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2.1 Introduction 
 
In this chapter general properties of the radiation fields at accelerators will be discussed.  
To do this, the concept of particle yield and solid angle will be introduced.  Following 
that, a theoretical approach to particle transport will be introduced.  The Monte Carlo 
technique will be described and illustrated by simple examples.  The manipulation of 
charged particles using electromagnetic fields will be reviewed due to its importance for 
understanding the handling of the accelerated beams. 
 
2.2 Primary Radiation Fields at Accelerators-General Considerations 

Accelerated charged particles, except for the singular pnenonemon of synchrotron 
radiation that will be discussed in Section 3.2.3, do not produce radiation unless there is 
some interaction with matter.  The charged particles directly accelerated, and otherwise 
manipulated by the electromagnetic fields within the accelerator, are referred to as the 
primary particles or beam.  All other particles that are produced from this beam either 
due to the interactions of these primary particles in matter or due to synchrotron radiation 
are referred to as secondary particles.  In some instances, one finds references to tertiary 
particles that result from the interactions in matter of the secondary particles or are 
emitted in their radioactive decay.  Confusion at many high energy accelerators 
sometimes arises from the fact that secondary and tertiary particles and ions can now be 
collected into beams of their own and even accelerated.  In these instances, when the 
secondary or tertiary particles are employed at some location separated from the place 
where they were initially produced, they can obviously play the role of a primary particle.   
 
If one considers primary particles incident upon a physical object such as a target, the 
yield, Y, of secondary particles is a crucial parameter.  The yield is typically a function of 
both angle and particle energy and is defined according to Fig. 2.1.  Scattered reaction 
products are found at a "point of interest" located at radius, r, and polar angle, θ, relative 
to the direction of the incident particle along the positive z -axis.  In general, particle 
differential yields are expressed in terms of particles per unit solid angle at the point of 
interest and are commonly normalized to the number of incident particles or to the beam 
current or total delivered charge.  Such particle yields, dependent upon both target 
material and thickness, are reported in terms of particle type, energy, and angular 
distributions.  The rate of production of the desired reaction products and their energy 
spectra is, in general, a strong function of both θ  and the incident particle energy Eo.  
There is usually no dependence on the azimuthal angle in a spherical coordinate system.1  
 

                                                 
1The single exception is the case in which the spins of the target nuclei and/or the incident particle are 
oriented along some chosen direction in a "polarization" experiment. 
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Fig. 2.1 Conceptual interaction of incident beam with material (target) which produces radiation at the 
point of interest located at polar coordinates (r, θ). 

 
In principle, the particle yield could be obtained directly from differential cross sections 
for given incident particle kinetic energy E, 
 

    
( , )d E

d

σ θ
Ω

,       

 
where σ(θ, E) is the cross section as a function of energy and angle and Ω is the solid 
angle into which the secondary particles are produced.  Y could, in principle be obtained 
from an integration of this cross section as it varies while the incident particle passes 
through the target material.  

Calculations of the radiation field that directly use the cross sections are often not 
practical because targets hit by beam are not really thin.  Thus one cannot ignore energy 
loss or secondary interactions in the target.  Furthermore, the knowledge of cross sections 
at all energies is generally incomplete with the unfortunate result that one cannot always 
integrate over θ and E to get the total yield.  
 
For many applications, the details of the angular distributions of total secondary particle 
yield, dY(θ)/dΩ, and the angular dependence of the emitted particle energy spectrum, 
d2Y(θ,E)/dEdΩ, are very important.   
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Often, the particle fluence is needed at a particular location at coordinates (r,θ ) from a 
known point source of beam loss while the angular distributions of dY/dΩ  are generally 
expressed in units of particles/(steradian-incident particle).  To obtain the total fluence 
Φ(θ)  [e.g., particles/(cm2.incident particle)], or differential fluence dΦ(θ,E)/dE [e.g., 
particles/(cm2.MeV.incident particle)] at a given distance r (cm) at a specified angle 
θ  from such a point source2, one must simply multiply the yield values by r -2 (e.g.,  
cm-2): 
 

  
2

1 ( )
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r d
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Ω

  and  
2

2

( , ) 1 ( , )d E d Y E

dE r dEd
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.   (2.1) 

 
Given the fact that secondary, as well as primary, particles can create radiation fields, it is 
quite obvious that the transport of particles through space and matter can become a very 
complex matter.  In the following section, the advanced techniques for handling these 
issues are described. 
 
2.3 Theory of Radiation Transport 
 
The theoretical material in this section is largely due to the work of O’Brien (OB80).  It is 
included to show clearly the mathematical basis of the contents of shielding codes, 
especially those that use the Monte Carlo method.  Vector notation is used in this section. 
 
2.3.1 General Considerations of Radiation Transport 
 
Stray and direct radiations at any location are distributed in particle type, direction, and 
energy.  To determine the amount of radiation present for radiation protection purposes 
we must assign a magnitude to this multidimensional quantity.  This is done by forming a 
double integral over energy and direction of the product of the flux and an approximate 
dose equivalent per unit fluence conversion factor, summed over particle type; 
 

4 0
( , )  ( , , , ) ( )i i

i

H x t d dE f x E t P E
π

∞
= Ω Ω∑ ∫ ∫

� �� �
� ,      (2.2)   

where the summation index i is over the various particle types, 
�
Ω  is the direction  vector 

of particle travel,  
�
x  is the coordinate vector of the point in space where the dose or dose 

equivalent is to be calculated, E is the particle energy, t is time, and i is the particle type.     
Pi(E) is the dose equivalent per unit fluence conversion factor expressed as a function of 
energy and particle type for the ith particle.  The inner integral is over all energies while 
the outer integral is over all spatial directions from which contribute to the radiation field 
at the location specified by 

�
x .  The result of the integration is H, the dose or dose

                                                 
2 A point source is one in which the dimensions of the source are small compared with the distance to some 
other location of interest. 
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equivalent rate at location 
�
x and time t.  Values of Pi(E) are given in Figs. 1.4, 1.5, and 

1.6.  The angular flux, f x E ti ( , , , )
� �

Ω , the number of particles of type i per unit area, per 
unit energy, per unit solid angle, per unit time at location 

�
x , with a energy E, at a time t 

and traveling in a direction 
�
Ω  is related to the flux density, φi x t( , )

�
, by integrating over 

direction, 
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The angular flux, f x E ti ( , , , )
� �

Ω , is connected to the fluence ( )xi

�Φ  by integrating over the 

intervening period of time (ti  to tf ), 
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and to the energy spectrum at point 

�
x  at time t  by, 

 

   
4
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� .   (2.5) 

 
To determine the proper dimensions and composition of a shield, the amount of radiation, 
expressed in terms of the dose or dose equivalent, which penetrates the shield and reaches 
locations of interest must be calculated.  This quantity must be compared with the 
maximum permissible dose equivalent.  If the calculated dose equivalent is too large, 
either the conditions associated with the source of the radiation or the physical properties 
of the shield must be changed.  The latter could be a change in shield materials, 
dimensions, or both.  If the shield cannot be adjusted, then the amount of beam loss 
allowed by the beam control instrumentation, the amount of residual gas in the vacuum 
system, or the amount of beam accelerated may have to be reduced.  It is difficult and 
expensive, especially in the case of the larger accelerators, to alter permanent shielding or 
operating conditions if the determination of shielding dimensions and composition has 
not been done correctly.  The methods for determining these quantities have been 
investigated by a number of workers.  The next section only summarizes the basics of this 
important work. 
 
2.3.2 The Boltzmann Equation 
 
The primary tool for determining the amount of radiation reaching a given location is the 
stationary form  of the Boltzmann equation (henceforth, simply the Boltzmann equation) 
which, when solved, yields the angular flux, fi , the distribution in energy and angle for 
each particle type as a function of position and time.  The angular flux is then converted 
to dose equivalent by means of Eq. (2.2).  This section describes the theory that yields the  



Chapter 2  General Considerations of Radiation Fields at Accelerators 

Page 2-5 

distribution of radiation in matter, and discusses some of the methods for extracting 
detailed numerical values for elements of this distribution such as particle flux, or related 
quantities, such as dose, activation or instrument response.  The basis for this theory is the 
Boltzmann equation, a statement of all the processes that the particles of various types, 
including photons, that comprise the radiation field can undergo.   
 
The Boltzmann equation is an integral-differential equation describing the behavior of a 
dilute assemblage of corpuscles.  It was derived by Ludwig Boltzmann in 1872 to study 
the properties of gases but applies equally to the behavior of those "corpuscles" which 
comprise ionizing radiation.  This equation is a continuity equation of the angular flux, fi, 
in phase space which is made up of the three space coordinates of Euclidian geometry, the 
three corresponding direction cosines, the kinetic energy, and the time.  The density of 
radiation in a volume of phase space may change in five ways: 
 

• Uniform translation; where the spatial coordinates change, but the energy-angle 
coordinates remain unchanged; 

 
• Collisions; as a result of which the energy-angle coordinates change, but the 

spatial coordinates remain unchanged, or the particle may be absorbed and 
disappear altogether; 

 
• Continuous slowing down; in which uniform translation is combined with 

continuous energy loss; 
 

• Decay; where particles are changed through radioactive transmutation into 
particles of another kind; and 

 
• Introduction; involving the direct emission of a particle from a source into the 

volume of phase space of interest:  electrons or photons from radioactive 
materials, neutrons from an α-n emitter, the "appearance" of beam particles, or 
particles emitted from a collision at another (usually higher) energy.  

 
Combining these five elements yields 
 

    ( , , , )i i ij ijf x E t Q YΒ Ω = +
���         (2.6) 

 
where the mixed differential and integral Boltzmann operator for particles of type i, iΒ� , 

is given by 
 

   i i i i
dE

d S
EdE

σ
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∫
∫

�� ,     (2.7) 
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In Eq. (2.7);  
 
 Yi is the number of particles of type i introduced by a source per unit area, time, 

energy, and solid angle;  
 
 σi is the absorption cross section for particles of type i.  To be dimensionally 

correct, this is actually the macroscopic cross section or linear absorption 
coefficient µ = Nσ  as defined in Eq. (1.8); 

  
 di is the decay probability per unit flight path of radioactive particles (such as 

muons or pions) of type i ;  
 
 Si is the stopping power for charged particles of type i (assumed to be zero for 

uncharged particles);  
 
 Qij is the "scattering-down" integral, the production rate of particles of type i with 

a direction Ω
�

, an energy E at a location 
�
x , by collisions with nuclei or decay of j  

-type particles having a direction Ω′
�

 at a higher energy EB;  
 
 σij is the doubly-differential inclusive cross section for the production of type-i 

particles with energy E and a direction Ω
�

 from nuclear collisions or decay of 

type-j particles with a direction EB and a direction Ω′
�

; and 
 
 βi is the velocity of a particle of type i divided by the speed of light c ;  

and τi is the mean life of a radioactive particle of type i  in the rest frame.   
 
This equation is quite difficult to solve in general and special techniques have been 
devised to yield useful results.  The Monte Carlo method is the most common method of 
solution used in the field of radiation shielding. 
 
2.4 The Monte Carlo Method 
 
2.4.1 General Principles of the Monte Carlo Technique 
 
The Monte Carlo method is based on the use of random sampling to obtain the solution of 
the Boltzmann equation.  It is one of the most useful methods for evaluating radiation 
hazards for realistic geometries that are generally quite difficult to characterize using  
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analytic techniques (i.e., with equations in closed form). The calculation proceeds by 
constructing a series of trajectories, each segment of which is chosen at random from a 
distribution of applicable processes.  In the simplest and most widely used form of the 
Monte Carlo technique, the so-called inverse transform method, a history is obtained 
by calculating travel distances between collisions and then sampling from distributions in 
energy and angle made up from the cross sections,  
 

   ),( Ω→Ω′→
��

EEBijσ .     (2.10) 

 
The result of the interaction may be a number of particles of varying types, energies, and 
directions each of which will be followed in turn.  The results of many histories will be 
processed, leading typically to some sort of mean and standard deviation.      
 
If p(x)dx is the differential probability of an occurrence at x + 1/2 dx in the interval, 
[a,b], then the integration 

 ∫ ′′=
x

a
xpxdxP )()(       (2.11) 

 
gives P(x), the cumulative probability that the event will occur in the interval [a, x ].  
The cumulative probability function is monotonically increasing with x and satisfies the 
conditions P(a)  = 0, P(b)  = 1.  If a random number R is chosen, uniform on the interval 
[0, 1] from a computer routine, the equation 
 
    R = P(x)      (2.12) 
 
corresponds to a random choice of the value of x, since the distribution function for the 
event P(x) can, in principle, be inverted as 

         x P R= −1( ) .      (2.13) 
 
As a simple illustration, to determine when an uncharged particle undergoes a reaction in 
a one-dimensional system with no decays (d = 0), no competing processes (S = 0), and no 
"in-scattering" (Q = 0), one notes from Eqs. (1.6, 2.6, and 2.7) that this particle satisfies a 
simple application of the Boltzmann equation; 
 
    { }B iσΦ = Ω ⋅ ∇ + Φ

�� .    (2.14)  

 
This simple situation reduces to the following, taking in this discussion σι to be the 
macroscopic cross section otherwise denoted by Nσ  in this text; 
 

    0
d

N
dx

σΦΒΦ = + Φ =� .    (2.15) 
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The solution to this equation is the familiar 
 
    0 exp( / )x λΦ = Φ − ,     (2.16) 

 
where  λ  = 1/Nσ  as in Eq. (1.8).  One can replace x/λ with r, the number of mean-free-
paths the particle travels in the medium.  The differential probability per unit mean-free-
path for an interaction is given by 
     p(r)  = exp(-r) ,    (2.17) 
 

 with  RrrrrdrP
r

o

r
=−−=′−−=′−′= ∫ )exp(1)exp()exp()(

0
.  (2.18) 

 
Selecting a random number, R, then determines a depth r that has the proper distribution.   
Of course, identical results apply to other processes described by an exponential function 
such as radioactive decay.  In this simple situation, it is clear that one can solve the above 
for r as a function of R and thus obtain individual values of r from a corresponding set of 
random numbers.  For many processes, an inversion this simple is not be possible 
analytically.  In those situations, other techniques exemplified by successive 
approximations and table look-ups must be employed.  
 
In a Monte Carlo calculation, the next sampling process might select which of several 
physical processes would occur.  Another sampling might choose, for instance, the 
scattering.  Deflections by magnetic fields might be included as well as further particle 
production and/or decay. 
 
The Monte Carlo result is the number of times the event of interest occurred for the 
random steps through the relevant processes.  As a counting process it has a counting 
uncertainty and the variance will tend to decrease as the square root of the number of 
calculations run on the computer.  Thus high probability processes can be more accurately 
estimated than low probability processes such as passage through an effective shield in 
which the radiation levels are attenuated over many orders of magnitude.   Sophisticated 
techniques are employed which temporarily give enhanced probabilities to the low-
probability events during the calculation in order to study them with the normal 
probabilities restored at the end of the calculation by removing these so-called “weights”. 
It is by no means clear that the distributions obtained using the Monte Carlo method will 
be distributed according to the normal, or Gaussian distribution, so that a statistical test of 
the adequacy of the mean and standard deviation may be required. 
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2.4.2 Monte Carlo Example; A Sinusoidal Angular Distribution of Beam Particles 
 
Suppose one has a distribution of beam particle particles such as exhibited in Fig 2.2.   

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

dN
/d

θ

θ (radians)
 

Fig. 2.2 Hypothetical angular distribution of particles obeying a distribution proportional to cos θ.   
 
 
For this distribution, p(θ ) = A cos θ  for 0 < θ < π/2.  Then, the fact that the integral of 
p(θ ) over the relevant interval must be unity implies A =1 since 
 

  1sincos)2/(
def2/

0
2/

0
=== ∫ ππ

θθθπ AAdP .   (2.19) 

Thus, p(θ ) = cos θ.  The cumulative probability,  P(θ ), is given by: 
 

  θθθθθθθ θθθ
sinsincos)()( =′=′′=′′= ∫∫ ooo

dpdP  .  (2.20) 

 
If R is a random number, then R = P(θ) determines a unique value of θ ; hence: 
 

θ = −sin ( )1 R .      (2.21) 
 

One can perform a simple Monte Carlo calculation using, for example, 50 random 
numbers.  To do this one should set up at table such as Table 2.1 that was generated using 
a particular set of such random numbers.  One can set up a set of bins of  
successive ranges of θ-values.  The second column is a "tally sheet" for collecting 
"events" in which a random number R results in a value of θ within the associated range 
of θ-values. θmid is the midpoint of the bin (0.1, 0.3,...).  Column 4 is the normalized 
number in radians found from the following: 
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N =

=

Number found in Monte Carlo bin

(Total number of events)(bin width)

                      
Number found in bin in Monte Carlo

(50)(0.2 radians)

.

  (2.22)  

Table 2.1 Tally sheet for Monte Carlo example. 
θ (radians) R (random #) Total R’s in Bin N (norm. #) cos θmid 

0.0 - 0.199 1111  1111 1 11 1.1 0.995 

0.2 - 0.399 1111  1111 111 13 1.3 0.955 

0.4 - 0.599 1111  1111 1 11 1.1 0.877 

0.6 - 0.799 1111 4 0.4 0.765 

0.8 - 0.999 1111 11 7 0.7 0.621 

1.0 - 1.199 1111 4 0.4 0.453 

1.2 - 1.399    0.267 

1.4 - 1.57    0.086 

 
One can calculate exactly the mean value of θ  for the specified distribution: 
 

 [ ]
/ 2 / 2

/ 20 0
0/ 2

0

( ) cos( )
cos sin

1( )

p d d

p d

π π
π

π

θ θ θ θ θ θ
θ θ θ θ

θ θ
= = = +∫ ∫

∫
  

θ π= − + −





=0 1
2

0 057.
     (2.23) 

  
 
To calculate the same quantity from the Monte Carlo result, one proceeds first by 
multiplying the frequency of Monte Carlo events for each eight angular bins from the 
table by the midpoint value of the bins.  Then one sums over the 8 bins and divides by the 
number of incident particles (50 in this example). Thus one can determine the average 
value of θ, < θ >MC calculated by the Monte Carlo technique: 
 

<θ>MC = [(11)(0.1) + (13)(0.3) + (11)(0.5) + (4)(0.7) + (7)(0.9) + (4)(1.1)]/50 = 0.48. 
           (2.24) 
 
It is easy to see from this simple example involving very coarse bins and a very small 
number of histories that the agreement is quite good in spite of the rather poor "statistics".  
This example also illustrates that the statistical errors are generally larger for the more 
rare events here represented by large values of θ  (i.e., θ > 1 radian).  The choice of bin 
sizes is also crucial. 
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Practical Monte Carlo calculations generally involved the need to follow many histories.  
Early calculations of this type, such as the one reported by Wilson (Wi52), were made 
using devices such as "wheels of chance" and hand-tallying.  The advent of digital 
computers has rendered this technique much more powerful.  As the speed of computer 
processors has increased, the ability to model the physical effects in more detail and with 
ever improving statistical accuracy has resulted.  In later chapters, results obtained using 
specific codes will be presented.  Descriptions of the codes themselves, accurate as of this 
writing, are presented in Appendix A.  The reader should be cautioned that most of these 
codes are being constantly improved and updated.  The wisest practice in using them is to 
consult with the authors of the codes directly. 
 
2.5 Review of Magnetic Deflection and Focussing of Charged Particles 
 
2.5.1 Magnetic Deflection of Charged Particles 
 
Particle accelerators of all types operate by utilizing electromagnetic forces to accelerate 
and deflect charged particles.  These forces have been well described in detail by other 
authors such as Edwards and Syphers (Ed93), Carey (Ca87), and Chao and Tigner 
(Ch99).  In accelerator radiation protection, an understanding of these forces is motivated 
by the need to be able to determine the deflection of particles by electric or magnetic 
fields.  Clearly, one needs to be able to assure that particles in a deflected particle beam 
either interact with material where such interactions are desired or avoid such points of  
beam loss.  The answers to such questions are interconnected with the design of the 
accelerator and, for those purposes, advanced texts such as those cited above should be 
consulted.  This is especially true for situations involving the application of 
radiofrequency (RF) electromagnetic fields to the particle beams where a full treatment 
using electrodynamics is needed.  However, some of the issues are quite simple and are 
discussed in this section. 
 
The force, 

�
F (Newtons) on a given charge, q (Coulombs), at any point in space is given, 

in SI units, by 
 

    
� � � � �
F q v B E

dp

dt
= × + =( ) ,     (2.25) 

 

where the electric field, 
�
E , is in Volts meter-1, the magnetic field 

�
B is in Tesla (1 Tesla = 

104 Gauss), and v
�

 is the velocity of the charged particle in km sec-1, 
�
p is the momentum 

of the particle in SI units, and t is the time (sec).   The direction of the force due to the 
cross product in Eq (2.25) is, of course, determined by the usual right-hand rule.  Static 

electric fields (i.e., / 0dE dt =
�

), if present, serve to accelerate or decelerate the charged 
particles.  In a uniform magnetic field without the presence of an electric field, due to 



Chapter 2  General Considerations of Radiation Fields at Accelerators 

Page 2-12 

the cross product in this equation, any component of 
�
p  which is parallel to

�
B will not be 

altered by the magnetic field.  Typically, charged particles are deflected by dipole 
magnets in which the magnetic field is, to high order, spatially uniform and constant in 
time, or slowly-varying compared with the time during which the particle is present.  For 
this situation, if there is no component of

�
p  which is parallel to

�
B , the motion is circular 

and the magnetic force serves to supply the requisite centripetal acceleration.  The 
presence of a component of 

�
p  which is parallel to 

�
B  results in a trajectory that is a spiral 

rather than a circle.  Figure 2.3 illustrates the condition of circular motion.  Equating the 
centripetal force to the magnetic force and recognizing that

�
p  is perpendicular to 

�
B  leads 

to 

     
mv

R
qvB

2

= ,     (2.26) 

 
where m is the relativistic mass (see Eq. 1.11).  Solving for the radius of the circle, R 
(meters), recognizing that p = mv, and changing the units of measure for momentum, one 
gets 
 

   R
p

qB
(meters) =  (SI units) (GeV/c)

0.29979

p

qB
= ,   (2.27) 

 
where q in the denominator of the right hand side is now the number of electronic charges 
carried by the particle and B remains expressed in Tesla.  The numerical factor in the 
denominator is just the mantissa of the numerical value of the speed of light in SI units.   
 
In practice, at large accelerators, one is often interested in the angular deflection of a 
magnet of length, L, which provides such a uniform field orthogonal to the particle 
trajectory.  Such a situation is also shown in Fig. 2.3.  If L is only a small piece of the 
complete circle (i.e., L << R), one can consider the circular path over such a length to be 
two straight line segments.  Doing this, one finds that the change in direction, ∆θ , is 
given by 

∆θ = =
L

R

qBL

p

0 29979.
 (radians),    (2.28) 

 
where the product, BL (Tesla-meters) is commonly referred to the field integral of the 
magnet system and p remains in GeV/c.  It is evident that BL could just as well be 
obtained by integrating a non-uniform field over the length of the magnet system.  This 
angle of deflection can be used to deduce if the particle beam will, or will not, interact 
with some solid object near its path, a matter of practical importance for radiation 
protection. 
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R

p
p

∆θ

L

R

p

B is perpendicular to the paper and directed toward the reader  
 
Fig. 2.3 A particle of positive charge q having momentum p

�  follows a circular path when directed 

perpendicular to a static, uniform magnetic field B
r

.  The figure on the left illustrates this for a 
complete circle.  On the right, a particle of momentum p

�  enters a magnet of length L that has 

field integral value of BL.  For this example, L << R and the particle experiences a small 
angular deflection ∆θ.  The angular deflection is exaggerated in this figure for clarity.  

 
 
2.5.2 Magnetic Focussing of Charged Particles 
 
Now we consider, in a simplified way, how the focussing of charged particle beams can 
be accomplished using of quadrupole magnets.  Edwards and Syphers (Ed93) and Carey 
(Ca87) describe in much more detail the magnetic deflections in general electromagnetic 
systems, including quadrupole magnets, and those of higher order which focus particle 
beams.  Mathematical methods analogous to those found in the study of geometric optics 
are often used to describe the optics of charged particles.  Where time-varying electric 
and magnetic fields are involved, the full complement of Maxwell’s equations must, of  
course, be used to describe the motion of charged particles.  The application of higher 
order multipole fields and the employment of radiofrequency ("RF") electromagnetic 
fields to accelerate, decelerate, and otherwise manipulate charged particle beams is left to 
the specialized texts.   
 
An idealized quadrupole magnet has the transverse cross section shown in Fig. 2.4, which 
also defines the Cartesian coordinate system to be used in the remainder of this section.  
As one can see, the polarities of the pole pieces alternate.  Following the usual 
convention, the longitudinal coordinate, z, is taken to be directed along the beam and, in 
this case, "into the paper" along the optic axis of the quadrupole.  Positive values of the 
y-coordinate measure upward deviations from the optic axis while positive values of the 
x-coordinate measure deviations from the optic axis to "beam left", to maintain 
consistency with the familiar right hand rule.   
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Fig. 2.4 Cross section of a typical quadrupole magnet.  The pole pieces are of opposite magnetic 

polarities, denoted "N" and "S", and are of hyperbolic shapes.  A Cartesian coordinate system 
is used in which x and y denote transverse coordinates while z is along the desired beam 
trajectory, the optic axis of the beam optical system.  In this figure, the beam enters the 
quadrupole into the paper along the positive z axis.  The curves with arrows denote magnetic 
field lines. [Adapted from (Ca87).] 

 
Often in the accelerator magnets themselves and nearly always in beam lines transmitting 
extracted particles, the electromagnetic fields vary only slowly with time or are static 
compared with the particle transit times.  Under these conditions, it is shown in other 
texts that if the shape of the pole pieces are hyperbolae described by equations of form  
xy = + k, and if the pole pieces are uniformly magnetized, then the components of the 
magnetic field within the gap containing the beam are given by: 
 

    o
x

B
B y gy

a
= − = − , and    (2.29a) 

 

    o
y

B
B x gx

a
= − = − .     (2.29b) 

 
Here, a is the gap dimension as defined in Fig. 2.4 and Bo is the magnitude of the 
magnetic field strength at the pole pieces.  The parameter g is, quite naturally, called the 
gradient of the quadrupole.  This configuration defines an ideal quadrupole, which is of 
length, L.  
 
Now examine qualitatively what happens to a particle having positive charge that enters 
this magnet parallel to the z-axis.  If the particle trajectory is along the optic axis, then it  
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will not be deflected at all since Bx = By = 0.  If, however, the particles enter the magnet 
parallel to the optic axis but with some finite positive value of y, it will receive a 
deflection toward smaller values of y in accordance with the right hand rule and Eq. 
(2.25).  Likewise, if it enters with a finite negative value of y, it will receive a deflection 
toward less negative values of y.  Thus, a beam of such particles is said to be focussed in 
the yz plane.  However, if the particle enters with a finite positive value of x, it will be 
deflected toward a larger value of x, away from the optic axis.  Finally, a particle incident 
with a finite negative value of x will similarly be deflected away from the optic axis.  
Thus, a beam of such particles is said to be defocussed in the xz plane.  From this 
qualitative discussion it should be clear that more than one quadrupole will be needed to 
achieve a net focussing effect. 
 
Considering just the situation in the yz plane, it is easy to see that the analogy with 
geometrical optics goes further.  For a particle entering with coordinate y, one can 
substitute into Eq (2.28) and find that the angular deflection, if small compared with the 
dimensions of the magnet, is given by: 
 

   
0.29979qLgy

p
θ∆ =  (radians),    (2.30) 

  
where the same units as Eq. (2.28) have been employed, with g (Tesla meter-1) and y 
(meters) inserted.   If the incident particle trajectory is parallel with the z-axis, the 
situation is schematically shown in Fig. 2.5a.  In schematic drawings of beam optics, it is 
customary to show convex lenses to denote focussing elements and concave lenses to 
represent defocussing elements pertinent to a given plane.  Bending magnets are 
correspondingly represented by prisms in such drawings. 
 
Applying simple trigonometry, one finds that after deflection in this situation, the particle 
trajectory will intercept the z-axis at a distance, f, given as follows, 
 

   
tan 0.29979

y y p
f

qLgθ θ
= ≈ =

∆ ∆
,    (2.31) 

 
since the deflection, θ∆ , is small.  This approximation is called the thin lens 
approximation.  In recognition of the fact that f is independent of the y coordinate, it is 
called the focal length of the quadrupole.  By analogy with optical thin lenses, one can 
write down the thin lens equation which gives the relationship between the image 
distance, zi, and the object distance, zo, for other rays as follows, 
 

     
1 1 1

o iz z f
+ = .     (2.32) 
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Figure 2.5   Configurations of quadrupole lenses: a) Representation of focusing in the yz plane of a beam 
trajectory incident from the left parallel to the z-axis.  The notation is explained in the text.  A 
real image is formed at the focal length, f, from the lens.  b) Representation of defocusing in 
the yz plane.  The parallel beam is deflected so that it appears to emerge from a point a 
distance f before the lens, thus, forming a virtual image.  c) Representation of a particle 
trajectory in the yz plane of a quadrupole doublet.  The particle enters a quadrupole doublet 
parallel to the z-axis from the left.  First a focusing quadrupole (quad 1) is encountered and 
then a defocussing quadrupole (quad 2) follows.  d) Representation of a particle trajectory in 
the xz plane of the same doublet.  The particle enters the doublet parallel to the z-axis.  In this 
plane, the defocussing quadrupole is encountered first. 
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In this equation, zo and zi are > 0 if the object is to the left of the lens and the image is to 
the right of the lens, forming a real image, for a focussing lens with f > 0.  The situation 
for the defocussing plane, here the xz plane, is shown in Fig. 2.5b as a concave lens.  For 
that plane, the equations are still workable if one applies a negative sign to the value of f 
and understands that a value of zi < 0 describes a virtual image.   
 
The simplest configuration of quadrupole magnets is in the form of a pair of two such 
magnets.  In a given plane, say the  yz, the first would be focussing while the second 
would be defocussing.  In the orthogonal plane, here the xz, the defocussing quadrupole 
would thus be encountered first.  Generally, these magnets will be of identical dimensions 
and have gradients of similar magnitudes.  Such a quadrupole doublet is shown in Figs 
2.5c and 2.5d for the yz and xz planes, respectively.   
 
Eq. (2.32) can now be employed to explore how a quadrupole doublet can focus a parallel 
beam in both the xz and yz planes in a simple example.  For the sake of this discussion, 
the quadrupoles, quad 1 and quad 2, have different focal lengths, f1 and f2, respectively, 
and are separated by distance d.   Quad 1 is focussing in the yz plane.   As one would do 
in geometrical optics, for an incoming parallel beam, the object distance relative to quad 
1 is zyo1 →  ∞ .  Thus, the image distance from quad 1 is at zyi1 = f1.  The object distance 
of this image from quad 2 is thus zyo2 = d - f1.  Relative to quad 2, the location of the final 
image will be at zyi2  by means of the thin lens equation,  
 

    
2 2 1

1 1 1

yiz f d f
= −

− −
,     (2.33) 

 
where the negative coefficient of f2  explicitly recognizes that lens 2 is defocussing in the 
yz plane.  Solving,  
 

    2 1
2

2 1

( )
yi

f f d
z

f f d

−=
− +

.     (2.34a) 

 
If the quadrupoles are identical (f = f1 = f2), then, 
 

    2
( )

yi
f f d

z
d

−= .     (2.34b) 

 
It is simple to follow the same procedure for the xz plane to obtain the corresponding 
image distance, zxi2, 
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.     (2.35a) 
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With identical quadrupoles, this becomes,  
 

    2
( )

xi
f f d

z
d

+= .     (2.35b) 

 
One should notice that with identical quadrupoles,  
 
    2 2 2xi yiz z f− = ,     (2.36) 

 
a result that should not be surprising given that particles in xz plane are first subject to 
defocussing, and thus become more divergent, prior to their being focussed.  The average 

focal length of the system for both the xz and yz planes is thus 2 /f d .  More 
sophisticated schemes such as quadrupole triplets and non-identical magnets can be used, 
where needed, to obtain a specialized beam envelope.  These advanced methods are 
discussed in great detail, for example, by Carey (Ca87).   
 
In this simple exposition, a number of significant effects have been ignored.  First, a 
typical particle beam will contain some spread in particle momenta.  The derivation given 
above ignores the fact that dispersion will occur in the magnetic fields in the same way 
that prism disperses a visible beam of "white" light into the various colors.  There also 
may be aberrations or distortions of an image.  One such aberration is analogous to 
chromatic aberration encountered in geometrical optics.  Furthermore, the fact that no 
particle beam is ever completely parallel or completely emergent from a geometrical 
point has been ignored.   
 
All particle beams possess a property called transverse emittance.  This quantity is 
expressed in units of angular divergence times physical size, typically in units of π mm-
mradian.  The explicit display of the factor π is a matter of custom.  The emittance 
concept is used to describe both longitudinal and transverse phenomena and is discussed 
by Carey (Ca87) and by Edwards and Syphers (Ed93).  The discussion here is limited to 
transverse emittance.  During the process of accelerating particles, the beam emittance in 
general becomes smaller because the normalized transverse emittance [the emittance 
��������	
��
�����	�������	
�
�	
�����	���� ����������������������������] is an invariant.  
Thus, as velocity increases, the unnormalized emittance must decrease since the product 
γβ increases with particle momentum.  There are exceptions to this generalization beyond 
the scope of this discussion.  Once a beam is no longer subject to RF fields in an 
accelerator, the emittance can generally no longer be made smaller and can only increase 
due to processes such as multiple Coulomb scattering, space charge effects, etc.3  Under 
conditions in which the emittance is approximately constant, the product of the angular 
divergence of the beam envelope and the size of the beam envelope is conserved, as it  

                                                 
3 Under some conditions not discussed further here, synchrotron radiation can, in fact, reduce the transverse 
emittance. 
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must by Liouville’s theorem.  This means that efforts made to focus the beam tightly into 
a small size will unavoidably result in a beam with a correspondingly larger angular 
spread.  Likewise, attempts to create a parallel beam (one with essentially no angular 
spread) will result in a correspondingly larger beam size.   
 
As a final word, one should be aware of the fact that the above discussion of quadrupoles 
depends upon the beam axis coinciding with the optic axis.  Should the beam enter a 
quadrupole with its center far off-axis, it should be obvious that the entire beam will be 
deflected nearly as if a quadrupole were a dipole magnet of equivalent field strength and 
length (see Fig. 2.4).  Beams that are deflected in this manner by a quadrupole are said to 
have suffered steering.  The steering of beams can constitute significant loss points in the 
beam transport system. 
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Problems 
 
1. This problem gives two elementary examples of Monte Carlo techniques that are 

almost "trivial".  In this problem, obtaining random numbers from a standard table 
or from a hand calculator should be helpful. 

 
 a) First, use a random number table or random number function on a calculator along 

with the facts given about the cumulative probability distribution for exponential 
attenuation to demonstrate that, even for a sample size as small as, say, 15, the 
mean value of paths traveled is "within expectations" if random numbers are used 
to select those path lengths from the cumulative distribution.  Do this, for 
example, by calculating the mean and standard deviation of your distribution.   

 
 b) An incident beam is subjected to a position measurement in the coordinate x.  It is 

desirable to "recreate" incident beam particles for a shielding study using Monte 
Carlo.  The x distribution as measured is as follows: 

 
x # 
0 0 
1 1 
2 2 
3 3 
4 4 
5 5 
6 4 
7 3 
8 2 
9 1 
10 0 

 
 Determine, crudely, p(x), P(x) and then use 50 random numbers to "create" 

particles intended to represent this distribution.  Then compare with the original 
one which was measured in terms of the average value of x and its standard 
deviation.  Do not take the time to use interpolated values of x, simply round off 
to integer values of x for this demonstration. 

 
2. A beam of protons having a kinetic energy of 100 GeV is traveling down a beam 

line.  The beam is entirely contained within a circle of diameter 1 cm.  All of the 
beam particles have the same kinetic energy.  An enclosure further downstream 
must be protected from the beam or secondary particles produced by the beam by 
shielding it with a large diameter iron block that is 20 cm in radius centered on the 
beam line.  The beam passes by this block by being deflected by a uniform field 
magnet that is 3 meters long and is located 30 meters upstream of the iron block.  
Calculate the magnetic field, B, that is needed to accomplish this objective. 


