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Abstract

We search for Higgs bosons produced in association with a massive vector
boson in 9147 pb~! of pp collisions at /s = 1.8 TeV recorded by the Collider
Detector at Fermilab. We assume the Higgs scalar H? decays to a bb pair with
branching ratio 4, and we consider the hadronic decays of the vector boson
V (W or Z). Observations are consistent with background expectations. We
place 95% confidence level upper limits on o(pp — H°V)-3 as a function of the
scalar mass (Mpo) over the range 70 GeV/c? < Myo < 140 GeV/c?. When
combined with an analysis of the case where V' is a leptonically decaying W,
these limits vary from 23 pb at Mpyo = 70 GeV/c? to 17 pb at Myo = 140

GeV/c2.



One of the primary goals of present and future colliders is to reveal the mechanism
responsible for the symmetry breaking of the electroweak interaction. The simplest model
for this mechanism is spontaneous symmetry breaking achieved through the introduction of
a scalar field doublet [1]. This leaves a single observable scalar particle, the Higgs boson,
with unknown mass but fixed couplings to other particles. The possible range for the mass
extends from a lower bound of 77.5 GeV/c? from the LEP experiments [2] to O(1) TeV.
Precision electroweak experiments suggest that the Higgs boson mass may lie at the lower
end of this range [3]. The dominant decay mode of the Higgs boson up to Myoe ~ 130 GeV /c?
is H® — bb. A similar symmetry breaking mechanism occurs in the minimal supersymmetric
extension of the standard model, where several observable scalar states are predicted, the
lightest of which is expected to have a mass below 135 GeV/c? [4].

In pp collisions, the Higgs production mechanism with the most promising detection
possibilities is pp — V + H°, where V = W, Z. In the framework of the standard model,
the production cross section in this channel is 1.3 to 0.11 pb for Higgs masses between 70
to 140 GeV/c* [5]. This is out of the scope of the present analysis, using 91 + 7 pb ™! of pp
collisions at /s = 1.8 TeV recorded by the Collider Detector at Fermilab (CDF). In this
letter we therefore report on a search for a Higgs scalar produced in association with a vector
boson (pp — V + H°, where V = W, Z) with unknown cross section oy yo. We look for H®
decays to a bb pair with unknown branching ratio 3, and for hadronic decays of the vector
boson (W — qq', Z — qq). The experimental signature considered is four jets in the final
state, with two of them identified as b jets. The CDF [6] and DO [7] collaborations recently
reported on direct searches for W + H° where the W was identified by its decay to ev or
pv. The all-hadronic channel described here has the advantage of a larger branching ratio,
but suffers from a larger QCD background. Finally, we combine the limits obtained in the
all-hadronic channel with those from our previous search for W + H°.

The CDF detector has been described in detail elsewhere [8]. The CDF silicon vertex

detector (SVX) consists of four layers of axial microstrips located immediately outside the



beampipe with an innermost radius of 2.9 cm [9]. The SVX provides precise track recon-
struction in the plane transverse to the beam and the ability to identify secondary vertices
produced by heavy flavor decays. The momenta of charged particles are measured in the
central tracking chamber (CTC), which is inside a 1.4 T axial magnetic field. Outside the
CTC, electromagnetic and hadronic calorimeters arranged in a projective tower geometry
cover the pseudorapidity region |n| < 4.2 [10] and are used to identify jets. The data sample
was recorded with a trigger which requires four or more clusters of contiguous calorimeter
towers, each with transverse energy Er > 15 GeV, and a total transverse energy > Ep > 125
GeV.

The data reduction starts with a background filter to reject cosmic ray events, beam
halo and detector noise. Events are required to have missing Ep [10] significance S =
Er /(3 Ep)? < 6 GeVY/2, total energy less than 2000 GeV and a primary vertex recon-
structed within 60 cm of the detector center. Events with isolated high-Er (pr) electrons
(muons), defined as in [6] are also removed. After this selection, events are required to have
four or more jets with uncorrected Er > 15 GeV and |n| < 2.1. Jets are defined as localized
energy depositions in the calorimeters and are reconstructed using an iterative clustering al-
gorithm with a fixed cone of radius AR = v/An? + A¢? = 0.4 in n— ¢ space [11]. Jet energies
are then corrected for energy losses in uninstrumented detector regions, energy falling out-
side the clustering cone, contributions from underlying event and multiple interactions, and
calorimeter nonlinearities. After this initial selection the sample contains 207,604 events.
In addition, we require that at least two among the four highest-FE7 jets in the event are
identified (tagged) as b quark candidates. We use the secondary vertex algorithm developed
for the top quark observation [12]. The algorithm begins by searching for secondary vertices
that contain three or more displaced tracks. If none are found, the algorithm searches for
two-track vertices using more stringent track criteria. A jet is tagged if the secondary vertex
transverse displacement from the primary one exceeds three times its uncertainty.

There are 764 events with four or more jets and two or more b-tags. In these



events, only the four highest-Er jets are considered for the mass reconstruction: the
two highest-Er b-tagged jets are assigned to the Higgs boson, and the other two to

the vector boson. The invariant mass of the b-tagged dijet system is defined as M;; =

\/ 2D Eb [cosh(An)y; — cos(Ad)y]. The bb invariant mass distribution in signal events, gen-
erated with the PYTHIA v5.6 Monte Carlo generator [13] together with a detector and
trigger simulation, contains a Gaussian core with a sigma of ~ 0.14 X Mpyo. The tails of
the distribution are dominated by the cases (25-30%) where the jet assignment in the mass
reconstruction is incorrect. In most of these cases, one of the jets assigned to the Higgs is a
heavy quark jet from the decay of the V' boson [14].

The main source of background events is QCD heavy flavor production. The heavy flavor
content of QCD hard processes has been modelled with the PYTHIA Monte Carlo program.
We generated all QCD jet production channels and retained the events that contained a
heavy quark produced either in the hard scattering or in the associated radiation process.
Events with a heavy quark are conventionally classified in three groups: direct production,
gluon splitting, and flavor excitation. Direct production events are characterized by a high
value of the invariant mass, M,;, and a low value of the transverse momentum of the bb
system, pp(bb). The same is true for flavor excitation events. The kinematics of final state
gluon splitting events favor a relatively smaller invariant mass value and a large py(bb),
since both jets tend to be emitted along the same direction. Figure 1 shows M,; versus
pr(bb) for data, QCD bb/ce Monte Carlo, and V + H? signal. In this plane, the Higgs signal
shows a greater tendency to large My, and p;(bb) values. A cut on py(bb) > 50 GeV/c is
~ 80% efficient for the signal and strongly discriminates against direct production and flavor
excitation of heavy quarks. After the py(bb) requirement is applied to the data 589 events
remain.

Other backgrounds are ¢t production, Z + jets events with Z — bb/cc and fake double-
tags. The first two are estimated from Monte Carlo and the last one from data. Using the

CDF measured tf production cross section (o7 = 7.67}% pb) [15] and a top quark mass of



M, = 175 GeV/c?, the HERWIG v5.6 Monte Carlo generator [16] predicts 26 & 7 tt events
in the data, after trigger, kinematic and b-tag requirements. The same generator predicts
17+ 4 Z + jets background events. Fake double-tags are defined as events in which at least
one of the two tagged jets contains a false secondary vertex in a light quark or gluon jet.
Fake tag probabilities are parameterized by measuring in several inclusive jet data samples
the proportion of jets in which a secondary vertex is reconstructed on the wrong side of the
primary vertex with respect to the jet direction [12,17]. The current data set is estimated to
contain 89 + 11 fake double-tag events. Finally, other minor sources of background include
Wbb/W ce, Zbb/ Z ce, diboson and single top production, and are estimated from Monte Carlo
calculations. Together, they account for less than 1% of the total number of events, have a
broad invariant mass distribution, and are neglected in the final fit.

The total signal detection efficiency is defined as the product of the trigger efficiency,
the kinematical and geometrical acceptances, the double b-tagging efficiency, the py(bb)
cut efficiency, and the branching fraction B(W — ¢¢') = 67.9 + 1.5% or B(Z — qq) =
69.90 + 0.15% [18,3]. The combined trigger and acceptance efficiency is determined using
PYTHIA followed by detector and trigger simulations. The QQ v9.1 [19] Monte Carlo
generator is used to model the decays of the b hadrons. The combined trigger and acceptance
efficiency depends on the Higgs mass and increases from 8 & 1% for Myo = 70 GeV/c* to
31 + 3% for Myo = 140 GeV/c? [14]. The uncertainty is dominated by the systematics
related to QCD radiation modelling. The SVX double b-tagging efficiency is calculated with
a combination of data and Monte Carlo samples and is 14 + 3% with a small dependence
on the Higgs mass. The total efficiency increases linearly from 0.6 + 0.1% to 2.2 4+ 0.6% for
Higgs masses ranging from 70 GeV/c? to 140 GeV/c?.

The shape of the observed b-tagged dijet invariant mass distribution is fit, using a binned
maximum-likelihood method, to a combination of signal, fake double-tag events, and QCD,
tt and Z + jets backgrounds. The QCD and signal normalizations are left free in the fit

while the normalizations of the tf, Z + jets and fakes are constrained by Gaussian functions



to their expected values and uncertainties. The expected number of events () in each mass

bin is:

= fig- Ng+ fzj - Nzjj + frakes * Nyakes

+focp - Nocp + fvmo - (- L oypo - ),

where fir, f7iis frakess focp, and fy o are the expected fractions of events in this given bin,
and Nyz, Nzjj, Nfakes, and Ngep are, respectively, the total expected number of tt, Z+jets,
fake, and QCD events. The quantities ¢, £, and oy o - 3 represent the detection efficiency,
integrated luminosity, and unknown V H? production cross section times branching ratio of

H° decaying into bb. The likelihood is:

L= G(Ntf; Ntf: Utf) : G(Nij; Nij,Uij)

' G(Nfakes; Nfakesa Ufakes) -T

where T' =[], P(n;, ;) and P(n;, ;) is the Poisson probability for n; observed events with
expected mean p; in bin i. G(x;Z,0) is Gaussian in x, with mean z and width o.

The fit yields oy o - 3 = 44 & 42 pb for Mpo = 70 GeV /c?, statistically compatible with
zero signal. For larger masses, zero signal contribution is preferred. Table I shows the result
of the fits as a function of the Higgs mass. Figure 2 shows the b-tagged dijet invariant mass
distribution for the data compared to the results of the fit for Mo > 80 GeV/c>.

Since the observed distribution is consistent with standard model background expecta-
tions, we place limits on pp — V H® production. Systematic uncertainties on the 95% C.L.
limits were determined by varying each source of error by +10. The separate contributions
arise from luminosity, jet energy scale, double b-tagging efficiencies, QCD radiation, limited
Monte Carlo statistics, and background normalizations and shapes. The total systematic
uncertainty is in the range 26% — 30%. The 95% C.L. limits are summarized in Table I and
Figure 3. The resulting bounds fall rapidly from 117 pb at Myo = 70 GeV/c? to values
between 15 and 20 pb for Myo > 105 GeV/c>.
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To combine our results with the ones from [6], the leptonic analysis was first extended
up to Myo = 140 GeV/c?. From the 95% C.L. limits on o(pp — W H?), the corresponding
limits on V H® production were calculated. We used the program PYTHIA to compute the
standard model prediction for the ratio o(ZH")/o(W H"). The leptonic analysis efficiency
for ZH" events relative to that for WH events was estimated to be (10 & 2)%. The
data from both channels were then fitted simultaneously. Correlations between systematic
uncertainties due to luminosity, QQCD radiation, and b-tagging efficiency were taken into
account. All other systematic uncertainties were considered uncorrelated. The 95% C.L.
limits range from 16 to 24 pb and are shown in Table I and Figure 3.

The sensitivity of the present search is limited by statistics to a cross section approxi-
mately two orders of magnitude larger than the predicted cross section for standard model
Higgs production [5]. It should be noted that, because these limits were derived from a
shape fit, they only apply to a very restricted region of parameter space in the minimal
supersymmetric extension of the standard model. For the next Tevatron run we hope for
an approximately twenty-fold increase in the total integrated luminosity, a factor of two im-
provement in the double b-tagging efficiency, and we plan to install a more efficient, dedicated
Higgs trigger. The limit is expected to decrease by about an order of magnitude.

We thank the Fermilab staff and the technical staffs of the participating institutions
for their vital contributions. This work was supported by the U.S. Department of Energy
and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the
Ministry of Education, Science and Culture of Japan; the Natural Sciences and Engineering
Research Council of Canada; the National Science Council of the Republic of China; the
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TABLES

TABLE I. Summary of the hadronic analysis fit results, standard model predictions for Go, and

95% C.L. limits from the hadronic, leptonic, and combined analyses.

Mo Bo (pb) Bo (pb) Bo (pb) fBo (pb) Bo (pb)
(GeV/c?) fit SM had. limit lep. limit comb. limit
70 44 + 42 1.13 117.3 21.9 23.1
80 0t2° 0.76 53.2 28.2 23.8
90 0.0755 0.55 28.9 29.0 18.0
100 0.073:2 0.41 22.8 27.2 16.8
110 0.015:5 0.30 18.7 30.1 17.1
120 0.073:7 0.20 17.6 25.0 16.0
130 0.0750 0.12 16.7 38.5 19.7
140 0.0153 0.06 15.3 34.5 17.2
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FIG. 1. My vs pr(bb) for (a) selected sample, (b) bb/cc Monte Carlo and (c) W/Z + HP,
Mpo = 100 GeV/c?. The vertical dashed lines indicate the pr(bb) > 50 GeV/c cut.
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FIG. 2. Invariant mass distribution, M, for 90.6 pb=! of CDF data (points) compared to the
fit prediction. The solid line is the sum of the QCD, fakes, tt, and Z + jets components.
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FIG. 3. The CDF 95% C.L. upper limits on o(pp — VH?) - 3 where 8 = B(H® — bb). The
mass region excluded by the LEP experiments for a standard model Higgs is also shown.
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