
F Fermi National Accelerator Laboratory

FERMILAB-Conf-99/179

SUMAC: A Monitor and Control Tree for Multi-FPGA Systems

Mingshen Gao

For the BTeV Collaboration

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

July 1999

Published Proceedings of the 11th IEEE NPSS Real Time Conference,

Santa Fe, New Mexico, June 14-18, 1999

Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the United States Department of Energy



Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor any agency thereof, nor any of

their employees, makes any warranty, expressed or implied, or assumes any legal liability or

responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe privately owned

rights. Reference herein to any speci�c commercial product, process, or service by trade

name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its

endorsement, recommendation, or favoring by the United States Government or any agency

thereof. The views and opinions of authors expressed herein do not necessarily state or reect

those of the United States Government or any agency thereof.

Distribution

Approved for public release; further dissemination unlimited.

Copyright Noti�cation

This manuscript has been authored by Universities Research Association, Inc. under con-

tract No. DE-AC02-76CHO3000 with the U.S. Department of Energy. The United States

Government and the publisher, by accepting the article for publication, acknowledges that

the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license

to publish or reproduce the published form of this manuscript, or allow others to do so, for

United States Government Purposes.



SUMAC: A Monitor and Control Tree 
for Multi-FPGA Svstems 

Mingshen Gao 
FermiLab, P.O.Box 500, Batavia, IL 605 10 
For Btev collaboration 

The BTeV pixel trigger is a data acquisition system capable of 
finding tracks and vertices in real time in the BTeV pixel detector array. 
The trigger uses some 3000 processing elements (DSPs) arranged in three 
processing levels to handle a raw data rate of nearly 100 Gigabytes per 
second and bring the trigger rate down to 10 KHz. 

The trigger system has more than 6000 programmable elements, 
including Field Programmable Logic Arrays (FPGAs), microprocessors 
(DSPs, interface to the monitor and control tree through FPGAs), and 
others. Sumac (Serial Utility Monitor and Control tree) is used for 
configuring and monitoring of these devices. Its primary function is the 
downloading of FPGA bit streams, microprocessor programs, chip 
configurations, and test data. In addition, remote cpus and other 
devices can send messages and status back to the host. The Sumac 
system is capable of handling several thousand remote devices from a 
single host PC. Because it stores configuration data in local flash 
eeproms, it will be capable of achieving a complete system reboot in 
less than 1 second. 

The Sumac system is a tree hierarchy connected via high-speed 
serial links. Typically each board in the system will have a control 
node which accepts a single upstream serial link and fans out to as 
many as 32 downstream links. The downstream links can connect to 
FPGAs or to other control nodes for further fanout. 

Short links that connect devices on the same board or backplane 
are implemented as 20 MHz synchronous serial links. Longer links that 
connect host to backplane are implemented as 12.5 MHz asynchronous 
serial links. 

The serial link sends and receives 33-bit words. Figure 3 shows 
the three basic word formats. Data words contain user-defined data. 
Typically, these get placed into a local buffer until a message word is 
received that tells the software how to deal with them. 

Message words contain a 31-bit payload that is defined by the 
software. Message words cause an interrupt to the CPU. Each message 
word that is sent must be acknowledged before a new message word 
can be sent. 

Control/Status words are low-level hardware words. Typically, 
control words are sent downstream and affect the hardware state of the 
receiver. Status words are typically sent upstream and are used to 
indicate the current hardware status. They can be sent periodically or 
under CPU control. 

Bit 29 of the Control/Status word is reserved to indicate a message 
acknowledge. When this bit is received, it clears the BUSY bit, and 
tells the CPU that it can send another message. 

In addition to the 33-bit serial format, each control node can 
transmit a raw bit stream that can be used to configure the receiving 
device. Figure 5 shows the flow for configuring an FPGA. 

Control nodes can keep data files locally so that the host does not 
have to re-load them on each reboot. The control node accepts 
commands to manipulate and download files. It also interprets a simple 
scripting language so that it can configure an entire board with only a 
single command from an upstream node. 

Fig; 1. Tree Structure 
control 
Node 

Fig 2. Control Node upstream 

Fb 3. Word Formats 

0 32 data bits Data words get placed in a 2KB buffer. 

11 31 Message Message words cause a CPU interrupt and are 
interpreted by software. 

10 3 1 c0tltr01/status Control/Status words affect/reflect hardware 
Status. 

Fb 4. Tvuical messape exchanpe 

Sender: Check that BUSY bit for destination link is clear. 
Send body of message as data words. 
Send message-word to tell the receiver what to do. 

Receiver: Get interrupted and read message word. 
Save a pointer to the sender3 data buffer. 
Set up a new buffer for the senders next message. 
Send an ACK to the sender. 
Deal with the sender3 data. 

Fip 5. Bitstream download 

Sender: Enable all downstream links that will receive the bit 
stream. Disable the others. 
Send a break-high signal on the links 
Send a break-low. 
Send a raw configuration stream to the FPGA. 

Receiver: A break signal will reset the FPGA and put it in 
download mode. The bit&em will set its new 
configuration. 



The control node also accepts commands from downstream nodes to pass messages upstream. This allows 
remote devices to send occasional text messages to the host tc indicate error conditions or status changes. This 
feature will be accessible to user-level programs running in remote CPUs as printf-like system calls. 

Serial Link Encoding 
Sumac links that run between boxes use RS-485 differential signaling at 12Sh4Hz. A serial encoding 

scheme is needed that embeds a clock reference into the data, and maintains a reasonable DC bias. For Sumac, 
the 33-bit word is broken into eight “nibbles”. The first nibble is 5 bits; the other seven are 4 bits each. The 
nibbles are then encoded using 5B/6B or 4B/5B NRZI encoding. 

NRZI (Non-Return to Zero Inverted) encoding uses a transition to indicate a 1, and the absence of a transition 
to indicate a 0. The 5B/6B encoding inserts an extra bit into each nibble to insure that there is a transition (1) at 
least once every 4 bits. The table shows how each combination is encoded. In addition to the 32 data encodings, 
there are also codings for a FILL word which is sent whenever there is no data to send, and a SYNC word which 
is sent at link startup or when an error is detected. Any code not in the table is considered an error. 

For 4B/5B encoding, a subset of the 5B/6B is used. Only the lowest 5 encoded bits are used to represent a 4- 
bit nibble. 

Break 
fbecial states 

If the Host holds the serial link high for 10 microseconds, the Slave enters Break-High state. In this state, 
the Slave’s control processor is allowed to operate independently and attempt to boot without the host. The 
Slave responds to a Break-High by driving its own serial link high. This state is also entered if the control-link 
cable is disconnected. 

Reset 
If the Host holds the serial link low for 10 microseconds (Break-Low), hardware reset is asserted on the 

slave node. This will reset the FPGA and Re-start the Slave3 control processor. The Slave responds by driving 
its serial link low. 

Config 

2 
3 
4 
5 

t 

6 
7 
8 
9 

1 A 
B 
C 

t- 
D 
E 

18 Tab14 
Binary 
00000 
00001 
00010 
00011 
00100 
00101 
00110 
00111 
01000 
01001 
01010 
01011 
01100 
01101 
01110 
01111 
10000 
10001 
10010 
10011 
10100 
10101 
10110 
10111 
11000 
11001 
11010 
11011 
11100 
11101 
11110 
11111 
Sync 
Fill 

!, : 

.I 

5B to 6B 
Encoded 
Y.iiEiT 

011010 
010110 
011110 
001001 
001011 
001101 
001111 
010001 
010011 
010101 
010111 
011001 
011011 
011101 
011111 
110010 
111010 
110110 
111110 
101001 
101011 
101101 
101111 

110001 
110011 
110101 
110111 
111001 
111011 
111101 
111111 
100000 
101110 

If-the Host sends a Break-High followed by a Break-Low, then the Slave is reset, and its FPGA is cleared and prepared to accept a new 
bitstream configuration. Each bit of configuration data is sent to the FPGA as a S-bit frame on the serial link. The came consists of a high start 
bit followed by a data bit, followed by a low stop bit. For each frame, the FPGA configuration clock (C-CLK) is cycled once, and a bit is written 
into the FPGA on the rising edge. 

1 Decoding Map, 6B to 5B 
Configuration Timing 8Ons* 16Ons~ Lower 3 bits 

C-Data 

C-Clk 

Sync 
If the slave detects an error of any kind, it drives its output link low, and enters the Sync 

state. If the Host detects this or any other error, it enters the sync state and begins sending 
Sync words. When the slave has detected 16 contiguous sync words, it begins sending sync 
words on its output link. When the host detects this, it begins sending Fill words. When the 
Slave detects Fill words, then it begins sending Fill words. At this point, the links are 
synchronized, and data words can be sent. 

Synchronization Timing 
Host Link Data sync sync sync sync sync Fill Fill Fill Data Data 

Slave Link A-\,/ 
sync sync sync ml Data 

1 / 

000 001 010 011 100 101 110 111 
000 _ _ - _ - - - - 

y 001 - 4 - 5 - 6 - 7 
‘5 010 - 8 0 9 - A 1 B 
, v, 011 - C 2 D - E 3 F 
3 lOOSync - - - - - - - 
& 101 - 14 - 15 - 16 Fill 17 

b > , 110 - 18 10 19 - 1A 11 1B 
111 - 1C 12 1D - 1E 13 1F 

Decoding equations 6B to 5Q 
QO=BO?Bl :B3 
Ql= B2 
Q2= BO * B3 
Q3= BO * B4 
Q4= B5 

I Slav 16 svnc 

detects iiames 

1 error I 

Encoding Equations 5Q to 6B 
BO= 43 + 42 
Bl=/Q3 */Q2+QO 
B2= Ql 
B3= Q2 + IQ3 * QO 
B4= IQ2 + 43 
B5= Q4 

J 


