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Abstract

We present a lattice QCD calculation of the form factors and di�erential decay

rates for semileptonic decays of the heavy-light mesons B and D to the �nal

state �l�. The results are obtained with three methodological improvements

over previous lattice calculations: a matching procedure that reduces heavy-

quark lattice artifacts, the �rst study of lattice-spacing dependence, and the

introduction of kinematic cuts to reduce model dependence. We show that the

main systematics are controllable (within the quenched approximation) and

outline how the calculations could be improved to aid current experiments in

the determination of jVubj and jVcdj.
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I. INTRODUCTION

Processes involving weak decays of B and D mesons are of great interest, because they

yield information on the more poorly known elements of the Cabibbo-Kobayashi-Maskawa

(CKM) matrix. Semileptonic decays have traditionally been used to determine the CKM

matrix, for example, Vud (through nuclear �-decay), Vus (Kl3), Vcb (B ! D(�)l�), and

Vub (b ! ul�) [1]. In the �rst three cases 
avor symmetries (isospin, SU(3) 
avor, and

heavy quark symmetry, respectively) greatly simplify one's theoretical understanding of the

hadronic transition matrix elements. In the symmetry limit, and at zero recoil, current con-

servation ensures that the matrix elements are exactly normalized. Even when estimates of

the deviations from the symmetry limit are di�cult to calculate reliably, the deviations tend

to be small. Thus, the overall theoretical uncertainty on the decay process is under con-

trol. Given good experimental measurements, this procedure then determines the associated

element of the CKM matrix.

For semileptonic decays of charmed or b-
avored mesons into light mesons there are no


avor symmetries to constrain the hadronic matrix elements. As a result, the errors on jVubj
are currently dominated by theoretical uncertainties and are not well known [1]. For the

same reason the best value for jVcdj, at this time, comes from neutrino production of charm

o� of valence d quarks (with the cross section from perturbative QCD), rather than from

the semileptonic D decays. In this paper we take a step towards reducing the theoretical

uncertainty by using lattice QCD to calculate the form factors for the decays B ! �l� and

D ! �l�. Although our results are in the quenched approximation, we introduce several

methodological improvements that carry over to full QCD. Moreover, this work is the �rst

to study the lattice-spacing dependence of the form factors.

There is a considerable ongoing experimental e�ort on this subject, which will lead to

measurements of the di�erential decay rates. For B ! �l�,

d�

dp
=
G2
F
jVubj2
24�3

2mBp
4jf+(E)j2
E

; (1.1)

where E = p� � pB=mB is the energy of the pion in the rest frame of the B meson, and

p =
q
E2 �m2

�
is the magnitude of the corresponding three-momentum. (p� and pB are

four-momenta. For D ! �l�, replace Vub with Vcd, mB with mD, and pB with pD.) The

non-perturbative form factor f+(E) parametrizes the hadronic matrix element of the heavy-

to-light transition,

h�(p�)jV�jB(pB)i = f+(E)

"
pB + p� �

m2
B
�m2

�

q2
q

#
�

+ f0(E)
m2

B
�m2

�

q2
q�; (1.2)

where V� is the charged b! u vector current, and q = pB�p� is the momentum transferred

to the leptons. For reasons that are made clear below, we prefer to consider the form factors

f+ and f0 as functions of E. This kinematic variable is related to the more common choice

q2 = m2
B
+m2

�
� 2mBE. The contribution of f0 to the decay rate is suppressed by a factor

(ml=mB)
2 so we shall present the rate given in Eq. (1.1). In the decay B ! ��� both form

factors are important, however, so both are tabulated below, in Sec. VI.
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The �rst determinations of jVubj came from the rate of the inclusive semileptonic decay

B ! Xul�. In general, inclusive rates can be described model-independently through an

operator product expansion (OPE), leading to a double series in �QCD=mb and �s(mb) [2].

Thus, they are subject to non-perturbative and perturbative uncertainties. In particular,

one requires the quantities ��, �1, and �2, which are de�ned in the heavy-quark e�ective

theory.1 The huge charm background in B ! Xul� must be eliminated by imposing a cut

either on the charged lepton energy [4], on the hadronic invariant mass [5], or on q2 [6]. Such

cuts narrow the kinematic acceptance and may, therefore, increase sensitivity to violations

of quark-hadron duality, which is hard to quantify.

The di�erential rates of exclusive decays o�er an alternative route to jVubj and jVcdj.
This method is limited, however, by uncertainties in the form factors, such as f+(E) in

Eq. (1.1). In the case of D decays, the E dependence of the rate has been measured only

for D ! Kl� [7]. The FOCUS collaboration [8] will improve that measurement and also

should be able to measure the E dependence in the Cabibbo-suppressed mode D ! �l�.

First measurements of the branching ratios for B ! �l� and B ! �l� have been presented

by the CLEO collaboration [9]. The form factors for all these processes are calculable with

lattice QCD. Here we concentrate on calculating the form factors for B ! �l� (and similarD

decays). The branching ratio is not as large as for B ! �l�, and there are other experimental

di�culties [10]. On the other hand, with vector mesons several form factors enter into the

decay rate. Furthermore, one might expect greater uncertainties for the � (and ! and �)

from the quenched approximation, because of their non-zero hadronic widths.

With lattice QCD a very pressing issue is to understand the systematic uncertainties.

Indeed, an important justi�cation for using the quenched approximation is that the savings

in computer time allow us to study the other systematic uncertainties in detail. To control

systematic errors we apply three main methodological improvements in this paper: we nor-

malize the heavy-quark action and current in a way that reduces heavy-quark discretization

e�ects, we have three di�erent lattice spacings to study any remaining discretization e�ects,

and we introduce kinematic cuts to avoid model dependence.

First, let us consider the discretization for the heavy quark. At the lattice spacings, a,

currently in use, the large mass of the b quark means that mba > 1. To control lattice

spacing e�ects, we adopt the approach of Ref. [11], which takes an improved action for

Wilson fermions, but adjusts the couplings in the action and the normalization of the current

so that the leading and next-to-leading terms in the heavy-quark e�ective theory (HQET)

are correct. By applying HQET directly to lattice observables, one can show that the

heavy-light meson has small discretization e�ects [12], in our case of order �s�QCD=mQ,

�s�QCDa, (�QCD=mQ)
2, and (�QCDa)

2. These normalization conditions allow us to perform

our calculations directly at the physical mass mQ = mb. This approach has already been

successfully applied in calculations of B and D meson decay constants by four groups [13{16]

and in calculations of the form factors for B ! D(�)l� at zero recoil [17]. Work on B !
�l� by two other groups [18{20] with the same action (but di�erent lattice currents) has

used normalization conditions designed for light quarks, which su�er from errors of order

1A new method for calculating ��, �1, and �2 can be found in Ref. [3].
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�smQa [18] or (mQa)
2 [19,20]. To reduce these e�ects their calculations have been carried

out with pseudoscalar meson masses 1:2 GeV < mP < 2:0 GeV [19] or 1:7 GeV < mP <

2:6 GeV [20]. We have not been persuaded that HQET can be used to guide the extrapolation

from there back up to mB = 5:3 GeV.

Second, there are cuto� e�ects of order �ska and (ka)2 from the light quark, where k

is the momentum of the light quarks inside the mesons. For light or heavy-light hadrons

at rest, the momentum k � �QCD, so these e�ects are of the same kind as some of those

considered above. In the semileptonic decay, however, one has a light daughter hadron with

non-zero recoil momentum, which gives rise to lattice spacing errors with k = jp�j. To study
this systematic error, we carry out the calculation at three di�erent lattice spacings, and

check the dependence of our results on a. We can then restrict our �nal results to small

enough recoil momenta, so that discretization e�ects remain under control. Our test of the

lattice spacing dependence is the �rst in a lattice calculation of semileptonic form factors.

Third, we do not use models to extend our kinematic reach to high pion energy (i.e.,

low q2), in contrast to previous work [18{20]. The extrapolation would rely on the worst of

our data: not only do discretization errors increase with p�a, but statistical errors do too.

Therefore, we quote the di�erential decay rate over the range where systematic uncertainties

from the lattice are under control. In particular, we de�ne

TB(pmin; pmax) =
Z

pmax

pmin

dp p4jf+(E)j2=E: (1.3)

The upper limit is chosen to rein in the discretization and statistical uncertainties. The lower

limit cuts out a region where extrapolations in p and light quark mass are di�cult. Then,

assuming a massless charged lepton, one can combine TB with experimental measurements

to determine the CKM matrix via

jVubj2 =
12�3

G2
F
mB

1

TB(pmin; pmax)

Z
pmax

pmin

dp
d�B!�

dp
; (1.4)

and, similarly,

jVcdj2 =
12�3

G2
F
mD

1

TD(pmin; pmax)

Z
pmax

pmin

dp
d�D!�

dp
: (1.5)

Our �nal result, showing the integrand of Eq. (1.3) for B and D ! �l�, is in Fig. 1.

The shaded regions indicate the range of pion momentum over which we can control the

uncertainties. Integrating over this region, we �nd

TB(0:4 GeV; 1:0 GeV) = 0:55+ 0:15
� 0:05

+0:09
� 0:12

+0:09
� 0:02 � 0:06 � 0:09 GeV4; (1.6)

TD(0:4 GeV; 0:925 GeV) = 0:23+ 0:04
� 0:02

+0:01
� 0:05

+0:06
� 0:02 � 0:03 � 0:03 GeV4: (1.7)

where the �rst uncertainty is statistical, and following four are systematic and come from

chiral extrapolation, lattice spacing dependence, matching to continuum QCD, and the sum

in quadrature of several other uncertainties. The last includes an estimate of the uncertainty

from converting lattice units to physical units, which partly re
ects uncertainty from the

quenched approximation. In addition to these uncertainties, which are quanti�able within

4



0 0.2 0.4 0.6 0.8 1 1.2
p (GeV)

0

0.5

1

1.5

2

2.5
p4 |f +

(E
)|

2 /E
 (

G
eV

3 )

0 0.2 0.4 0.6 0.8 1 1.2
p (GeV)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

p4 |f +
(E

)|
2 /E

 (
G

eV
3 )

FIG. 1. The di�erential decay rate (without momentum-independent factors) as a function

of p = jp�j, for (a) B ! �l� and (b) D! �l�. The solid error bars show the statistical uncertainty

and the dotted ones show the sum in quadrature of statistical and systematic uncertainties.
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the quenched approximation, there may be an additional error from quenching as large as

10{20 percent on TB and TD.

At low momenta the experimental rates go to zero, so no information is lost by making the

cut at pmin = 0:4 GeV. For semileptonicD decays the high-momentum cut is already at the

kinematic endpoint (m2
D
�m2

�
)=2mD = 0:925 GeV. A high-momentumcut at pmax = 1:0 GeV

is, however, an obstacle to determining jVubj, since semileptonic B decays usually produce

harder pions. Although the cut does reduce the overlap between our lattice calculation and

experimental results, the results presented here are model independent (apart from quench-

ing). As experimental and lattice results improve over the next several years, the range of

pion momentum should widen and can be selected to optimize the combined experimental

and theoretical uncertainty.

This paper is organized as follows. Section II contains a discussion of the lattice action

and vector current for heavy quarks. The lattice calculation of the matrix elements is

described in Sec. III. Section IV describes an interpolation in pion three-momentum and an

extrapolation in light quark mass, which are needed to obtain the form factors. The former

is a special feature of these decays; it interacts with the chiral limit, and together these lead

to the cuts given in Eqs. (1.6) and (1.7). We discuss quantitatively the systematic errors

on TB and TD in Sec. V. The analysis of B and D decays is essentially the same. Results

for the form factors are tabulated in Sec. VI. Section VII compares our methods and results

to previous (and ongoing) work [19{21]. Section VIII concludes.

Preliminary results of this analysis have been presented in Refs. [22,23]. Phenomeno-

logical implications of D decays, especially for comparing D ! �l� and D ! Kl� as in

Ref. [24], will appear in another publication.

II. CONTINUUM AND LATTICE MATRIX ELEMENTS

The continuum matrix element of the 
avor-changing vector current, V� = �ui
�b, is

parametrized by two independent form factors, for example those in Eq. (1.2). In considering

the chiral and heavy-quark limits, it is more convenient to write the matrix element as

h�(p�)jV�jB(pB)i =
p
2mB

h
v�fk(E) + p

�

?f?(E)
i
; (2.1)

where v = pB=mB is the four-velocity of the B, and p? = p� � Ev is the pion momentum

orthogonal to v. The traditional form factors f+ and f0 are related to fk and f? by

f+(E) = (2mB)
�1=2

h
fk(E) + (mB �E)f?(E)

i
; (2.2)

f0(E) =

p
2mB

m2
B
�m2

�

h
(mB � E)fk(E) + (E2 �m2

�
)f?(E)

i
: (2.3)

At q2 = 0 it follows from these formulae that f+ = f0, which is necessary from Eq. (1.2).

There are several good reasons to focus the numerical analysis on fk and f?. First,

consideration of chiral and heavy-quark symmetry yields the expectation for m�, E ! 0

fk =
fB
p
mBp
2f�

; (2.4)

f? =
fB�

p
mB�p
2f�

gBB��

2mB

m2
B� � q2

; (2.5)
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through order 1=mQ in the heavy-quark expansion [25]. Here fB, fB�, and f� are decay

constants, and gBB�� is the B-B�-� coupling. Although we do not use these results to

constrain the needed chiral extrapolation of our data, they do show us that fk and f?
behave di�erently as m� is reduced to its physical value. (Recall q2 = m2

B
+m2

�
� 2mBE.)

Furthermore, fk and f? have a simple description in the heavy-quark e�ective theory [25],

so they are natural quantities to study in the lattice method of Refs. [11,12], or when using

lattice NRQCD [21]. Finally, they emerge directly from the lattice calculation, so it is

simpler to analyze them separately, forming the linear combinations in Eqs. (2.2) and (2.3)

at the end.

For the light quarks we use the Sheikholeslami-Wohlert (SW) action [26], with the cus-

tomary normalization conditions for mqa ! 0. The SW action has an extra coupling cSW,

sometimes called the \clover" coupling, which can be adjusted to reduce the leading lattice-

spacing e�ect of Wilson fermions. In practice, we adjust cSW according to tadpole-improved,

tree-level perturbation theory [27], so the leading light-quark cuto� e�ect is of order �ska.

We also use the SW action for the heavy quark, but its two free parameters, the bare

mass m0 and clover coupling cSW, are adjusted to maintain good behavior in the heavy-

quark limit [11]. This goes as follows: on-shell lattice matrix elements can be described by

a version of HQET [12], with e�ective Lagrangian (in the rest frame)

LHQET = m1
�hh+

�hD2h

2m2

+
�h i� �B h

2mB

+ � � � ; (2.6)

where h is the heavy-quark �eld of HQET, andB is the chromomagnetic �eld. The \masses"

m1, m2, and mB are short-distance coe�cients; they depend on m0 and cSW (and the gauge

coupling). Fortunately, matrix elements are completely independent of m1 [12], so we ad-

just m0 and cSW to tune m2 and mB to the b (or c) quark. In practice, we tune m2

non-perturbatively, using the quarkonium spectra, and mB with the estimate of tadpole-

improved, tree-level perturbation theory [27].

The lattice current is constructed according to the same principles. We distinguish the

lattice current V from its continuum counterpart V and take

V � =
q
ZV uuZV bb

�	ui

�	b (2.7)

where the rotated �eld [11]

	q = [1 + ad1
 �Dlat] q; (2.8)

and  q is the lattice quark �eld (q = u; b) in the SW action. Here Dlat is the symmetric,

nearest-neighbor, covariant di�erence operator. In Eq. (2.7) the factors ZV qq , q = u; b,

normalize the 
avor-conserving currents. In practice, they are computed non-perturbatively.

Matching the current V � to HQET requires further short-distance coe�cients:

V � :
= (�lat

V
+ � lat

V
)v��qh+ �lat

V
�qi


�

?h�
�qi
�=D

?
h

2m3

+ � � � ; (2.9)

where the symbol
:
= implies equality of matrix elements, and �q is a relativistic (continuum)

anti-quark �eld. At the tree level �lat
V

= 1, � lat
V

= 0. Also, further dimension-four operators,

7



whose coe�cients vanish at the tree level, are omitted from the right-hand side of Eq. (2.9).

This description is in complete analogy with that for the continuum current, namely,

V� :
= (�V + �V )v

��qh+ �V �qi

�

?
h� B1�qi


�=D
?
h

2mQ

+ � � � : (2.10)

Indeed, the HQET operators are the same. On the other hand, the radiative corrections

to the short-distance coe�cients in Eqs. (2.9) and Eqs. (2.10) di�er, because the lattice

modi�es the physics at short distances.

By studying the form factors in HQET, as in Ref. [25], one can deduce how to compensate

for the mismatch between short-distance coe�cients �
(lat)

V
and �

(lat)

V
for the lattice and �V

and �V for the continuum. HQET matrix elements have form factors

h�j�qhjBi = 'k(E); (2.11)

h�j�qi
�
?
hjBi = p

�

?
'?(E); (2.12)

so, leaving aside the dimension-four operator �qi
�=D
?
h for now,

fk(E) = �V'k(E); (2.13)

f?(E) = (�V + �V )'?(E): (2.14)

By the same reasoning, form factors calculated with the lattice current V satisfy

f latk (E) = �lat
V
'k(E); (2.15)

f lat? (E) = (�lat
V

+ � lat
V
)'?(E): (2.16)

Up to lattice artifacts of the light degrees of freedom the HQET form factors 'k and '? are

the same in Eqs. (2.13) and (2.14) and in Eqs. (2.15) and (2.16). Thus,

fk(E) = �Vkf
lat
k
(E); (2.17)

f?(E) = �V?f
lat
?
(E); (2.18)

where �Vk = �V =�
lat
V
, �V? = (�V + �V )=(�

lat
V

+ � lat
V
). Because these factors arise from short

distances, in practice we compute them in perturbation theory to one loop. We �nd these

short-distance corrections to be very small.

Finally, the free parameter d1 in Eq. (2.8) can be adjusted to tune 1=m3 to B1=mQ.

In the present calculations, we adjust d1 with the estimate of tadpole-improved, tree-level

perturbation theory, as explained in Ref. [11].

With these normalization conditions the leading term in the heavy-quark expansion is

correctly obtained, up to neglected higher-order corrections to �Vk and �V?. The associated

error should be much smaller than our other uncertainties, because most of the short-distance

normalization is handled non-perturbatively, through the factor
p
ZV uuZV bb. Similarly, the

1=mQ term in the heavy-quark expansion is correctly obtained, up to neglected loop cor-

rections to cSW and d1, and to dimension-four operators neglected in Eq. (2.9). Here the

associated error depends on mQa. When mQa > 1 it is formally of order �s�QCD=mQ, but

8



when mQa < 1 it is formally of order �s�QCDa. In the work reported here, such corrections

are smaller than, or comparable to, other uncertainties.

In lattice QCD the required matrix elements and thence the form factors are calculated

from correlation functions. In particular, the three-point correlation function for the B ! �

transition is

C(3)
�
(p;k; tf ; ts; ti) =

X
x;y

e�ip�xe�i(k�p)�yh0jOB(x; tf) �	b
�	u(y; ts)Oy

�
(0; ti)j0i; (2.19)

where OB and O� are interpolating operators for the B and � mesons. In the limit of large

time separations, the correlation function becomes

C(3)
�
(p;k; tf ; ts; ti) = Z1=2

B
Z1=2
�

hB(k)j�	b
�	uj�(p)ip
2EB

p
2E�

e�E�(ts�ti)e�EB(tf�ts) + � � � ; (2.20)

where EB (E�) is the energy of a B (�) meson with momentum k (p). The energies and

the external line factors Z� and ZB can be calculated from two-point correlation functions

C(2)(p; t) =
X
x

e�ip�xh0jOH(x; t)Oy

H
(0; 0)j0i; (2.21)

where H is � or B, and for large jtj one has

C(2)(p; t) = ZHe
�EHjtj + � � � : (2.22)

By time reversal hB(k)j�	b
�	uj�(p)i = h�(p)j�	u
�	bjB(k)i, so in the rest of this paper

we do not distinguish the two matrix elements.

To summarize this section, let us review the steps needed to obtain the physical form

factors f+ and f0. First we obtain E� and

Fk(p) =
hB(0)j�	b
4	uj�(p)ip

2mB

p
2E�

; (2.23)

F?(p) =
1

pja

hB(0)j�	b
j	uj�(p)ip
2mB

p
2E�

; (2.24)

for several values of p, directly from �tting the lattice correlation functions to the time

dependence given in Eqs. (2.20) and (2.22). The normalization factors ZV uu and ZV bb are

computed from zero-momentum, 
avor-conserving correlation functions. The radiative cor-

rection factors �V appearing in Eqs. (2.17) and (2.18) are computed with perturbation theory.

These ingredients are combined to form

fk(E) = �Vk

q
ZV uuZV bb

q
2E� Fk(p); (2.25)

f?(E) = �V?

q
ZV uuZV bb

q
2E� aF?(p); (2.26)

with E = E�. From the calculated values of p we then interpolate to a �ducial set of

momenta. The form factors fk and f? are extrapolated to the physical light quark mass.

With the light quark corresponding to strange we check also for lattice spacing e�ects.

Finally, the combinations f+ and f0 are formed from the extrapolated f? and fk with

Eqs. (2.2) and (2.3) and physical meson masses.
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TABLE I. Input parameters to the numerical lattice calculations, together with some elemen-

tary output parameters. Error bars on the outputs refer to the last digit(s).

Inputs

� = 6=g20 6.1 5.9 5.7

Volume, N3
S
�NT 243 � 48 163 � 32 123 � 24

Con�gurations 200 350 300

csw 1.46 1.50 1.57

�b, m0 (GeV) 0.0990, 4.31 0.0930, 3.73 0.0890, 2.87

�c, m0 (GeV) 0.1260, 1.07 0.1227, 1.05 0.1190, 0.96

�s, m0 (GeV) 0.1373, 0.092 0.1385, 0.091 0.1405, 0.093

�q, m0 (GeV) 0.1382, 0.107

0.1388, 0.075 0.1410, 0.076

0.1391, 0.059 0.1415, 0.059

0.1394, 0.043 0.1419, 0.045

Elementary outputs

�crit 0.13847+ 4
� 2 0.14021+ 3

� 1 0.14327+ 5
� 2

a�11P-1S (GeV) 2.64+17�13 1.80+ 7
� 6 1.16+ 3

� 3

a�1
f�

(GeV) 2.40+10�12 1.47+ 6
� 6 0.89+ 2

� 2

2�=NSa (GeV) 0.686 0.707 0.607

u0 0.8816 0.8734 0.8608

�V (2=a) 0.171 0.192 0.227

III. LATTICE CALCULATION

This work uses three ensembles of lattice gauge �eld con�gurations, which have been

used in previous work on heavy-light decay constants [28,14], light-quark masses [29], and

quarkonia [30]. The quark propagators are the same as in Ref. [14], but we now use 200

instead of 100 con�gurations on the �nest lattice (with � = 6:1). The input parameters for

these �elds are in Table I, together with some elementary output parameters.

The quark propagators are computed from the Sheikholeslami-Wohlert action, which

includes a dimension-�ve interaction with coupling cSW. For heavy and light quarks we

adjust cSW to the value u�30 suggested by tadpole-improved, tree-level perturbation theory,

and the so-called mean link u0 is calculated from the plaquette. The hopping parameter �

is related to the bare quark mass. For bottom and charmed quarks, �b and �c are adjusted

so that the spin-averaged kinetic mass of the corresponding 1S quarkonium states match

experimental measurements. For light quarks, �s and �q are �xed from light meson spec-

troscopy, using leading-order chiral perturbation theory and the experimental kaon and pion

masses. We also list the tadpole-improved bare quark mass in GeV,

m0a =
1

u0

�
1

2�
� 1

2�crit

�
; (3.1)

where the critical quark hopping parameter �crit makes the pion massless. Although this

mass is just a bare mass, it shows that the heavy quarks are heavy, and the light quarks light.
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We calculate the three-point function in Eq. (2.20) with degenerate spectator and daugh-

ter light quarks. At each lattice spacing we have propagators corresponding to the strange

quark. We refer to this decay as Bs ! �sl�, writing �s for the pseudoscalar �ss state in

analogy with quarkonium. At � = 5:9 and 5:7 we have additional light quark propagators,

with hopping parameter �q, covering the range
1
2
ms

<� mq
<� ms.

The lattice spacing a in physical units must be set through some �ducial observable.

As a rule [30] we prefer the spin-averaged 1P-1S splitting of charmonium, �m1P-1S. For

comparison we give the value of a�1 de�ned through the pion decay constant f�. The

discrepancy means that �m1P-1S=f� does not agree with experiment; this is thought to be

largely due to the quenched approximation, because it remains even as a is decreased.

The renormalized strong coupling �V (2=a) at scale 2=a is determined as in Ref. [27]. It

is an ingredient in the calculation of the short-distance coe�cients �Vk and �V?, introduced

in Eqs. (2.17) and (2.18).

In the three-point functions the heavy-light meson is at rest, while the momentum of the

light daughter meson is varied. In a �nite volume only discrete values of spatial momentum

are accessible. We compute the three-point function with p� = 2�n=NSa, for integer mo-

mentum n 2 f(0; 0; 0); (1; 0; 0); (1; 1; 0); (1; 1; 1); (2; 0; 0)g. As one can see in Table I, one

unit of momentum is about 0.7 GeV in the boxes used here, so our calculations cover the

range 0 � p < 1:5 GeV.

We obtain the energies, matrix elements, and ZH factors by �tting Eqs. (2.20) and (2.22)

with a �2-minimization algorithm. Statistical errors, including the full correlation matrix

in �2, are determined from 1000 bootstrap samples for each best �t. The bootstrap procedure

is repeated with the same sequence for all quark mass combinations and momenta, and in

this way the fully correlated statistical errors are propagated through later stages of the

analysis.

The right-hand sides of Eqs. (2.20) and (2.22) are the �rst term in a series, with another

term for each radial excitation. We reduce contamination from these states two ways. First,

we keep the three points of the three-point function well separated in (Euclidean) time. The

light meson creation operator O� is always at ti = 0 and the heavy-light meson annihilation

operator at tf = NT=2. We then vary the time ts of the current and the range �t of time-

slices kept in the �t, to see when the lowest-lying states dominate. The �nal choice is made

by demanding that �2=d.o.f. is acceptable and, then, minimizing the statistical errors while

maximizing �t. For acceptable �ts we have 3 � �t � 6. The extraction of the desired

matrix elements is shown in Fig. 2 for several light-meson momenta and typical quark mass.

The best �t and error envelope are indicated by the solid and dotted lines respectively. The

second way to isolate the lowest-lying states is to choose interpolating operators, OB and O�

in Eq. (2.19), to have a large overlap with the desired state. This is done by smearing out

the quark and anti-quark with 1S and 2S Coulomb-gauge wave functions, as in Ref. [31]. We

also examine point-like, or � function, operators, but for light mesons at higher momenta

we �nd that the � source does not yield good plateaus [32]. The di�erent combinations of

sources and sinks allow us to check explicitly for excited state contributions by comparing

results from �ts with di�erent smearing functions. Figure 3 compares results for the matrix

element hBsjV y

�
j�si at n = (1; 1; 0), obtained from 1S source and sink and from 1S source

for the light meson and � sink for the Bs. The 1S-1S correlation functions yield the cleanest

matrix elements, so we take our central values from them.
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FIG. 3. Isolation of the lowest-lying states with di�erent smearing functions, for n = (1; 1; 0)

and quark masses as in Fig. 2. The solid symbols have the standard 1S source and 1S sink; the

open symbols have a �-function sink for the Bs.

IV. ANALYSIS OF FORM FACTORS

From the exponential �ts to three-point correlation functions described in Sec. III we have

the matrix element, h�q(p)jV �jBq(0)i, for quark masses mq
<� ms and �nal-state momenta

jpj < 1:4 GeV. We must now extend these data to lower quark mass, until the mass of

the �qq pseudoscalar reaches the pion mass. Furthermore, the more important form factor

f?(E), which is essentially h�q(p)jVj jBq(0)i=pj , is directly calculated only for non-zero three-
momentum. In the �nite volume used here, the lowest non-zero momentum is already

0:7 GeV, and we would like to extend to lower values, calling for another extrapolation.

The extrapolation in quark mass can be guided by chiral perturbation theory. To ex-

trapolate in momentum, however, there is no �rm theoretical guide, so we must exercise

caution. Fortunately, this extrapolation is problematic only in the kinematic regime where

phase space suppresses the rate. Consequently, neither extrapolation introduces a model.

We also have checked that the order in which the momentum and chiral extrapolations are

done has no signi�cant e�ect the �nal result.

A. Momentum interpolation and extrapolation

Ultimately, we want to compare results at the three di�erent lattice spacings. There-

fore, we interpolate the lattice data to a �xed set of physical momenta. To start, we

convert the lattice data to physical units using a�11P-1S. Figure 4 shows the underlying

data for Bs ! �sl� at � = 5:9 and 6:1, along with interpolated points. The verti-

cal (horizontal) error bars on the underlying data come from the statistical uncertainty

in Fk;? (a�1). We interpolate log f?a
�1=2 (log fka

+1=2) linearly (quadratically) in p2 to

jpj 2 f0; 0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:9; 1:0; 1:1g GeV. This set forms the basis of all

further analysis. The statistical error bars of the interpolated points are vertical only, be-

cause both statistical errors are propagated through the interpolation.
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We must extend the interpolation to an extrapolation to obtain an estimate of f? for

p < 0:7 GeV. As the pion becomes softer and lighter one expects from Eq. (2.5) that the

dependence on E (and hence p) is sensitive to the Ansatz for extrapolation. The B� pole

gives f? a peak at low momentum, and the height of the peak rises as the quark mass

decreases. This shape is hard to capture, as is shown in Fig. 5, unless the �t is constrained

to it. For p > 0:7 GeV the pole �t agrees perfectly with the method described above. But

as p is decreased into the region of extrapolation, the two forms start to deviate. Above

0.4 GeV the agreement is still good, so we make a cut here. For smaller momenta phase

space suppresses the number of events, so this cut has no serious rami�cations. For D

decays the situation is much the same, as shown in Fig. 6. Therefore, we impose the same

low-momentum cut in this case. Other functional forms, such as rational, do not make much

di�erence in d�=dp / p4jf+j2=E, once the cut at pmin = 0:4 GeV is imposed.

At high momentum there are other di�culties. The signal-to-noise ratio of the three-

point function deteriorates. For the highest momentum, n = (2; 0; 0), we cannot always

extract a convincing matrix element: in some cases the plateau �t is just 2 time-slices, and

three-point functions with di�erent sources and sinks do not yield the same value for the

matrix element. We cannot include these data in the interpolation. For the second-highest

momentum, n = (1; 1; 1), we cannot extract the matrix elements at lighter mq, so statistical

errors blow up in the chiral extrapolation. We therefore place a cut at n = (1; 1; 0), which

corresponds to pmax = 1:0 GeV. Indeed, our uncertainties would be smaller with a lower

upper cut, at the cost of reducing the overlap with the experimental data further still.

B. Chiral extrapolation

Following the momentum interpolation, the form factors fk and f? at � = 5:7 and 5:9 are

extrapolated to the chiral limit at �xed momentum, guided by chiral perturbation theory.

From Eqs. (2.4) and (2.5) one can see that the chiral behavior of fk and f? should be very

di�erent. In particular, fk does not contain a B� pole, at least not at the leading order in

the chiral expansion. In the form factors, dependence on the light pseudoscalar mass enters

both through m2
�
and E. With our momentum cut, p > 0:4 GeV, and our light meson

masses, 0:45 GeV < m�q < 0:74 GeV, the dependence of E on p remains smooth, so we try

�ts of the form

fk;? = A+Bm+ Cm2; (4.1)

where m = log(1 + m0a). We compare quadratic �ts with 
oating C to linear ones with

�xed C = 0. The di�erence in the chiral limit of these di�erent �ts is the origin of our

greatest systematic uncertainty.

It would be desirable to have quark propagators at lighter quark masses to achieve

better control on the chiral extrapolation. The computer time would increase substantially,

however, and the obstacle of exceptional con�gurations would have to be overcome, for

example as in Ref. [33].

We note that when p = 0 (or p � m�) it would be better [34] to carry out the chiral

extrapolation at �xed E, instead of �xed p. With p > 0:4 GeV, however, the �xed E

15



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
p

2
 (GeV

2
)

0

0.5

1

1.5

2
a1/

2 f ||,
 a

−
1/

2 f ⊥

(a) β = 5.9
    mq = 0.107 GeV

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
p

2
 (GeV

 2
)

0

0.5

1

1.5

2

a1/
2 f ||,

  a
−

1/
2 f ⊥

(b) β = 5.9
    mq = 0.043 GeV
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heaviest of our light quarks, with �q = 0:1382; (b) the lightest of the light quarks, with �q = 0:1394.
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TABLE II. Budget of statistical and systematic uncertainties in this work for the quantities

TB(0:4 GeV; 1:0 GeV), TD(0:4 GeV; 0:93 GeV), and TB(0:4 GeV; 0:9 GeV)=TD(0:4 GeV; 0:9 GeV).

All entries in percent.

uncertainty TB jVubj TD jVcdj TB=TD jVub=Vcdj

statistical +27
� 9

+14
� 5

+17
� 8

+ 9
� 4

+10
� 4

+ 5
� 2

excited states 6 3 6 3 6 3

p extrapolation 10 5 9 5 9 5

mq extrapolation
+16
�22

+ 8
�11

+ 3
�18

+ 2
� 9

+13
� 4

+ 7
� 2

adjusting mQ 6 3 2 1 8 4

HQET matching 10 5 10 5 10 5

a dependence +16
� 3

+ 8
� 2

+23
� 6

+11
� 3 5 3

de�nition of a 11 6 4 2 8 4

total systematic 30 15 +28
�24

+14
�12

+23
�20

+12
�10

total (stat � syst) +40
�31

+20
�16

+32
�26

+16
�13

+25
�20

+13
�10

extrapolation is probably not essential, although it may reduce the uncertainty from the

chiral extrapolation. We shall investigate this issue elsewhere.

V. SYSTEMATIC ERRORS

As discussed in the previous section, we do not have useful results outside the range

0:4 GeV � p � 1:0 GeV; (5.1)

where p = jp�j is the pion's three-momentum in the rest frame of the B or D. Matrix

elements with higher momentum are not estimated reliably, and at lower momentum the

chiral extrapolation used is no longer good. In this section we analyze the systematic

uncertainties quantitatively, focusing on the partially integrated rates TB(0:4 GeV; 1:0 GeV)

and TD(0:4 GeV; 0:925 GeV), de�ned in Eq. (1.3), and the CKM matrix obtained from

Eqs. (1.4) and (1.5). A summary of this analysis is given in Table II.

The statistical error is estimated with the bootstrap method, drawing 1000 samples

for each �t. The bootstrap propagates the statistical uncertainty, including correlations,

through the interpolation in light meson momentum and extrapolation in light-quark mass,

so in the end statistics remain a quantitatively important source of uncertainty.

A. Excited states

As explained in Sec. III, we take care to isolate the desired lowest-lying � and B states

from their radial excitations when computing the three-point function of Eq. (2.19). The

associated uncertainty on the matrix elements (and, thus, the form factors) is computed by

comparing �ts with di�erent smeared and unsmeared interpolating operators. After choosing

the optimal �t range for each combination of smearing functions, we �nd deviations in F?
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and Fk of 1{3 percent, where the high end of the range is for momenta near the upper cut.

We assign an uncertainty of 6 percent to TB and TD.

Although we calculate similar matrix elements for each p and for B and D decays, the

range �t of time-slices kept in the �t was chosen independently for each case. Therefore,

the excited state contamination in TB=TD is partly, but not fully, correlated. A conservative

error estimate is again 6 percent.

B. Momentum and chiral extrapolations

The form factor f+ that enters into the partial width is more sensitive to f? than to fk.

Thus, it could be sensitive at small p to the extrapolation described in Sec. IVA. The rate,

however, is much less sensitive, because phase space suppresses it at small p. For TB the

variation between linear, rational, and pole forms is �10%.
The chiral extrapolation is a major source of uncertainty. Figure 7 shows the chiral

extrapolation at � = 5:9 for fk and f? at n = (1; 0; 0). We compare three di�erent �ts:

(1) a quadratic �t to the four lightest quark masses; (2) a linear �t to the four lightest

quark masses; and (3) a quadratic �t to all �ve light quark masses. The �rst has the lowest

�2=d.o.f., but the other two are perfectly acceptable. For other momenta the behavior is the

same. Because the extrapolated result from the �rst (and best) �t lies between the other

two, we use it to give our central value, and use the other two as estimates of the systematic

error. The ambiguity of the �ts, and hence the systematic error, could be reduced with

explicit calculation at smaller mq, but a suitable point is not feasible with our computer

resources. We are left with an uncertainty of +16
�22% in TB and + 3

�18% in TD.

The error bars on the extrapolated points in Fig. 7 show how the statistical uncertainties

are in
ated by the chiral extrapolation. This part of the uncertainty is statistical in nature,

so it is incorporated into the �rst line of Table II. Indeed, it is the main reason the statistical

uncertainty in TB (TD) grows from 6 percent (7 percent) with mq = ms to 18 percent

(13 percent) with mq = md.

C. Heavy quark mass dependence

To examine the dependence on the heavy quark mass we use form factors with a light

strange quark, because then statistical errors do not mask the e�ect. Figure 8 compares the

form factors Bs and Ds decays. There is a signi�cant di�erence. The quarkonium spectrum

tunes the (bare) heavy quark mass within a precision of 1{2% [14], which clearly would have

no signi�cant e�ect on the form factors. But because of lattice artifacts in the quarkonium

binding energy [35] and because of quenching, the heavy-light spectrum yields a di�erent

adjustment of bare quark masses. The shift is to lower 1=mPS in Fig. 8. From Eq. (2.2)

one sees that f? dominates in f+ for B decay. Thus, f+ is smaller with the heavy-light

adjustment of the bottom quark mass, and TB is 6 percent smaller. On the other hand, f?
and fk make a comparable contributions to f+ for D decay. It turns out that f+ is larger

with the heavy-light adjustment of the charmed quark mass, and TD is 2 percent larger.

The ratio TB=TD is 8 percent smaller.
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D. Matching

As explained in Sec. II, our treatment of the heavy quark matches lattice gauge theory

with Wilson fermions to HQET. This requires calculations of the short-distance coe�cients:

1=m2 and 1=mB in the e�ective action;
p
ZV uuZV bb in the de�nition of the current; and �Vk,

�V?, and 1=m3 in the description of the currents. As discussed in the previous subsection,

m2 is adjusted non-perturbatively, by tuning the quarkonium spectrum to agree with exper-

iment. The normalization factors ZV uu and ZV bb are also computed non-perturbatively, by

requiring that 
avor-conserving matrix elements � ! � and B ! B, computed by analogy

with Eq. (2.20), give unit charge. The uncertainty from it is purely statistical and much

smaller than all other statistical uncertainties.

The signi�cant systematic e�ects in the matching procedure come from computing �Vk
and �V?, and from the mismatch between Eqs. (2.9) and Eqs. (2.10) at the level of dimension-

four and higher currents. In the present work we do this part of the matching with pertur-

bative QCD, leading to errors of order �2
s
, �s=mQ, 1=m

2
Q
, respectively. Let us now consider

these e�ects in turn.

Because they are short-distance quantities, the matching factors �Vk and �V? should

be calculable in perturbation theory. (Note that all e�ects that make lattice perturbation

theory less reliable than continuum perturbation theory are absorbed into
p
ZV uuZV bb.) We

have calculated them to one loop, so we write

�V = 1 + �s(q
�)4��

[1]

V
(5.2)

for �Vk and �V?. We use the Brodsky-Lepage-Mackenzie (BLM) procedure to choose the

expansion parameter �s(q
�) [36,27]. In the scheme in which the Fourier transform of the

heavy-quark potential reads V (k) = �CF4��s(k)=k
2, the BLM scale q� is given through

log(q�a) =
��

[1]
V

2�
[1]

V

(5.3)

where ��
[1]

V
is obtained from �

[1]

V
by replacing the gluon propagator D(k) with D(k) log k2a2.

The details of these calculations are similar to those described in Ref. [37], and the results

are listed in Table III [38]. The e�ects are small for B decays and tiny for D decays. This

can be understood because the �V s are ratios of very similar quantities, so there is good

cancellation. It is therefore plausible that the two-loop contribution is numerically smaller

by another factor of �s � 0:2, and thus completely negligible.

Next, we must estimate the uncertainty from the mismatch of the 1=mQ term in the

heavy-quark expansion. This contributes an error on either form factor f

�1=mQ
f � �sb1=mQ

(mQa)m
�1
Q
�QCDf (5.4)

from 1=m3 and 1=mB contributions, and b1=mQ
gives the deviation of the short-distance

coe�cients for the lattice and continuum theories. (See Refs. [11,12] for further details.) The

factor b(mQa) is at most of order unity; for our calculations of D-meson matrix elements it

is of order mca < 1. Taking �s � 0:2 and �QCD � 500 MeV one �nds that these errors, in

either case, are at most a few percent on f or the CKM matrix.
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TABLE III. Perturbation theory for matching factors �Vk and �V?. The one-loop terms �
[1]

V

and ��
[1]

V
are in units of 10�5.

� = 6:1 � = 5:9 � = 5:7

�
[1]

V

��
[1]

V
�s(q

�) �V �
[1]

V

��
[1]

V
�s(q

�) �V �
[1]

V

��
[1]

V
�s(q

�) �V

b

fk 536 980 0.159 1.011 817 1591 0.173 1.018 1065 2199 0.196 1.026

f? �1987 �3312 0.163 0.959 �2096 �3534 0.181 0.952 �2146 �3621 0.212 0.943

c

fk �59 13 0.233 0.998 �28 40 0.402 0.999 +63 152 0.184 1.001

f? �947 �1368 0.169 0.980 �1223 �1821 0.188 0.971 �1508 �2339 0.218 0.959

Finally, we must estimate the uncertainty from the mismatch of the 1=m2
Q
terms:

�1=m2

Q

f � b1=m2

Q

(mQa)m
�2
Q
�2
QCDf: (5.5)

There are many contribution at order 1=m2
Q
in the heavy-quark expansion, most of which

come from iteration of the 1=mQ terms. Only genuine 1=m2
Q
terms in the e�ective action

and currents can be as inaccurate as Eq. (5.5) suggests. Since �QCD=mQ � �QCDa <� �s for

our lattice data, the error �1=m2

Q

f is similar in magnitude to that of �1=mQ
f .

The estimates in Table II derived from Eqs. (5.4) and (5.5) are very conservative. It

is plausible that the denominator of heavy-quark expansion is 2mQ, and it is possible that

the unknown coe�cients are fractions instead of 1{2 as used above. Thus, the matching

uncertainties may already be negligible.

The masses of the b and c quarks di�er by about a factor of three. The short-distance

coe�cients are functions of mQa [11,12], so the matching uncertainties do not cancel com-

pletely in the ratio TB=TD. In particular, on our lattices the mismatch coe�cients b1=mn

Q

are of order 1 for b quarks, but b1=mQ
� mca and b1=m2

Q

� (mca)
2; �smca for c quarks.

Nevertheless, the e�ects often have the same sign, so we take the uncertainty in the ratio to

be the same as in numerator or denominator.

E. Lattice spacing dependence

For the arti�cial decays Bs;Ds ! �sl� we have results at three lattice spacings, so

we can examine how severely the form factors are a�ected. These decays are good for

studying the a dependence, because their form factors have small statistical errors. After

chiral extrapolation, on the other hand, the larger statistical error bars would mask lattice

spacing e�ects. Previous experience with decay constants [14] leads us to believe this will not

change very much after chiral extrapolation. With the action used in this work the lattice

spacing dependence is a combination of O(�sa) and O(a
2) e�ects from the light quarks and

gluons, and the a dependence of the heavy-quark short-distance coe�cients, discussed in

the previous subsection. In particular, when the �s has non-zero recoil momentum p, the

light-quark lattice e�ects are O(�spa) and O(p
2a2).
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FIG. 9. Lattice spacing dependence ofBs ! �sl� form factors (a) fk and (b) f?, for p = 0:5 GeV

(squares) and 0:7 GeV (diamonds). The solid (open) symbols correspond to de�ning the lattice

spacing with �m1P-1S (f�).
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The a dependence of the form factors is shown in Fig. 9. The variation with a is several

percent, which is comparable to the statistical uncertainty and also to the errors from the

mismatch of the heavy quark. The observed a dependence is therefore a combination of

(uncorrelated) statistical 
uctuations, lattice artifacts from the light degrees of freedom,

and from the lattice artifacts [described in Eqs. (5.4) and (5.5)] of the heavy quark. They

cannot be disentangled with the current set of calculations, so it does not make sense to

extrapolate a! 0.

Instead we choose the results from � = 5:9, where we have the widest range of light quark

masses, for our central value and use the other two lattices to estimate the uncertainty.

Figure 10 shows the combination p4jf+j2=E, which is proportional to d�=dp, at all three

lattice spacings for Bs ! �sl� and Ds ! �sl�. As in Fig. 9 one sees that the dependence

on a is several percent, and increases with increasing p. By integrating over p we �nd a

variation of of +16
� 3% in TB and +23

� 6% in TD.

F. De�nition of a and quenching

Changes in the �nal results from changing the de�nition of a can be thought of as a

crude way to estimate e�ects of the quenched approximation. In lattice units we obtain

fka
1=2 and f?a

�1=2, so converting to physical units introduces a mild explicit dependence on

the value chosen for a. There is also an implicit dependence that enters through functional

dependence on E (or p). These two e�ects are illustrated in Fig. 9. The solid (open) points

are obtained by de�ning a so that the 1P-1S splitting of charmonium (pion decay constant)

takes its physical value. The central values in the paper are computed with the 1P-1S

de�nition. At � = 5:9 we repeat the full analysis with the f� de�nition. We �nd that TB
(TD) increases by 11 percent (4 percent), and the ratio TB=TD increases by 8 percent.

A more serious estimate of the e�ect of the quenched approximation is impossible without

generating gauge �elds with dynamical quark loops. This would require more computer

resources than we have at our disposal, and no other group has yet studied these semileptonic

decays with dynamical quarks. There are results with two light, dynamical 
avors for the

leptonic decay constants fB and fD, using either lattice NRQCD [39] or our method [16,40]

for the heavy quark. In that case one �nds an increase of between 10{11 percent over the

quenched result.

The exercise of changing the de�nition of a easily could underestimate the e�ects of

quenching. At the same time, we do not expect form factors to be more sensitive than fB.

Thus, a provisional estimate of a uncertainty in TB;D of 10{20% seems reasonable.

VI. RESULTS

The main results of this paper, given in Eqs. (1.6) and (1.7), are the quantities

TB(0:4 GeV; 1:0 GeV) and TD(0:4 GeV; 0:925 GeV), which are proportional to the par-

tially integrated rates. It may also be of interest to present the results in other ways. In

this section we give results for the ratio TB=TD, as well as results for TB, TD, and TB=TD
with a lower upper cut. We also give results for the form factors themselves.
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TABLE IV. Budget of statistical and systematic uncertainties in this work for the quantities

TB(0:4 GeV; 0:8 GeV), TD(0:4 GeV; 0:8 GeV), and TB(0:4 GeV; 0:8 GeV)=TD(0:4 GeV; 0:8 GeV).

All entries in percent.

uncertainty TB jVubj TD jVcdj TB=TD jVub=Vcdj

statistical +21
�10

+11
� 5

+18
� 9

+ 9
� 5

+10
� 5

+ 5
� 3

excited states 4 2 4 2 4 2

p extrapolation 8 4 10 5 6 3

mq extrapolation
+14
�22

+ 7
�11

+11
�11

+ 6
� 6

+13
� 8

+ 7
� 4

adjusting mQ 3 1 4 2 6 3

HQET matching 10 5 10 5 10 5

a dependence +14
� 2

+ 7
� 1

+17
� 8

+ 9
� 4 5 3

de�nition of a 9 5 3 2 8 4

total systematic +26
�28

+13
�14

+26
�21

+13
�10

+21
�19

+11
� 9

total (stat � syst) +33
�29

+17
�15

+31
�23

+16
�11

+23
�20

+12
� 9

Many uncertainties cancel in the ratio of B and D rates: the statistical error is correlated,

and the systematic errors are similar in nature. Because of heavy-quark symmetry it is most

sensible to form a ratio with the same cuts for both. We �nd

TB(0:4 GeV; 0:9 GeV)

TD(0:4 GeV; 0:9 GeV)
= 2:04+ 0:20

� 0:09
+ 0:26
� 0:08 � 0:10 � 0:20 � 0:29; (6.1)

where the uncertainties are from statistics, chiral extrapolation, a dependence, HQET

matching, and other miscellaneous sources. A more detailed budget of the last uncertainty

is given in Table II.

As mentioned above, raising the upper cut pmax increases the uncertainty. Conversely,

lowering pmax decreases the uncertainty. Repeating the full analysis at pmax = 0:8 GeV, we

�nd

TB(0:4 GeV; 0:8 GeV) = 0:294+ 0:063
� 0:031

+ 0:041
� 0:064

+ 0:041
� 0:006� 0:029 � 0:038 GeV4; (6.2)

TD(0:4 GeV; 0:8 GeV) = 0:145+ 0:026
� 0:013 � 0:016+ 0:024

� 0:012� 0:014 � 0:017 GeV4: (6.3)

and the ratio

TB(0:4 GeV; 0:8 GeV)

TD(0:4 GeV; 0:8 GeV)
= 2:03+ 0:19

� 0:10
+ 0:25
� 0:16 � 0:10 � 0:20 � 0:24: (6.4)

Table IV shows a budget of systematic errors, similar to Table II. As one can see from

comparing the last two lines in Tables II and IV, the total uncertainty is several percent

lower with pmax = 0:8 GeV.

Finally, we give our results for the form factors. Table V gives the results for form

factors in the decay B ! �l�. Listed are fk and f?, which emerge directly from our lattice

calculations, and f+ and f0, which appear in the expression for the di�erential rate. In

every case the �rst error is statistical and the second adds the systematic uncertainties in

quadrature. Table VI lists the same information for D ! �l�. Our �nal results for fk and
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TABLE V. Form factors with statistical and total systematic errors for the decay B ! �l�.

p E q2 fk f? f+ f0 p4jf+j
2=E

GeV GeV GeV2 GeV1=2 GeV�1=2 GeV3

0.0 0.140 26.41 1.93+29� 3
+28
�28 1.17+18� 6

+18
�18 0.0

0.1 0.172 26.07 1.88+28� 3
+28
�28

0.2 0.244 25.31 1.85+27� 3
+28
�28

0.3 0.331 24.39 1.80+25� 4
+27
�27

0.4 0.424 23.41 1.73+23� 4
+26
�26 1.05+16�18

+16
�16 2.10+29�25

+32
�32 1.00+13� 3

+15
�15 0.27+ 8

� 6

0.5 0.519 22.41 1.65+21� 6
+25
�25 0.99+13�14

+15
�15 1.96+24�20

+29
�29 0.95+12� 3

+14
�14 0.46+12� 9

0.6 0.616 21.38 1.56+20� 7
+23
�23 0.95+10� 9

+14
�14 1.84+20�14

+27
�27 0.89+10� 4

+13
�13 0.71+16�10

0.7 0.714 20.35 1.45+18� 7
+22
�22 0.91+ 9

� 5
+14
�14 1.72+18� 8

+26
�26 0.83+10� 4

+12
�12 1.00+22� 9

0.8 0.812 19.31 1.34+17� 8
+20
�20 0.86+12� 4

+13
�13 1.59+21� 7

+24
�24 0.76+10� 4

+11
�11 1.27+36�11

0.9 0.911 18.27 1.23+17� 7
+18
�18 0.73+15� 6

+11
�11 1.36+23� 9

+20
�20 0.70+ 9

� 4
+11
�11 1.34+51�17

1.0 1.01 17.23 1.15+16� 6
+17
�17 0.59+15� 6

+ 9
� 9 1.13+24� 9

+17
�17 0.64+ 9

� 3
+10
�10 1.30+60�35

TABLE VI. Form factors with statistical and total systematic errors for the decay D ! �l�.

p E q2 fk f? f+ f0 p4jf+j
2=E

GeV GeV GeV2 GeV1=2 GeV�1=2 GeV3

0.0 0.140 2.99 1.34+19� 3
+17
�15 1.29+20� 2

+17
�14 0.0

0.1 0.172 2.87 1.33+19� 2
+17
�15

0.2 0.244 2.60 1.32+18� 2
+17
�14

0.3 0.331 2.28 1.31+17� 3
+17
�14

0.4 0.424 1.93 1.28+16� 4
+16
�14 1.19+16�15

+15
�13 1.56+17�10

+20
�17 1.14+13� 4

+15
�12 0.15+ 3

� 2

0.5 0.519 1.57 1.21+15� 5
+16
�13 1.17+12�12

+15
�13 1.45+14� 8

+19
�16 1.08+12� 4

+14
�12 0.25+ 5

� 3

0.6 0.616 1.21 1.12+14� 6
+15
�12 1.13+10� 8

+15
�12 1.32+12� 6

+17
�14 1.01+11� 5

+13
�11 0.36+ 7

� 3

0.7 0.714 0.85 1.04+13� 6
+14
�11 1.08+ 7

� 6
+14
�12 1.18+10� 6

+15
�13 0.96+ 9

� 5
+12
�10 0.47+ 8

� 4

0.8 0.812 0.478 0.99+11� 6
+13
�11 1.02+ 8

� 6
+13
�11 1.07+ 9

� 6
+14
�11 0.95+ 9

� 5
+12
�10 0.58+11� 6

0.9 0.911 0.109 0.95+10� 5
+12
�10 0.98+ 8

� 7
+13
�11 0.98+ 9

� 6
+13
�11 0.94+ 9

� 5
+12
�10 0.69+13� 8

0.925 0.935 0 0.93+13� 4
+12
�10 0.95+ 9

� 7
+12
�10 0.94+10� 5

+12
�10 0.94+10� 6

+12
�10 0.71+19� 9
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f? are obtained at � = 5:9, after chiral extrapolation, with the systematic errors estimated

as described in Sec. V. In particular, the estimate of lattice spacing e�ects uses results from

all three lattice spacings. For p < 0:4 GeV our extrapolation of f? in the pion momentum

is no longer reliable, so we do not quote results for it.

The physical form factors f+(E) and f0(E) are obtained from Eqs. (2.2) and (2.3)

using the tabulated results for f?(E) and fk(E), physical meson masses, and energy

E =
q
m2

�
+ p2, for each p = jp�j in our set of pion three-momenta. They are shown

in Fig. 11. Tables V and VI also include the combination p4jf+j2=E; for massless �nal-state

leptons the di�erential rates are given by

d�B!�

dp
= jVubj2 (2:9328 ps�1GeV�4)

p4jf+j2
E

; (6.5)

d�D!�

dp
= jVcdj2 (1:0358 ps�1GeV�4)

p4jf+j2
E

: (6.6)

Other di�erential distributions can be obtained from the latter by changing variables with

dp=dE = E=p and dp=dq2 = E=2mBp or E=2mDp. From Eqs. (6.5) and (6.6) one sees that

the phase-space factor p4 suppresses the rate in the low-momentum region where we cannot

quote f+.

VII. COMPARISON WITH OTHER RESULTS

In this section we compare our results to recent published [19,20] and preliminary [21]

work from lattice QCD. The comparison is apt, because three di�erent methods for treat-

ing the heavy quark on the lattice have been employed. We use Wilson fermions with the

SW action, normalized to have a consistent heavy-quark limit. References [19,20] use Wil-

son fermions (with the SW action and light-quark normalization conditions) at mQ near

and below the charmed quark mass, and extrapolate up to mb. Reference [21] uses lattice

NRQCD [41] (with the power-counting of HQET [42]) and, as we do, calculates the form

factors directly at the bottom quark mass.

Figure 12 shows results from Refs. [19,20] together with ours. (We do not include results

from the JLQCD collaboration [21], because they are still preliminary. We anticipate that

their systematic uncertainties will be similar to ours. At this stage their statistical uncer-

tainties seem surprisingly large.) Within the quoted uncertainties there is broad agreement

among the three calculations. There are, however, three noteworthy di�erences in the anal-

ysis of the form factors. These are the lattice spacings at which the calculations are done,

the procedure for chiral extrapolation, and the treatment of the heavy quark.

Our results are based on lattice gauge �elds at three lattice spacings, given in Table I.

We �nd that the lattice-spacing dependence of the form factors is mild (with our treatment

of the heavy quark), even on a relatively coarse lattice at � = 5:7. The results of Refs. [19,20]

are both based on only one set of lattice gauge �elds (at � = 6:2), whose spacing is slightly

�ner than any of ours. We believe, therefore, that the lattice spacing e�ects of the gluons

and light quarks are not a serious source of error, at the present overall level of accuracy, in

any of the three works.
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FIG. 11. Momentum dependence of the form factors with all systematic uncertainties included.

(a) f+ and (b) f0. Squares (circles) denote B (D) decays. Solid symbols are independent of the

momentum interpolation.

30



0 0.5 1 1.5 2
E (GeV)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(G
F

2 /2
4π

3 ) 
p3 |f +

(E
)|

2   (
G

eV
 −

1 )

FIG. 12. Comparison of the di�erential decay rate (at �xed lattice spacing) vs. E: open dia-

monds [19], open triangles [20], and solid squares (this work).

31



In our work, the largest uncertainty comes from the chiral extrapolation at �xed pion

momentum p. As explained in Sec. VB, this uncertainty arises because the linear and

quadratic �ts give moderately di�erent results. References [19,20] do not have enough values

of the light quark mass to be able to check whether a term quadratic in mq is needed to

describe their data. Because those works extrapolate at �xed q2, however, it is plausible

that the curvature seen in Fig. 7 would go away, and that a linear chiral extrapolation would

then be adequate.

The interpolation in pion momentum, or energy, is another di�erence. It leads to the

apparent di�erence in the shape of the spectrum in Fig. 12. If we choose the pole form

suggested (for small E) by Eqs. (2.4) and (2.5), the shape of the spectrum is less humped,

though not as 
at as the spectra from Refs. [19,20]. In those works a pole Ansatz di�erent

from Eqs. (2.4) and (2.5) was used.

The most signi�cant di�erence in the three calculations is the treatment of the heavy

quark. Although the same action and similar currents are used, the bare quark mass and

the normalization of the current are adjusted di�erently. The normalization conditions

chosen in Refs. [19,20] are designed for the mQa ! 0 limit, and at �nite mQa they leave

systematic uncertainties of order (mQa)
2. To reduce these, Refs. [19,20] calculate with the

heavy-light meson mass near and below 2 GeV and extrapolate up to mB. This procedure

leads to their largest quoted uncertainty. The statistical error increases, as it must in any

extrapolation. There are also systematic e�ects, which are estimated by trying linear and

quadratic �ts in 1=mQ. For at least two reasons, this test may underestimate the systematic

uncertainty of the extrapolation. First, the compatibility of the �ts shows only that the

dependence on 1=mQ is smooth in the employed range of the quark masses. It does not

show that the heavy-quark expansion is reliable below 2 GeV. This problem is especially

severe for Ref. [19], which has heavy-light meson masses as low as 1.2 GeV. Second, the

lattice artifacts of order (mQa)
2 may well be ampli�ed by the extrapolation. This problem

would be especially severe for Ref. [20], which has mQa as high as 0.7.

Our normalization conditions coincide with those above as mQa ! 0. At �nite mQa,

however, they are chosen to eliminate lattice artifacts that grow with mQa [11]. This is made

possible by using HQET to match the lattice action and current to continuum QCD [12], as

reviewed in Sec. II. The advantage is that, as with lattice NRQCD [41,21], the calculations

can be done directly at mQ = mb, without an extrapolation in 1=mQ. Of course, we must

assume that HQET is valid for the b quark, but that is safer than assuming that it is valid

for mQ � 1{2 GeV.

A feature of our approach is that it leads to a somewhat complicated pattern of heavy-

quark discretization errors. There is, however, a corresponding pattern of systematic un-

certainties in the results of Refs. [19,20]. In particular, there are corrections to the normal-

ization of order �s(mQa)
2 and of order (mQa)

2�QCD=mQ = mQa�QCDa in the 1=mQ term

of the heavy-quark expansion. Estimates of the magnitude of these errors|before or after

1=mQ extrapolation|are absent from Refs. [19,20]. (The corresponding errors in our work,

which we address quantitatively in Sec. VD, are of order �2
s
in the normalization and of

order �s�QCD=mb in the 1=mQ term.)

The calculation of semileptonic form factors for B ! �l�, and related D decays, has

also been carried out with quark models and QCD sum rules. At present the uncertainties

from lattice QCD are comparable to those based on light-cone sum rules [43,44]. The latter
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TABLE VII. Strategies for reducing statistical and systematic uncertainties of semileptonic

form factors.

uncertainty strategy

statistical more lattice gauge �elds; better mq extrapolation

excited states longer time extent; better operators

p extrapolation larger �nite volume; better statistics

mq extrapolation better statistics; more values of mq; �xed-E extrapolation

adjusting mQ unquench

HQET matching match up to �s�QCD=mQ, (�QCD=mQ)
2

a dependence more lattices

de�nition of a unquench

quenching unquench

have the advantage that they are most applicable for energetic pions, so (for B decay) they

overlap better with th distribution of events in an experiment. On the other hand, it seems

di�cult to reduce the uncertainties from sum rules down to the level of a few percent, which

will be needed to match the precision of the B factories. As discussed in the following

section, however, all uncertainties of the form factors are reducible with lattice QCD.

VIII. CONCLUSIONS

In this paper we have presented results for the form factors and di�erential decay rates for

the semileptonic decays B ! �l� and D ! �l�. The total uncertainties are 30{35 percent

(for the rate) and, hence, would yield a theoretical uncertainty to the CKM matrix of 15{

18 percent. We have attempted a complete analysis of the systematic uncertainties, at

least within the quenched approximation. A rough estimate of the additional error from

quenching is 10{20 percent (on the rate).

A more important, thought less speci�c, result of this paper is a demonstration that,

within the quenched approximation, all uncertainties are controllable. Table VII gives a

sketch of what is needed to reduce all sources of uncertainty. In almost every case, the

remedy is simply more computer time. That, in fact, is promising, since the computer

used in this work is already ten years old. Given the experience of the CP-PACS [16,39]

and MILC [40] collaborations with heavy-light decay constants, it should be feasible to

repeat our analysis on a modern supercomputer with unquenched gauge �elds. In summary,

there do not appear to be any technical roadblocks to reducing the uncertainties in lattice

calculations to a few percent or better, over the course of the present round of experiments.

In the case of the uncertainty labeled \HQET matching" better calculations of the various

short-distance coe�cients introduced in Sec. II will be needed to be sure that the total

uncertainty is only a few percent. This is not a computational problem but a theoretical

one, which arises also in calculations with lattice NRQCD. The alternative would be to

reduce the lattice spacing dramatically, so that mQa and �QCD=mQ can be simultaneously

small. But, since computer requirements scale as a�1 to a high power, that would seem

to be a long way o�. One would also have to sacri�ce some other improvements, such as
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removing the quenched approximation.

For semileptonic decays of B orD to vector mesons such as � and ! more study is needed.

The vector mesons decay hadronically, and in the quenched approximation these decays are

absent. Even in unquenched calculations, however, there are still issues that may need

explicit analysis. In particular, if the calculations are done at largish light quark masses,

the decay may be kinematically forbidden. Because there is not yet much experience with

unquenched calculations, it is not yet clear whether one can smoothly extrapolate vector

meson properties from this region to the physical mesonmasses. It is, thus, hard to anticipate

how well lattice QCD will do here. This is unfortunate, because the experimental errors for

semileptonic decays into vector mesons are expected to be somewhat smaller.

In any case, semileptonic decays of B mesons ultimately will provide one of the most

accurate constraints on the unitarity triangle, through a determination of jVubj. Indeed,

if new physics lurks behind B0- �B0 mixing, it is essential to have constraints on the CKM

matrix through charged-current interactions like b! c and b! u.
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