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The CDF and D� experiments have both collected large samples of W and Z

bosons with the last Tevatron collider run (1995-1996) using pp collisions at
p
s =

1.8 TeV. We present the results of QCD studies with vector bosons that cover a

large range of transverse momentum space, pT , making this a testing ground for

both perturbative and non-perturbative QCD. The measurement of the W and Z

cross section, their width, the W and Z transverse momentum distribution and

the angular distribution of electrons in W decays are described in this paper.

1 Introduction

At the Fermilab Tevatron, W and Z bosons are produced in high energy
pp collisions. The study of the production ofW and Z bosons provides an av-
enue to explore QCD, the theory of strong interactions. The bene�ts of using
intermediate vector bosons to study perturbative QCD are large momentum
transfer, distinctive event signatures, low backgrounds, and a well understood
electroweak vertex. In this paper we present several measurements of W and
Z boson properties based on data taken by the D� and CDF collider detectors
during the 1992{1993 (Run 1A) and 1994{1996 (Run 1B) Tevatron running
periods.

In the parton model at lowest order,W and Z intermediate vector bosons
are produced in head-on collisions of qq constituents of the proton and an-
tiproton, and have little transverse momentum (pT << MW , MZ). Conse-
quently, the fact that observed bosons have large transverse momentum (pT )
is attributed to the production of one or more gluons or quarks along with
the bosons. As a result, QCD corrections become important and modify
electroweak processes: Bosons are produced with an average transverse mo-
mentum of � 10 GeV. Boson + jet events are possible whereW + 1 jet events
occur � 7% of the time for Ejet

T > 25 GeV. The inclusive production cross
sections for W and Z bosons are enhanced by a K factor of � 18%, and the
angular distribution of decay electrons in W boson events is modi�ed when
QCD e�ects are taken into account.
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2 The W and Z Inclusive Production Cross Sections

New results on the W and Z production cross sections times electronic
branching ratios from CDF and D� are shown in Fig. 1. D� measure 1

�W � B(W ! e�) = 2310 � 10 (stat) � 50 (syst) � 100 (lum) pb and
�Z � B(Z ! e+e�) = 221 � 3 (stat) � 4 (syst) � 10 (lum) pb, where
\lum" is due to the uncertainty on the integrated luminosity. CDF ob-
tain 2 �Z � B(Z ! e+e�) = 249 � 5 (stat� syst) � 10 (lum) pb and
�Z � B(Z ! �+��) = 237� 9 (stat� syst)� 9 (lum) pb.

The errors are dominated by the uncertainty in the integrated luminosity
of the data samples. Note, that D� and CDF use di�erent total p�p cross
sections to determine their integrated luminosities. CDF use their own mea-
surement 3, while D� take the average of the CDF, E710 4 and E811 5 mea-
surements. To properly compare the measured cross sections, the D� Run 1b
cross sections must be multiplied by 1.062 if using the CDF normalization.
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Figure 1. Measurements of the W ! e� and Z ! e+e� cross sections from D� and CDF.

3 Extraction of the Width of the W Boson from the Ratio of

W ! e� and Z ! e
+
e
� Cross Sections

The integrated luminosity uncertainty and many of the other systematic errors
cancel in the ratio of cross sections R = �W �B(W ! e�)=�Z �B(Z ! e+e�).
This allows indirect, precise measurements of the W ! e� branching fraction
and the width of the W boson. This follows using

�W � B(W ! e�)

�Z �B(Z ! e+e�)
=
�W

�Z

1

B(Z ! e+e�)

�(W ! e�)

�(W )

FERMILAB-CONF-00/094-E 2



together with the theoretical calculation of �W =�Z
6, the measured Z ! e+e�

branching ratio from LEP 7, and the SM value of �(W ! e�) 8.
The measured values of R are R = 10:49 � 0:14 (stat) � 0:21 (syst) for

D� and R = 10:38 � 0:14 (stat) � 0:17 (syst) for CDF, using the combined
electron data from Runs 1a and 1b. The main sources of systematic errors
are due to uncertainties in backgrounds, e�ciencies, and electron energy scale.
A 1% error due to NLO electroweak radiative corrections 1 is also included.
The two R measurements have been combined, yielding R = 10:42 � 0:18.
Using this combined value of R, the resulting branching fraction is B(W !

e�) = (10:43 � 0:25)% and the width of the W boson is determined to be
�(W ) = 2:171� 0:052 GeV. The results agree with the SM predictions when
the errors are taken into account, as shown in Fig. 3.

A direct measurement of the W boson width is possible using a �t to
transverse mass (MT ) spectrum in W events (see Fig. 2). The W width
directly a�ects the shape of the distribution, most prominently at high values
of MT , where the Breit-Wigner line shape dominates over detector resolution
e�ects. CDF have new preliminary results for Run 1b W ! e� and W ! ��

events, using a binned likelihood �t in the region MT > 100 GeV=c2. The
W events are modeled using a similar simulation to that used in the W mass
analysis. This method is less model-dependent than the indirect measurement
discussed above, but with the current data sets it is statistically limited. The
results are �(W ) = 2:17� 0:125 (stat) � 0:105 (syst) GeV from the electron
data and �(W ) = 1:78� 0:195 (stat)� 0:135 (syst) GeV from the muon data.
These results are combined with the Run 1a electron measurement, yielding
�(W ) = 2:055�0:100 (stat)�0:075 (syst) GeV. This result is consistent with
the SM prediction, as shown in Fig. 3.
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Figure 2. CDF direct measurement of the W boson width using a �t to the e� (left) and

�� transverse mass (right).
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Figure 3. Measurements of B(W ! e�) (left) and summary of direct and indirect measure-

ments of the W width (right).

4 The W and Z Transverse Momentum Distributions

Three regions of transverse momentum space can be distinguished: At high
transverse momentum (pT > 20 GeV=c), where the cross section is domi-
nated by the radiation of a single parton with large transverse momentum,
perturbative QCD is expected to be reliable 9. At low transverse momentum
(pT < 10 GeV=c), multiple soft gluon emission is expected to dominate the
cross section. and a soft gluon resummation technique 10;11 is used to make
QCD predictions. When pT approaches �QCD, however, non-perturbative as-
pects of the strong force become dominant and even resummed calculations
fail. A parameterization is used to extend the calculation to the very low
pT region. The parameters are obtained from �ts to low energy Drell-Yan
data 10;11.

Here we present the measurements of theW and Z boson pT spectra using
electronic decay modes. The measuredW and Z pT distributions are corrected
for known backgrounds bin-by-bin. D�'s result for the W pT distribution 12,
shown in Fig. 4 (left), is compared to the theoretical calculation by Arnold
and Kau�man 10, smeared by detector resolutions. The W data shows good
agreement with this combined QCD perturbative and resummation calcula-
tion over the whole range of pT . In the case of the Z, CDF and D� correct
the measured cross section for the e�ects of detector smearing. Fig. 4 (right)
shows CDF's smearing-correctedZ pT measurement 13 compared to the calcu-
lation by Ladinsky and Yuan 11. Fig. 5 (left) compares D�'s �nal, smearing-
corrected Z pT distribution 14 to the calculation by Ladinsky and Yuan 11.

FERMILAB-CONF-00/094-E 4



Shown on the right is the fractional di�erence between the Z data and the
combined calculation and the �xed-order perturbative theory 9, respectively.
In comparing to the NLO calculation, D0 observe strong disagreement at low
pT , as expected due to the divergence of the calculation at pT = 0, and a
signi�cant enhancement of the cross section from soft gluon emission.
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Figure 4. Left: D� W pT result (solid points) with statistical uncertainty. The theoretical

calculation by Arnold{Kau�man has been smeared for detector resolutions and is shown as

two lines corresponding to the �1� variations of the uncertainties in the detector modeling.

Data and theory are independently area normalized to unity. The fractional systematic

uncertainty on the data is shown as a band in the lower portion of the plot. Right: The

CDF Z pT smearing-corrected data (crosses) compared to the combined resummed and

NLO perturbative prediction normalized to the data (curve).
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Figure 5. Left: D� Z pT smearing-corrected data (solid points) with total uncertainty

shown compared to the combined resummed and NLO perturbative prediction. The data

is normalized to the D� measured inclusive Z production cross section; the theory is nor-

malized to its own prediction. Right: Fractional di�erence between the Z data and the

resummed and �xed-order calculation, respectively, as a function of pT .
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5 The Angular Distribution of Electrons in W Boson Decays

A new measurement of the electron angular distribution parameter �2 in
W ! e� events by D� is presented here 15. Our results are compared with
next-to-leading order perturbative QCD, which predicts an angular distri-
bution of (1 � �1 cos�

� + �2 cos
2��) 16, where �� is the polar angle in the

Collins-Soper frame 17. In the presence of QCD corrections, the parameters
�1 and �2 become functions of p

W
T , the W boson transverse momentum. We

present the �rst measurement of �2 as a function of pWT . This measurement
is of importance, because it provides a test of next-to-leading order QCD cor-
rections which are a non-negligible contribution to the W mass measurement.

Due to only being able to measure the transverse components of the neu-
trino momentum, the transformation from the lab frame to the W rest frame
(Collins-Soper frame) is not calculable. Therefore the polar angle of the elec-
tron from W decay, ��, is not directly measurable. In this analysis, the
electron angle �� is inferred from the correlation between the transverse mass
of the W (MW

T ) and cos �� through the use of Bayes Theorem 18 (see Fig.
6 (left)).

Therefore, we calculate the the probability of measuring MW
T for a given

value cos �� in a given pWT bin; g(cos ��jMW
T ). This probability function is

inverted to give the probability of measuring cos �� for a measured MW
T ,

f(cos ��jMW
T ), using Bayes theorem:

f(cos ��jMW
T ) =

g(MT j cos �
�)h(cos ��)

R
g(MT j cos ��)h(cos ��)d cos ��

(1)

where h(cos ��) is the prior probability function, which we take to be
h(cos ��) = (1 + cos2 ��), the expectation from V � A theory without QCD
modi�cation.

To derive the probability function, g(MT j cos �
�), we use a Monte Carlo

simulation of the D� detector. After determining g(MT j cos �
�), it is inverted,

and the angular distribution is calculated in four pWT bins. With the unfolded
angular distributions now calculated, the value of �2 in each of the four pWT
bins can be determined. This is accomplished by generating a set of angular
distribution templates in Monte Carlo for di�erent values of �2. The templates
are then compared to the data through the use of a maximum log-likelihood.
Fig. 6 (center) shows the measured angular distribution with three templates
for di�erent values of �2 and 20GeV < pWT < 35GeV. The results of our
measurement along with the theoretical prediction are given in Fig. 6 (right).
The QCD prediction is preferred by � 2:3� over a (V � A) theory without
QCD e�ects taken into account.
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