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The formation of regular patterns is a well-known phenomenon in condensed matter physics. Sys-
tems that exhibit pattern formation are typically driven and dissipative with pattern formation
occurring in the weakly non-linear regime and sometimes even in more strongly non-linear regions
of parameter space. In the early universe, parametric resonance can drive explosive particle pro-
duction called preheating. The fields that are populated then decay quantum mechanically if their
particles are unstable. Thus, during preheating, a driven-dissipative system exists. We have shown
previously that pattern formation can occur in two dimensions in a self-coupled inflaton system
undergoing parametric resonance. In this paper, we provide evidence of pattern formation with
more realistic initial conditions in both two- and three-dimensions. We show that the patterns
are spatio-temporal, leading to a distinctive, but probably low-amplitude peak in the gravitational
wave spectrum. We also discuss putting power from resonance into patterns on cosmological scales

in order to explain the observed excess power at 128h~! Mpc, and why this seems unlikely.

Fermilab Preprint: Pub-98/xxx-A

PACS numbers: 03.65.Pm, 05.45.-a, 11.10.Lm, 98.80.Cq, 98.80.Hw

I. INTRODUCTION

Much recent work has been done on the topic of pre-
heating in inflationary cosmology. Preheating is a stage
of explosive particle production which results from the
resonant driving of particle modes by an inflaton oscil-
lating in its potential at the end of inflation [1-3].

In regions of parameter space where parametric res-
onance is effective, much of the energy of the inflaton
is transferred to bands of resonant wave modes. This
energy transfer is non-thermal and can lead to interest-
ing non-equilibrium behavior. Two examples of the non-
equilibrium effects that can be produced are non-thermal
phase transitions [4-7] and baryogenesis [8,9]. The non-
thermal phase transitions induced during preheating can
sometimes lead to topological defect formation [10-12],
even at energies above the eventual final thermal tem-
perature. Furthermore, non-linear evolution of the field
when quantum decay of the resonantly produced parti-
cles is small leads to a chaotic power-law spectrum of
density fluctuations [13,14].

In a previous letter [16], we presented evidence for a
new phenomenon that can arise from preheating: pattern
formation. It has long been known that many condensed
matter systems exhibit pattern formation*. Examples of
pattern forming systems which have been studied are rip-

*For an extensive review of pattern formation in condensed
matter systems,; see [18,19]

ples on sand dunes, cloud streets and a variety of other
convective systems, chemical reaction-diffusion systems,
stellar atmospheres and vibrated granular materials. All
of these physical systems have two features in common.
They are all driven in some manner, i.e. energy is input
to the system, and they are all dissipative, usually be-
ing governed by diffusive equations of motion. Typically,
patterns are formed in these systems in the weakly non-
linear regime before the energy introduced into the sys-
tem overwhelms the dissipative mechanism. Sometimes,
patterns persist beyond the weakly non-linear regime as
well.

At the end of inflation, the inflaton ¢ is homogeneous
with small perturbations d¢ imprinted on it due to quan-
tum fluctuations. The inflaton then oscillates about the
minimum of its potential, giving an effectively time de-
pendent mass to fields with which it is coupled. The
time dependent mass drives exponential growth in the
population of bands of particle wave modes. Many of
the fields into which the inflaton can decay resonantly
are also unstable to quantum decay. For these reasons,
at the end of inflation, we are considering fields which
are driven, due to resonant particle creation, and also
dissipative, due to quantum decay. In [16], we were able
to show that pattern formation occurs in a chaotic infla-
tionary model with a self-coupled inflaton in the weakly
non-linear regime.

We considered a A¢* theory with the addition of a phe-
nomenological decay term to mimic the inflaton’s quan-
tum decay. This model without the decay term has been
studied extensively in the literature [2,3,13,15,14,17,20],



and a similar model including the decay term has also
been studied [21].

In [16], we used restricted initial conditions. We only
seeded the resonant band with small fluctuations of or-
der ~ 102 of (¢), then simulated the field’s evolution.
We found that the resonant modes interacted and formed
patterns. Here, we use initial conditions appropriate to
the vacuum at the end of chaotic inflation. We also ex-
tend our study to a 3-dimensional volume. In [16], we did
not point out the spatio-temporal nature of the patterns,
which, at the time was not evident due to an unfortunate
coincidence in the pattern which presented itself at the
timesteps at which we viewed the data. Here, we note
the spatio-temporal behavior. We also discuss resonance
giving rise to patterns on cosmological scales, when it
might occur and why it seems unlikely.

The paper is ordered as follows: In section II, we
present the model we are investigating. In section III,
we discuss the initial conditions appropriate for the end
of inflation. In section IV, we present results of our sim-
ulations in two dimensions. In section V, we present
results of our three-dimensional simulations, then we dis-
cuss possible implications of our results and conclude the

paper.

II. THE \¢* MODEL WITH
PHENOMENOLOGICAL DAMPING

Our field equation in comoving coordinates is
.. . .1
$+3HG+76— V6 + 26" =0 (1)

where « is a decay constant and ) is the self-coupling
of the field. Converting to conformal time ¢t = a(7)7
and rescaling the field ¢ = a¢, then further rescaling:
t = t/vVxpo, £ = x/VApo and ¢ = pg, where g
is the value of the inflaton at the end of inflation. This
gives us a new equation

§+alp - Vi — (@0 + 2)p+ ¢ =0, 2)

where ' = v/ VAgo. In the A¢* theory, the averaged
equation of state during preheating is that of radiation,
therefore, % =0.

It should be noted that pattern formation in the infla-
ton system is conceptually distinct from condensed mat-
ter systems for at least two reasons. First, the equations
we study are wave equations with damping, not diffu-
sive equations. Secondly, we expect wave patterns to be
formed while the homogeneous mode decays, therefore
pattern formation will be a temporary phenomenon, at
least in the model above in which gravity is neglected.
The driving in A¢* preheating comes from the large ini-

tial value of the inflaton at the end of inflation, causing

the field to roll and oscillate in its potential. This should
be considered in contrast to the typical condensed mat-
ter system, in which energy is introduced via boundary
conditions (in a convective system) or by a vibrating bed
(in a granular material system), and the energy input is
essentially constant.

For I = 0, the resonant modes lie in the interval

;<k2<\/§. (3)

Fror I" # 0, neglecting expansion we can introduce ¢ =
peat giving

(2 F_2 Tt 3 _
P (V+4)¢+e P° = 0. (4)

Therefore, for small ', we expect the resonance bands
to be slightly shifted, because the V2 term is shifted by
I'%2/4, and we expect the resonance to diminish over time,
due to the exponential damping of the potential with
time. It should also be noted that the resonance struc-
ture of the equation can be quite sensitive to changes
in the potential [20], although in our case the resonance
structure remains intact.

As the effect that we are trying to isolate is non-linear,
we resort to numerical simulation of the field equation.

ITI. INITIAL CONDITIONS

The inflaton is homogeneous after inflation except for
sub-Hubble quantum fluctuations and super-Hubble clas-
sical fluctuations that were quantum fluctuations at the
start of inflation. In the A¢*-theory of preheating, it is
only a small band of the sub-Hubble modes that can be
amplified.

For early times we may expand ¢ about a homogeneous
piece and then linearise Eq. (2). Let ¢(t,x) = ®(t) +
¥(t,x), where (V) spatiar = (1/V) [¢pd>z = 0. We obtain:

®+28° =0 (5)
Ui + (K% + 3X2%(1)) Y = 0 (6)

where we have taken the Fourier transform in the latter
equation.

The initial conditions for ® are those of the end of
slow-roll, which is normally supposed to be when & = 0.
Let @(0) = qﬁo and @(0) = ¢0.

To find the initial conditions for the ¥ we quantise 1
at time t = 0:

and



where w? = k? + 3)\¢3.
Then it is easy to see that (¥)quantar = {0]2]0) = 0

~

and <¢2)Quantal = (1/V) Ek(l/ka)-

For initial conditions for the classical field v, we then
take (...)g = (...)s- If we define the Fourier trans-
form so that ¥ = (1/vVV) Y, ¥ke™ ™, then (), =
(1/V) X |t]?. To obtain ()2), = (%), we require that
on average | |?> = (1/2wy).

This may be achieved by choosing:

wk — |n|e2iﬂ'r (9)

where n is a number randomly taken from a Gaussian
distribution with mean = 0 and variance =1, and r is a
random number taken from the interval [0,1]. One must
remember that ¢_ix = ;.

Requiring that (¢ ), = (¢)%)s we similarly obtain the
momentum initial conditions:

Y = —iwphi (10)

with ¢_j = —4.

IV. SIMULATION RESULTS IN TWO
DIMENSIONS

To simulate the evolution of the field, we discretise the
spatial derivatives to fourth-order in Az, and we use a
leapfrog integrator which is accurate to second order in
At.

Setting the box size to 256 gridpoints per dimension
and such that the resonant wave number in the box is
16 is enough to give many different resonant modes in
the box, but still have good resolution of the wave, so
this is the box size we used. We use periodic boundary
conditions.

We set out to identify the weakly non-linear regime.
In [13] it is shown that, without the decay terms, the
self-coupled inflaton system’s non-linear time evolution
proceeds as follows: First, the resonant band amplitude
grows. Next, when the amplitude in the resonant band is
high enough for non-linear effects to become important,
period doubling occurs and subsidiary peaks develop in
the power spectrum. Further peaks then develop and
the spectrum broadens and approaches an exponential
spectrum. We tuned T' such that the amplitude of the
resonant band grew, but little period doubling occurred.
In this regime, only resonant mode wavelengths exist in
the box and they interact with each other non-linearly.

In the expanding case, the increase of the effective
damping coefficient v.¢7 = al’ with increasing scale fac-
tor a makes it easier to keep the system in the weakly
nonlinear regime relative to the non-expanding case,
since damping grows with time.

We found the smallest value for I' such that the system
remained weakly non-linear was of order 107%. This is
two orders of magnitude smaller than that in the non-
expanding case.
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FIG. 1. A superposition of power spectra taken from a sim-
ulation with T" = 0.00005. We plot the amplitude of the
power spectra vs. wave number. Note that the period dou-
bling modes are only weakly populated, indicating that the
simulation is in the weakly non-linear regime.

In Figure 1 we plot a superposition of the power spec-
trum at various times during a simulation with I' =
0.00005. It is possible to see that the system stays in
the weakly non-linear regime for the entire simulation.

When wave patterns form, the specific pattern which

FIG. 2. t = 0. [Initial conditions for the simulation
(T' = 0.00005). ¢(kz,k,), the Fourier transform of the in-
flaton is plotted. The zero mode has been deleted for plotting
purposes, and the surrounding modes populated with vacuum
amplitudes from Eq. 9. Only the region of interest is plotted.



FIG. 3. After resonance begins to boost the amplitude of
the resonant mode. Notice the brightening (increasing ampli-
tude) of the resonant modes. t = 840.

arises is due to the non-linear interaction of the wave
modes. The amplitude of wave modes separated by dif-
ferent angles grows at different rates. Modes separated
by angles with the fastest growing amplitudes dominate
the solution and form the wave pattern.

It can also occur that patterns vary temporally. This
is the situation we find in the A¢* model. What we
see in both the expanding and non-expanding cases is
that a pattern emerges from the fluctuation background,
then the peaks and valleys begin to move relative to each
other.

The temporal dependence is almost periodic. Peaks
and troughs in the field energy align along one direction

FIG. 4. The final wave pattern. t = 1020.

FIG. 5. t = 0. The initial conditions in configuration space.

in a ripple-like pattern, then the pattern flips to align in
a direction orthogonal to the original direction. We say
the dependence is ‘almost’ periodic because the field flips
back and forth, but the timing of the flips varies as the
field evolves. This leads us to believe that, for instance, if
there were a background driving field that gave constant
energy input (as opposed to the decaying background in
chaotic inflation) the flipping would be truly periodic.
In Figures 2, 3 and 4 we present snapshots of the evo-
lution of the Fourier transform of the inflaton in two di-
mensions in an expanding universe. And in plots 5, 6
and 7 we present snapshots of the evolution of ¢(z,y)
in configuration space in two dimensions in an expand-
ing universe. Notice the change in direction between the

FIG. 6. Wave pattern at intermediate time. ¢ = 840.



FIG. 7. Wave pattern at the end of the simulation.
t = 1020.

ripples in Figure 6 and 7.

In the expanding case (w.r.t. the non-expanding case),
the patterns are more clearly delineated and look less
noisy. This is due to the fact that, in the expanding uni-
verse case, the field equations (in conformal time) have
an effective symmetry breaking potential, with barrier
height (a'y)?/4), which is constant in time in a radia-
tion dominated universe (the case we are considering).
Therefore, the pattern is actually a network of domain
walls separated by the characteristic wavelength of the
resonance.

V. PATTERNS IN THREE DIMENSIONS

‘Time: 0.000000

FIG. 8. Initial conditions for 3-D simulation. ¢t = 0.

‘Time: 30.000000

FIG. 9. Wave pattern at intermediate time. ¢ = 100.

Using the same simulation techniques in three dimen-
sions, we also find spatio-temporal patterns. We plot the
field in configuration space in Figures 8, 9 and 10. The
behavior of these patterns is similar to those found in
two dimensions: the pattern forms at the resonant wave-
length, then the peaks and valleys in the energy density
begin to move with respect to each other. In these simu-
lations, we set the physical box size such that there were
eight resonant wavelengths per dimension in the box.

VI. DISCUSSION

Since the patterns that we see vary in time, we expect

‘Time: 60.000000

FIG. 10. Wave pattern at end of simulation. ¢t = 300.



there to be a peak in the gravitational wave spectrum
at the resonant frequency for preheating in the weakly
non-linear regime. Similar peaks in the gravitational
wave spectrum have been seen [22] in simulations of un-
damped preheating. These peaks correspond to the res-
onant and period doubled frequencies. In the pattern
forming regime, we expect to see similar peaks of lower
amplitude, since the dissipative terms keep the resonant
peak in our simulation at lower amplitude than the un-
damped system. Since the peak in the gravitational wave
spectrum from pattern formation will be of smaller am-
plitude than that of the fully chaotic system, it will be
very difficult to detect. However, since the pattern has
directionality, this might help in extracting a signal.

We would also like to discuss the possibility of pat-
terns occurring on cosmological scales, since, if we could
put resonant power at 128h~!'Mpc, we would have an
explanation for the observed excess power found at these
scales. Recently, Bassett [23] and a number of other au-
thors [24], [25], [26] have investigated the question of
whether resonance can amplify modes with wavelength
larger than the Hubble radius at the end of inflation.
It turns out that this is possible due to the large-scale
(many Hubble volumes) coherence of the inflaton at the
end of inflation. Due to the large scale coherence, super-
Hubble modes can be amplified due to what can be
thought of as down-scattering from the oscillating zero
mode. It turns out, though [26], that in practice it is dif-
ficult to find models in which the amplification changes
the spectrum significantly. This is due to the fact that
during inflation, long wave m? < H? fluctuations dy in
fields that have effective masses are damped exponen-

tially.
H* 2m?2
ox= [m (1 exp (_S—Ht))] (1)

Therefore, during preheating, although super-Hubble
modes are amplified, they cannot be amplified enough
to be significant.

Let us suppose, however, that it is possible to construct
a model in which the field y which develops the resonance
(the field coupled to the inflaton) at the end of inflation
is massless during the inflationary epoch, and therefore
has fluctuations of order the fluctuations in the inflaton
~ 1078, Thus, super-Hubble fluctuations in x will not be
damped by an exponential factor. Given this argument,
it may seem possible to introduce fluctuations on large
scales. The difficulty comes when one tries to introduce
a bump at a particular scale. Essentially, for small k&,
resonance bands always vary slowly, since they are just
small perturbations of the resonant amplitude of the zero
mode, and it thus becomes difficult to put a bump at a
particular scale without also putting power at all scales
nearby, therefore, at best, a bump in the spectrum would
be very broad.

M=

A possible workaround for this problem would be to
construct a theory where a resonance occurs during the
inflationary epoch. The scale of the perturbation would
then grow with the rest of the inflationary perturbations.

As a final comment, we would like to point out that the
system of equations which we have investigated is a low-
energy pion model. This suggests that patterns might
turn up in driven pion systems.

VII. CONCLUSIONS

In this paper, we have presented new evidence that
there is a pattern forming regime in a A¢* theory during
preheating at the end of inflation. We have used vac-
uum initial conditions appropriate to sub-Hubble modes
at the end of inflation. We have also shown that pat-
terns arise in both two- and three-dimensions. Since the
patterns vary spatio-temporally, gravitational waves will
be produced, however, relative to the gravitational waves
produced in an undamped model, their amplitude will be
small, and therefore, unless the directionality of the pat-
tern can aid in detection, extremely difficult to detect.

We have speculated on the possibility of putting a res-
onant band at cosmological scales, and conclude that,
due to the broadening of the band at small k, this is not
feasible.

But, we point out that another physical system which
could have similar pattern forming behavior is the pion
system.
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