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Perturbative two- and three-loop coeÆcients from large � Monte Carlo

G. P. Lepagea, P. B. Mackenzieb, N. H. Shakespearec, and H. D. Trottierc

aNewman Laboratory of Nuclear Studies, Cornell University, Ithaca, NY, 14853

bFermilab, MS 106, P.O. Box 500, Batavia, IL 60510

cPhysics Department, Simon Fraser University, Burnaby, B.C., Canada V5A 1S6

Perturbative coeÆcients for Wilson loops and the static quark self-energy are extracted from Monte Carlo

simulations at large � on �nite volumes, where all the lattice momenta are large. The Monte Carlo results are in

excellent agreement with perturbation theory through second order. New results for third order coeÆcients are

reported. Twisted boundary conditions are used to eliminate zero modes and to suppress Z3 tunneling.

1. INTRODUCTION

Simulations using highly improved lattice ac-
tions have become commonplace in recent years.
Higher order perturbative calculations for these
actions present a major challenge however, which
must be overcome in order to obtain precision re-
sults for a number of observables.
A simple alternative to analytic perturbation

theory, proposed in Ref. [1], is to directly mea-
sure observables in Monte Carlo simulations at
very large � and to �t the coeÆcients of the per-
turbative expansion to the results. This produces
coeÆcients with both statistical and truncation
errors, so it is not a complete substitute for con-
ventional perturbation theory. However, as we
show here, it produces estimates of high order co-
eÆcients with far less e�ort than a conventional
calculation. This method was shown to reproduce
analytical results for the one-loop mass renormal-
ization for Wilson fermions, and the one-loop ad-
ditive energy for NRQCD fermions [1]. In ad-
dition, preliminary estimates of some third-order
Wilson loop coeÆcients have been made [2]. An
extension of this technique to background �eld
calculations has also been considered [3].
In this work we make a much more extensive

analysis of this method. We reproduce known
second-order perturbative coeÆcients for Wilson
loops and the static quark self-energy to high ac-
curacy. New predictions for third-order coeÆ-
cients for these observables are made, and results

of extensive systematic studies are reported.

2. WILSON LOOPS

To begin with, we present results of simula-
tions of Wilson loops for the Wilson gauge-�eld
action on 164 lattices. Periodic boundary condi-
tions were used here in order to make a direct
comparison with the second order perturbative
coeÆcients calculated by Heller and Karsch [4] on
the same lattice volume. Simulations were done
at nine couplings, from � � 9 to � � 50.
We analyze the logarithm of the R� T Wilson

loop

� 1

2(R+ T )
lnWR;T =

X
n

cn �
n
P (q

�

R;T );

scaled such that the coeÆcients for large loops
approach those of the static self-energy. We use a
renormalized coupling �P determined from mea-
sured values of the plaquette [5,6]

� lnW MC
1;1 � 4�

3
�P (3:41=a) [1� 1:185�P ] :

This eliminates large renormalizations of the bare
lattice coupling �0 = 3=(2��), as can be seen by
relating �P to �0, using the third-order expansion
of the plaquette given in Ref. [7]:

�P (3:41=a) � �0 + 4:558�20 + 28:499�30: (1)

The renormalized coupling is evaluated at scales
q�R;T determined by the procedure of Ref. [5]. It is
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also possible to perform the �tting procedure us-
ing the bare coupling constant, �0, but this leads
to much larger higher order coeÆcients and trun-
cation errors because of the large coeÆcients in
Eqn. 1. These lead in turn to poorer �ts with
larger �2's.
It is very straightforward to �t the leading per-

turbative coeÆcients to the Monte Carlo data.
Monte Carlo results for the 5� 5 Wilson loop are
presented in Fig. 1, in terms of the quantity

�1 � � lnW MC
R;T =

�
2(R+ T )�P (q

�

R;T )
�
;

after the known �rst-order contribution due to
zero modes [8] is subtracted from the data. The

Figure 1. Monte Carlo results for �1 for the 5� 5
Wilson loop, with best �t.

dashed line in Fig. 1 is the result of a �t to
�1 � c1 + c2�P + c3�

2

P ; the �lled square shows
the analytical value of c1, while the curvature in
the results for �1 demonstrates a signal for c3.
The measured values of c1;2 for various small

loops are shown in Table 1. They are in excellent
agreement with perturbation theory.
We also make new predictions for the third-

order coeÆcients c3. To improve the accuracy of
these results, it is helpful to subtract the analyt-
ically known �rst- and second-order perturbative
contributions from the data. Monte Carlo results
for the residual

�3 � 1

�3P

�
� 1

2(R+ T )
lnW MC

R;T � c1�P � c2�
2

P

�

are shown in Fig. 2 for the 5 � 5 loop, with the
results of a �t to �3 � c3 + c4�P .

Figure 2. Monte Carlo results for �3 for the 5� 5
Wilson loop, with best �t.

The data are not accurate enough to resolve c4,
although the best �t errors indicate that c4 is of
the same order as c3 for these Wilson loops. To
obtain errors on the c3 that take into account the
e�ects of truncation in �s, we include the c4 term
in our �ts. In the results for c3 given in Table 2,
the quoted errors come from the �t including c4,
which e�ectively includes an uncertainty due to
the possible values of c4 allowed by the data.
We used periodic boundary conditions in these

tests on small Wilson loops in order to be able
to compare directly with Ref. [4]. The known
leading e�ects of the resulting zero modes were
subtracted by hand. We have not corrected for
the contribution from zero modes beyond �rst or-
der; these e�ects should be very small for small
Wilson loops. In fact there is no visible e�ect of
zero modes beyond �rst order, within statistical
errors. (This would show up in singular behavior
in �3 at small �P ).

3. STATIC QUARK SELF-ENERGY

To calculate quantities more complicated than
Wilson loops, we need to solve some additional
problems. In general, the e�ects of zero modes are
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Table 1
Perturbative coeÆcients c1;2 of Wilson loops from Monte Carlo simulations and perturbation theory.

Loop cMC
1 cPT1 (q�R;T ) cMC

2 cPT2 (q�R;T ) q�R;T
1� 2 1.2037(1) 1.2039 -1.248(08) -1.257 3.07
1� 3 1.2586(2) 1.2589 -1.186(09) -1.195 3.01
2� 2 1.4336(2) 1.4338 -1.314(08) -1.320 2.65
3� 3 1.6088(3) 1.6089 -1.205(12) -1.204 2.46
4� 4 1.7065(4) 1.7066 -1.202(16) -1.198 2.30
5� 5 1.7692(6) 1.7690 -1.191(36) -1.166 2.23

Table 2
Monte Carlo results for third order coeÆcients c3
of Wilson loops.

Loop cMC
3 (q�R;T ) q�R;T

1� 2 0.40(08) 3.07
1� 3 0.63(10) 3.01
1� 4 0.82(10) 2.97
1� 5 0.92(10) 2.95
2� 2 1.38(09) 2.65
2� 3 1.89(11) 2.56
2� 4 2.26(11) 2.49
2� 5 2.51(11) 2.46
3� 3 2.49(12) 2.46
3� 4 2.94(11) 2.38
3� 5 3.23(13) 2.35
4� 4 3.35(14) 2.30
4� 5 3.67(19) 2.27
5� 5 3.74(33) 2.23

unknown and not small, so we must remove them
from the �rst. Further, most quantities are highly
sensitive to the e�ects of tunneling between the
various Z3 vacua of SU(3), so we must suppress
this, too. We test our ability to do this by calcu-
lating the static quark self-energy E0.
Zero modes can be eliminated by using twisted

boundary conditions [9], and remaining �nite size
e�ects can be removed by extrapolating results
from several lattice volumes.
We measured the gauge-invariant Polykaov line

on lattices of various volumes L3 � (T = L)

P4(L) � 1

3L3

X
~x

ReTr

LY
x4=1

U4(x):

De�ning E0(L) � � lnP4(L)=L, we have E0 �
E0(L!1). The two-loop expression for E0 can
be obtained from perturbative results for P4 [4,10]

E0 = 2:1173�P (1:68=a)� 1:124�2P +O(�3P ):

The Polyakov line is an order parameter for
the Z3 degenerate vacua of the gauge theory, and
has di�erent values in di�erent Z3 phases. To
make its vacuum expectation value well de�ned
and nonzero in a Monte Carlo simulation, one
can add an external �eld to the action to pin the
simulation into one of the Z3 states and take the
limit of the external �eld going to zero as the
volume goes to in�nity.
In order to minimize these nonperturbative ef-

fects, we start the simulation with all links ini-
tialized to U� = I ; tunneling and domain for-
mation are suppressed by working at suÆciently
large lattice volumes and couplings �. We found
that with periodic boundary conditions, tunnel-
ings were quite frequent, even at the surprisingly
large �'s of 50 { 100. On the other hand, we �nd
that twisted boundary conditions lead to a dra-
matic suppression of these e�ects. Twisting in
two directions strongly suppresses tunneling and
twisting in three directions virtually eliminates it,
even on runs of hundreds of thousands of sweeps
and relatively low �. Thus, so far, adopting the
pinning method has been unnecessary.
Finite-size e�ects are consistent with pertur-

bative expectations. We estimate E0 by �tting
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E0(L) to the perturbative form of the interaction
between the static quark and its images in the
box walls:

E0(L) = E0 � (a1 + a2 ln(L))=L:

Simulations were done with twisted boundary
conditions on 9 volumes, L = [3; 11]. Measure-
ments were made at 9 couplings on each volume,
from � � 9 to � � 60. Results for E0(L) at
� = 9:5 are shown in Fig. 3; in all cases, the �ts
yield a1 = O(�P ) and a2 = O(�2P ), as expected.

Figure 3. In�nite volume extrapolation of the
static quark self-energy E0(L).

Results for �1 � E0=�P (q
� = 1:68) are shown

in Fig. 4. Best �ts to �1 � c1 + c2�P + c3�
2

P

yield cMC
1 = 2:117(3) and cMC

2 = �1:18(18), in
good agreement with perturbation theory. We
also obtain a new prediction for the third order
term; using the analytical values for c1 and c2,
the best �t yields

cMC
3

= 5:6(1:8): (2)

As for the loops, we include a fourth order term
in the �t. This guards against the presence of an
anomalously large c4, and enlarges the error bar.
A result for the third order term in the expan-

sion of E0 in the bare lattice coupling has also
been reported in this conference, using coupled
Langevin equations [11]. Large coeÆcients in the

Figure 4. Monte Carlo results for �1 for the static
quark self-energy, with best �t.

expansion in terms of �0 reect the need to renor-
malize the coupling; for example, combining our
result for cMC

3
with Eqn. (1), we �nd

E0 � 2:1173�0 + 11:152�2
0
+ 81(2)�3

0
: (3)

The absolute errors in Eqns. 2 and 3 are the same.
The relative error in Eqn. 3 seems surprisingly
small because the size of the coeÆcient itself has
been increased by analytic terms from Eqn. 1.

4. ALGORITHMIC INVESTIGATIONS

These calculations have been done using stan-
dard pseudo-heat bath algorithms to create the
gauge �elds. The calculation of E0 took a little
over a month running on about 20 PC's. Clearly
�nding the best simulation algorithms is an es-
sential element of the method. In this section,
we report some preliminary investigations into al-
gorithms speci�cally appropriate to perturbative
simulations.
In principle, microcanonical based methods

[12] have the potential to outperform ordinary
heat bath methods since they have a critical scal-
ing dimension of 1 instead of 2. In practice, for
QCD they don't achieve this. Correlations be-
tween nearly degenerate modes last a long time,
and nonperturbative e�ects cause averages over
uncorrelated con�gurations to add up statisti-
cally, as 1=

p
n. If we examine the perturbative
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case carefully, however, we see that this need not
be the case.
A single harmonic oscillator evolving under a

microcanonical algorithm approaches its average
as 1=n:

h�i = 1

n

nX
m=0

exp(imÆ) =
1

n

1� exp(inÆ)

1� exp(iÆ)
: (4)

Therefore, free �eld theory, which is just a
collection of independent oscillators, does the
same. However, the usual microcanonical evo-
lution equations,

H � T + S; T � 1

2

X
i

p2i ; S � S(�i) (5)

!
dpi
d�

= �@S(�)
@�i

;
d�i
d�

= pi; (6)

do not make a good simulation algorithm for free
�eld theory. Many sets of momentum modes, e.g.,
(1; 0; 0; 0) and (0; 1; 0; 0), have same the frequen-
cies and never decorrelate, so that con�guration
space never gets completely covered.
Since the \momenta" in microcanonical updat-

ing of quantum �eld theories are �ctitious, this
problem and be removed by introducing a \non-
degenerate microcanonical method" using ran-
domized �ctitious masses mi:

H � T + S; T � 1

2

X
i

p2i
mi

; S � S(�i); (7)

!
dpi
d�

= �@S(�)
@�i

;
d�i
d�

=
pi
mi

; (8)

a1 < mi � a2; where a1 and a2 are of order 1,
say 0.8 and 1.2. Mathematical classical mechan-
ics often starts from periodic system system with
nondegenerate frequencies. Such systems have
more tractable mathematics, for example no ze-
ros in perturbation theory denominators. With
these equations, the frequencies of free �eld the-
ory are nondegenerate and con�guration space is
covered densely. The KAM theorem then tells
us that for small perturbations of nondegener-
ate unperturbed system, dense tori covered by

system's evolution through phase space deformed
only slightly. Therefore we expect the covering
of con�guration space to remain dense in weakly
coupled systems, and the convergence to the av-
erage to continue to go as 1=n. It is easy to test
that for scalar �eld theory, things work out in
more or less this way.
In QCD, however, gauge symmetry creates a

new complication. The random mass method
may be adapted to gauge theories in two ways
It is straightforward to implement gauge covari-
ant random masses that break most but not all
mode degeneracy:

T � 1

2

X
i

TrH2
i

mi

; S � S(U) (9)

!

i
dHi

d�
= �@S(U)

@Ui
;

dUi
d�

=
1

mi

iHU; (10)

Hi =
P

a �ah
a
i .

Mode degeneracy may be broken completely by
color breaking random masses:

T �
X
ai

hai
2

ma
i

; S � S(U) (11)

!

i
dHi

d�
= �@S(U)

@Ui
;

dUi
d�

= i
X
a

hai �
a

ma
i

U: (12)

However, they also break gauge invariance. This
necessitates gauge �xing, which is more work and
may introduce extra correlations.
We have investigated the �rst of these meth-

ods. New complications are present in gauge
theories. Free �eld behavior can only be ap-
proached as � ! 1, UP ! 1: But at very
high �, round o� becomes important, which de-
stroys the anticorrelations leading to 1=n behav-
ior. At small �, Z3 tunneling occurs. Nonper-
turbative e�ects can (and do) destroy the anti-
correlations, restoring 1=

p
n statistical behavior.

Hence, twisted periodic boundary conditions are
required. At moderate �, we �nd at least par-
tial success with the plaquette. Fig. 5 shows the
error obtained on the plaquette using standard
binning procedures from the heat bath algorithm
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Figure 5. Statistical error on the plaquette ob-
tained with standard binning procedure from the
heat bath algorithm (canonical) and the nonde-
generate microcanonical algorithm (microcanon-
ical).

(labeled canonical) and the nondegenerate mi-
crocanonical algorithm (labeled microcanonical).
When anticorrelations as in Eqn. 4 are present,
standard formulae, which assume 1=

p
n behav-

ior, should produce errors that drop as 1=
p
n

in bin size, as observed. The results obtained
are W1;1 = 0:900346(1) with the microcanoni-
cal method and 0.900271(23) with the canonical
method for equal ensemble sizes. We have not
extrapolated to in�nite volume, which we believe
accounts for the small discrepancy.
The plaquette is speeded up beautifully, achiev-

ing the full 1=n approach to its average even with
gauge covariant random masses. However, the
plaquette turns out to be a special case, presum-
ably because it is also the action of the theory.
For other loops, the great speed up is not ob-
served, which is disappointing but not entirely
unexpected in view of the remaining correlations.
Full breaking of mode degeneracy appears neces-
sary for most quantities. We are encouraged by

the results with the plaquette, but more work is
necessary to make this a general method.

5. SUMMARY

In summary, results presented here demon-
strate that second order perturbative coeÆcients
are readily accessible in Monte Carlo simulations
at large �. Reasonable estimates of third-order
terms can also be made, especially when analytic
results for lower order terms are available. We are
currently working on gauge-�xed quark propaga-
tors, in order to measure second order mass renor-
malizations for NRQCD and Fermilab fermions.
We thank Urs Heller for generously providing

us with his programs for second-order coeÆcients.
This work was supported in part by the National
Science Foundation, the Department of Energy,
and the National Science and Engineering Re-
search Council of Canada.
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