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Abstract

We report a new measurement of the pseudorapidity (�) and transverse-energy

(ET ) dependence of the inclusive jet production cross section in pp collisions

at
p
s = 1:8 TeV using 95 pb�1 of data collected with the D� detector at the

Fermilab Tevatron. The di�erential cross section d 2�=(dETd�) is presented

up to j�j = 3, signi�cantly extending previous measurements. The results are

in good overall agreement with next-to-leading order predictions from QCD

and indicate a preference for certain parton distribution functions.
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This past decade has witnessed impressive progress in both the theoretical and exper-
imental understanding of the collimated streams of particles or \jets" that emerge from
inelastic hadron collisions. Theoretically, jet production in hadron collisions is understood
within the framework of Quantum Chromodynamics (QCD), as a hard scattering of the con-
stituent partons (quarks and gluons) that, having undergone a collision, manifest themselves
as jets in the �nal state. QCD predicts the amplitudes for the hard scattering of partons
at high energies. Perturbative QCD calculations of jet cross sections [1{3], using accurately
determined parton distribution functions (PDFs) [4,5], have increased the interest in jet
measurements at the

p
s = 1:8 TeV Tevatron proton-antiproton collider. Consequently, the

two Tevatron experiments, D� and CDF, have served as prominent arenas for studying
hadronic jets.

In this Letter, we report a new measurement of the pseudorapidity (�) and transverse-
energy (ET ) dependence of the inclusive jet production cross section [6], which examines the
short-range behavior of QCD, the structure of the proton in terms of PDFs, and possible
substructure of quarks and gluons. We present the di�erential cross section d 2�=(dETd�) as
a function of jet ET in �ve intervals of �, up to j�j = 3, where the pseudorapidity is de�ned
as � = ln [cot (�=2)], with � being the polar angle. The present measurement is based on
95 pb�1 of data collected with the D� detector [7] during 1994{1995, and signi�cantly
extends previous measurements [8], as indicated by the kinematic reach shown in Fig. 1.

The primary tool used for jet detection is the compensating, �nely segmented, liquid-
argon/uranium calorimeter, which provides nearly full solid-angle coverage (j�j < 4:1). Jets
are de�ned and reconstructed o�-line using an iterative �xed-cone algorithm with a cone
radius of R = 0:7 in the �{' space, where ' is the azimuth. The missing transverse energy
(E/T ) is calculated from a vector sum of the individual ET values in all the cells of the
calorimeter. Calorimeter cells can occasionally provide spurious noise signals; to diminish
their e�ect on jets, such cells are identi�ed and suppressed using speci�c on-line and o�-line
algorithms.

During data taking, events were selected with a multi-stage trigger system. The �rst
stage signaled an inelastic pp collision. In the next stage, the trigger required a jet in a
calorimeter region of �� � �' = 0:8 � 1:6, with ET above a preset threshold. In the
last trigger stage, selected events were digitized and sent to an array of processors. Jet
candidates were reconstructed using a cone algorithm, and the entire event was recorded if
any jet ET exceeded a speci�ed threshold. The four software �lters used in this analysis had
ET thresholds of 30, 50, 85, and 115 GeV, and accumulated integrated luminosities of 0.364,
4.84, 56.5, and 94.9 pb�1 respectively [9]. To present the full range of the data, the cross
sections obtained from the four jet �lters are combined in contiguous regions of ET in such
a way that the more restrictive trigger is adopted as soon as it is more than 99% e�cient.

The position of the primary interaction vertex is reconstructed using data from the
central tracking system. The two vertices with the largest number of associated tracks are
retained for further analysis. At high instantaneous luminosities, multiple interactions are
common, and to correct for ine�ciency of the tracking system in identifying the primary
vertex, we use the global event quantity ST = jP ~E jet

T j. The vertex with the smaller
value of ST is de�ned as the correct event vertex, and all kinematic variables are calculated
with respect to it. The dependence of jet ET on luminosity was studied, and found to
be negligible. At high pseudorapidities, the jet reconstruction algorithm introduces a bias

5
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FIG. 1. The kinematic reach of this measurement along with that of other collider and

�xed-target experiments in the plane of the parton momentum fraction x and the square of the

momentum transfer Q2.

towards � = 0. Furthermore, the Snowmass jet reconstruction algorithm [10] used in the
theoretical predictions has a di�erent de�nition for jet angles than that used in the standard
D� o�-line algorithm. Jet � values are corrected for this di�erence, which also removes any
instrumental bias in reconstruction of jet polar angles [6].

Backgrounds introduced by electrons, photons, detector noise, accelerator losses, or cos-
mic rays are removed using quality criteria developed for jets with j�j � 3. To preserve
the pseudo-projective nature of the D� calorimeters, the longitudinal (z) position of the
interaction vertex is required to be within 50 cm of the detector center; this requirement is
(88:7 � 0:1)% e�cient. A cuto� on E/T removes background from cosmic ray showers and
misvertexed events. E/T must be smaller than the lesser of 30 GeV or 0:3ET of the leading jet
if the leading jet is central (j�j < 0:7), or less than 0:7ET otherwise. This criterion is nearly
100% e�cient. Jet quality is based on the pattern of energy deposition in the calorimeter.
The combined e�ciency for jet quality ranges from about 99.5% at lowest ET and j�j to
approximately 98% at highest ET and j�j.

The jet energy calibration, applied on a jet by jet basis, corrects (on average) the re-
constructed ET for variation in the hadronic response of the calorimeter, for the energy
associated with underlying spectator interactions, for multiple pp interactions in the same
crossing, noise originating from uranium decay, the fraction of any particle's energy that
showers outside of the reconstruction cone, and for detector non-uniformities. A complete
discussion of the jet energy calibration can be found in Ref. [11]. An independent test of the
jet energy scale, based on the balance in transverse energy in photon-jet and jet-jet data,
con�rms the validity of the D� jet-calibration procedure up to j�j = 3 [6].

In each bin of �{ET , the average di�erential cross section, d
2�=(dETd�), is calculated as

N=
�
���ET �

RLdt �, where ���ET is the �{ET bin size, N is the number of jets observed
in a bin, � is the total overall e�ciency for jet and event selection, and

RLdt represents the
integrated luminosity of the data sample. Statistical uncertainties in the values of the cross
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sections are de�ned by one standard deviation Poisson 
uctuations in the associated N .
Energy resolution of the D� calorimeters distorts the jet cross section in ET . Although

the resolution is essentially Gaussian, the jet cross section is shifted to larger ET due to the
steeply falling dependence of jet production on ET . This e�ect is removed from the data
through an unfolding procedure. We measure the fractional jet energy resolutions based on
the \same side" (�1��2> 0) subset of dijet events in the data sample. Using the imbalance
in the ET of the two leading jets, in each interval of j�j, we parameterize the fractional
jet energy resolution as a function of jet ET , following the standard description of single-
particle energy resolution, based on the noise, sampling, and constant terms. To determine
the amount of distortion in the cross section in each of the �ve j�j intervals, we take an

ansatz function of the form e�E�
T (1 + 
2ET=

p
s)

�
, numerically smear it according to the

parameterized resolution in each ET bin, and �t this smeared hypothesis to the observed
cross sections to extract the �ve sets of four free parameters, �, �, 
, and �. The bin-by-
bin ratio of the original over the smeared ansatz for each range of j�j gives the unfolding
correction with which we rescale the observed cross section to remove the distortion from
jet energy resolution [6].

The jet angular resolution is very good at all �, and its e�ect on the cross section is
negligible, but it is possible to distort the jet polar angle through a mismeasurement of the
z position of the vertex. However, a Monte Carlo study demonstrates that such e�ects are
negligible because distortions in jet ET are nearly fully compensated by bin-to-bin migrations
in j�j from the smearing of the z coordinate of the vertex [6].

The �nal measurements in each of the �ve j�j regions, along with statistical uncertainties,
are presented in Fig. 2 (tables of the measured cross sections can be found in Refs. [6,12]).
The measurement spans about seven orders of magnitude and extends to the highest jet
energies ever reached. Figure 2 also shows O��3

s

�
theoretical predictions from JETRAD [3]

with renormalization and factorization scales set to half of the ET of the leading jet and
using the CTEQ4M PDF.

Figures 3 and 4 provide more detailed comparisons to predictions on a linear scale for
several PDFs (for other PDFs, see Ref. [6]). The error bars are statistical, while the shaded
bands indicate one standard deviation systematic uncertainties. Because the theoretical
uncertainties due to variations in input parameters are comparable to the systematic uncer-
tainties [13], these qualitative comparisons indicate that the predictions are in reasonable
agreement with the data for all j�j intervals.

To quantify the comparisons, we employ a specially derived and previously studied �2

statistic of the form [6,9] �2 =
P

i; j (Di � Ti)
�
(Ti=Di)Cij

�
Tj=Dj

��
�1 �

Dj � Tj

�
, where

(Di � Ti) is the deviation of the measured cross section (Di) from the prediction (Ti) in the
i-th bin, Cij is the full covariance matrix of the measurement [12], de�ned as

P
� �

�
ij�

�
i �

�
j ,

where the sum runs over all sources of uncertainties, �ij is the correlation coe�cient be-
tween the i-th and j-th bins, and �i is the uncertainty in the i-th bin. The T/D factors are
introduced to reduce the bias towards lower values of �2 originating from highly correlated
systematic uncertainties present in Cij [9]. There are 90 �{ET bins in this measurement.

While the statistical uncertainties are not correlated in ET or �, the systematic uncer-
tainties are fully correlated in both variables except for: (i) e�ciencies for data selection,
which are uncorrelated in �, (ii) parameterizations of jet energy resolutions and �ts to the
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ET points are o�set slightly for CTEQ4M.

unfolding ansatz, which are uncorrelated in �, (iii) the hadronic response, which is partially
correlated in ET and �, with the correlation matrix in terms of average bin energies given
in Ref. [11]. Uncertainties in the showering correction arise dominantly from the lack of full
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points are o�set slightly for MRST.

agreement of the lateral shower pro�les observed in the data and in the Monte Carlo. The
residual discrepancy is similar for all ET and � regions. Consequently, the correlations of
the showering correction are large in ET [14] as well as in �. Uncertainties due to jet en-
ergy calibration are the dominant source of error in the cross section and range from about
12{20% at lowest ET to about 35{80% at highest ET , getting larger with � for a �xed ET .
They are driven by the uncertainties due to the hadronic response parameterization at high
ET and due to the showering correction at high ET and, notably, at high �. The second
largest source of uncertainty is the jet energy resolution parameterization and the unfolding
procedure which typically gets worse at low and at high ET and ranges from about 3{5% at
lowest ET to about 10{20% at highest ET . These are followed by the uncertainties due to
integrated luminosity which are approximately 6% (8%) for the data collected with the jet
�lters with two highest (lowest) ET thresholds, and by the uncertainties due to data selection
which are on the order of 1% throughout the dynamic range of the measurement [6].

For all PDFs we have considered, Table I lists the �2, �2/dof, and the corresponding
probabilities for 90 degrees of freedom (dof). We have veri�ed that the variations of cor-
relation coe�cients within the range of their uncertainties give a similar ordering of the
�2, hence a similar relative preference of PDFs. The absolute values of �2 and associated
probabilities vary somewhat with variations in the correlations in ET and, to a much lesser
extent, with variations of correlations in �. The theoretical predictions are in good quan-
titative agreement with the experimental results. The data indicate a preference for the
CTEQ4HJ, MRSTg", and CTEQ4M PDFs. The CTEQ4HJ PDF has enhanced gluon con-
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tent at large x, favored by previous measurements of inclusive jet cross sections at small
� [15,14], relative to the CTEQ4M PDF. The MRSTg" PDF includes no intrinsic parton
transverse momentum and therefore has e�ectively increased gluon distributions at all x
relative to the MRST PDF.

TABLE I. The �2, �2/dof, and the corresponding probabilities for 90 degrees of freedom for

various PDFs studied.

PDF �2 �2=dof Probability

CTEQ3M 121.56 1.35 0.01

CTEQ4M 92.46 1.03 0.41

CTEQ4HJ 59.38 0.66 0.99

MRST 113.78 1.26 0.05

MRSTg# 155.52 1.73 <0.01

MRSTg" 85.09 0.95 0.63

In conclusion, we have reported a new measurement of the pseudorapidity and transverse-
energy dependence of the inclusive jet cross section in proton-antiproton collisions atp
s = 1:8 TeV. Our results extend signi�cantly the kinematic reach of previous studies, are

consistent with QCD calculations over the large dynamic range accessible to D� (j�j < 3),
and indicate a preference for certain PDFs. Once incorporated into revised modern PDFs,
these measurements will greatly improve our understanding of the structure of the proton
at large x and Q2.
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