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Abstract

We apply heavy-quark e�ective theory (HQET) to separate long- and short-

distance e�ects of heavy quarks in lattice gauge theory. In this paper we focus

on 
avor-changing currents that mediate transitions from one heavy 
avor

to another. We stress di�erences in the formalism for heavy-light currents,

which are discussed in a companion paper, showing how HQET provides a

systematic matching procedure. We obtain one-loop results for the matching

factors of lattice currents, needed for heavy-quark phenomenology, such as the

calculation of zero-recoil form factors for the semileptonic decays B ! D(�)l�.

Results for the Brodsky-Lepage-Mackenzie scale q� are also given.
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I. INTRODUCTION

This paper applies heavy-quark e�ective theory (HQET) to study the renormalization
in lattice gauge theory of currents containing heavy quarks. It is a sequel to our papers on
power corrections [1] and on radiative corrections to heavy-light currents [2]. Here we treat
the case where one heavy quark 
avor decays to another. To make contact with heavy-
quark phenomenology, we denote the two 
avors by the labels b and c. In the description
of lattice gauge theory with HQET, discretization e�ects of the heavy quarks are absorbed
into the short-distance coeÆcients of the e�ective Lagrangian and e�ective currents. The
key di�erence between this work and Ref. [2] is that now, with two heavy 
avors, HQET is
used to describe both heavy quarks. Thus, the short-distance coeÆcients are functions of
mba and mca, where mb and mc are the heavy quark masses, and a is the lattice spacing.

Heavy-heavy currents are needed to calculate the zero-recoil form factors of the semi-
leptonic decays B ! Dl� and B ! D�l�, as well as the change in the form factors away from
zero recoil. These decays are of great phenomenological interest, because with reliable lattice
calculations of B ! D(�) transitions one can make a model-independent determination of
the element Vcb of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. For further background
on the impact of lattice matrix elements on CKM phenomenology see, for example, Refs. [3].

The application of HQET to lattice gauge theory began with the consideration of
power corrections [1], building on the demonstration [4] that Wilson's formulation of lattice
fermions [5] have a well-de�ned heavy quark limit. In particular, the Isgur-Wise heavy quark
symmetries [6] emerge whenever the heavy-quark mass mh � �QCD, even if mh � a�1. (The
label h denotes a generic heavy 
avor.) Because Wilson fermions have the the same sym-
metries and �elds as continuum heavy quarks, on-shell lattice correlation functions can be
described with HQET. This point of view is sometimes called the \non-relativistic interpre-
tation" of lattice QCD [4].

In describing either lattice gauge theory or continuumQCD with HQET, physics at short
distances is lumped into short-distance coeÆcients. Several short distances|two inverse
heavy quark masses and (on the lattice) the lattice spacing|arise in the decay of one heavy

avor to another. The coeÆcients depend not only on mba and mca, but also on other
\irrelevant" parameters of the lattice action and currents. By adjusting these parameters
of the action and currents, lattice gauge theory can be tuned, term by term, to the heavy-
quark expansion of continuum QCD [4,1,2]. In this adjustment, details of HQET, such
as its renormalization scheme, drop out. Matching with HQET is, thus, an intermediate
conceptual step that explains how to match lattice gauge theory to QCD when mha 6� 1. It
provides an attractive extension of more familiar matching procedures, such as those based
on the Symanzik e�ective �eld theory [7{10], which usually assume mha� 1.

In addition to developing the formalism, which holds to all orders in perturbation theory,
we compute the one-loop terms of the matching coeÆcients of the leading dimension vector
and axial vector currents. We present compact expressions of the integrands of the momen-
tum integration, for the Fermilab action and currents [4]. We also present numerical results
for the Sheikholeslami-Wohlert (SW) [11] and Wilson [5] actions, which are the special cases
most often used in the (non-relativistic interpretation of the) Fermilab heavy-quark method.
We include the so-called rotation terms [12,4] in the currents, which are needed for tree-
level matching at dimension four. It is also possible to obtain most of the normalization
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non-perturbatively [13{15], and we give separately the residual short-distance correction.
Our perturbative results have been used in the calculation of the zero-recoil form factor

for B ! D�l� [14] and, indirectly, in the calculation for form factors for B ! �l� [15].
One-loop results without the rotation were given in a preliminary report of this work [16],
and used in the calculation of the zero-recoil form factors for B ! Dl� [13].

This paper is organized along the lines Ref. [2]. Section II discusses how to use HQET
to separate long- and short-distance physics with (continuum) e�ective �eld theories. In
particular, we obtain a de�nition of the matching factors of the heavy-heavy vector and
axial vector currents. Section III introduces a speci�c de�nition of lattice currents suited
to improvement in the HQET matching procedure; these currents generalize those used
recently for B ! D(�) matrix elements [13,14]. In Sec. IV we present one-loop results
for the matching factors, including the scale q� in the Brodsky-Lepage-Mackenzie (BLM)
scale-setting prescription [17,18]. Some concluding remarks are made in Sec. V. Three
appendices contain details of the one-loop calculation, including an outline of a method to
obtain compact expressions, and explicit results for the one-loop Feynman integrands for
the vertex functions with the Fermilab action.

Instead of printing tables of the numerical results in Sec. IV, we are making a suite of
programs freely available [19]. This suite includes programs for the heavy-light currents
treated in our companion paper [2].

II. MATCHING WITH HQET

In our companion paper [2] we reviewed how the standard Symanzik description of cuto�
e�ects breaks down when mha 6� 1. It is worth re-emphasizing that it is the description

that breaks down|particularly the Taylor series of short-distance coeÆcients in powers of
mha. Lattice gauge theory remains well-de�ned for all mha, but one needs other tools to
understand how to relate lattice observables to continuum QCD. The obvious alternatives
are the e�ective �eld theories HQET [20{24] and NRQCD [25,26], which exploit the simpler
dynamics of systems with one or more heavy quarks. The simpler dynamics also emerge in
lattice gauge theory with massive fermions, so the e�ective theories also can be re-applied
to understand lattice observables [1,2,4].

In this section we show, in the case of heavy-heavy currents, how to use HQET to match
lattice gauge theory to continuumQCD. We �rst recall the HQET description of heavy-heavy
currents in continuum QCD, paralleling the discussion in Ref. [2]. We then explain what
changes are needed to describe lattice gauge theory with heavy fermions. We focus on HQET
because of the phenomenological importance of B ! D(�) transitions; for quarkonium the
logic could be repeated with NRQCD velocity-counting rules [25,26]. Unlike the standard
Symanzik program [7{10], the HQET approach works even in the region where mha is no
longer small. Like the usual HQET, however, it requires (p is a typical momentum)

mh � p; �QCD; (2.1)

but once this condition holds (and pa� 1), our formalism provides a systematic description
of lattice observables for all mha, h = b, c.
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The conventions for HQET are the same as those given Sec. III of Ref. [1]. Each HQET
quark �eld carries a velocity label. For the time being we use two di�erent velocities, v
and v0, for the two 
avors. The velocities can be chosen somewhat arbitrarily, but HQET
is a good description of QCD if each is close to the velocity of the hadron containing the
heavy quark.1 The fourth Euclidean component v4 = iv0, so in the rest frame v = (i;0),
and similarly for v0. The metric is taken to be diag(�1; 1; 1; 1), with the upper (lower) sign
for Euclidean (Minkowski) spacetime. In either case, v2 = v02 = �1. We denote the two
HQET �elds as �cv0 and bv. When the 
avor of quark is unimportant, we write formulas with
the more generic symbol hv. The HQET �eld hv satis�es the constraint

1
2
(1 � i=v)hv = hv,

or

=vbv = ibv; �cv0 =v
0 = i�cv0: (2.2)

Physically this constraint means that only quarks, but not anti-quarks, are described. The
tensor ��� = Æ�� + v�v� projects onto components orthogonal to v. For a vector p, the
component orthogonal to v is p�? = ��� p

� = p� + v�v � p. In the rest frame, these are the
spatial components. Similarly, �0�� = Æ�� + v0�v0�, and p

�
?0 = �0��p

� .
HQET describes the dynamics of heavy-light bound states with an e�ective Lagrangian

built from cv0 and bv. For each 
avor one writes

LQCD = ��q(=D +m)q
:
= LHQET; (2.3)

where the symbol
:
= means \has the same on-shell matrix elements as". The HQET La-

grangian consists of a series of sets of terms

LHQET = L(0) + L(1) + L(2) + � � � ; (2.4)

where L(s) consists of all operators of dimension s + 4 built out of �hv and hv (and gluons
and light quarks). The ultraviolet regulator and renormalization scheme of the two sides of
Eq. (2.3) need not be the same. For the aims of this paper it is enough to consider the �rst
two terms, L(0) and L(1), but the generalization to higher dimension should be clear.

The leading, dimension-four term is

L(0) = �hv(iv �D �mh)hv; (2.5)

where mh is the mass of 
avor h. L(0) is a good starting point for the heavy-quark expan-
sion, which treats the higher-dimension operators as small. The mass term in L(0) is usually
omitted, because it obscures the heavy-quark 
avor symmetry (though only slightly [1]). By
heavy-quark symmetry, it has an e�ect neither on bound-state wave functions nor, conse-
quently, on matrix elements. It does a�ect the mass spectrum, but only additively.

When the mass term is included, higher-dimension operators are constructed with D� =
D� � iMv� and D0 = D� � iMv0. Here M selects the mass of 
avor h: Mhv = mhhv.

1In NRQCD, the relative velocity between the heavy quark and heavy anti-quark of quarkonium

should not be confused with the velocities v and v0 introduced here. Note that it is also possible

to formulate NRQCD with a total velocity label like v [27,28].
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To describe on-shell matrix elements one may omit operators that vanish by the equations

of motion, �iv � Dbv = 0 and �cv0iv
0 �
 
D0 = 0, In practice, higher dimension operators are

constructed with D�
? = D�

? (or, for velocity v0, D�
?0 ) and [D�;D� ] = [D�;D� ] = F ��. The

dimension-�ve terms in the Lagrangian are

L(1) = C2O2 + CBOB; (2.6)

where C2 and CB are short-distance coeÆcients, and

O2 = �hvD
2
?hv; (2.7)

OB = �hvs��B
��hv; (2.8)

with s�� = �i���=2 and B�� = ����
�
�F

�� . In operators with two HQET �elds (for 
avor-

changing currents, say)
 
D0 and D appear together.

In Eq. (2.5) one should think of the quark mass mh as a short-distance coeÆcient. By
reparametrization invariance [29] and Lorentz invariance of (continuum) QCD, the same
mass appears in the short-distance coeÆcient of the kinetic energy C2O2, namely,

C2 =
1

2mh
: (2.9)

If the operators of HQET are renormalized with a minimal subtraction in dimensional reg-
ularization, then mh is the (perturbative) pole mass. The chromomagnetic operator OB
depends on the renormalization point � of HQET, and that dependence is canceled by

CB(�) =
zB(�)

2mh
: (2.10)

The description of 
avor-changing currents proceeds along similar lines. Let

V� = �ci
�b (2.11)

be the 
avor-changing vector current, where �c and b without the velocity subscripts are QCD
�elds obeying the Dirac equation. In HQET V� is described by

V� :
= �CVkv

��cv0bv + �CV?�cv0i

�
?bv + �CVv0

v0�? �cv0bv �
14X
i=1

�BV i
�Q�
V i + � � � ; (2.12)

where �cv0 and bv are HQET �elds, which satisfy Eq. (2.4) and whose dynamics are given
by LHQET. The fourteen dimension-four operators are

�Q�
V 1 = �v

��cv0 =D?bv; (2.13)
�Q�
V 2 = �cv0i


�
?=D?bv; (2.14)

�Q�
V 3 = �cv0iD

�
?bv; (2.15)

�Q�
V 4 = +v��cv0 =

 
D?0bv; (2.16)

�Q�
V 5 = �cv0 =

 
D?0i


�
?0bv; (2.17)
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�Q�
V 6 = �cv0i

 
D�
?0bv; (2.18)

�Q�
V 7 = �v

0�
? �cv0 =D?bv; (2.19)

�Q�
V 8 = �v

0�
? �cv0 =

 
D?0bv; (2.20)

�Q�
V 9 = �v

��cv0iv
0 �D?bv; (2.21)

�Q�
V 10 = �cv0i


�
?iv

0 �D?bv; (2.22)

�Q�
V 11 = �v

��cv0iv �
 
D?0bv; (2.23)

�Q�
V 12 = �cv0iv �

 
D?0i


�
?0bv; (2.24)

�Q�
V 13 = �v

0�
? �cv0iv

0 �D?bv; (2.25)

�Q�
V 14 = �v

0�
? �cv0iv �

 
D?0bv: (2.26)

Further dimension-four operators are omitted, because they are linear combinations of those
listed and others that vanish by the equations of motion. In developing the heavy-quark
expansion the appropriate equations of motion for the heavy quarks are (�iv � D)bv = 0 and

�cv0(iv0 �
 
D0) = 0, derived from the respective L(0).

The QCD axial vector current is

A� = �ci
�
5b; (2.27)

where �c and b are again Dirac �elds. A has an HQET description analogous to Eq. (2.12),

A� :
= �CA?�cv0i


�
?
5bv � �CAk

v��cv0
5bv � �CAv0
v0�? �cv0
5bv �

14X
i=1

�BAi
�Q�
Ai + � � � : (2.28)

By convention, each operator �Q�
Ai is obtained from �Q�

V i by replacing �cv0 with ��cv0
5.
The coeÆcients �CJ and �BJi and the operators �QJi play an analogous role to the coeÆ-

cients CJ and BJi and the operators QJi introduced in Ref. [2], but they are not the same.
The latter are de�ned in an e�ective theory using a Dirac �eld �q (without a velocity label)
to describe the light(er) quark, whereas the barred symbols are de�ned in a theory using an
HQET �eld �cv0 (with a velocity label) to describe the lighter (heavy) quark. The bars are
used here to emphasize the di�erence.

There are many fewer operators when v0 = v. One set of operators vanishes because
v0? ! v? = 0, namely, �Q�

J7, �Q
�
J8, �Q�

J13. �Q�
J14; another set vanishes because v

0 �D?; v �D?0 !
v � D? = 0, namely, �Q�

Jj , j � 9. A last set vanishes because P+(v)�P+(v) = 0, where �
stands for the full Dirac structure sandwiched by �cv and bv. In the end, one is left with only
v��cvbv, �Q�

V 2, �Q�
V 3, �Q�

V 5, and �Q�
V 6 for the vector current, and �cvi


�
?
5bv, �Q�

A1, and �Q�
A4 for

the axial vector current.
The coeÆcients of the HQET operators depend on the heavy-quark masses mb and mc

(to balance dimensions), as well as mc=mb and �=mb, where � is the renormalization scale.
At the two-loop level and beyond, dependence on light quark masses mq also appears. With
two velocities, the coeÆcients also depend on w = �v0 � v. Although they are not needed
below, it is instructive to give the coeÆcients of the dimension-three terms. At the tree level
�C [0]
Jk

= �C [0]
J?

= 1 and �C [0]
Jv0

= 0. Through one loop order, for v0 = v,
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�CVk = 1 + CF
g2(�)

16�2
3f(mc=mb); (2.29)

�CA? = 1 + CF
g2(�)

16�2
[3f(mc=mb)� 2] ; (2.30)

where

f(z) =
z + 1

z � 1
ln z � 2: (2.31)

The important properties of f(z) are f(1) = 0, f(1=z) = f(z). At this order, � dependence
appears only in the renormalized coupling g2(�). The \non-f" part of �CA? given here
assumes that the renormalized axial current satis�es the axial Ward identity [30]. At the
tree level, the coeÆcients of the dimension-four currents are

�B[0]
V 1 = �B[0]

V 2 =
1

2mb
= + �B [0]

A1 = + �B [0]
A2 (2.32)

�B[0]
V 4 = �B[0]

V 5 =
1

2mc
= � �B[0]

A4 = � �B[0]
A5 (2.33)

�B
[0]
Ji = 0; otherwise; (2.34)

but all become non-trivial when radiative corrections are included.
HQET provides a systematic way to separate the short distances 1=mc and 1=mb from the

long distance �QCD, as long as the condition (2.1) holds for both 
avors. HQET can also be
applied to lattice gauge theory with the same structure and logic, treating a as another short
distance. The strategy is viable as long as condition (2.1) holds and, of course, pa� 1. For
lattice NRQCD applied to heavy-light systems, HQET is just the corresponding Symanzik
e�ective �eld theory. HQET may also be applied to Wilson fermions, because they have the
correct particle content and heavy-quark symmetries as QCD [1]. Thus, for a lattice gauge
theory with either NRQCD or Wilson quarks

Llat
:
= LHQET: (2.35)

The e�ective Lagrangian LHQET has the same long-distance operators as in Eq. (2.3). The
lattice modi�es the short-distance behavior, so lattice artifacts of the heavy quarks should
be lumped into the HQET coeÆcients [1]. For example, in the dimension-four HQET La-
grangian L(0), one must replace mh with the lattice rest mass m1h.

Starting with L(3) one must introduce operators to describe lattice violations of rota-
tional invariance. An example is the dimension-seven operator O4 =

P
�
�hv(D

�
?)

4hv. Such
operators do not, of course, appear in the HQET description of continuum QCD, but they
do not upset the general framework. They can still be de�ned as insertions in a continuum-
regulated theory (analogously to operators like

P
� �q(D

�)4q in a Symanzik e�ective �eld
theory). Because the symmetry-breaking arises at short-distances, it is more useful to focus
on the operators' coeÆcients, noting that Clat4 6= 0, instead of C4 = 0 as for continuum QCD.

Returning to L(0) and L(1), the coeÆcient of the kinetic energy becomes

Clat2 =
1

2m2h
; (2.36)
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andm2h is called the kineticmass. If the HQET operators are de�ned by minimal subtraction
in dimensional regularization, then both m1h and m2h can be computed from the pole in the
perturbative quark propagator [33], and they are infrared �nite and gauge independent [34].
The lattice breaks Lorentz (or Euclidean) invariance, so reparametrization invariance no
longer requires m2h to equal m1h.

For the 
avor-changing currents, one forms bilinears of lattice fermions �elds with the
right quantum numbers. Any such lattice currents for b! c can be described by

V �
lat

:
= �C lat

Vk
v��cv0bv + �C lat

V?
�cv0i


�
?bv +

�C lat
Vv0
v0�? �cv0bv �

14X
i=1

�Blat
V i

�Q�
V i + � � � ; (2.37)

A�
lat

:
= �C lat

A?
�cv0i


�
?
5bv � �C lat

Ak
v��cv0
5bv � �C lat

Av0
v0�? �cv0
5bv �

14X
i=1

�B lat
Ai

�Q�
Ai + � � � : (2.38)

An explicit construction of V �
lat and A

�
lat through dimension 4 is given for Wilson fermions

in Sec. III, and for lattice NRQCD already in Ref. [32]. On the right-hand side the HQET
operators �QJi are the same as in Eqs. (2.12) and (2.28), but the short-distance coeÆcients
�C lat
Jk;?;v0

and �Blat
Ji are modi�ed. In particular, they depend on the lattice spacing a throughmba

or mca, and also on adjustable improvement parameters in V �
lat and A

�
lat. At and beyond the

dimension six, there are HQET operators to describe violations of rotational invariance in
the lattice currents, but, as above, they do not spoil the overall framework.

Since Eqs. (2.13){(2.26) give a complete set of dimension-four HQET currents, the coef-
�cients �C lat

Jk;J?
and �Blat

Ji contain short-distance e�ects from both heavy quarks. For HQET

operators of dimension s + 3, the corresponding coeÆcient must contain s powers of the
short distances m�1b , m�1c or a. Since they are functions of all ratios of short distances, it
is a matter of choice which dimensionful quantity is factored out. The key point is that,
even when applied to lattice gauge theory, the heavy-quark expansion is still a successive
approximation: higher terms in the expansion are suppressed by powers of �QCD, with the
dimensions balanced by the short distances.

Lattice artifacts from gluons and light quarks can be described by the Symanzik formal-
ism [7{10]. At some level the light quarks will in
uence the HQET coeÆcients of the heavy
quarks, and the heavy quarks will in
uence the Symanzik coeÆcients of the gluons and light
quarks. These are, however, details that do not obstruct the central idea of using e�ective
�eld theories to separate long- and short-distance physics.

The abstract ideas can be made more concrete by comparing the HQET descriptions of
continuum and lattice matrix elements. The continuum matrix element of v � V is

hDjv � VjBi = � �CVkhD
(0)
v0 j�cv0bvjB

(0)
v i �

X
i2Sk

�BV ihD
(0)
v0 jv � �QV ijB

(0)
v i

� C2c �CVk

Z
d4xhD(0)

v0 jT O2c(x)�cv0bvjB
(0)
v i

?

� CBc �CVk

Z
d4xhD(0)

v0 jT OBc(x)�cv0bvjB
(0)
v i?

� C2b �CVk

Z
d4xhD(0)

v0 jT �cv0bvO2b(x)jB
(0)
v i

?

� CBb �CVk

Z
d4xhD

(0)
v0 jT �cv0bvOBb(x)jB

(0)
v i? +O(�2=m2); (2.39)
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where the set Sk = f1; 4; 9; 11g, and B (D) is any b-
avored (charmed) hadronic state. (The
?-ed T product is de�ned in Ref. [1]; this detail is unimportant here.) On the left-hand side
the states are QCD eigenstates; on the right-hand side (with velocity subscripts) they are
the corresponding eigenstates of L(0), the leading HQET Lagrangian. The extra subscripts
on the coeÆcients and operators from L(1) denote 
avor. The corresponding lattice matrix
element is similar, but slightly di�erent:

hDjv � VlatjBi = � �C lat
Vk
hD

(0)
v0 j�cv0bvjB

(0)
v i �

X
i2Sk

�Blat
V ihD

(0)
v0 jv �

�QV ijB
(0)
v i

� Clat2c
�C lat
Vk

Z
d4xhD(0)

v0 jT O2c(x)�cv0bvjB
(0)
v i?

� ClatBc �C
lat
Vk

Z
d4xhD

(0)
v0 jT OBc(x)�cv0bvjB

(0)
v i

?

� Clat2b
�C lat
Vk

Z
d4xhD

(0)
v0 jT �cv0bvO2b(x)jB

(0)
v i

?

� ClatBb �C
lat
Vk

Z
d4xhD

(0)
v0 jT �cv0bvOBb(x)jB

(0)
v i

?

+ K��FC
lat
Vk

Z
d4xhD(0)

v0 jT �cv0bv�qi�Fq(x)jB
(0)
v i

? +O(�2a2b(ma)): (2.40)

Now the states on the left-hand side are lattice eigenstates. But on the right-hand side
the di�erences compared to Eq. (2.39) are all in the coeÆcients: except for the last matrix
element, they are, term by term, the same. The last T -product arise from the Symanzik
local e�ective Lagrangian for light quarks, cf. Ref. [2].

Similar formulas hold for matrix elements of V�
? and V �

lat?, and for the axial vector
current. If one multiplies the lattice matrix elements with

�ZJk =
�CJk

�C lat
Jk

; (2.41)

�ZJ? =
�CJ?

�C lat
J?

; (2.42)

and subtracts the lattice from the continuum equations, a simple picture of cuto� e�ects
emerges: lattice artifacts of the heavy quark are isolated into the mismatch of the short-
distance coeÆcients, namely,

ÆCi = Clati � Ci; (2.43)

Æ �BJi = �ZJi
�Blat
Ji � �BJi: (2.44)

In the lattice term of Æ �BJi, matching factors �ZJi appear to restore a canonical normalization
to the lattice currents. One has �ZJi = �ZJk for i 2 Sk, and �ZJi = �ZJ? for i 2 S? =
f2; 3; 5; 6; 7; 8; 10; 12; 13; 14g.

The matching factors �ZJk and �ZJ? play the following role, sketched in Fig. 1. The
denominator converts a lattice-regulated scheme to a renormalized HQET scheme, and the
numerator converts the latter to a renormalized (continuum) QCD scheme. As long as the
same HQET scheme is used, HQET drops out of the calculation of �ZJk and

�ZJ?. Moreover,
changes in continuum renormalization conventions modify only the numerator, and changes
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lattice

?

HH
HH

HH
HY

HQET
��������QCD

�C= �C lat

�C lat

�C

FIG. 1. Diagram illustrating how the matching factors �Clat, �C, and �Z = �C= �Clat match lattice

gauge theory and QCD to HQET, and to each other.

in the lattice action or currents modify only the denominator. Thus, the matching factors �ZJk

and �ZJ? play the same role as the factors ZJk and ZJ? in HQET matching for heavy-light
currents [2].

When HQET matching is applied to Wilson quarks, it is possible that the lighter heavy
quark satis�es mca � 1. Then one could equally well apply the heavy-\light" formalism
of Ref. [2], describing the charmed quark �a la Symanzik with a Dirac �eld. This regime
is interesting because in practice one often has mca < 1

3 and �=2mca < 1
3 , so both the

Symanzik and the HQET descriptions are reasonably accurate.
By comparing the two matching procedures, one can derive relations between the two

sets of short-distance coeÆcients.2 To proceed, one must introduce coeÆcients to relate the
heavy-\light" theory with the Dirac �eld �c to the heavy-\heavy" theory with the HQET
�eld �cv0:

�cbv
:
= �CVk�cv0bv +

X
i2Sk

�BV i v � �QV i + � � � ; (2.45)

�ci
�?bv
:
= �CV?�cv0i


�
?bv + �CVv0

v0�? �cv0bv �
X
i2S?

�BV i �
�
�
�Q�
V i + � � � ; (2.46)

QV i
:
=

14X
j=1

�CV ij
�QV j + � � � ; i = 1; 6; (2.47)

and similarly for the axial vector current. The relation between the three sets of short-
distance coeÆcients| �C and �B, C and B, and �C and �B|is sketched in Fig. 2. By substi-
tuting Eqs. (2.45){(2.47) into Eq. (2.40) of Ref. [2] and comparing to the above Eq. (2.37),
one �nds (when mca� 1)

�C lat
Jk

= C lat
Jk

�CJk (2.48)

�C lat
J?

= C lat
J?

�CJ? (2.49)

�C lat
Jv0

= C lat
J?

�CJv0
(2.50)

2One must take the same lattice currents. The improved currents of Ref. [2] and Sec. III are

nearly the same.
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(a)

lattice
� c� b

S
S
S
S
S
Sw
�c�bv
�Q

�
�
�
�
�
�/

�cv0�bv
Q

�

C lat, Blat�C lat, �Blat

�C, �B (b)

QCD
�c�b

S
S
S
S
S
Sw
�c�bv
�Q

�
�
�
�
�
�/

�cv0�bv
Q

�

C, B�C, �B

�C, �B

FIG. 2. Diagrams illustrating how the matching factors �C, C, and �C match the underlying

theory to e�ective theories where the lighter quark is described either with a Dirac �eld �c or an

HQET �eld �cv0 (note subscript in HQET case); for (a) lattice gauge theory, (b) continuum QCD.

�Blat
Jj =

6X
i=1

B lat
Ji

�CJij + C lat
Jk

�BJj; j 2 Sk; (2.51)

�Blat
Jj =

6X
i=1

B lat
Ji

�CJij + C lat
J?

�BJj ; j 2 S?: (2.52)

The same relations hold for the coeÆcients describing continuum QCD, i.e., dropping the
superscript \lat". The same coeÆcients �C and �B appear, because no lattice �elds appear in
Eqs. (2.45){(2.47). In Fig. 2, the bottom sides of the triangles are oblivious to the underlying
theory, be it lattice gauge theory or continuum QCD. Thus, one can eliminate the �CJ from
Eqs. (2.48){(2.50) in favor of �C=C, yielding relations between the matching factors, when
mca� 1,

�ZJk = ZJk ; (2.53)

�ZJ? = ZJ? ; (2.54)
�ZJ?

�C lat
Jv0

= �CJv0
: (2.55)

In particular, Eqs. (2.53) and (2.54) show that the heavy-heavymatching factors �ZJk and
�ZJ?

are a natural extension, into the regime mca 6� 1, of the heavy-light matching factors ZJk

and ZJ? . Consequently, in the following sections we shall drop the distinction and omit the
bar for the heavy-heavy matching factors.

One also �nds relations among the coeÆcients of dimension-four currents:

�ZJk
�B lat
Jj �

�BJj =
6X

i=1

(ZJkB
lat
Ji �BJi) �CJij; j 2 Sk; (2.56)

�ZJ?
�B lat
Jj � �BJj =

6X
i=1

(ZJ?B
lat
Ji �BJi) �CJij; j 2 S?: (2.57)

The terms on the right-hand sides are proportional to mismatches in the heavy-light HQET.
Each ZJB

lat
Ji � BJi is suppressed by a power of a, multiplied by a function of mba. Similar

constraints can be derived for higher-dimension coeÆcients. Following this reasoning for the
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whole tower of higher dimension operators leads to the conclusion that, when mca� 1, the
mismatch of the heavy-\heavy" currents reduces to that of the heavy-\light" case. In this
way, lattice gauge theory reproduces the entire 1=mc expansion, apart from deviations that
are suppressed by powers of the other short distances, a and 1=mb.

Deep in the a ! 0 limit, where mca � mba � 1 one can relate the short-distance
coeÆcients of the HQET formalism to those in the Symanzik formalism.3 For simplicity
let us take v = v0. For the [axial] vector current, one inserts Eq. (2.12) [Eq. (2.28)] into
Eq. (2.5) [Eq. (2.6)] of Ref. [2], neglects terms of order m2a2, and compares with Eq. (2.37)
[Eq. (2.38)]. One also must match the tensor bilinear to HQET at the dimension-three level,

�ci���b
:
= �CT�

�
��

�
��cvi�

��bv + � � � ; (2.58)

where one introduces another short-distance coeÆcient �CT . At the tree level, �C
[0]
T = 1. The

pseudoscalar bilinear is described by HQET operators of dimension four and higher, because
P+(v)
5P+(v) = 0. After carrying out these steps, one �nds that

�ZVk = ZV ; (2.59)

�ZVk
�Blat
V i = �BV i + aZVKV

�CT ; i = 2; 6; (2.60)

�ZVk
�Blat
V i = �BV 3 � aZVKV

�CT ; i = 3; 5; (2.61)

from matching the vector current (with ZV and KV as de�ned in Ref. [2]), and

�ZA? = ZA; (2.62)
�ZA?

�B lat
Ai = �BAi +O(a2); i = 1; 4; (2.63)

from matching the axial vector current (with ZA as de�ned in Ref. [2]). Consequently, one
sees

lim
a!0

�ZJi
�Blat
Ji = �BJi; (2.64)

and the limit is accelerated for standard O(a) improvement. Similar relations apply for the
short-distance coeÆcients of HQET currents of dimension �ve and higher.

Let us summarize the main results of this section. We have given a description of heavy-
heavy lattice currents in HQET, which parallels the description of continuum QCD. The
parallel structure shows that cuto� e�ects are isolated into the mismatch of short-distance
coeÆcients for lattice gauge theory and continuumQCD, Eqs. (2.44) and (2.43). If the lattice
currents (and Lagrangian) have enough free parameters, one can reduce the mismatch and,
in this way, bring lattice calculations closer to continuum QCD, term by term in the heavy-
quark expansion. In the practical region for the charmed quark, mca �

1
3 , it is also worth

remarking that (for Wilson fermions) one could also apply the heavy-light formalism of our

3One must, of course, take the same lattice currents. The improved currents of Ref. [9] and of

Sec. III are not the same.
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companion paper [2]. Then one sees, extending Eqs. (2.56) and (2.57) to higher dimension,
how the whole heavy-quark expansion for a quark with mass mca < 1 is recovered.

The remainder of this paper pursues the program of HQET matching in perturbation
theory. One-loop corrections to the rest mass m1 and the kinetic mass m2 have been con-
sidered already in Ref. [33]. We construct lattice currents suitable for matching through
dimension-�ve operators in the Lagrangian and dimension-four in the currents. Our heavy-
heavy lattice currents turn out to be nearly the same as our heavy-light lattice currents. We
then calculate the matching factors ZVk and ZA? at the one-loop level, which are needed to
�x the overall normalization of the heavy-light currents.

III. LATTICE ACTION AND CURRENTS

In this section our aim is to de�ne heavy-heavy currents with Wilson fermions that are
suited to the HQET matching formalism. Our construction is similar to that for heavy-light
currents [2]. The descriptive part of the HQET formalism applies as long as the lattice
theory has the right particle content and obeys the heavy-quark symmetries, as it does with
Wilson fermions. To use HQET systematically to improve lattice gauge theory, however, one
should make choices to ensure that ÆCi and Æ �BJi [cf. Eqs. (2.43) and (2.44)] remain bounded
in the in�nite-mass limit. For convenience we focus on the case when v0 = v. Then good
behavior is attained by mimicking the structure of Eqs. (2.13){(2.18), and free parameters
in the currents can be adjusted so that ÆCi and Æ �BJi (approximately) vanish. We show how
to do so in perturbation theory, obtaining �Blat

Ji at the tree level and, in Sec. IV, the matching
factors ZVk and ZA? at the one-loop level.

A suitable lattice Lagrangian was introduced in Ref. [4] and reviewed in the context of
HQET matching in our companion paper on heavy-light currents [2]. We will not repeat the
formulas here, but refer the reader to Ref. [2]. It is enough to recall that the Lagrangian has
several couplings|rs, �, cB and cE. The coupling rs is redundant, in the technical sense,
but the others can be tuned to match lattice gauge theory to continuum QCD; in this way
they become non-trivial functions of the heavy quark's bare mass m0a [4]. In particular, one
may de�ne the renormalized heavy quark mass by identifying C lat2 = C2, and one can adjust
cB so that ClatB = CB. (If one also requires m1 = m2, one can adjust both � and the bare
mass [4,35].)

The corresponding currents for transitions from one heavy fermion to another are de�ned
as follows. First de�ne a \rotated" �eld [12,4]

	q = [1 + ad1q
 �Dlat] q; (3.1)

where  q is the �eld in L0 of 
avor q (q = c, b), and Dlat is the symmetric covariant di�erence
operator. (The lattice Lagrangian L0 is given in Eq. (3.1) of Ref. [2].) The bilinears

V �
0 = �	ci


�	b; (3.2)

A�
0 = �	ci


�
5	b: (3.3)

have the correct quantum numbers, but not enough freedom to match at the dimension-four
level of HQET. Thus, these currents must be improved. We focus on matching with v0 = v,
so we take
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V �
lat = V �

0 �
X

i2f2;3;5;6g

bV iQ
�
V i; (3.4)

A�
lat = A�

0 �
X

i2f1;4g

bAiQ
�
Ai; (3.5)

where the bJi are adjustable, and the higher-dimension lattice operators are

Q�
V 2 =

� ci

�
? =D?lat b; (3.6)

Q�
V 3 = � ciD

�
?lat b; (3.7)

Q�
V 5 = � c=

 
D?lati


�
? b; (3.8)

Q�
V 6 = � ci

 
D�
?lat b; (3.9)

and

Q�
A1 = �v� � ci=v
5=D? lat b; (3.10)

Q�
A4 = +v� � c=

 
D?lati=v
5 b: (3.11)

Lattice quark �elds do not satisfy Eq. (2.2), so =v appears explicitly. The dimension-four
lattice operators Q�

Ji are the same as for heavy-light currents, but now only corrections
orthogonal (parallel) to v for the vector (axial vector) current are needed. An analogous
construction for lattice NRQCD has been given by Boyle and Davies [32], who found the
same pattern of dimension-four terms.

It is worth emphasizing the di�erence between Eq. (2.37), the corresponding equation
for heavy-light currents (Eq. (2.40) of Ref. [2]), and Eq. (3.4). Equation (2.37) is a general
HQET description of any heavy-heavy lattice current. Equation (3.4) is a de�nition of a
speci�c lattice current, namely the one used in this paper (and in calculations of B ! D(�)

transition matrix elements). In the same vein, the �QJi in Eqs. (2.13){(2.26) are HQET
operators, whereas the QJi in Eqs. (3.6){(3.11) are lattice operators. Correspondingly, the
coeÆcients �Blat

Ji are the output of a matching calculation: they depend on the bJi, which
must be adjusted to make Æ �BJi vanish. The di�erence between BJi and QJi (i = 1,. . . , 6)
from Ref. [2] on the one hand, and �BJi and �QJi (i = 1,. . . , 14) on the other, was discussed
above. In the former, the light(er) quark is described by a Dirac �eld; in the latter, the
lighter (heavy) quark is described by an HQET �eld.

The di�erence between the de�nition of the lattice currents and the description with
HQET can be illustrated by giving the matching coeÆcients at the tree level. A simple
calculation of the on-shell matrix elements hcjJ�

latjbi yields

�C
lat[0]
Vk

= e�(m
[0]
1q+m

[0]
1b
)a=2; (3.12)

�B
lat[0]
V 2 = e�(m

[0]
1q+m

[0]
1b
)a=2

 
1

2m[0]
3b

+ b
[0]
V 2

!
; (3.13)

�Blat[0]
V 5 = e�(m

[0]
1q+m

[0]
1b )a=2

 
1

2m
[0]
3c

+ b
[0]
V 5

!
; (3.14)

�Blat[0]
V i = e�(m

[0]
1q+m

[0]
1b )a=2b

[0]
V i; i = 3; 6; (3.15)

14



for the vector current, and

�C
lat[0]
A?

= e�(m
[0]
1q+m

[0]
1b
)a=2; (3.16)

�Blat[0]
A1 = +e�(m

[0]
1q+m

[0]
1b )a=2

 
1

2m
[0]
3b

+ b
[0]
A1

!
; (3.17)

�B
lat[0]
A4 = �e�(m

[0]
1q+m

[0]
1b
)a=2

 
1

2m[0]
3c

+ b
[0]
A4

!
; (3.18)

for the axial vector current. The exponentials here contain the tree-level rest mass

m
[0]
1ha = log(1 +m0ha); (3.19)

which enters through the wave-function normalization. The easiest way to derive these
results is to combine the Feynman rule for the current in Appendix A with the Feynman rules
for external lines in Appendix C of Ref. [4], and expand the matrix element hc(p0)jJ�

latjb(p)i
to �rst order in p and p0. The zeroth order yields the �C coeÆcients, and the �rst order the
�B coeÆcients with, for our lattice Lagrangian and currents,

1

2m
[0]
3ha

=
�(1 +m0ha)

m0ha(2 +m0ha)
� d1h (3.20)

for each 
avor h.
One should compare Eqs. (3.12){(3.18) with Eqs. (2.32){(2.34). The results for �C

lat[0]
Vk

and �C lat[0]
A?

, together with �C [0]
Vk

= �C [0]
A?

= 1, show that Z [0]
Vk

= Z
[0]
A?

= e(m
[0]
1c+m

[0]
1b
)a=2. [Recall, in

view of Eqs. (2.53) and (2.54), that we drop the bars from ZJ .] To obtain Æ �B[0]
Ji = 0, one

adjusts d1 and the bJi. The way to adjust d1, at the tree level, is to set m[0]
3 equal to the

(tree-level) heavy-quark mass. Since the rest mass plays only a trivial role in heavy-quark

physics, the appropriate (tree-level) matching condition is m[0]
3 = m

[0]
2 , which implies

d1 =
�(1 +m0a� �)

m0a(2 +m0a)
�

rs�

2(1 +m0a)
: (3.21)

If d1 is adjusted in this way, one can then take all b
[0]
Ji = 0.

Beyond the tree level, it is convenient to de�ne d1 so that spatial component of the
degenerate-mass vector current is correctly normalized. Then QV 2 and QV 5 would be su-
per
uous for equal mass, although for unequal masses both are still needed. For the axial
current QA1 and QA4 are required even for equal masses.

For equal-mass currents it is possible to compute ZV hh
k

nonperturbatively for all mha.

One may therefore prefer to write

ZJcb =
q
ZV cc

k
ZV bb

k
�Jcb (3.22)

and compute only the factor �Jcb in perturbation theory. This split is very useful in nu-
merical calculations of matrix elements [13{15]. The strong mass dependence of the ZJs
cancels, as do the contributions of tadpole diagrams: both enter through the self energy,
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which is common to all ZJ factors. Hence, the expansion coeÆcients for �J are expected to
be small, and, as a consequence, the uncertainty in �J from truncating perturbation theory
at �xed order is under better control than the uncertainty in the corresponding ZJ . The
one-loop calculation of Z [1]

V hh
k

is given in Sec. IVB. It has been used in Ref. [2] to obtain

analogous �J factors for heavy-light currents. For both heavy-heavy and heavy-light cur-
rents our calculations verify that, generically, the one-loop terms �[1]J are smaller than the

corresponding Z [1]
J .

IV. ONE-LOOP RESULTS

In this section we present results for the matching factors at the one-loop level in per-
turbation theory. For the Wilson and Sheikholeslami-Wohlert (SW) actions, the one-loop
contributions were given in Ref. [16]. At that stage we omitted the rotation term in the
current, which is needed to match dimension-four currents at the tree level [12,4]. Now
we complete the work started in Ref. [16] and report results with the rotation. For com-
parison we also present our results without the rotation, both with and without the clover
term. After some general remarks in Sec. IVA, we present numerical results for the one-loop
terms. To illustrate the general features, we present three special cases: equal initial- and
�nal-state masses in Sec. IVB, unequal masses with a �xed mass ratio in Secs. IVC, and
unequal masses with a �xed �nal-state mass in Sec. IVD.

In the appendices, we present expressions for the Feynman rules and one-loop integrands,
allowing both 
avors of heavy quarks to have independent and arbitrary values of all cou-
plings. A computer code for generating these results is freely available [19].

A. General remarks

We shall apply the formalism of Sec. II with v0 = v = (i;0), which applies when the
initial and �nal states are at rest, or nearly at rest. The matching factors ZVk and ZA? are
simply ratios of the lattice and continuum radiative corrections:

ZJ =

h
Z
1=2
2b �JZ

1=2
2c

icont
h
Z
1=2
2b �JZ

1=2
2c

ilat ; (4.1)

where Z2b and Z2c are wave-function renormalization factors of the heavy bottom and
charmed quarks. [Recall, in view of Eqs. (2.53) and (2.54), that we drop the bars from ZJ .]
The vertex function �J is the sum of one-particle irreducible three-point diagrams, in which
one point comes from the current J (J = Vk, A?), and the other two from the external
quark states. The expression relating Z2 to the lattice self energy, for all masses and gauge
couplings, can be found in Ref. [33]. In view of the mass dependence of the self-energy
function, Z2 / e�m1a, we write

e�(m
[0]
1ca+m

[0]
1b a)=2ZJ = 1 +

1X
l=1

g2lZ
[l]
J ; (4.2)
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so that the Z [l]
J are only mildly mass dependent. (This convention follows that of Ref. [2],

but is slightly di�erent from the one in Ref. [33].) By construction, the exponential mass
dependence in �J cancels out, so we write

�J = 1 +
1X
l=1

g2l0 �
[l]
J : (4.3)

In each of the following subsections we also present the information needed to obtain the
BLM scale [17,18]. Because the ideas behind the BLM prescription are covered in our paper
on heavy-light currents [2], we give only the essential formulas here. Let � [1] be one of our
one-loop terms. From the Feynman diagram, it is expressed as

� [1] =
Z
d4k f(k); (4.4)

where k is the gluon's momentum. The BLM scale q� is given through

ln(q�a)2 = �� [1]=� [1]: (4.5)

where

�� [1] =
Z
d4k ln(ka)2 f(k): (4.6)

Studies of perturbation theory indicate that using g2V (q
�) an expansion parameter usually

leads to well-behaved series, because the BLM prescription pulls in some of the higher orders.
Here V denotes the scheme for which the heavy-quark potential is V (q) = �CF g

2
V (q)=q

2. In
other schemes the optimal scale is slightly di�erent, so that g2S(q

�
S) � g2V (q

�).
It is also interesting to see how q� changes under tadpole improvement. If one introduces

the tadpole-improved matching factors

~ZJ = ZJ=u0; (4.7)

where the mean link u0 is any tadpole-dominated short-distance quantity, the arguments of
Ref. [18] suggest that the perturbative series for ~ZJ has smaller coeÆcients. In analogy with
Eq. (4.2) we write

e�( ~m
[0]
1c+ ~m[0]

1b
)a=2 ~ZJ = 1 +

1X
l=1

g2l0
~Z
[l]
J ; (4.8)

where

~m[0]
1 a = ln[1 +m0a=u0] (4.9)

is the tadpole-improved rest mass. Then

~Z [1]
J = Z

[1]
J �

1

2

�
1

1 +m0ca
+

1

1 +m0ba

�
u
[1]
0 ; (4.10)

and because Z
[1]
J < 0 and u

[1]
0 < 0 one sees that the one-loop coeÆcients are reduced.

Similarly, for computing the BLM scale
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� ~Z
[1]
J = �Z

[1]
J �

1

2

�
1

1 +m0ca
+

1

1 +m0ba

�
�u

[1]
0 : (4.11)

To illustrate, we take u0 from the average plaquette, so u
[1]
0 = �CF=16 and �u

[1]
0 =

�0:204049(1).
The combinations of wave-function and vertex renormalization in ZJ are gauge invariant

and ultraviolet and infrared �nite. Infrared cancellation between lattice and continuum
integrands occurs point-by-point if the masses in continuum propagators are set equal to
the corresponding kinetic masses. Because there are no divergences, it is straightforward to
weight the integrands with ln(ka)2.

Although the main results of this section, given below, are the calculation of the full
mass dependence of the one-loop terms, let us anticipate what to expect in limiting cases.
When both masses vanish, we must (and do) obtain the textbook result for matching in
the Symanzik formalism. If one mass vanishes, we must recover our results for heavy-light
matching factors. In fact, our codes are based on the same integrand functions, so this
\check" is automatic.

When both masses satisfy mh � a�1, both heavy-quark propagators become static, and,
consequently, the one-loop lattice radiative corrections vanish. Thus, the matching factors
reduce to the continuum QCD radiative corrections. Using Eqs. (2.29) and (2.30)

lim
mba;mca!1

Z
[1]
Vk
! �C

[1]
Vk

= CF 3f(m2c=m2b)=16�
2; (4.12)

lim
mba;mca!1

Z
[1]
A?
! �C [1]

A?
= CF [3f(m2c=m2b)� 2] =16�2: (4.13)

The lattice contribution to the BLM numerator �� [1] also vanishes in this limit, leaving

lim
mba;mca!1

�Z
[1]
Vk
! � �C

[1]
Vk

= CF 9f(m2c=m2b)=32�
2 + �C

[1]
Vk
ln(m2bam2ca); (4.14)

lim
mba;mca!1

�Z
[1]
A?
! � �C [1]

A?
= CF

h
5
2
f(m2c=m2b)� 1

i
=16�2 + �C [1]

A?
ln(m2bam2ca); (4.15)

where the right-hand sides are due to Ref. [36].
When one mass becomes very large, but the other is held �xed, one can still deduce the

limiting behavior from Eqs. (4.12){(4.15). As the heavier mass increases, m2ba ! 1, the
lattice Feynman diagrams become independent of m2ba. The logarithmic part then takes
the form 3 ln(m2ca). This lattice logarithm cancels only part of the corresponding logarithm
in 3f(m2c=m2b), leaving the matching factor with 3 ln(m2ba). Then non-logarithmic con-
stants depend, of course, on the �xed mass of the lighter quark. In the BLM numerators, for
m2ca held �xed and m2ba!1, one obtains a quadratic in ln(m2ba), in which the coeÆcient
of ln2(m2ba) is identical to those of the continuum radiative corrections, and the coeÆcient
of the single logarithm and the non-logarithmic term itself are mildly dependent on m2ca.

Below we plot the mass dependence as a function of m
[0]
1ba, because it brings out the

asymptotic behavior for both mha = 0 and mha ! 1: when mha � 1, m
[0]
1h � m

[0]
2h, but

when mha � 1, m
[0]
1ha � ln(m

[0]
2ha). Thus, a plot against m

[0]
1ba makes it easy to look both

at slope and curvature in the small-mass region, and at the expected logarithms in the
large-mass region.

In presenting results below, we show together Z [1]
J , �Z [1]

J , �[1]J , and
��

[1]
J , for each current,

followed by the BLM scale for ZVk and ZA? .
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B. Degenerate masses

Figure 3 shows the full mass dependence of the matching factor Z
[1]
Vk
for the vector current,

with m2c = m2b, and its BLM numerator �Z
[1]
Vk
. Figure 4 shows the same for the axial vector

current, including the one-loop term for �A? and its BLM numerator ��A?. In this case, with
equal masses, one has simply �A? = ZA?=ZVk. As expected, all interpolate smoothly from

small to large quark mass. Except for ��
[1]
A?
, the curves exhibit a \knee" around m

[0]
1 a � 1{2

(m0a � m2a � 2{6). For ��[1]A?
the knee e�ect seems to cancel, and the function crosses over

quickly to logarithmic behavior.
For mca = mba = 0, our matching factors must (and do) reduce to the well-known

massless limit, obtained long ago for cSW = 1 [37] and even longer ago for cSW = 0 [38]. As
discussed above, in the in�nite mass limit (with a �xed), the heavy-quark spin symmetry of
Wilson fermions ensures that the lattice radiative corrections vanish. The in�nite mass limits
are Z

[1]
Vk

= 0, �Z
[1]
Vk

= 0, Z
[1]
A?

= �
[1]
A?

= �2CF=16�2, and �Z
[1]
A?

= ��
[1]
A?

= �CF [4 ln(m2a) +

1]=16�2. They are shown in each panel of Figs. 3 and 4 with a dashed-dotted line. As a rule,

the tendency to the in�nite mass limit becomes obvious for m
[0]
1 a > 5 (m0a � m2a > 150).

For smaller masses (mca; mba <� 1), one expects the one-loop term �
[1]
A?

to be smaller

than Z [1]
A?
, because it does not contain any tadpole diagrams. This expectation is borne out

in comparing Fig. 4(a) and (c). For larger masses, the tadpole diagram is suppressed, cf.

Eqs. (4.10) and (4.11), and �[1]A?
and Z [1]

A?
have the same asymptotic value. By comparing

Fig. 4(b) and (d), one sees that ��[1]A?
is smaller than �Z [1]

A?
also.

In Fig. 5 we combine the information from Figs. 3 and 4 and show the BLM scale q�a for
the vector and axial vector currents. In the region of greatest interest, m1b � 1 (m2b < 1:5),
we �nd q�a � 2:8 for the clover action. In Fig. 6 we apply tadpole improvement. In the
region of greatest interest, m1b � 1, we �nd a smaller q�a � 1:8{2.0 for the clover action.
The singular behavior for ZVk for m1b

>� 1:5 arises because the denominator vanishes. If
numerator and denominator in Eq. (4.5) have the same (opposite) sign, then q�a ! 1
(q�a ! 0). In such a case the BLM prescription does not make sense and should be
modi�ed [41].

With equal masses, the matching factor ZVk can be computed non-perturbatively, allow-

ing us to test how well BLM perturbation theory works. Figure 7 plots exp(�m[0]
1ba)ZVk vs.

m
[0]
1ba for several methods of calculating ZVk. In perturbation theory, we truncate Eq. (4.2) at

the �rst non-trivial term, and use either the bare coupling g20 or the BLM prescription g2V (q
�).

We also truncate Eq. (4.8) at the �rst non-trivial term, which is tadpole improvement. As
a non-perturbative check, we de�ne

1

ZNP
Vk

=
hHj�	b
4	bjHi

hHjHi
(4.16)

where H is a b-
avored hadron. Results for several b masses at bare gauge coupling g20 =
6=5:9 [42] are shown in Fig. 7. We also plot the Taylor expansion for small mass

ZVk(m0a) = ZV [1 + bVm0a] ; (4.17)
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where the notation on the right-hand side follows Ref. [9]. From the two small-mass points,
we determine ZV = 0:7247 and bV = 1:5588 (for g20 = 6=5:9 and cSW = 1:50). Figure 7
reveals several lessons. First, bare perturbation theory deviates from the non-perturbative
points by several percent. Second, BLM perturbation theory is quite accurate for all masses.
The deviations are a few percent: they are neither completely absent nor several percent.
Third, it is less accurate to neglect the full mass dependence (using only ZV from ma! 0)
than to use BLM perturbation theory, already around the charmed quark mass (m1 � 0:5).
Finally, although Eq. (4.17) remains within a few percent of the full mass dependence for
m1 � 0:5 (cf. dashed-double-dotted curve), it does not have the correct large mass limit. It
gives an explicit example of the pitfalls that arise in applying the improvement program of
Refs. [9,10] to heavy quarks.

C. Unequal masses: �xed mass ratio

In a typical usage of the matching factors, one wants to calculate a physical process, such
as B ! D(�)l�. To monitor lattice spacing e�ects, one would like to repeat the calculation at
several lattice spacings with the ratio of the initial and �nal heavy quark masses held �xed.
It is therefore useful to see how the matching factors vary with m1ba at �xed z = m

[0]
2c=m

[0]
2b .

For illustration we choose z = 0:256, which was used in a recent calculation [13] of the form
factors for B ! Dl�.

Figure 8 shows the full mass dependence of Z
[1]
Vk
, �Z

[1]
Vk
, �

[1]
Vk
, and ��

[1]
Vk
, with z = m2c=m2b

held �xed at 0.256. Figure 9 shows the same for Z
[1]
A?
, �Z

[1]
A?
, �

[1]
A?
, and ��

[1]
A?
. The behavior

is qualitatively similar to that with z = 1. After a knee, the expected in�nite mass limit
is again reached for m[0]

1 a > 5. The asymptotic behavior is shown with the dashed-dotted
lines:

�
[1]
Vk
= Z

[1]
Vk

= +0:901CF =16�
2; (4.18)

�
[1]
A?

= Z
[1]
A?

= �1:099CF =16�
2; (4.19)

and

��
[1]
Vk
= �Z

[1]
Vk

= CF [0:124 + 1:802 ln(m2a)]=16�
2; (4.20)

��
[1]
A?

= �Z
[1]
A?

= CF [1:248� 2:198 ln(m2a)]=16�
2; (4.21)

using f(0:256) = 0:3003. For both currents, the crossover in ��[1]J is smooth enough that no
knee is manifest.

At the largest masses our numerical integration (with VEGAS [39] or BASES [40]) dete-
riorates, because ultraviolet divergences of the continuum vertex and self-energy diagrams
do not cancel point by point (as they do when z = 1). If accurate values of the one-loop
terms were essential, this numerical diÆculty could be avoided. But it arises for values of
m1ba where the quarks are essentially static, and one may just as well make them completely
static.

In Fig. 10 we combine the information from Figs. 8 and 9 and show the BLM scale q�a
for the vector and axial vector currents. In the region of greatest interest, m1b � 1, we �nd
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FIG. 8. Full mass dependence of the one-loop coeÆcients of the matching factors of the vector

current with z = 0:256: (a) Z
[1]
Vk
, (b) �Z

[1]
Vk
, (c) �

[1]
Vk
, and (d) ��

[1]
Vk
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q�a � 2:8 for the clover action. In Fig. 11 we apply tadpole improvement. In the region
of greatest interest, m1b � 1, we �nd a smaller q�a � 1:8{2.0 for the clover action. The
singular behavior for ZVk near m1b � 1:5 (and for ZA?

near m1b � 2:5) arises, again, because
the denominator vanishes, so one should switch to the modi�ed prescription of Ref. [41].

As we have mentioned above, when mh � a�1 for both 
avors, heavy quark symmetries
emerge [1]. One consequence is that the one-loop lattice radiative corrections vanish, as
Figs. 3, 4, 8, and 9 verify numerically. There is an interesting further consequence for �Vk, in
which the unphysical em1a normalization drops out. Its approach to the in�nite-mass limit
must satisfy4

�CVk

�Vk
� �C lat

Vk
= �2

2

h
�c(2) + �c(3)�2

i
; (4.22)

4In Sec. II, �Clat
Vk

is a generic notation for a matching coeÆcient in HQET. Here it denotes the

same coeÆcient for the speci�c current
q
ZV cc

k
ZV bb

k

�	c

4	b.
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FIG. 11. Full mass dependence of the BLM scale q�a for the matching factors (a) ZVk and

(b) ZA? , with m2c = 0:256m2b, after tadpole improvement. Curves from Fig. 10 are shown in grey.
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FIG. 12. Test of Luke's theorem, namely Eq. (4.22) at one loop, for several mass ratios

z = 0:256, 0:3, 0:5, 0:9, 0:99.

where the �c(n) are independent of the masses, and

�2 =
1

2m2ca
�

1

2m2ba
; (4.23)

�2 =
1

2m2ca
+

1

2m2ba
: (4.24)

Equation (4.22) is a version of Luke's theorem [43]. It follows because the mass depen-
dence must be symmetric under the interchange mc $ mb, and because �Vk must van-
ish when mc = mb. Following Ref. [32] we test whether our one-loop calculation satis�es

the theorem for a variety of di�erent mass ratios. Figure 12 plots �C lat[1]
Vk

=�2
2 vs. �2 for

z = 0:256; 0:3; 0:5; 0:9; 0:99. All mass combinations lie essentially on a single curve, ver-
ifying Eq. (4.22). Small deviations are possible (and noticeable in Fig. 12), arising from
higher orders in the small p exapnsion of the quark propagator, where coeÆcients other
than 1=(2m2a) appear.
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FIG. 13. Full mass dependence of the one-loop coeÆcients of the matching factors of the vector

current withm0c = 1: (a) Z
[1]
Vk
, (b) �Z

[1]
Vk
, (c) �

[1]
Vk
, and (d) ��

[1]
Vk
. The symbols have the same meaning

as in Figs. 3 and 4.

D. Unequal masses: �xed daughter mass

In this subsection we study the matching factors, varying only the initial mass while
holding the �nal mass �xed. For illustration we set m0ca = 1. As discussed above, one
expects the large-mass limit to exhibit some qualitative behavior seen in the heavy-light
matching factors in our heavy-light paper [2]. Thus, looking at this slice through the function
of two variables can illustrate how the heavy-heavy matching factors are an extension of the
heavy-light matching factors.

Figure 13 shows full mba dependence of Z
[1]
Vk
, �Z

[1]
Vk
, �

[1]
Vk
, and ��

[1]
Vk
, with �xed m0ca = 1

(m2ca = 0:857). Figure 14 shows the same for Z [1]
A?
, �Z [1]

A?
, �[1]A?

, and ��[1]A?
. As with the

heavy-light matching factors [2], a knee is not really visible, because soon after reaching

m
[0]
1ba

>
� 2 (m2ba >� 6), logarithmic behavior starts to dominate. For small mba, one �nds

that �Vk(mba = 0;m0ca = 1) 6= 0, but with the SW action it is very small: 0.0015017(9)
with the rotation on the c leg and 0.0054380(10) without.

In Fig. 15 we combine the information from Figs. 13 and 14 and show the BLM scale q�a
for the vector and axial vector currents. In the region of greatest interest, m1b � 1, we
�nd q�a � 2:8{3.0 for the clover action (and 2.0{2.2 for the Wilson action). In Fig. 16 we
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V. CONCLUSIONS

In this paper we have set up a matching procedure, based on HQET, for heavy-heavy
currents. It is valid for all mba and mca, where mb and mc are the heavy quarks' masses
and a is the lattice spacing. The procedure holds to all orders in perturbation theory and,
therefore, potentially on a non-perturbative level also. It could be applied to lattice NRQCD,
although here it is applied to Wilson fermions. WithWilson fermions it is possible to consider
the limit of small mha. Then heavy-heavy HQET matching agrees with heavy-light HQET
matching when the lighter quark satis�es mca� 1, and with Symanzik matching when both
mha� 1. In this way, HQET matching is a natural and attractive extension into the regime
ma 6� 1, which is needed for heavy-quark phenomenology on currently available computers.

The connection to heavy-light matching has an important implication for the charmed
quark, whose mass is not necessarily large enough for the leading 1=mc corrections to be
accurate enough on their own. At the same time, however, the charmed mass is small
enough that mca <

�
1
3 , on currently available lattices. In this regime the mismatches of

short-distance coeÆcients of higher-dimension operators in HQET are in
uenced by the
standard continuum limit (for the charmed quark), so they are easily kept down to the level
of �smca and (mca)2. Thus, more and more of the heavy-quark expansion is recovered, for
masses where the higher-dimension terms may be signi�cant.

Our one-loop results for the SW action are of immediate value for lattice calculations of
form factors for the semi-leptonic decaysB ! D(�)l�. Indeed, our earlier one-loop results [16]
(which omitted the \rotation" terms in the current) were used for B ! D in Ref. [13], and
our new results with rotation were used for B ! D� in Ref. [14]. In particular, we have
obtained the BLM scale q� for the renormalization factors, which reduces the uncertainty
of one-loop calculations. Similarly, computing part of the normalization factor, namelyq
ZV cc

k
ZV bb

k
, non-perturbatively reduces the normalization uncertainty even further [13{15].

An outstanding problem at this time is the one-loop calculation of the coeÆcients �Blat
Ji of

the dimension-four terms in the HQET description. A calculation of these coeÆcients, and
the subsequent adjustment of the parameters bJi in the lattice currents, would reduce the
uncertainties in (future) calculations of B ! D(�) matrix elements. Because heavy-quark
symmetry forbids several power corrections (see Refs. [1,14] for details), one must, however,
also start to consider some of the dimension-�ve corrections to the currents.
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APPENDIX A: FEYNMAN RULES

The needed propagators and vertices for quark-gluon interactions are given already in
Ref. [33]. Here we give the additional Feynman rules induced by the rotation term of the
heavy quark. The additional rules are easy to derive by expressing the translation operator

T�� = t��=2e
�g0aA�t��=2 (A1)

and following the methods in Ref. [48].
There are six rules to give, with 0, 1, and 2 gluons emerging from the vertex; it is con-

venient to keep rules for gluons emitted from the incoming and outgoing rotations separate.
Let the Dirac matrix of the current be �, and let

R(p) = 1 + id1
X
r


r sin(pr); (A2)

R0(p0) = 1 + id01
X
r


r sin(p
0
r): (A3)

Then,

0-gluon = R0(p0)�R(p); (A4)

1-gluon = g0t
ad1R

0(p0)�
i cos(p +
1
2k)i; (A5)

1-gluon0 = g0t
ad01 cos(p

0 � 1
2
k)i
i�R(p); (A6)

2-gluon = g20
1
2ft

a; tbgÆijd1R
0(p0)�
ii sin(p +

1
2k +

1
2`)i (A7)

2-gluon00 = g20
1
2ft

a; tbgÆijd
0
1 i sin(p

0 � 1
2k �

1
2`)i
i�R(p) (A8)

2-gluon0 = g20t
bta d01d1 cos(p

0 � 1
2
`)j
j�
i cos(p +

1
2
k)i (A9)

where momentum p (p0) is the quark momentum 
owing into (out of) the vertex, and k
and ` are gluon momentum 
owing into vertex. In the two-gluon rules, there is no sum-
mation over i. As in Ref. [33], the matrices ta are anti-Hermitian, i.e., U� = exp

�
g0t

aAa
�

�
,P

aj t
a
ijt

a
jk = �CF Æik, and tr tatb = �1

2Æ
ab.

APPENDIX B: DIRAC ALGEBRA

To compute the vertex function, there are eight diagrams to consider, depicted in Fig. 17:
the usual vertex diagram (with the rotation inside), Fig. 17(a); two diagrams with the gluon
connected to the incoming rotation, Fig. 17(b) and (c); a tadpole diagram connected to the
incoming rotation [using rule (A7)], Fig. 17(d); a vertex diagram with a gluon connecting
both rotations [using rule (A9)], Fig. 17(e); two diagrams with the gluon connected to the
outgoing rotation, Fig. 17(f) and (g); and a tadpole diagram connected to the outgoing
rotation, [using rule (A8)], Fig. 17(h). The two tadpole diagrams, Figs. 17(d) and (h),
vanish for zero external three-momentum, because ` = �k and pi = 0.
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J � s�
Vk 
4 �1

A? 
j
5 +1
3

TABLE I. The factor s�, de�ned by 1
3

P
r 
r�
r = s��.

For each non-vanishing diagram, Figs. 17(a{c, e{g), de�ne the integral

I
(a{c, e{g)
� = �g20CF

Z
d4k

(2�)4
1

k̂2
I(a{c, e{g)� ; (B1)

where k is the momentum of the gluon in the loop, and k̂� = 2 sin(1
2
k�). Let the incoming

massive quark have couplings m0, rs, �, cB, and cE, and external momentum p. Similarly,
let the outgoing massless quark have couplings m00 = 0, r0s, �

0, c0B, and c0E, and external
momentum p0. The internal quark lines carry momentum p + k in and p0 + k out. The
integrals I are obtained directly from the loop diagrams. Then

Z
[1]
J =

1

2

�
Z
[1]
2b cont � Z

[1]
2b lat + Z

[1]
2c cont� Z

[1]
2c lat

�
+
X
d

�
Id�cont � Id�lat

�
; (B2)

from Eq. (4.1). The relation between the current J and its Dirac matrix � is contained in

Table I. The expression relating Z
[1]
2 lat to lattice self-energy functions is in Ref. [33].

The most onerous task in evaluating the diagrams is the manipulation of the Dirac
matrices. A convenient method is to treat each quark line separately, starting from the
initial- or �nal-state spinor. Then the spinor, the propagator, and the vertices can be
written out in 2� 2 block diagonal form, with Pauli matrices appearing in the blocks. Once
the Feynman rules are as complicated as in the present calculation, it is easier to manipulate
2� 2 matrices of Pauli matrices than to manipulate Dirac matrices. A special advantage of
this organization is that the rotation bracket in Eq. (A4) merely \rotates" the rest of the

leg. We also obtain Z [1]
2 lat in this way, with much less e�ort than in Ref. [33].

(a) (b) (c) (d)

(e) (f) (g) (h)
FIG. 17. Feynman diagrams for calculating the vertex function. The � on each side of the 


indicates the rotation.
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A further advantage is that the vertex corrections can be expressed compactly. The
diagram with a gluon connecting the two rotations, Fig. 17(h), is

I(e)� = s�d
0
1d1

X
r

cos2 1
2
kr: (B3)

The diagrams with a gluon going from a leg to its own rotation, Figs. 17(b) and 17(f), are

I(b)� = d1
�

D

"
(3� 1

4
k̂
2
)L + 1

2
�
X
r

KrS
2
r

#
; (B4)

I(f)� = d01
� 0

D0

"
(3� 1

4
k̂
2
)L0 + 1

2
� 0
X
r

K 0rS
2
r

#
; (B5)

where Sr = sin kr, and the functions D, L, and Kr (and primed analogs) are given in
Appendix C. The diagrams with a gluon going from a leg to the other rotation, Figs. 17(c)
and 17(g), are

I
(c)
� = s�d1

� 0

D0

"
(3� 1

4
k̂
2
)R[L0] + 1

2R[�
0]
X
r

K 0rS
2
r

#
; (B6)

I(g)� = s�d
0
1

�

D

"
(3� 1

4 k̂
2
)R[L] + 1

2R[�]
X
r

KrS
2
r

#
; (B7)

where s� is given in Table I.
The vertex diagram, Fig. 17(a), is complicated. We �nd I(a)� = N

(a)
� =DD0, with numer-

ator

N
(a)
� = R[U 00]R[U0]� s�R[L

0
0]R[L0]S

2 � �� 0X�: (B8)

The part X� comes from spatial gluon exchange:

X� = �s�(3 �
1
4
k̂
2
)R[L0]R[L] (B9)

+s2�(3 �
1
4
k̂
2
)R[V 0]R[V ]S2 (B10)

+1
2
(R[V 0]R[U ]� s�R[L

0]R[�])
X
r

KrS
2
r (B11)

+1
2 (R[U

0]R[V ]� s�R[�
0]R[L])

X
r

K 0rS
2
r (B12)

+1
4

�
R[U 0]R[U ]� s�S

2R[� 0]R[�]
�X

r

K 0rKr k̂
2
r (B13)

+1
8(1� s2�)

 
k̂
2
S2 � 3

X
r

k̂2rS
2
r

!
R[V 0]R[V ]; (B14)

where the last term is absent for V4 (i.e., when s2� = 1). The rotation enters in the \rotated"
functions

R[U0] = U0 + d1S
2L0; (B15)

R[L0] = L0 � d1U0; (B16)

R[U ] = U + d1S
2�; (B17)

R[�] = � � d1U; (B18)

R[V ] = V + d1L; (B19)

R[L] = L � d1S
2V; (B20)
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and similarly for primed functions. Although the vertex diagram is not easy to write down,
the rotation modi�es it in a fairly simple way, when using the 2�2 method described above.

We have veri�ed that these expressions are correct by completely independent calculation
with more common methods for the Dirac algebra.

APPENDIX C: USEFUL FUNCTIONS

In this appendix we list the functions appearing in Appendix B for the action and currents
given in Sec. III. First, let

� = 1 +m0 +
1
2rs�k̂

2
; (C1)

�0 = 1 +m00 +
1
2
r0s�
0k̂

2
: (C2)

from now on a primemeans to replace incoming coupling and momentumwith corresponding
outgoing coupling and momentum.

When the quark propagator is rationalized it has the denominator

D = 1� 2� cos(k4 + im
[0]
1 ) + �2 + �2S2; (C3)

where m
[0]
1 = log(1 +m0).

In this calculation, the incoming and outgoing heavy quarks both have zero three-
momentum, so both spinors consist only of upper components. This feature is di�erent
from the heavy-light case [2] and explains, at a low level, why the only dimension-three
currents for heavy-heavy currents have � = 
4 and 
j
5 only.

To express the useful functions compactly, it is convenient to introduce �rst

U = � � e�m
[0]
1 +ik4 ; (C4)

�U = � � e+m
[0]
1 �ik4 ; (C5)

because these combinations appear in the other functions. Then

U0 = Ue+m
[0]
1 �ik4=2 � 1

2�
2cE cos(

1
2k4)S

2; (C6)

L0 = �
�
e+m

[0]
1 �ik4=2 + 1

2cE cos(
1
2k4)

�U
�
; (C7)

V = �
h
1 + i

2cE sin(k4)
i
+ 1

2cBU; (C8)

L = � �U
h
1 + i

2cE sin(k4)
i
+ 1

2cB�S
2; (C9)

Kr = rs � cB cos
2(12kr) = (rs � cB) +

1
4cBk̂

2
r : (C10)

Some related functions appear when the Dirac matrix connects upper and lower components,
as in the case of heavy-light currents [2]. They will arise for heavy-heavy matching of the
dimension-four currents, for which matrix elements with non-zero three-momentummust be
calculated.
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