[176] J. Kodaira and L. Trentadu®hys. Lett.112B:66, 1982.

[177] S. Catani, E. D’Emilio, and L. TrentaduBhys. Lett.B211:335, 1988.

[178] A. Vogt. Phys. Lett.B497:228, 2001.

[179] C. Balazs and C. P. YuaRhys. Rey.D56:5558, 1997.

[180] A. Kulesza and W.J. Stirlingzur. Phys. J.C20:349, 2001.

[181] D. de Florian, M. Grazzini, and Z. KunsZthys. Rev. Le{t82:5209, 1999.

[182] S. DawsonNucl. Phys.B359:283, 1991.

[183] A. Djouadi, M. Spira, and P. M. ZerwaRhys. Lett.B264:440, 1991.

[184] M. Spira, A. Djouadi, D. Graudenz, and P. M. Zerwhsicl. Phys.B453:17, 1995.
[185] S. Catani, D. de Florian, and M. GrazzidHEP, 01:015, 2002.

[186] S. Catani, M.L. Mangano, P. Nason, and L. Trentad\iecl. Phys,.B478:273, 1996.
[187] M. Kramer, E. Laenen, and M. Spirblucl. Phys.B511:523, 1998.

[188] A.D. Martin, R. G. Roberts, W.J. Stirling, and R. S. Thorker. Phys. J.C18:117, 2000.
[189] E. Laenen, G. Sterman, and W. VogelsaRpys. Rey.D63:114018, 2001.

[190] H. Contopanagos and G. Sterm&tucl. Phys.B419:77, 1994.

[191] B. R. WebberPhys. Lett.B339:148, 1994.

[192] G.P. Korchemsky and G. Stermaxucl. Phys.B437:415, 1995.

[193] J.C. Collins and D.E. SopeXucl. Phys.B193:381, 1981.

[194] A Kulesza, G. Sterman, and W. Vogelsang. hep-ph/0202251.

[195] E. Laenen, G. Sterman, and W. VogelsaRbys. Rev. Lett84:4296, 2000.

[196] T. Affolder (CDF Collab.).Phys. Rev. Lett84:845, 2000.

[197] S. Tafat.JHEP, 05:004, 2001.

[198] J.-W. Qiu and X.-F. Zhang?hys. Rev. Lett86:2724, 2001.

[199] J.C. Collins, D.E. Soper, and G. Stermé&tucl. Phys.B308:833, 1988.

[200] E.L. Berger et al. Summary of working group on QCD and strong interactions. To appear in the
proceedings of APS / DPF / DPB Summer Study on the Future of Particle Physics (Snowmass
2001), Snowmass, Colorado, 30 Jun - 21 Jul 2001.

[201] N. Kidonakis and G. Stermamucl. Phys.B505:321, 1997.
[202] N. Kidonakis and G. Stermaihys. Lett.B387:867, 1996.
[203] E. Laenen and S. MochPhys. Rey.D59:034027, 1999.
[204] N. Kidonakis.Int. J. Mod. Phys.A15:1245, 2000.

145



[205] N. Kidonakis.Phys. Rey.D64:014009, 2001.

[206] S. Kretzer, D. Mason, and F. Olness. hep-ph/0112191.

[207] R. Meng, F.I. Olness, and D.E. SopPhys. Rey.D54:1919-1935, 1996.
[208] P. M. Nadolsky, D. R. Stump, and C. P. Yudhys. Rey.D64:114011, 2001.
[209] P. Nadolsky, D. R. Stump, and C. P. Yudhys. Rey.D61:014003, 2000.
[210] M.A.G. Aivazis, J.C. Collins, F.I. Olness, and W.-K. TuriRhys. Rey.D50:3102, 1994.
[211] J.C. Collins.Phys. Rey.D58:094002, 1998.

[212] B. Mele and P. NasorRhys. Lett.B245:635, 1990.

[213] B. Mele and P. NasorNucl. Phys.B361:626, 1991.

[214] Yu.L. Dokshitzer, V.A. Khoze, and S.I. TroiaRhys. Rey.D53:89, 1996.
[215] M. Cacciari and M. GrecadNucl. Phys.B421:530, 1994.

[216] M. Cacciari and M. GrecZ. Phys, C69:459, 1996.

[217] M. Cacciari et alNucl. Phys.B466:173, 1996.

[218] M. Cacciari, M. Greco, and P. NasaiHEP, 05:007, 1998.

[219] M. Cacciari, S. Frixione, and P. NasaiHEP, 03:006, 2001.

[220] M. Cacciari and S. CatanNucl. Phys.B617:253, 2001.

[221] P. Nason et al. hep-ph/0003142.

[222] M. Cacciari, M. Greco, S. Ria and A. Tanzini.Phys. Rey.D55:2736, 1997.
[223] M. Cacciari and M. GrecdP?hys. Rey.D55:7134, 1997.

[224] A. Heister et alPhys. Lett.B512:30, 2001.

[225] V.G. Kartvelishvili, A.K. Likhoded, and V.A. Petrohys. Lett.B78:615, 1978.
[226] R.L. Jaffe and L. RandalNucl. Phys.B412:79, 1994.

[227] P. Nason and B.R. Webbd?hys. Lett.B395:355, 1997.

[228] M. Beneke and V. M. BraurNucl. Phys.B454:253, 1995.

[229] G. StermanNucl. Phys.B281:310, 1987.

[230] G. Sterman and W. Vogelsang. hep-ph/9910371. 1999.

[231] E. Gardi.Nucl. Phys.B622:365, 2002.

[232] L. Magnea.Nucl. Phys.B593:269, 2001.

[233] L. Magnea. hep-ph/0109168.

[234] S. Catani and L. TrentaduBlucl. Phys.B327:323, 1989.

[235] H. Contopanagos, E. Laenen, and G. Sterniarcl. Phys.B484:303, 1997.

146



[236] S. Catani, B.R. Webber, and G. MarchesNucl. Phys.B349:635, 1991.
[237] J.-W. Qiu and G. Stermamucl. Phys.B353:105, 1991.

[238] R. Akhoury, M. G. Sotiropoulos, and V.I. Zakhard®hys. Rey.D56:377, 1997.
[239] M. Beneke and V. M. BraurPhys. Lett.B348:513, 1995.

[240] P. Ball, M. Beneke, and V. M. Braumucl. Phys.B452:563, 1995.

[241] Y.L. Dokshitzer, G. Marchesini, and B. R. WebbBiucl. Phys.B469:93, 1996.

[242] G. P. Korchemsky. in proceedings of 28th international conference on high-energy physics, war-
saw, poland, july 1996. 1996.

[243] E. Gardi and G. GrunbergHEP, 11:016, 1999.

[244] E. Gardi and J. RathsmaNucl. Phys.B609:123, 2001.

[245] E. Gardi and J. Rathsman. hep-ph/0201019.

[246] E. Laenen, G. Oderda, and G. StermBhys. Lett.B438:173, 1998.

[247] N. Kidonakis, E. Laenen, S. Moch, and R. VoBhys. Rey.D64:114001, 2001.
[248] P. Nason, S. Dawson, and R.K. EllNucl. Phys.B303:607, 1988.

[249] W. Beenakker, H. Kuijf, W.L. van Neerven, and J. Smigthys. Rey.D40:54, 1989.

[250] W. Beenakker, W.L. van Neerven, R. Meng, G.A. Schuler, and J. Siiticl. Phys.B351:507,
1991.

[251] G. Oderda, N. Kidonakis, and G. Sterman. hep-ph/9906338.

[252] G. Sterman and W. Vogelsang. hep-ph/0002132.

[253] S. Forte. hep-ph/9910397.

[254] V. Chekelian. hep-ex/0107053.

[255] S. Chekanov et aEur. Phys. J.C21:443, 2001.

[256] C. Adloff et al. Eur. Phys. J.C21:33, 2001.

[257] R.D. Ball and S. FortePhys. Lett.B335:77, 1994.

[258] A. De Rujula et alPhys. Rey.D10:1649, 1974.

[259] S. Forte and R.D. BallActa Phys. PolonB26:2097, 1995.

[260] L. Mankiewicz, A. Saalfeld, and T. WeigPhys. Lett.B393:175, 1997.
[261] V. S. Fadin, E. A. Kuraeyv, and L. N. LipatoR?hys. Lett.B60:50, 1975.
[262] R.D. Ball and S. FortePhys. Lett.B351:313, 1995.

[263] R. K. Ellis, F. Hautmann, and B. R. Webb&hys. Lett.B348:582, 1995.
[264] G. Altarelliand G. ParisiNucl. Phys.B126:298, 1977.

147



[265] V. N. Gribov and L. N. LipatovYad. Fiz, 15:781, 1972.

[266] L.D. McLerran. hep-ph/0104285.

[267] R.D. Ball and S. FortePhys. Lett.B465:271, 1999.

[268] G. Altarelli, R.D. Ball, and S. ForteéNucl. Phys.B575:313, 2000.
[269] M. Ciafaloni, D. Colferai, and G. P. SalarRhys. Rey.D60:114036, 1999.
[270] R.D. Ball and S. FortePhys. Lett.B405:317, 1997.

[271] G. Altarelli, R.D. Ball, and S. ForteéNucl. Phys.B599:383, 2001.
[272] G. Altarelli, R.D. Ball, and S. ForteéNucl. Phys.B621:359, 2002.
[273] G. P. SalamJHEP, 07:019, 1998.

[274] R. D. Ball and R. K. EllisJHEP, 05:053, 2001.

[275] G.C. Blazey et al. hep-ex/0005012.

[276] S. Catani et al. hep-ph/0005114.

[277] S.D. Ellis, J. Huston, and M.dfinesmannin preparation

[278] J.E. Huth et al. Toward a standardization of jet definitions. Presented at Summer Study on High
Energy Physics, Reaearch Directions for the Decade, Snowmass, CO, Jun 25 - Jul 13, 1990.

[279] S.D. Ellis and D.E. SopePRhys. Rey.D48:3160-3166, 1993.

[280] S. Catani, Yu.L. Dokshitzer, and B.R. Webbehys. Lett.B285:291-299, 1992.

[281] S. Catani, Yu.L. Dokshitzer, M.H. Seymour, and B.R. Webbiercl. Phys.B406:187-224,1993.
[282] S.D. Ellis, Z. Kunszt, and D.E. Sopdthys. Rev. Lett69:3615-3618, 1992.

[283] S.D. Ellis. hep-ph/9306280.

[284] B. Abbott, M. Bhattacharjee, D. Elvira, F. Nang, and H. Weerts. FERMILAB-PUB-97-242-E.
[285] M.H. SeymourNucl. Phys.B513:269-300, 1998.

[286] G. Marchesini et alComput. Phys. Commui&7:465-508, 1992.

[287] G. Corcella et alJHEP, 01:010, 2001.

[288] G. Corcella et al. hep-ph/9912396.

[289] F. Abe et al.Phys. Rey.D45:1448-1458, 1992.

[290] V.M. Abazov et al. hep-ex/0106032.

[291] S.D. Ellis, Z. Kunszt, and D.E. Sopdthys. Rev. Lett69:1496-1499, 1992.

[292] S.D. Ellis, Z. Kunszt, and D.E. Sopd?hys. Rev. Lett64:2121, 1990.

[293] S.D. Ellis, Z. Kunszt, and D.E. Sopdthys. Rey.D40:2188, 1989.

[294] S.D. Ellis, Z. Kunszt, and D.E. Sopd?hys. Rev. Lett62:726, 1989.

148



[295] Torbjorn SjostrandComput. Phys. Commuyr82:74-90, 1994,

[296] T. Binoth, J. P. Guillet, E. Pilon, and M. WerleBur. Phys. J.C16:311-330, 2000.

[297] ATLAS collaboration. ATLAS Technical Proposal. CERN-LHCC-94-43.

[298] ATLAS collaboration. ATLAS Detector and Physics Performance TDR. CERN-LHCC-99-14.
[299] CMS collaboration. CMS Technical Proposal. CERN-LHCC-94-38.

[300] CMS collaboration. CMS ECAL TDR. CERN-LHCC-97-33.

[301] J. G. Branson et al. The ATLAS and CMS Collaboratibap-ph/0110021

[302] S. Catanietal. Proc. CERN Workshop on Standard Model Physics (and more) at the LHC, Geneva
1999,ed. by G. Altarelliand M. Manganbep-ph/0005025

[303] T. Binoth. Talk given at 36th Rencontres de Moriond on QCD and Hadronic Interactions, Les
Arcs, France, 17-24 March 200kep-ph/0105149

[304] M. Gluck, E. Reya, and A. VogZ. Phys, C67:433-448, 1995.

[305] T. Binoth, J. P. Guillet, E. Pilon, and M. Werlehep-ph/0203064

[306] B. A. Kniehl, G. Kramer, and B. PotteNucl. Phys.B582:514-536, 2000.
[307] A. Pukhov et al. hep-ph/9908288.

[308] T. Ishikawa et al. Grace manual: Automatic generation of tree amplitudes in standard models:
Version 1.0. KEK-92-19.

[309] G. Corcella et alJHEP, 01:010, 2001.

[310] T. Stelzer and W. F. LondgComput. Phys. Commur&1:357-371, 1994.

[311] H. Baer, F. E. Paige, S. D. Protopopescu, and X. Tata. hep-ph/0001086.

[312] F. A. Berends, H. Kuijf, B. Tausk, and W. T. Gielducl. Phys.B357:32—64, 1991.
[313] T. Sjostrand et alComput. Phys. Commuyri.35:238-259, 2001.

[314] F. Caravaglios, M. L. Mangano, M. Moretti, and R. Pitthlucl. Phys.B539:215-232, 1999.
[315] M. L. Mangano, M. Moretti, and R. Pittau. hep-ph/0108069.

[316] A. S. Belyaev et al. hep-ph/0101232.

[317] T. Sjostrand, L. Lonnblad, and S. Mrenna. hep-ph/0108264.

[318] K. Cranmer et alhttp://pheno.physics.wisc.edu/Software/MadCUP/

[319] M.L. Mangano et alhttp://cern.ch/mim/alpgen/alpgen.html

[320] V. llyin. 2002. Presented at tiihysics and Detectors for a 90 to 800 GeV Linear Collider Second
Workshop of the Extended ECFA/DESY Siuadyt. Malo, France.

[321] B. P. Kersevan and E. Richter-Was. hep-ph/0201302.
[322] M. Dobbs. hep-ph/0111234.

149



[323] T. Sjostrand et al. i@ Physics at LEP vol. 3, edited by G. Altarelli, R. Kleiss and C. Verzegnassi,
CERN 89-08 (Geneva, 1989), p. 327.

[324] M. Dobbs and J. B. Hanse@omput. Phys. Commuyri.34:41-46, 2001.
[325] L. Garren, |. G. Knowles, T. Sjostrand, and T. Tripgeur. Phys. J.C15:205-207, 2000.

[326] H. Plothow-Besch. Comput. Phys. Commun. 75:396-416, 1993. refer to
http://consult.cern.ch/writeup/pdflib/ .

[327] B. Kersevan and E. Richter-Was. 2001. ATLAS Physics Communication, ATL-COM-PHYS-
2001-013.

[328] B. Kersevan and E. Richter-Was. 2001. ATLAS Physics Communication, ATL-COM-PHYS-
2001-014.

[329] B. Kersevan and E. Richter-Was. 2001. ATLAS Physics Communication, ATL-COM-PHYS-
2001-025.

[330] ATLAS Collaboration ATLAS Detector and Physics Performance TRRB99. CERN-LHCC/99-
15.

[331] G. Jarlskog and D. (editors) Rein. Proceedings of the large hadtlidecavorkshop,aachen.
1990. CERN 90-10/ECFA 90-133.

[332] B. van Eijk and R. Kleiss. Proceedings of the large hadrdliideo workshop aachen. page 184,
1990. CERN 90-10/ECFA 90-133.

[333] B. van Eijk et al.Nuc. Phys. B292:1, 1987.

[334] M. Della Negra et al. Proceedings of the large hadrdides workshop aachen. page 509, 1990.
CERN 90-10/ECFA 90-133.

[335] J. M. Campbell and R. K. ElliPhys. Rey.D62:114012, 2000.

[336] J. GunionPhys. Rev. Lett72:199, 1994.

[337] E. Richter-Was and M. Sapinski. 1998. ATLAS Internal Note, ATL-PHYS-98-132.

[338] M. L. Mangano, P. Nason, and G. Ridolfiucl. Phys.B405:507-535, 1993.

[339] G. Marchesini and B. R. WebbeXucl. Phys.B310:461, 1988.

[340] I. G. Knowles.Nucl. Phys.B310:571, 1988.

[341] M. L. Mangano, M. Moretti, and R. Pittau. http://mim.home.cern.ch/mim/wbb/wbb.html.
[342] F. Mazzucato. Studies on the standard model self-couplings. ATLAS Internal Note, in preparation.
[343] J. Hilgart, R. Kleiss, and F. Le Diberder. 75:191-218, 1993.

[344] F. A. Berends, R. Pittau, and R. KleigSomput. Phys. Commuyi5:437-452, 1995.

[345] F. A. Berends, C. G. Papadopoulos, and R. Pitzamput. Phys. Commuyrni.36:148-172, 2001.
[346] R. Kleiss and R. PittauComput. Phys. Commui83:141-146, 1994.

[347] G. P. Lepagel. Comput. Phys27:192, 1978.

150



[348] T. Ohl. hep-ph/9911437.

[349] S. Jadach, B. F. L. Ward, and Z. W&omput. Phys. Commuyri.30:260-325, 2000.
[350] H. U. Bengtsson and G. Ingelma@omput. Phys. Commuyrd4:251, 1985.

[351] G. Miu and T. Sjostrand?hys. Lett.B449:313—-320, 1999.

[352] G. Corcella and M. H. SeymouNucl. Phys.B565:227-244, 2000.

[353] Y. Chen, John C. Collins, and N. TkachuklEP, 06:015, 2001.

[354] J. C. Collins and F. HautmandHEP, 03:016, 2001.

[355] A. Djouadi et al. hep-ph/0002258.

[356] C. Balazs and C. P. YuaRhys. Lett.B478:192-198, 2000.

[357] G. T. Bodwin, S. J. Brodsky, and G. P. Lepage. Factorization of the drell-yan cross-section.
Presented at 20th Rencontre de Moriond, Les Arcs, France, Mar 10-17, 1985.

[358] M. Bengtsson, T. Sjostrand, and M. van Z§l. Phys, C32:67, 1986.
[359] V. N. Gribov and L. N. LipatovYad. Fiz, 15:1218-1237,1972.
[360] Yu. L. Dokshitzer.Sov. Phys. JETR16:641-653, 1977.

[361] R. Odorico.Nucl. Phys.B172:157, 1980.

[362] R.K. Ellis, W.J. Stirling, and B.R. Webber. Qcd and collider physics; monogr. part. phys. nucl.
phys. cosmol. (1996).

[363] T. SjostrandPhys. Lett.B157:321, 1985.

[364] G. Marchesini and B. R. WebbeXucl. Phys.B238:1, 1984.

[365] Y. L. Dokshitzer, D. Diakonov, and S. I. TroiaRhys. Lett.B79:269-272, 1978.
[366] G. Parisi and R. Petronzi®lucl. Phys.B154:427, 1979.

[367] S. D. Ellis, N. Fleishon, and W. J. Stirlinghys. Rey.D24:1386, 1981.

[368] J. C. Collins and D. E. Sopelhys. Rev. Lett48:655, 1982.

[369] G. Altarelli, R. K. Ellis, M. Greco, and G. MartinellNucl. Phys.B246:12, 1984.
[370] G. Altarelli, R. K. Ellis, and G. MartinelliZ. Phys, C27:617, 1985.

[371] P. B. Arnold and R. P. KauffmarNucl. Phys.B349:381-413, 1991.

[372] R. K. Ellisand S. VeseliNucl. Phys.B511:649-669, 1998.

[373] T. Affolder et al. FERMILAB-PUB-01/211-E (to appear in Phys. Rev. D).

[374] R. Field (for the CDF Collaboration). The underlying event in large transverse momentum charged
jets. presented at DPF2000, Columbus, OH, August 11, 2000.

[375] V. Tano (for the CDF Collaboration. The underlying event in jet and minimum bias events. pre-
sented at ISMD2001, Datong, China, Sept. 2001.

151



[376] F. E. Paige and S. D. Protopopescu. Isajet 5.20: A monte carlo event generator for p p and anti-p
p interactions. Invited talk given at Workshop on Observable Standard Model Physics at the SSC:
Monte Carlo Simulation ad Detector Capabilities, Los Angeles, CA, Jan 15-24, 1986.

[377] F. Abe et al.Phys. Rey.D41:2330, 1990.
[378] J. PumplinPhys. Rey.D57:5787-5792, 1998.
[379] J. M. Butterworth, J. R. Forshaw, and M. H. SeymalurPhys, C72:637-646, 1996.

[380] J. M. Butterworth. Talk presented by Jon Butterworth at Snowmass 2001.

152



