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Abstract

We report on a measurement of �(pp!W +X) � B(W ! ��) in pp

collisions at
p
s = 1:8 TeV at the Fermilab Tevatron. The mea-
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surement is based on an integrated luminosity of 18 pb�1 of da-

ta collected with the D� detector during 1994{1995. We �nd that

�(pp!W +X) �B(W ! ��) = 2:22� 0:09 (stat)� 0:10 (syst)� 0:10 (lum) nb:

Lepton universality predicts that the ratio of the tau and electron electroweak

charged current couplings to the W boson, gW� =gWe , be unity. We �nd

gW� =gWe = 0:980� 0:031; in agreement with lepton universality.

Typeset using REVTEX
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The measurement of the W boson production cross section times branching ratio to �
lepton and neutrino, �(pp!W+X)�B(W ! ��), can be used with the corresponding result
from the electron channel, �(pp ! W + X) � B(W ! e�), to test one of the fundamental
concepts in the standard model: the universality of the leptonic couplings to the weak
charged current. Such \lepton universality" is a direct consequence of SU(2) gauge symmetry
and the assumption that the leptons transform as left-handed SU(2) doublets, making its
characterization a basic test of the underlying structure of the theory. Previous tests of � -e
universality at high Q2 (Q2 � M2

W ) have been obtained from the direct measurements of
�W �B(W ! ��) and �W �B(W ! e�) by the UA1 [1], UA2 [2] and CDF [3] collaborations.
Results from the CERN e+e� collider (LEP) on the couplings of Z bosons to charged leptons
also support three-generation lepton universality to a precision of 0.5% [4].

In this Letter we report a new measurement of �(pp!W +X) �B(W ! ��) using data
collected with the D� detector during the 1994{1995 Fermilab Tevatron collider run at a pp
center-of-mass energy of

p
s = 1:8 TeV. The integrated luminosity [5] for the � trigger used

for this measurement is
R Ldt = 18:04�0:79 pb�1. The D� detector is described in detail in

Ref. [6]. The detector consists of a non-magnetic tracking system, a uranium/liquid-argon
calorimeter with segmentation �� ��� = 0:1� 0:1 in pseudorapidity and azimuth, and an
iron toroid muon spectrometer.

In D� the � lepton is identi�ed through its hadronic decay modes into �nal states
consisting of one or three charged hadrons plus neutral particles. The � decay products are
highly boosted, forming a very narrow hadronic jet. The signature forW ! ��, with � ! �+
hadrons, is therefore an isolated and very narrow hadronic jet with low charged particle
multiplicity, accompanied by a large amount of missing transverse energy 6ET , determined
from the energy deposition in the calorimeter within j�j < 4:5.

The � trigger requires 6ET> 16 GeV, a leading (highest ET ) narrow jet with transverse
energy ET > 20 GeV and 0:05 < fEM < 0:95, where fEM is the fraction of the jet energy in
the electromagnetic calorimeter. The trigger also requires no jet with ET > 15 GeV within
0:7 radians in � of the direction opposite to that of the leading jet, or within 0:5 radians
in � of the 6ET direction, where � is the azimuthal angle. In addition, a single interaction
requirement is applied at the trigger level.

In the o�ine analysis, jets are reconstructed using a cone algorithm with radius R = 0:7
in �-� space, where � is the pseudorapidity. W ! �� events are selected by requiring one
jet satisfying (i) 25 < ET < 60 GeV, (ii) jet width W � 0:25, where

W =

vuut nX
i=1

��2ET i

ET

+
nX
i=1

��2ET i

ET

and i = 1; : : : ; n indicates the calorimeter �-� tower number, (iii) 0:10 < fEM < 0:95, (iv)
j�j � 0:9, (v) one to seven reconstructed tracks within a 0:2� 0:2 road in �-� space around
the jet axis, (vi) at least one track within 0.1 radian in � of the center of gravity of the jet,
(vii) jet quality cuts involving the longitudinal and lateral distribution of the energy within
the jet, and (viii) pro�le P � 0:55, where

P = (ET1 +ET2) = ET ;
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and ET ; ET1 and ET2 are the transverse energy of the jet and the two towers within the jet
with the largest ET , respectively. The pro�le variable exploits the �ne calorimeter segmen-
tation and good energy resolution of the D� detector. The very narrow jets from hadronic
� decays lead to high values of P. QCD processes yield events with wider jets, and therefore
lower values of P (Fig. 1).

In addition, the event must have (i) 6ET> 25 GeV, (ii) a z vertex position within 60 cm of
the detector center, (iii) no electrons or muons with ET > 15 GeV, (iv) no jets with ET � 8
GeV within 0:5 radians of the 6ET direction, (v) no jets with ET � 8 GeV within 0.7 radians
in � of the direction opposite to that of the � jet, and (vi) no jet with ET > 15 GeV in
addition to the � jet.

The � lepton identi�cation is very sensitive to electronic noise in the calorimeter and
to the underlying event. A data-based Monte Carlo (DBMC), using W ! e� data, was
developed to model W ! �� events with actual noise and underlying event e�ects. We
replace the electron from W boson decays with a Monte Carlo � , which was generated with
the same kinematics as the electron, forced to decay hadronically, and then passed through
a detector simulation based on the geantMonte Carlo program [7]. The tracking hits along
the electron track and the calorimeter cells associated with the electron cluster are replaced
by the simulated Monte Carlo � information. In this way, only the � decays and the response
of the detector to the � decay products are simulated with a Monte Carlo, and noise and
underlying event e�ects are taken directly from the data.

The dominant background in the W ! �� �nal sample is from QCD events in which one
of the jets mimics a � jet, and the energies of the other jets 
uctuate to give 6ET . We estimate
this QCD background using the P distribution. The cuts to select the \QCD background
sample" are similar to those used to select the W ! �� sample, but without the P or 6ET

requirements or the requirement that there be no jet with ET > 15 GeV in addition to the
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FIG. 1. The P distributions of (a) the � sample from data, and (b) the QCD background sample.
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leading jet. The \� sample" is the �nal W ! �� sample before the P cut. We de�ne the
region with P < 0:35 as the \background region," and the region with P > 0:55 as the
\signal region," as shown in Fig. 1 for both the � sample and the QCD background sample.
We �nd that the P distribution of the background sample is uncorrelated with 6ET , leading
jet ET or the number of jets in the event. From the DBMC W ! �� studies only � 1%
of W ! �� events are in the background region. The number of background events in the
signal region of the � sample (NQCD) can be calculated as

NQCD = NB � (BS=BB);

where NB = 1834 is the number of events in the signal region of the QCD background
sample, BB = 4422 is the number of events in the background region of the QCD background
sample, and BS = 253 is the number of events in the background region of the � sample.
We obtain NQCD = 106 � 7 (stat) � 5 (syst) events [8]. The systematic error is estimated
from the dependence of the average pro�le on 6ET in the background region of the QCD
background sample. We compared the P distribution in the background region between the
QCD background sample and the � sample. Their shapes agree very well { the Kolmogorov-
Smirnov probability that the two distributions are from the same parent distribution is 0.94.
This assures us of the validity of normalizing the background region in the QCD background
sample to the background region in the � sample. As another consistency check, we divided
the � and QCD background samples into bins in ET of the � jet and calculated NQCD

separately for each ET bin. We estimated NQCD to be 107 events using this method. We
also checked the P distribution in 6ET bins. We see no signi�cant dependence of P on 6ET .

The QCD background estimate also includes W=Z+jet events in which a jet is misiden-
ti�ed as a � jet and the 6ET arises from either a W leptonic decay or from unreconstructed
muons in Z ! �� decays, which result in 6ET in the calorimeter. The background from Z+jet
events in which Z ! �� is also included in the QCD background estimate. The W ! e�
background, in which the electron is misidenti�ed as a � , is estimated to be 3� 1 events.

Electronic noise in a calorimeter cell may simulate a narrow jet and also give a large
6ET . When an underlying event track is very close to the noise jet, it mimics a � event.
The background from noise events is estimated by using the same method that was used to
calculate NQCD, but using the distribution of ��, the di�erence in � of the � jet and the
closest track, instead of the P distribution. We de�ned �� > 0:1 as the background region.
This gives the number of background noise events in the �nal � sample to be 81� 14.

Another source of background is Z ! �� , where one of the � leptons decays hadronical-
ly. We studied this background using the isajet [9] generator and the geant-based D�
simulation program. Applying the same cuts as those used in the W ! �� event selection,
we estimate that 32� 5 Z ! �� events are present in our �nal data sample. The number of
background events is summarized in Table I.

There are 1202 events passing all the selection cuts. For these events Fig. 2(a) shows the
� jet ET distribution. Figure 2(b) shows the distribution of the transverse mass calculated
from the � jet and the 6ET for the � sample after QCD background subtraction. Figure 2(b)
also shows the comparison with DBMC events, normalized to the data, passing the same
cuts. The distribution of jet width (W) can also be used to con�rm the selection ofW ! ��
events. Figure 3 compares the W distribution for DBMC � jets and QCD jets before and
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TABLE I. Summary of the �(pp!W +X) �B(W ! ��) measurement.

Nobs 1202

Backgrounds (No. events):

QCD �(stat)�(syst) 106� 7� 5

Electronic noise 81� 14

Z ! �� 32� 5

W ! e� 3� 1

Total Background (No. events) 222� 17

A � � 0:0379� 0:0017R Ldt (pb�1) 18:04� 0:79

�W �B(W ! ��) (nb)

� (stat),(syst),(lum) 2:22� 0:09� 0:10� 0:10

after the pro�le (P) cut. Figure 3(b) also shows the W distribution for � jets from the �nal
data sample with the QCD background subtracted. The W distribution of the �nal data
sample is clearly di�erent from that of the QCD jet sample, and agrees well with the DBMC
W ! �� prediction.

The acceptance A is determined by applying the geometric and kinematic cuts on isajet

Monte Carlo � leptons, giving A = 0:2903 � 0:0007. The e�ciency � is determined by
applying the trigger requirements and the o�ine cuts on the DBMC W ! �� sample,
giving � = 0:1307� 0:0034. The trigger e�ciency for the events passing the o�ine selection
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FIG. 2. (a) The � jet ET distribution for data passing all the selection cuts, and (b) the distri-

bution of the transverse mass of the � jet and the 6ET for DBMC events (histogram) and for data

(points) passing all the selection cuts and with QCD background subtraction.
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is 0:9941�0:0020. The above uncertainties are from Monte Carlo statistics and are treated as
systematic. Two additional sources contribute to systematic uncertainties in A � �. First, the
3% uncertainty in the energy scale [10] results in an uncertainty of 2.8% on A ��. Second, the
uncertainty due to � branching fraction uncertainties is calculated by varying the branching
fractions of the various exclusive � decay modes by their measurement errors [4], subject to
the constraint that the sum of all � decay branching fractions add up to 1. This variation
results in an uncertainty of 2.0% on A � �. The �nal value of A � � is 0:0379� 0:0017.

The cross section times branching ratio for pp ! W + X, with W ! ��, is calculated
using the formula

�W �B(W ! ��) =
Nobs �NbkgR Ldt �B(� ! � + hadrons) � A � � ;

where Nobs is the number of events in the �nal data sample, Nbkg is the estimated back-
ground, A is the acceptance, � is the e�ciency,

R Ldt is the integrated luminosity, and
B(� ! � + hadrons) = (64:69� 0:22)% [4]. We measure

�W �B(W ! ��) = 2:22� 0:09� 0:10� 0:10 nb;

where the uncertainties are statistical, systematic, and due to the luminosity uncertainty,
respectively.

We can determine the ratio of the tau and electron electroweak charged current couplings
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FIG. 3. The distribution of jet width for DBMC � jets (solid histogram) and QCD jets (dashed

histogram) (a) before the pro�le cut (with arbitrary scale), and (b) after the pro�le cut. The W
distribution for data (points) is also shown in (b). The QCD distribution in (b) has been scaled up

by a factor of 10.
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FIG. 4. gW� =gWe from UA1 [1], UA2 [2], CDF [3], and this measurement (D�).

to the W boson, gW� and gWe , from

�
gW�
gWe

�2
=
�(pp!W +X) �B(W ! ��)

�(pp!W +X) �B(W ! e�)
:

Taking the ratio of �W �B(W ! ��) and �W �B(W ! e�) completely cancels the luminosity
error. Using our measurement [11] of �W � B(W ! e�) = 2:31 � 0:01 � 0:05 � 0:10 nb for
data collected during the same Tevatron collider run, we �nd

gW� =gWe = 0:980� 0:020 (stat)� 0:024 (syst)

= 0:980� 0:031:

Our measurement is in good agreement with lepton universality, which requires that
gW� =gWe = 1. Figure 4 shows the results for gW� =gWe from other experiments, along with
the value determined by the D� experiment and the weighted average of the four experi-
ments, which is 0:988 � 0:025. The average was calculated assuming systematic errors are
uncorrelated among the four experiments.

In summary, we have used the D� detector to identify � leptons in pp collisions, have
measured the cross section times branching ratio �(pp!W +X) � B(W ! ��), and have
used this result to test � -e universality at high Q2 (Q2 �M2

W ) to a precision of 3%.
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